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A NOTE ON LOWER BOUNDS FOR FROBENIUS TRACES

by Enrico BOMBIERI and Nicholas M. KATZ

1. INTRODUCTION

This paper grew out of the following question. Given an ordinary elliptic

curve E Fq over a finite field Fq of characteristic p , consider the sequence

of integers A(n) , n 1, defined by

#E(Fqn ) qn 1 A(n)

Is it true that as n grows we have A(n) ?

Without the hypothesis “ordinary” the answer can be no, because for

a supersingular elliptic curve one can have A(n) 0 on entire arithmetic

progressions of n . On the other hand, all the A(n) in the supersingular case

are divisible, as algebraic integers, by qn 2 , so the non-zero A(n) must have

A(n) qn 2 . If instead E Fq is ordinary, then all the A(n) are not zero

because they are all prime to p , so this vanishing problem at least disappears.

The A(n) are the traces of the iterates of a certain Frobenius endomorphism

F and this leads to the more general question of when we can assert that in

the sequence Trace(Fn) , n 1, the non-zero terms tend to .

The purpose of this note is to explain how classical results on recurrent

sequences answer these questions. Because of the “culture gap” between the

communities of those who know these classical results and those who are

interested in traces of Frobenius, we have written this note so to make it

accessible to members of both communities, at the risk that readers may find

parts of this note overly detailed.

We will use three different methods to approach the problem. The Skolem-

Mahler-Lech theorem on recurrent sequences is easy to prove and provides a

“soft” answer, soft in the sense that it gives no estimate of the rate at which the

non-zero terms tend to . The other two methods lie much deeper. A theorem
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due independently to Evertse and to van der Poorten and Schlickewei, itself

based on an improved version of Schmidt’s subspace theorem, gives such a

rate, albeit ineffective in certain parameters. For elliptic curves (and some

other exponential sums, including classical Kloosterman sums), the Baker-

Wüstholz theorem gives an even better rate, this time effective in all parameters.

The problem of obtaining effective lower bounds in the most general case

remains unsolved and probably lies very deep.

ACKNOWLEDGEMENTS. It is a pleasure to thank Umberto Zannier for his

helpful comments on an earlier version of this paper.

2. UNBOUNDEDNESS, VIA SKOLEM’S METHOD

We begin by recalling the relevant version of the Skolem-Mahler-Lech

theorem. For the convenience of the reader, we also recall its proof.

THEOREM 2.1. Let K be an algebraically closed field of characteristic

zero. Fix an integer n 1 , n numbers 1 n in K , the “eigenvalues”,

and n polynomials 1(x) n(x) in K[x] , the “coefficients”, not all of

which are zero. For each integer k 1 , define

A(k) :

n

i 1

i(k)
k
i

Then we have the following results.

(i) Suppose that no ratio i j , i j , is a root of unity. Then there are

only finitely many integers k 1 for which A(k) 0 .

(ii) The integers k 1 for which A(k) 0 are the union of a (possibly

empty) finite set together with a finite number, possibly zero, of arithmetic

progressions to some common modulus D ; we can take D to be the

order of the group of roots of unity generated by all those roots of unity

which are of the form i j for some i j .

(iii) Suppose that for some index i0 , i0(x) 0 and, for any j i0 , the ratio

j i0 is not a root of unity. Then there are only finitely many integers

k 1 for which A(k) 0 .

(iv) Suppose that no i is a root of unity. Then for any 0 in K , there

are at most finitely many integers k 1 with A(k) .
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Proof. (i) Let R be the set of coefficients of the polynomials i(x) . It is

standard that for almost all primes p we can embed the finitely generated

ring

Z[ 1 1 1 n 1 n R ]

into the ring of integers in a finite extension E of Qp , cf. [C1] for

an elementary proof or [Ka96], 5.9.3. (In Cassels it is shown that if K is

any finitely generated field of zero characteristic and C is a finite subset of

K then there is a set of primes p of positive density such that, for each p

in this set, there is an embedding of K in the p -adic field Qp in which all

elements of C are units.)

We choose such an embedding, denote by a uniformizing

parameter, by the extension of the usual p -adic absolute value to E ,

by ord the associated additive valuation, and by L the cardinality of the

finite group (1 p ) .

For each i , we have

( i)
L 1 p

Hence in each arithmetic progression a kL k Z modulo L , we have

A(a kL)

n

i 1

a
i i(a kL) ( L

i )
k

which we can view as the case where the eigenvalues are the L
i and the

coefficients are a
i i(a xL) . Notice that the new eigenvalues L

i continue to

satisfy the condition that their ratios are not roots of unity.

Looking at each of these progressions separately, it suffices to prove (i)

under the additional hypothesis that the n numbers i each lie in 1 p .

The key observation is that the functions

log(1 z)

m 1

( 1)m 1 z
m

m

and

exp(z)

m 0

zm

m!

are a pair of inverse group isomorphisms between the multiplicative group

1 p and the additive group p . (Indeed, for any element

with p 1 p , log and exp are inverse group isomorphisms between the

multiplicative group 1 and the additive group , see [DGS], p. 52.)
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Thus distinct elements i 1 p have distinct logarithms

i : log( i)

m 1

( 1)m 1 ( i 1)m

m
p

The power functions n n
i exp( i)

n exp( in) are interpolated by the

functions z exp( iz) , whose power series are easily seen to lie in [[ z]] .

We next show that these n analytic functions exp( iz) have power series

that are linearly independent over E [z] . For completeness, we repeat here the

standard proof. Suppose that Pi(z) , (i 1 n) , are non-zero polynomials

in E [z] , of degree i , which we may and will assume to be monic. We

will show that the n power series fi(z) : Pi(z) e iz are linearly independent

over E . It suffices to show that their Wronskian

6 : det
d

dz

j 1

fi(z)
i j 1 n

is not zero. The (i j) -th entry of the matrix is easily calculated to be

( j 1
i z i lower degree terms) e iz

Therefore, the determinant is

6 z i lower degree terms Vand( 1 n) e
( i)z

with Vand the Vandermonde determinant. The i , i 1 n , are distinct,

hence the Vandermonde determinant is not 0.

We now return to the proof of part (i) of the theorem. Since not all

coefficients i(x) vanish, the function

F(z) :

n

i 1

i(z) exp( iz)

is not zero in [[ z]] . It follows that F(z) has at most finitely many zeroes

in and a fortiori has at most finitely many integer zeroes, which will prove

what we want. This is an easy consequence of the Weierstrass Preparation

Theorem applied to the power series ring [[ z]] (see Lang [La], Thm. 9.2),

or of the theory of Newton polygons (see, for example, Dwork [Dw], Thm. 1.1

or Dwork, Gerotto, Sullivan [DGS], II.2.1). In its most elementary form,

this finiteness of the number of zeroes follows from Strassmann’s Theorem :

If f (z) amz
m is convergent for z 1 and not identically 0 , and

M is the largest index m for which am reaches its maximum, then the

equation f (z) 0 has at most M zeroes with ordp( ) 0 .
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The following simple proof by induction on M can be found in Cassels

[C2], Thm. 4.1. Since amz
m is convergent for z 1, we have am 0,

hence M exists. If M 0, there is nothing to prove. Now if f ( ) 0 we

have

f (z) f (z) f ( )

m 1

am(z
m m)

(z )

m 1

m 1

j 0

amz
j m 1 j (z )

m 0

bjz
j

(z ) (z)

say, with

bj
m j 1

am
m 1 j

From this, it is clear (we are dealing with an ultrametric valuation) that

bj 0 as j . Moreover, it is immediate that bj aM for

all j , bM 1 aM , and bj aM if j M ; the result follows by

induction applied to (z) bjz
j , which we may because bj 0, so the

sum is convergent in z 1.

A refinement of Strassmann’s Theorem is the p -adic Rouché theorem

(see [DGS], IV.4.2 and its more general formulation for quotients of analytic

functions 1 ), rather than just power series in E [[z]] ) :

Let f (z) amz
m E [[z]] be a power series convergent in z 1 and

let f : maxm am . If h(z) E [[z]] is another power series convergent

in z 1 and with h f , then f and f h have the same finite

number of zeroes in the disk z 1 .

Once we have (i), we get (ii) and (iii) by partitioning the eigen-

values i into equivalence classes according to the equivalence relation

where a b if and only if b a is a root of unity. By renumbering,

we may assume that 1 r are representatives of these equivalence

classes, and that the class of i consists of i j i , for j 1 ni ,

with suitable roots of unity i j of order dividing some positive integer D .

1 ) This extension is important, because analytic continuation in a p-adic field cannot be done
by Weierstrass’s method using Taylor series.
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Then for a fixed integer 0 a D , and any integer k 1, the se-

quence k A(a kD) is of the same form, with r eigenvalues D
i ,

i 1 r , except that now it may be the case that all the coefficients

vanish. We do not care about the exact formulas for these coefficients,

except to note that for each equivalence class which is a singleton, say

i0 , the new coefficient of i0 is
a
i0 i0(a xD) . If all coefficients vanish,

then we have vanishing on the entire progression. If not, then by (i) we

only have finitely many vanishing terms in the progression. This gives (ii)

and (iii).

Suppose now that no i is a root of unity. We get (iv) by applying

(iii) to the situation with n 1 eigenvalues ( 1 n 1) and coefficients

( 1(x) n(x) ) , for here the equivalence class of the eigenvalue 1 is

a singleton, whose coefficient is not zero.

COROLLARY 2.2. Let K be an algebraically closed field of characteristic

zero, n 1 an integer, and F GL(n K) an n n invertible matrix whose

reversed characteristic polynomial det(I FT) has integer coefficients. Suppose

that no eigenvalue of F is a root of unity. Define a sequence of integers

A(n) by

A(n) : Trace(Fn) n 1

Then the non-zero A(n) have A(n) . More precisely, for any integer

M 1 , there exists an integer kM 1 such that if k kM , then either

A(k) M or A(k) 0 .

Proof. Apply Theorem 2.1 (iv), to the eigenvalues i of F , taking all

i 1. For any integer k 0, A(k) is an integer, by the integrality assumption

on the coefficients of the characteristic polynomial. There are at most finitely

many integers k 0 for which 0 Trace(Fk) M , hence taking kM to be

the largest of these, we get the assertion.

Here is another corollary. As before, K is an algebraically closed field

of characteristic zero, n 1 an integer, and F GL(n K) is an n n

invertible matrix whose reversed characteristic polynomial P(T) : det(I FT)

has integer coefficients. Given an integer k 1, we say that an element

G GL(n K) is an integral form of Fk if the following two conditions hold.

Let I GL(n K) be the identity element. Then

(i) the reversed characteristic polynomial det(I GT) has integer coefficients ;

(ii) for some integer d 1, we have det(I GdT) det(I FdkT) .
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COROLLARY 2.3. Let K be an algebraically closed field of characteristic

zero, n 1 an integer, and F GL(n K) an n n invertible matrix whose

reversed characteristic polynomial det(I FT) has integer coefficients. Suppose

that no eigenvalue of F is a root of unity. Then for any integer M 1 , there

exists an integer kM 1 such that for k kM , and for any integral form G

of Fk , either Trace(G) 0 or Trace(G) M.

Proof. Denote by i the eigenvalues of F . An integral form G of Fk

has eigenvalues i
k
i , for some choice of roots of unity i . We claim that

given F , there is an integer D 1 such for any k 1 and any integral form

G of Fk , the possible i are all D -th roots of unity. Granting this claim, we

get the result by applying Theorem 2.1 (iv), to the i and to each of the D
n

n -tuples ( 1 n) with i a D -th root of unity.

To prove the claim, we argue as follows. Since det(I FT) has integer

coefficients, the i are algebraic numbers, so lie in some finite Galois extension

K0 Q . If we pick a prime p which splits completely in K0 , and a prime

of K0 lying over p , then the -adic completion of K0 is just the p -adic

field Qp . So we can view all the i as lying in the p -adic field Qp . The

fact that det(I GT) has integer coefficients shows that each product i
k
i is

algebraic of degree at most n over Q , and hence of degree at most n over

Qp . On the other hand,
k
i Qp , so i lies in an extension of Qp of degree

at most n . Since Qp has only finitely many extensions of given degree, the i

lie in a single finite extension, say E , of Qp , and any such finite extension

contains only finitely many roots of unity.

We now give some applications to varieties over finite fields, and to

isotrivial 2 ) families of such varieties. All of these applications have a common

structure, that there is only one cohomology group we do not know in advance.

Let us explain in a bit more detail. To begin with, suppose we are given a

proper, smooth, geometrically connected variety X over a finite field Fq of

characteristic p 0. We choose a prime number p . Then we have

Grothendieck’s -adic étale cohomology groups 3 ) Hi
ét(X Fq Fq Q ) . In order

to simplify notation, we shall write here X for X Fq Fq (thus X is X after

base change from Fq to Fq ) and we shall write Hi for Hi
ét(X Q ) if X is

clear from the context.

2 ) A family X S is isotrivial if it becomes a product S Y S with trivial projection
on the first factor, after a suitable finite étale base extension S S .

3 ) In this paper, if K is a field, we denote by K a choice of an algebraic closure of K .
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These cohomology groups are finite-dimensional Q -vector spaces, which

vanish for i outside the interval [0 2 dim(X)] . On each group Hi we have the

Frobenius automorphism FrobFq , and according to the Lefschetz Fixed Point

Formula [Gr] the number #X(Fqn ) of points of X defined over the field Fqn

is given, for each integer n 1, by the formula

#X(Fqn )

i

( 1)iTrace(FrobnFq H
i)

This appears at first sight to be an equality of an integer #X(Fqn ) with an

alternating sum of terms Trace(FrobnFq H
i) on the right, each of which is a

priori only an element of Q . However, Deligne, [De2] proved that each

individual trace term Trace(FrobnFq H
i) on the right is itself an integer, and

moreover that this integer is independent of the auxiliary choice of the prime

number p . Equivalently, for each i the reversed characteristic polynomial

det(I T FrobFq H
i) is independent of p and has integer coefficients.

Moreover, he proved in the same paper that each eigenvalue of FrobFq on Hi

has complex absolute value qi 2 . See the review [Ka94] for a slight elaboration

of this summary; for the purpose of this paper, it suffices to know only that

such a cohomology theory exists and that it has the above properties.

All this becomes much more concrete and explicit in a diophantine setting

when our variety X is either a curve or a complete intersection, because for

such an X , say of dimension d , there is only one of its cohomology groups,

namely the middle dimensional group Hd , which is difficult to understand

completely. More precisely, for 0 i 2d and i d , we have by [DK],

XI, 1.6,

(i) if i is odd, then Hi 0,

(ii) if i is even, say i 2r , then dim(H2r) 1 , and FrobFq acts on it by

multiplication by qr .

Thus if X is a (proper, smooth, geometrically connected) curve, we have

#X(Fqn ) 1 qn Trace(FrobnFq H
1)

If X is a (proper, smooth, geometrically connected) complete intersection of

odd dimension d , we have

#X(Fqn ) 1 qn q2n qdn Trace(FrobnFq H
d)

Now if X is a complete intersection of even dimension d , then Hd contains

a one-dimensional subspace which is FrobFq -stable and on which FrobFq
acts with eigenvalue qd 2 ([DK], XI, 1.6 (iv)) ; the quotient of Hd by this
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one-dimensional subspace is denoted by Primd . So here we have the formula

#X(Fqn ) 1 qn q2n qdn ( 1)d Trace(FrobnFq Prim
d)

We unify these last two formulas by defining Primd : Hd in the case when

d is odd; then the last formula is valid when our X is a complete intersection

of any dimension d .

The above definition of Primd has been somewhat simplified here for our

purposes, so it is worthwhile to spend a few words to introduce the general

notion of the primitive part of the cohomology, which is quite interesting and

important in the study of projective varieties. This has no role for the limited

results in our paper and the reader may skip the more technical definitions

which follow.

Let X be a proper, smooth, geometrically connected variety of dimension

d over a finite field Fq of characteristic p 0 and let Y be a smooth

hyperplane section 4 ) of X . Let be a prime number p . The embedding

Y X induces restriction homomorphisms

Hi
ét(X Q ) Hi

ét(Y Q )

Using Poincaré duality, we get dual homomorphisms

L : Hi
ét(Y Q ) Hi 2

ét (X Q (1))

called the Gysin homomorphisms, where Q (k) denotes the k -th Tate twist 5 ).

The image H2ét(X Q (1)) obtained applying the Gysin map to the class

4 ) The alert reader may correctly object at this point that over the given ground field Fq ,
every hyperplane section might be singular. For instance, this is the case if d 2n is even

and X is the smooth hypersurface in P2n 1 given by the equation in homogeneous coordinates
n
i 0(x

q
2ix2i 1 x2ix

q
2i 1) 0, see [Ka99], Question 10, pp. 621–622. One way around this

difficulty is to use the fact that over every finite extension of sufficiently large degree of our
ground field there do exist smooth hyperplane sections. Indeed, the singular hyperplane sections are
a proper closed subscheme (the dual variety) X of the projective space P of all hyperplane
sections, cf. [DK], Exp. XVII, 3.1.4; hence the complement P X (the variety of smooth
hyperplane sections) is not empty, smooth and geometrically connected, so has points in all finite
extensions of large enough degree, by a well-known result of Lang and Weil [LW]. However,
there is a more elegant geometric approach to the question. Poonen [P] has shown that for a given
X as above, there exist smooth degree D hypersurface sections over the given ground field if
D is large enough. (See also Gabber [Ga] for an independent proof if in addition D is divisible
by the characteristic p .) Using these results, we can proceed in either of two ways. Suppose we
are given a smooth hypersurface section Y of X of some degree D . We can use the D-fold
Veronese embedding (via all monomials of degree D) to get a new projective embedding of X
in which the previous degree D hypersurface sections now become hyperplane sections; for this
projective embedding, there do exist smooth hyperplane sections over Fq . Alternatively, in the

arguments which follow we can use the Q -cohomology class (1 D)1Y , instead of the class 1Y

of Y itself, to obtain the desired Q -cohomology class of a hyperplane section.
5 ) The k -th Tate twist Q (k) is a certain one-dimensional Galois module over Q for the

action of the absolute Galois group of Fp . The effect on the eigenvalues of the action of FrobFq
due to the twist is to multiply the eigenvalues by q k .
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1Y H0ét(Y Q ) corresponding to Y (the so-called fundamental class of Y )

is the class of a hyperplane section of X .

A fundamental theorem (the Hard Lefschetz Theorem) which goes back to

Lefschetz for varieties over the complex field and classical “Betti” cohomology

with coefficients in C and proved by Deligne [De3], 4.1.1, for -adic

cohomology (hence applicable in our setting) is :

Let X be a proper, smooth, geometrically connected, projective variety of

dimension d , over a finite field field Fq of characteristic p 0 . Let p

and let be the hyperplane class in H2ét(X Q (1)) . Then the homomorphism

k : Hd k
ét (X Q ) Hd k

ét (X Q (k))

given by cup-product with the class k is an isomorphism.

In particular, the eigenvalues of FrobFq on Hd k
ét (X Q ) are equal to

qk times the eigenvalues of FrobFq on Hd k
ét (X Q ) . On the other hand,

multiplying by once more, the map

k 1 : Hd k
ét (X Q ) Hd k 2

ét (X Q (k 1))

may have a non-trivial kernel. This kernel

Primd k(X Q ) : ker( k 1 Hd k
ét (X Q ))

is the primitive part of the cohomology group Hd k
ét (X Q ) . This subspace

Primd k(X Q ) Hd k
ét (X Q )

is stable by the action of FrobFq , whose eigenvalues on Primd k(X Q )

are hence among its eigenvalues on Hd k
ét (X Q ) . The remaining eigen-

values of FrobFq on Hd k
ét (X Q ) can be recovered from its eigenvalues on

Hd k 2
ét (X Q ) ; they are equal to q times the eigenvalues of FrobFq acting

on Hd k 2
ét (X Q ) .

This shows the importance of the primitive part of the cohomology : its

knowledge is sufficient, via the Hard Lefschetz Theorem, to compute the

eigenvalues of the action of FrobFq on the whole -adic cohomology of X .

Moreover, by the Weak Lefschetz Theorem, cf. [De3], 4.1.6, the cohomology

groups Hi of a smooth projective variety X of dimension d are isomorphic,

for i d 2, to the cohomology groups of any smooth hyperplane section.

The cohomology group Hd 1 of X can be recovered as a suitable “gcd” of the
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groups Hd 1 of “all” smooth hyperplane sections 6 ) of X . The cohomology

groups for i d can of course be recovered by Poincaré duality from those

with i d . Inductively, this leaves only the middle dimensional cohomology

Hd of X to be computed. The interest reader who wants a quick introduction

to this deep theory may consult Danilov’s article [Dan], §7 and §8.

Going back to curves or complete intersections, there is a single cohomol-

ogy group, H1 or Primd respectively, which we do not know explicitly. It

is with the traces of iterates of Frobenius on this single unknown group that

we will now be concerned. These traces are, as noted above, integers, and

we will want to know cases when they are all not zero. One way to insure

their being not equal to zero is to know that they are not zero modulo p ,

the characteristic of the finite field Fq over which we are working. For this,

we can make use of the following congruence formula in [DK], XXII, 3.1.

For any proper X Fq , we have its coherent cohomology groups H
i(X X) ,

on which the q -th power map Frq induces an Fq -linear endomorphism. Then

we have an identity in Fq ,

#X(Fq) (mod p)

i

( 1)iTrace(Frq H
i(X X))

In the case when our X Fq is either a curve or a complete intersection of

dimension d 0 which is proper, smooth, and geometrically connected, we

have

(i) H0(X X) Fq , with Frq id ;

(ii) for i 0 or d , we have Hi(X X) 0 .

So when our X is a curve, we get

#X(Fq) (mod p) 1 Trace(Frq H
1(X X))

and when our X is a complete intersection of dimension d 0, we get

#X(Fq) (mod p) 1 ( 1)d Trace(Frq H
d(X X))

If we compare the Lefschetz Fixed Point Formula with the congruence formula,

we get mod p congruences, namely : when our (proper, smooth, geometrically

connected) X is a curve,

Trace(FrobFq H
1) Trace(Frq H

1(X X)) (mod p)

and when our (proper, smooth, geometrically connected) X is a complete

intersection of dimension d 0,

Trace(FrobFq Prim
d) Trace(Frq H

d(X X)) (mod p)

6 ) One needs the consideration of a Lefschetz pencil of hyperplane sections and delicate
monodromy calculations, see [De3], 4.5.1.
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With this background established, we now return to giving applications of

our previous results to varieties over finite fields. We begin with the case of

curves over finite fields.

THEOREM 2.4. Let X Fq be a proper, smooth, geometrically connected

curve over a finite field Fq of characteristic p 0 . Define a sequence of

integers A(n) n 1 by

#X(Fqn ) qn 1 A(n)

Then the non-zero A(n) satisfy A(n) .

Proof. This follows from Corollary 2.3 above, applied with K taken to

be Q for some p and with F taken to be the action of the geometric

Frobenius FrobFq on H1ét(X Q ) . By the Lefschetz Fixed Point Formula [Gr],

we have A(n) Trace(Fn) . By Weil’s Riemann hypothesis for curves over

finite fields [W1], p. 70, the eigenvalues of F all have archimedean absolute

value q1 2 , so are not roots of unity.

COROLLARY 2.5. Let X Fq be a proper, smooth, geometrically connected

curve over a finite field Fq of characteristic p 0 . Suppose that one of the

following three conditions holds.

(i) The genus is 1 and X Fq is ordinary 7 ).

(ii) The genus of X is prime to p, and the q-th power map on H1(X X)

is the identity (i.e., the Hasse-Witt matrix 8 ) relative to Fq is the identity

matrix over Fq ), or, equivalently, the group of p-torsion rational

points of the Jacobian Jac(X)(Fq) has order p .

(iii) For some integer N 1 which is prime to p and modulo which 2 is

not zero, there are N2 points of order dividing N in Jac(X)(Fq) .

Then for all n 1 , we have A(n) 0 , hence A(n) .

Proof. In case (i), each A(n) , n 1, is prime to p , so is not zero. In

case (ii), the congruence formula [DK], XXII, 3.1, shows that for n 1, we

have A(n) (mod p) , so again A(n) 0 . In case (iii), we have A(n) 2

(mod N) for all n 1, so again A(n) 0 .

7 ) An elliptic curve over a finite field Fq of characteristic p is ordinary if its group of
p-division points has order p . In the only other possible case, namely order 1, the curve is called
supersingular.

8 ) The Hasse-Witt matrix is obtained by looking at the action of the p-power map on a basis
of H1(X X) and is explicitly computable. For a curve of genus 1 it reduces to a single element
in Fq , the Hasse invariant.
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We get similar results for complete intersections over finite fields.

THEOREM 2.6. Let X Fq be a proper, smooth, geometrically connected

complete intersection of dimension d 1 over a finite field Fq of characteristic

p 0 . Define a sequence of integers A(n) n 1 by

#X(Fqn )

d

i 0

qni ( 1)dA(n)

Then the non-zero A(n) have A(n) .

Proof. This again follows from Corollary 2.5 above, applied with K taken

to be Q for some p and with F taken to be the action of the geometric

Frobenius FrobFq on Prim
d
ét(X Fq Fq Q ) (the “primitive part” Primd

ét of the

cohomology Hd
ét of a smooth complete intersection X is simply Hd

ét if d

is odd and, if d is even, it is Hd
ét of X modulo the image of Hd

ét of the

ambient projective space, see [DK], XI, 1.6 (iv)). By the Lefschetz Fixed Point

Formula [Gr] and the known cohomological structure of complete intersections

[DK], XI, 1.6, we have A(n) Trace(Fn) . By Deligne’s Riemann hypothesis

for varieties over finite fields [De2], the eigenvalues of F have archimedean

absolute value qd 2 , so are not roots of unity.

COROLLARY 2.7. Let X Fq be a proper, smooth, geometrically connected

complete intersection of dimension d 1 over a finite field Fq of characteristic

p 0 . Suppose that : dim(Hd(X X)) is prime to p, and that the q-th

power map on Hd(X X) is the identity. Then for all n 1 , we have

A(n) 0 , hence A(n) .

Proof. Again by the congruence formula [DK], XXII, 3.1, for n 1 we

have A(n) (mod p) , so again A(n) 0 .

Here is a variant of the last result, when the geometric genus is 1.

COROLLARY 2.8. Let X Fq be a proper, smooth, geometrically connected

complete intersection of dimension d 1 over a finite field Fq of characteristic

p 0 . Suppose that dim(Hd(X X)) 1 , and that the q-th power map on

Hd(X X) is not zero, say is multiplication by a Fq . Then, for all n 1 ,

A(n) is prime to p, so it is not zero, hence A(n) .

Proof. Again by the congruence formula [DK], XXII, 3.1, for n 1, we

have A(n) an (mod p) , hence for all n we have A(n) 0 .
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We now turn to isotrivial families, and apply Corollary 2.8 above.

THEOREM 2.9. Let Fq be a finite field of characteristic p 0 , let S Fq

be a smooth, geometrically connected Fq -scheme of finite type with S(Fq)

nonempty, and let : X S be a proper smooth morphism of relative

dimension d 1 , all of whose geometric fibres are curves or, if d 2 ,

complete intersections. Suppose the morphism is isotrivial, in the sense that

when pulled back to a suitable finite étale S-scheme T S it becomes constant.

For each closed point of S , with residue field denoted F , consider the

fibre XF : X
S
F and define the integer A by

#XF (F )

d

i 0

Norm( )i ( 1)dA

Then the non-zero A have A as deg( ) . More precisely, for

any integer M 1 , there exists an integer kM 1 such that for any k kM ,

and for any closed point with deg( ) k , either A 0 or A M.

Proof. We choose a point s0 S(Fq) , and denote by X0 Fq the fibre

of X S over s0 . We choose a prime p , and take for F the action

of geometric FrobFq on Prim
d(X0 Q ) . By the isotriviality of X S , for any

closed point of S , the fibre XF becomes isomorphic to X0 F after

extension of scalars to some finite extension of F . Therefore the geometric

Frobenius Frob acting on Primd(XF Q ) is an integral form of Fdeg( ) .

So the assertion results from Corollary 2.8 above.

COROLLARY 2.10. If X S as above is an isotrivial family of elliptic curves

which are ordinary, i.e., if the constant j -invariant is ordinary, then all A

are not zero (because prime to p), hence A as deg( ) .

3. LOWER BOUNDS, VIA THE SUBSPACE THEOREM

Fix an integer Q 1. In practice, Q will be a prime power p , but right

now that is not important. An algebraic number Q is called a Q-Weil

number if, for every embedding : Q C , we have ( ) C Q1 2 , for C

the usual complex absolute value x iy C : (x2 y2)1 2 . A Q -Weil number

is called integral if in addition it is an algebraic integer.

Lower bounds come from the following special case of a theorem of Evertse

[Ev], Cor. 2, also due independently to van der Poorten and Schlickewei [PS],

Theorem 3.
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THEOREM 3.1. Let Q 1 and n 1 be integers. Let 1 n be

integral Q-Weil numbers. For each integer k 1 , define

A(k) :

n

i 1

k
i

Given a real number 0 , there exists a real constant C1 0 such that for

any integer k 1 , either A(k) 0 or, for any archimedean absolute value

on Q , we have

A(k) C1Q
k(1 )

Proof. This is the following special case of [Ev], Cor. 2. Take for K a

number field containing all the i . Take for S the set of all places of K

which are either archimedean or which lie over primes dividing Q . Take for

T S a single archimedean place. Since the absolute norm of every i is a

power of Q , the algebraic integers i are all S -units.

Then, for each integer k 1 with A(k) 0 , simply apply [Ev], Cor. 2, to

the S -units xi :
k
i .

We can trivially make the constant C1 disappear if we insist that k be

sufficiently large.

COROLLARY 3.2. Under the hypotheses of the theorem, given a real number

0 , there exists an integer k0 such that for all integers k k0 , either

A(k) 0 or, for any archimedean absolute value on Q , we have

A(k) Qk(1 2 )

THEOREM 3.3. Let X Fq be a proper smooth variety over Fq . Fix an

integer i 1 , and a prime p. Consider the sequence of integers Ai(n) ,

n 1 , (independent of the auxiliary choice of , cf. [De3], 3.3.9) defined as

Ai(n) : Trace(FrobnFq H
i
ét(X Q ))

Fix a real number 0 . Then for all sufficiently large n, either Ai(n) 0

or

Ai(n) qin 2 1

Proof. This is an immediate consequence of Deligne’s theorem [De3],

3.3.9, by applying Theorem 3.1 and Corollary 3.2 to the eigenvalues of

FrobFq on Hi , which are integral qi -Weil numbers.
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We now turn to the situation with pure exponential sums. In nearly all

examples, the situation is the following, which we describe first in technical

terms, followed by simple explicit examples understandable by non-experts.

We are given an affine, smooth, geometrically connected variety U Fq of

some dimension d 1, a prime number p , and a lisse Q -sheaf on

U which is integral (all local Frobeniuses have algebraic integer eigenvalues)

and pure of some integer weight 0 0. We have somehow proven that for

all i , the “forget supports” map 9 )

Hi
c(U ) Hi(U )

is an isomorphism. It then follows, cf. [De3], 3.3.6, and [Se], that H i
c 0

for i d and that, putting

: d 0

the Frobenius eigenvalues on Hd
c are integral q -Weil numbers. The sequence

of algebraic integers

A(n) : Trace(FrobnFq H
d
c (U ))

is the sequence of exponential sums, over bigger and bigger finite extensions

of Fq , that we are interested in.

So in any such situation, Theorem 3.3 assures us that for any chosen

embedding of the number field Q( eigenvalues of FrobFq ) into C , and

any chosen real number 0, we have that for all n sufficiently large either

A(n) 0 or A(n) C (qn 2)1 .

It is consequently of some interest to know in what situations of this type

we know in addition that A(n) 0 for n large. Here are three such situations

which occur in practice, where in fact A(n) 0 for all n 1.

(i) The d variable Kloosterman sums Kld( a Fq) , for d 2, a

nontrivial additive character of Fq , and a Fq , defined by

( 1)d 1Kld( a Fq) :

x1x2 xd a all xi Fq

(x1 xn)

Only Hd 1
c is not zero, and the d Frobenius eigenvalues are integral qd 1 -Weil

numbers [De1], 7.1.3, 7.4. This sum lies in Z[ p] and never vanishes, because

modulo the unique prime ideal of Z[ p] lying over p we have

( 1)d 1Kld(a Fq) (q 1)d 1 ( 1)d 1 (mod )

9 ) Here Hc denotes cohomology with compact support.
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(simply because is trivial (mod )). Here the sequence of A(n) is

A(n) Kld( TraceFqn Fq a Fqn)

Therefore, for any given real 0 we have the lower bound

Kld( TraceFqn Fq a Fqn) qn(d 1) 2 1

for all n sufficiently large.

(ii) Start with the projective line P1 Fq and remove a nonempty set S of

Fq -rational points, with #S 1 invertible (mod p) . We take U : P1 S .

On U , we take a regular function f H0(U U) whose pole orders es at

the points s S are all prime to p . For a nontrivial additive character of

Fq , we have the sum

S( f Fq) :

u U(Fq)

( f (u))

Only the first cohomology group with compact support H1c is not zero, and

the #S 2 s S es Frobenius eigenvalues are integral q -Weil numbers [W2].

This sum lies in Z[ p] and never vanishes, because modulo the unique prime

ideal of Z[ p] lying over p , it is congruent to (q 1 #S) #S 1,

which by assumption is not zero mod p . The sequence A(n) in this case is

A(n) S( TraceFqn Fq f Fqn )

Hence for any given real 0 we have the lower bound

S( TraceFqn Fq f Fqn) qn 2 1

for all sufficiently large n .

(iii) Here we have a slight variant on example (ii) above. Take for U the

affine line A1 Fq and f Fq[X] a polynomial of degree d 1. Under the

hypothesis that

p 1 (mod d)

Sperber [Sp], 3.11, shows that the d 1 Frobenius eigenvalues on H1c have

all distinct -adic valuations at any prime lying over p ; their -adic orders,

normalized so that q has ord (q) 1 , are 1 d 2 d (d 1) d . Here the

A(n) are

A(n) S( TraceFqn Fq f Fqn)

they never vanish, and we have the same conclusion as in (ii) above.
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4. EFFECTIVE LOWER BOUNDS, VIA BAKER’S METHOD

In some cases there are only two Frobenius eigenvalues, they are complex

conjugates of each other, and their ratio is not a root of unity. These cases

include an ordinary elliptic curve over Fq , and also the classical Kloosterman

sums, denoted Kl2( a Fq) in the previous section. In both of these cases,

the two Frobenius eigenvalues are integral q -Weil numbers, say and ,

with q . After we fix a complex embedding, we can write the two

eigenvalues as q1 2e i for a unique [0 ] . Then the A(n) are given

by

A(n) : n n 2qn 2 cos(n )

Here is the key technical result, an immediate application of the deep

Baker-Wüstholz theorem [BW]. For the definition of height, we refer to

[BG], §1.5.

THEOREM 4.1. Let [0 ] . Suppose that e2i is not a root of unity,

but is an algebraic number, algebraic of degree d over Q . Define

C(N d) : 18(N 1)!NN 1(32d)N 2 log(2Nd)

h (e2i ) : max log(H((1 : e2i ))) d 1 d

h ( 1) : d

where H((x0 : : xr)) is the Weil height of an (algebraic) point (x0 : : xr)

in projective space Pr . Then for any integer n 1 and any integer k we

have the inequality

log( 2n k ) C(2 d) h (e2i ) h ( 1) log(2n)

Proof. Fix n 1. Since [0 ] , we have 2n [0 2n ] . So the

closest approach of n to an integer multiple of occurs for some

k [0 2n] . (Indeed, for any integer k outside of this interval, we triv-

ially have 2n k , and log 0.) Because e2i is not a

root of unity, log(e2i ) 2i and log( 1) i are linearly indepen-

dent over Q . Now apply the Baker-Wüstholz theorem, with the N 2

algebraic numbers e2i and 1, to the linear combination of logarithms

n log(e2i ) k log( 1) .
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COROLLARY 4.2. Let [0 ] be as in the theorem. Given a real number

q 1 , define

c c( q) : C(2 d)h (e2i )h ( 1) log(q)

Then for all integers n 1 , we have the estimate

qn 2 cos(n ) (1 ) qn 2 c log(2n)

Proof. Fix n 1. By the theorem, for any integer k , we have the

inequality

2n k q c log(2n)

For k an odd integer, we have the trigonometric identity cos(n )

sin(n k 2) and for the odd integer k0 which minimizes n k 2

we have

0 n k0 2 2

Also, for real x with x 2, we have the well-known inequality

sin(x) (2 ) x

Thus we find

cos(n ) sin(n k0 2) (2 ) n k0 2 (1 )q c log(2n)

completing the proof.

Let us make this explicit in the two cases of ordinary elliptic curves and

of classical Kloosterman sums.

COROLLARY 4.3. (i) Given an ordinary elliptic curve over Fq , the sequence

of its A(n) has, for all n 1 , the archimedean lower bound

A(n) (2 ) qn 2 237 log(2n)

(ii) Given a classical Kloosterman sum Kl2( a Fq) over Fq , denote by p

the characteristic of Fq . If p 2 or p 3 , the sequence of its A(n) has, for

all n 1 , the same archimedean lower bound as for ordinary elliptic curves,

A(n) (2 ) qn 2 237 log(2n)

If p 5 , the sequence of its A(n) has, for all n 1 , the archimedean lower

bound

A(n) (2 ) qn 2 cp log(2n)

with cp the constant cp 233p4 log p.
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Proof. We will compute, in the two cases, an explicit upper bound for

the constant c of the previous corollary.

Denote by and the two Frobenius eigenvalues. After possibly

interchanging them, we have e2i . Thus

H((1 : e2i )) H(( : )) q1 2

simply because and are integral q -Weil numbers.

In the case of an ordinary elliptic curve, and lie in a quadratic

imaginary field, and their ratio is irrational, so we have d 2 in this case.

Then

h (e2i ) : max log(H((1 : e2i ))) d 1 d

max(log(q) 2 2 1 2) 5 log(q) 2 ;

the factor 5 takes care of the worst case q 2. So the constant c of the

previous corollary is bounded by

c C(2 2)(5 2)( 2) 18 3! 23 (64)4 log(8) (5 4) 237

In the case of a classical Kloosterman sum, the sum itself lies in Q( p) ,

the real subfield of Q( p) , and and lie in a CM quadratic extension. Again

their ratio is irrational (otherwise it would be a rational number of absolute

value one, so 1), hence in this case we have 2 d max(p 1 2) . So

again we have

h (e2i ) 5 log(q) 2

For p 2 and p 3, we have d 2, giving the bound

c 237

For p 5 the bound becomes dependent on p , namely

c C(2 p 1)(5 4)

18 3! 23 (32(p 1))4 log(4(p 1)) (5 4) 233p4 log p

This completes the proof.

5. CONCLUDING REMARKS

As mentioned in the introduction, the main open problem here is obtaining

effective lower bounds. On the other hand, much is known about the number

of zeroes in a linear recurrence sequence. A theorem of Evertse, Schlickewei,

and Schmidt [ESS] states the following.
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Let K be a field of characteristic 0 , let K be a subgroup of (K )n of

finite Q -rank r , and let a1 an K . Let be the set of those solutions

(x1 xn) K of the equation

a1x1 anxn 1

for which no proper subsum of a1x1 anxn vanishes. Then is a finite

set of cardinality

# e(6n)
3n(r 1)

This can be applied easily to obtain further information on the set of zeroes

of the sequences A(n) examined here, since in this case we have r 1.

The Skolem-Mahler-Lech theorem shows that the zero set of the sequence

A(n) is the union of a finite set S0 of isolated solutions and of finitely

many arithmetic progressions. Theorem 1.2 of [ESS] immediately shows that

#S0 #(arithmetic pro ressions) e2(12 )6

Although this is not directly relevant to the applications we have treated

in this paper, a similar result also holds for any linear recurrence of order n

(where the coefficients i are allowed to be polynomials), with a bound

exp exp exp(3n log n) for the corresponding number of isolated solutions and

of arithmetic progressions, see Schmidt [Sc].

The proof of these results is difficult and rather intricate, but it is a

remarkable fact that these bounds depend only on n and the rank of K . It is

an interesting problem to determine the correct rate of growth for the number

of solutions of such equations.

For n 2 and rank r 1, J. Berstel provided the following example

with 6 solutions. Consider the equation axm bym 1 for fixed x , y , and

varying m Z , corresponding to the group (x y)Z of rank 1. We may assume

that m 0 is a solution. If m 1 is also a solution, the equation becomes

y 1

y x
xm

1 x

y x
ym 1 ;

we can exclude x 1, y 1, x y as degenerate cases. If now we fix

two more values for m , say m1 and m2 , we can eliminate y and obtain an

algebraic equation for x , leading to infinitely many choices of the pair (x y)

for which there are four solutions. The choice m1 2 leads to a degenerate

case and if m1 3 the values m2 4 5 6 7 9 must be excluded, leading to

degenerate cases or a group of rank 0. However, taking m1 4 and m2 6
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gives the equation

x6 x5 2x4 3x3 2x2 x 1 0

for x . For any root of this equation, we see that taking 1 (1 3)

(which is another root of the equation), we have

1 m 1 m 1

for m 0 1 4 6 13 52. It is expected that 6 is the maximum number of

solutions for an equation with n 2 and r 1 ; Beukers and Schlickewei

[BS] obtained the upper bound 61.

For general n and r , Erdős, Stewart, and Tijdeman [EST] proved the

existence of equations with n 2 and arbitrarily large r with at least

exp((4 )r1 2(log r) 1 2) solutions for any fixed 0, and conjectured that

if n 2 the exponent 1 2 could be improved to 2 3 for any fixed

positive (of course, allowing a constant depending on in place of 4) ;

they also conjectured that the exponent 2 3 should be sharp. Although this

remains unsolved, progress was made by Konyagin and Soundararajan [KS],

who constructed equations for the case n 2 and arbitrarily large r with

at least exp(r2 2 ) solutions, for any fixed 0. For arbitrary n and

r a lower bound exp((n2(n 1) 1 )r1 1 n(log r) 1 n) for the maximum

number of solutions was provided by Evertse, Moore, Stewart, and Tijdeman

[EMST]; this may be compared with the upper bound simply exponential in

r provided by Evertse, Schlickewei and Schmidt, loc. cit..

A more delicate problem has also been treated, namely the study of

the intersection of two distinct recurrences and the “total multiplicity” of a

recurrence, namely A(m) B(n) and A(m) A(n) for m n . Under certain

natural conditions one can prove that the number of admissible pairs (m n)

for which these equations hold is finite, see Evertse [Ev], Thm. 3, for the

equation A(m) A(n) with recurrences of order at least 2 (this avoids the

example A(n) n2n ), and Laurent [Lau] for qualitative results for the equation

A(m) B(n) . Quantitative results, but not as strong as those mentioned above

for the cardinality of the zero-set of a recurrence, can be found in Schlickewei

and Schmidt [SS].

The reader interested in recurrence sequences and associated problems

may profitably read the book [EvSW], which also contains an impressive

bibliography of 1382 items on the subject.
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The extension of these results to larger classes of polynomial-exponential

equations in several variables remains a central and very challenging open

problem. As an example, the famous Ramanujan equation m2 7 2k has

only the solutions (m k) (1 3) (3 4) (5 5) (11 7) (181 15) in positive

integers, which is not difficult to prove using Skolem’s method. The modified

equation m2 7n 2k (r 1)3r associated to the group of rank 3

(1m 2k 3r 7n) m k r n Z

has, besides the five solutions with n 1 and r 1 inherited from the

Ramanujan equation, seven new solutions (m k r n) (2 1 2 1) , (7 1 3 1) ,

(14 1 4 2) , (3 2 3 2) , (13 9 1 3) , (113 11 7 4) , (407 13 9 1) . Are there

any other solutions in positive integers to this equation ?
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[BW] BAKER, A. and G. WÜSTHOLZ. Logarithmic forms and group varieties.
J. Reine Angew. Math. 442 (1993), 19–62.

[BS] BEUKERS, F. and H. P. SCHLICKEWEI. The equation x y 1 in finitely
generated groups. Acta Arith. 78 (1996), 189–199.

[BG] BOMBIERI, E. and GUBLER, W. Heights in Diophantine Geometry. Paperback
reprint of the 2006 original. Reprinted with corrections. New Math-
ematical Monographs 4. Cambridge University Press, Cambridge,
2007.

[C1] CASSELS, J.W. S. An embedding theorem for fields. Bull. Austral. Math.
Soc. 14 (1976), 193–198; Addendum : “An embedding theorem for
fields”, ibidem, 479–480.

[C2] Local Fields. London Math. Soc. Student Texts 3. Cambridge Uni-
versity Press, Cambridge, 1986.

[Dan] DANILOV, V. I. Cohomology of algebraic varieties. In : Algebraic Geometry,
II, I. R. Shafarevich ed., 1–125, 255–262. Encyclopaedia Math. Sci.
35. Springer, Berlin, 1996.

[De1] DELIGNE, P. Applications de la formule des traces aux sommes trigono-
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In : Séminaire Bourbaki, Vol. 9, Exp. 279, 41–55. Soc. Math. France,
Paris, 1995.

[Ka94] KATZ, N.M. Review of -adic cohomology. In : Motives (Seattle, WA,
1991), 21–30. Proc. Sympos. Pure Math. 55, Part 1. Amer. Math.
Soc., Providence, RI, 1994.

[Ka96] Rigid Local Systems. Annals of Mathematics Studies 139. Princeton
University Press, Princeton, NJ, 1996.

[Ka99] Space filling curves over finite fields. Math. Res. Lett. 6 (1999),
613–624.

[KS] KONYAGIN, S. and K. SOUNDARARAJAN. Two S -unit equations with many
solutions. J. Number Theory 124 (2007), 193–199.

[LW] LANG, S. and A. WEIL. Number of points of varieties in finite fields.
Amer. J. Math. 76 (1954), 819–827.

[La] LANG, S. Algebra. Revised third edition. Graduate Texts in Mathematics
211. Springer-Verlag, New York, 2002.
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