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FREE SUBGROUPS IN GROUPS WITH FEW RELATORS

by John S. WILSON

1. INTRODUCTION

In [11], we proved the following result :

THEOREM 1. Let G be an abstract (resp. pro-p) group which has

a presentation with n generators x1 xn and m relators, where m n,

and let Y be any generating set for G. Then there are n m elements of Y

that freely generate a free abstract (resp. pro-p) group.

The Freiheitssatz proved by Magnus in [3] in 1930 is essentially the

special case of Theorem 1 for abstract groups with Y x1 xn

and m 1. In [5] and [6] Romanovskiı̆ proved the case of Theorem 1

in which Y x1 xn . The proof of the general case in [11] was

indirect, relying on Romanovskiı̆’s result in [6]. In [9] Romanovskiı̆ and

the author gave a direct proof of a more general result concerning quo-

tients of a free product of n groups, for the case of abstract groups.

Our first object here is to give a much simpler proof of Theorem 1 in

the abstract case and to indicate the modifications required for the case

of pro-p groups. We shall also prove a result for pro-p groups that is

similar in spirit to the main result of [9] ; this result has the following con-

sequence.
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THEOREM 2. Let G be a finitely generated pro-p group generated by

a family of n finitely generated pro-p subgroups each having Zp as

an image, and suppose that the kernel R of the natural map from the free

pro-p product F of the groups in to G is generated (as a closed normal

subgroup) by m elements, where m n. Let be a family of subgroups

of G that generate G. Then B B contains n m elements that

freely generate a free pro-p group.

In particular, either n m or some subgroup in contains a

non-abelian free pro-p subgroup.
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2. PROOF OF THEOREM 1

Theorem 1 is reminiscent of the Steinitz exchange lemma from linear

algebra; indeed, it is a precise analogue of the statement that if V is an

n -dimensional vector space over a field Q and R is a subspace of dimension

at most m , then any set Y such that R Y spans V contains n m elements

that are linearly independent modulo R . Most earlier proofs of results like

Theorem 1 have relied on

(a) the above statement from linear algebra, but with V a right vector

space over a skew-field Q ,

(b) the Magnus embedding, and

(c) a rather complicated induction argument.

In the proof below, (c) is eliminated. We begin therefore with the ingredient (b).

Our notation for conjugates and commutators in a group G is as

follows : we write ab b 1ab and [a b] a 1b 1ab . We shall write

N for the derived group of a group N ; in the case of pro-p groups,

N refers of course to the closure of the abstract group generated by all

commutators.
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2.1 THE MAGNUS EMBEDDING

Let H be a group and M a right ZH -module. It is convenient to write

elements of the split extension G H M as matrices

h 0

m 1
(h H m M)

Thus matrix multiplication

h1 0

m1 1

h2 0

m2 1

h1h2 0

m1h2 m2 1

reflects the fact that (h1m1)(h2m2) (h1h2)(m
h2
1 m2) . We may regard M as

a ZG -module, and then the map taking G to its (2 1)-entry is a

derivation, i.e. ( 1 2) ( 1) 2 2 for all 1 2 G . The Magnus

embedding for abstract groups is the map j from F R in (b), (c) below.

LEMMA 1. Let R be a normal subgroup of the free group F with basis

x1 xn , and let H F R. Let M be a ZH-module and t1 tn M.

(a) The assignment

xi
xiR 0

ti 1

determines a homomorphism

: F
H 0

M 1

(b) R ker R; let j be the map from F R induced by .

(c) If M is the free ZH-module with basis t1 tn then j is injective.

Proof. Assertion (a) is clear, and so is (b) since the image of R under

is abelian. The following proof of (c), included for the reader’s convenience,

is due to Romanovskiı̆.

There is certainly an embedding of F R in a group of the form

H 0

N 1

for a ZH -module N . Indeed, we can take for N the abelian group B of

all functions b : H R R , which is a right ZH -module with action defined

by (bh)(x) b(xh 1) for b B , h H , x H ; since the split extension

of B by H is the unrestricted standard wreath product R R wr F R , the
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existence of a suitable map follows from the Kaloujnine–Krasner theorem

([1] ; see also e.g. [10, Theorem 4.4.1]). Explicitly, can be defined as follows.

Choose a set-theoretic section : F R F R to the canonical projection

q : F R F R (that is, a function such that its composite with q is the

identity map on F R ), and for each f R F R define ( f R ) B by

( ( f R ))(uR) (uf 1R) f R ( (uR)) 1 for all uR F R

Simple calculations show that (with B written multiplicatively) we have

( f 1 f̄2) ( f 1)
f 2( f 2) for all f 1 f 2 F R and also that if f R R

and f is the identity element of B then f is the identity element of R R .

It follows immediately that the map defined by

( f R )
f R 0

( f R ) 1

H 0

N 1

is an injective homomorphism.

To prove (c) it suffices now to show that the diagram

F F R
H 0

N 1

j ¯

H 0

M 1

can be completed with a map ¯. Define i N by

(xiR )
xiR 0

i 1

and let : M N be the ZH -module homomorphism defined by ti i .

Then the map

h 0

m 1

h 0

m 1

has the required property.

LEMMA 2. Let : H W be a derivation from a group H to a right

H -module W . If H Z then the subset H lies in the ZH-submodule W1

generated by Z .

Proof. If h1 , h2 W1 then (h1h
1

2 ) ( h1)h
1

2 ( h2)h
1

2 W1 .
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2.2 EMBEDDING OF GROUP RINGS IN SKEW-FIELDS

We recall that a group G is called orderable if it has a total order

such that if a , b G and a b then xay xby for all x y G ; the pair

(G ) is then an ordered group. It is well known and easily checked that if

G H A is a split extension of ordered groups (H H) , (A A) , and if

1 A a A and h H imply 1 A a
h , then G becomes an ordered group

with respect to the order defined as follows : h1a1 h2a2 if and only if either

h1 H h2 , or h1 h2 and a1 A a2 . The following lemma is also no doubt

well known.

LEMMA 3. Each group G has a unique normal subgroup K minimal

such that G K is orderable.

Proof. Let (K ) R be the set of kernels of maps from G to orderable

groups and set K K . We fix an order on each group G K , and we may

take the set R to be well ordered. Now we can define an order on G K by

writing aK bK if for some R we have aK bK and aK bK

for all .

An ordered skew-field is a skew-field Q together with an order

such that both Q under addition and the set h Q h 0 under mul-

tiplication are ordered groups with respect to ; denote the latter group

by U (Q) .

We need the following result proved by B.H. Neumann [4].

PROPOSITION 1. Let H be an ordered group. Then ZH can be embedded

in an ordered skew-field Q in such a way that the order on Q induces an

embedding of H (as an ordered group) in U (Q) .

A standard candidate for Q is the skew-field of formal expressions

q h H hh with h Q for all h H and with support h H h 0

inversely well-ordered; then U (Q) is the set of elements q such that

m 0, where m H is the greatest element of the support of q .

For the details we refer to Neumann [4], or [2, §14 and Corollary 18.6].

(In fact Neumann works with the ring of formal expressions with well-

ordered support, and his embedding of H in U (Q) is order-reversing; an

order-preserving embedding is obtained by composing the inversion map on

H with this embedding.)
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LEMMA 4. Let H Q be as above and let V be a finite-dimensional

right vector space over Q ; thus V is naturally a ZH-module. Then the split

extension H V is orderable.

Proof. We may regard V as the space Q(n) of n -tuples of elements of Q .

We define an order on V by writing (x1 xn) (y1 yn) if yi xi 0

for the first non-zero yi xi . Thus if 0 V and h H then h 0,

and so the split extension is orderable from above.

2.3 PROOF OF THE THEOREM : ABSTRACT CASE

Let G be as in the statement of Theorem 1, and let F be free with

basis x1 xn . Thus the kernel R of the obvious map from F to G can

be generated as a normal subgroup by elements r1 rm , where m n .

Lemma 3 guarantees the existence of a smallest normal subgroup S of F

with R S and F S orderable. Write G F S .

Let Q be an ordered skew-field containing ZG as in Proposition 1. Let

V be the right vector space over Q with basis t1 tn , and let M be the

ZG-submodule generated by t1 tn ; thus M is a free ZG-module with

basis t1 tn . Define

: F
G 0

M 1
by xi

xiS 0

ti 1

and

: F M by f
f S 0

f 1

Let U be the subspace of V spanned by r1 rm , and write W V U ,

r dimW ; so r n m . Let ¯ be the map f U f . Thus the set
¯x1 ¯xn spans W .

Consider the map

:
G 0

M 1

G 0

(M U) U 1

and let . By Lemma 4, the codomain of is orderable, and so

F ker is orderable. But ker S and r1 rm ker , and hence

ker S . Therefore induces an injective map

j : G
G 0

W 1

Now let Y F generate F modulo R . Since R ker we have ¯R 0,

and therefore, since ¯ , like , is a derivation, ¯Y spans W by Lemma 2;
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let ¯y1 ¯yr ¯Y be a basis. In particular, ¯y1 ¯yr generate a free

ZG-submodule of W .

Let E be the free group with basis y1 yr , and define : E G

by yi yiS . Let N ker . By Lemma 1, the map

: yi
yiS 0
¯yi 1

has kernel N . But j and j is injective, and hence N N . Since

N is also a subgroup of a free group, and hence free, we must have N 1.

Therefore the subgroup y1 yr of F is free modulo S , and so free

modulo R .

The reader will notice that the proof above gives a stronger result than

Theorem 1 : with the hypotheses of the theorem there is a homomorphism

from G to an orderable group P such that n m elements of Y map to a

basis of a free subgroup of P . The reader will also notice that there is no

need to introduce M in the above proof. The reason for doing so will appear

in the next section.

2.4 MODIFICATIONS FOR THE PRO-p CASE

The arguments of Section 2.3 apply without essential change in the pro-p

case; all subgroups are now understood to be closed, all maps continuous, and

modules are modules for the completed group ring Zp[[G]] of G over Zp .

For information about pro-p groups and their completed group rings we refer

the reader to [10]. Instead of appealing to the Kaloujnine–Krasner theorem to

embed an extension in a split extenson, we may use the following well-known

result.

LEMMA 5. Let A be a (closed) abelian normal subgroup of a pro-p group

G and let H G A. Then G can be embedded in a pro-p group H B

with B abelian, in such a way that the composite of the embedding and the

map H B H is the quotient map G H .

Proof. Let (N ) R be a family of open normal subgroups with N 1.

The Kaloujnine–Krasner theorem for finite groups gives embeddings

j : G N G AN B

with each B an abelian p -group, and we consider the subgroup of the

Cartesian product Cr (G AN B ) generated by the abelian normal subgroup

CrB and the image of G under the map ( j ( N )) .
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We can no longer use ordered groups as in Section 2.3, because, for

example, we need to ensure that U M is closed in the Zp[[G]] -module M .

Instead we need to use a deep result of Romanovskiı̆ [6].

A filtration

A A(1) A(i)

of normal subgroups of a profinite with A(i) 1 is called convergent if

each neighbourhood of 1 contains some subgroup A(i) . Write for the

class of all finitely generated pro-p groups having a convergent filtration with

torsion-free central factors. If G is any finitely generated pro-p group then

G has a unique minimal normal subgroup K such that G K , namely

the intersection of the kernels of all maps from G to torsion-free nilpotent

pro-p groups.

PROPOSITION 2 (cf. [6, Proposition 7]). Let H be a pro-p group in

and let L be the completed group ring Zp[[H]] of H . Then there exist a

filtration (Hi)i 1 with torsion-free central factors and a skew-field Q L

such that the following holds : if n 1 and U is a subspace of the vector

space Q(n) , then

(i) U L(n) is closed in L(n) , and

(ii) the Zp -module M L(n) (U L(n)) has a filtration (Mj)j 1 of closed

submodules such that [Mj Hi] Mi j and Mj Mj 1 is a torsion-free

group for all i j ; moreover

(iii) (HiMi)i 1 is a filtration of H M with torsion-free central factors, and

so H M .

In the proof of Theorem 1 for pro-p groups, we take S R to be the

intersection of the kernels of all maps from F R to torsion-free nilpotent pro-p

groups; thus F S and S is the smallest normal subgroup containing R

with this property. Define as in the proof in Section 2.3. It follows from

Proposition 2 that the codomain of is a pro-p group and is in . The

rest of the proof from Section 2.3 now applies without any change.

3. IMAGES OF FREE PRODUCTS OF PRO-p GROUPS

3.1 THE MAGNUS EMBEDDING FOR FREE PRO-p PRODUCTS

The Magnus embedding used in Section 2 has been modified by Shmel kin

and Romanovskiı̆ to the case of free products of groups. Everything that we
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require can be deduced from the following special case of Romanovskiı̆ [7,

Theorem 3].

LEMMA 6. Let F be the free pro-p product of the pro-p groups A1 An

and let H F R, where R is a (closed) normal subgroup such that

Ai R 1 for i 1 n. Let T be the free right Zp[[H]] -module with

basis t1 tn . Let

: F
H 0

T 1

be the homomorphism defined on the free factors Ai of F by

a
aR 0

ti(a 1) 1
for a Ai

Then ker R .

As observed in [8, Lemma 5], Lemma 6 may be modified as follows.

LEMMA 7. The conclusion of Lemma 6 remains true if the hypothesis

on T is replaced by the requirement that t2 tn is a basis of T and

t1 0 .

Proof. This follows from the formula

1 0

t1 1

1
aR 0

ti(a 1) 1

1 0

t1 1

aR 0

(ti t1)(a 1) 1

3.2 DERIVATIONS TO RIGHT VECTOR SPACES

We prove the following result concerning derivations from pro-p groups G

to right vector spaces V over skew-fields containing Zp[[G]] . The derivations

under consideration are understood to be continuous regarded as maps into

finitely generated Zp[[G]] -submodules of V ; a derivation : G V is inner

if there exists some V such that ( 1) for all G .

PROPOSITION 3. Suppose that G is a finitely generated pro-p group such

that Zp[[G]] can be embedded in a skew-field Q, and suppose that G is

generated by subgroups A and B. Let be a derivation from G to a right

vector space V over Q. If the restrictions A , B are both inner derivations,

then either G is the free pro-p product of A B or is inner.
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Proof. By hypothesis, there are mA , mB V such that A , B are the

maps a mA(a 1) , b mB(b 1) . Let M be the Zp[[G]] -module generated

by mB mA , let F be the free pro-p product of A B , and N the kernel of

the map q : F G extending the identity maps on A B .

Suppose that is not inner ; then mA mB and the map :

mA( 1) is a non-zero derivation. By Lemma 7 the (continuous)

homomorphism

: F
F N 0

M 1

defined on A B by

a
aN 0

0 1
b

bN 0

(mB mA)(b 1) 1

has kernel N . Define : F V by

f
f N 0

f 1

Then and q are (continuous) derivations from F that agree on A B ,

and so they are equal. However for n N we have n qn 0, and so

n 1. Thus N N , and since N is a pro-p group we have N 1, as

required.

3.3 DI-GROUPS

In order to state and prove the next result concisely, we make a definition,

concerning circumstances under which certain derivations are guaranteed to

be inner. We say that a finitely generated pro-p group G is a DI-group if

its completed group ring Zp[[G]] can be embedded in a skew-field and if

whenever Q is a skew-field containing Zp[[G]] and : G V is a derivation

to a finite-dimensional space over Q then is inner. Again, our derivations

are continuous maps into finitely generated Zp[[G]] -submodules.

Clearly Zp is a DI-group, and, by Proposition 3, any pro-p group that is

generated by two DI-subgroups either is the free pro-p product of the two

subgroups or is again a DI-group.

THEOREM 3. Let F be the free pro-p product of a family of n finitely

generated pro-p groups each having Zp as an image, and let R be a normal

subgroup of F generated (as a normal subgroup) by m elements of F , where

m n. Let S be the intersection of all normal subgroups N of F with R N

and F N torsion-free nilpotent.
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Write G F S, and for A write A for the image of A in G. Let

be a family of DI-subgroups of G, set J B B , and suppose that

for each A in with A 1 , the subgroups A and J do not generate their

free product in G. Then n m, and there are n m members of

that generate in G their free product.

Theorem 3 implies the result stated as Theorem 2 in the Introduction.

Assume the hypotheses of Theorem 2 and define S , G as in Theorem 3. Let

1 be the family of all procyclic subgroups of groups in and let 1 be the

family of non-trivial images of members of 1 in G ; since G is torsion-free,

1 consists of DI-subgroups. By Theorem 3 there are n m members of 1

that freely generate a free pro-p subgroup of G , and thus their pre-images in

1 freely generate a free pro-p subgroup of G . Theorem 2 follows.

3.4 PROOF OF THEOREM 3

Assume the hypotheses of the theorem. Write 1 2 , where

1 contains all subgroups A with non-trivial images in G and 2 1 .

We can replace all groups A from 1 by their images in G and also identify

them with their images in G . Let Q be a skew-field containing Zp[[G]] with

the properties given by Proposition 2. By hypothesis, for each A 2 there

is a non-zero continuous homomorphism A from A to the additive group

of Q . Let V be the right vector space over Q with basis tA A and

let M be the Zp[[G]] -submodule with basis tA A . Define a group

homomorphism

: F
G 0

M 1

by specifying its restriction A to the free factors as follows :

a
a 0

tA(a 1) 1
for a A 1

a
1 0

A(a) tA 1
for a A 2

Since the subspace of V spanned by the bottom left-hand entries of the images

of the elements of F contains all elements tA , it is equal to V .

Let R be generated as a normal subgroup of F by r1 rm . The images

ri have the form

1 0

ui 1



184 J. S. WILSON

and so they all lie in the subgroup

1 0

U M 1

where U is the subspace of V spanned by u1 um . Write W V U .

Then the kernel K of the map

: F
G 0

W 1

induced by contains R . Moreover K consists of the elements of S whose

images under have bottom left entry in U M . It follows from Proposition 2

that U M is closed in M and that G (M (U M)) ; therefore F K ,

and by the definition of S we conclude that K S and that induces an

injective map

j : G
G 0

W 1

By construction we have

j
0

1

where : G W is a derivation.

We note that tA U for each A 2 ; this follows since A S K ,

which maps under to the group of matrices with bottom left entry in U .

Set dimW r ; thus r n m . Since all groups in are DI-groups,

the restriction maps B have the form b sB(b 1) for some elements

sB W . Let U1 U be the subspace of W spanned by sB B . Fix

A 1 , set L J A and consider the composite ¯ of the restriction L

and the map W V U W U1 . Since L is not the free product of J A

and since ¯
J 0 and ¯

A is an inner derivation, Proposition 3 implies that
¯ 0 . From the definition of it now follows that tA U1 . Since this

holds for all A 1 , we conclude that U1 contains tA A and hence

equals V . Therefore W is spanned by sB B . Choose 0 such

that sB B 0 is a basis of V .

We claim that the subgroups in 0 generate their free pro-p product

in G . Write E for the free product of the groups B 0 and consider

the homomorphism : E B B 0 G . Let N ker . We have

B N 1 for each B 0 and

j b
b 0

sB(b 1) 1
for b B 0
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By Lemma 4 we have ker j N , and hence N N since j is injective.

Since N is a pro-p group it follows that N 1, so that is injective. This

concludes the proof of Theorem 3.
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