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DEFORMATIONS ALONG SUBSHEAVES

by Stefan KEBEKUS, Stavros KOUSIDIS and Daniel LOHMANN )

ABSTRACT. Let f : Y X be a morphism of complex manifolds, and assume that
Y is compact. Let TX be a subsheaf which is closed under the Lie bracket. The
present paper contains an elementary and very geometric argument to show that all
obstructions to deforming f along the sheaf lie in H1 Y Y , where Y f (TX)
is the image of f ( ) under the pull-back of the inclusion map. Special cases of this
result include Miyaoka’s theory of deformation along a foliation, Keel-McKernan’s
logarithmic deformation theory and deformations with fixed points.

CONTENTS

1. Introduction and main results . . . . . . . . . . . . . . . . . . . . . 288

2. Jet bundles and deformations of morphisms . . . . . . . . . . . . . 291

3. Strategy for the proof of Theorem 1.5 . . . . . . . . . . . . . . . . 297

4. Jets associated with vector fields . . . . . . . . . . . . . . . . . . . 299

5. Frobenius theorems and deformations along subsheaves . . . . . . . 301

6. Proof of Theorem 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . 307

) Stefan Kebekus was supported in part by the DFG-Forschergruppe “Classification of
Algebraic Surfaces and Compact Complex Manifolds”. Some parts of this paper were worked out
during a visit of Kebekus to the University of Michigan at Ann Arbor. He would like to thank
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1. INTRODUCTION AND MAIN RESULTS

1.A INTRODUCTION

Let f : Y X be a morphism of complex manifolds and assume that Y

is compact. We aim to deform f , keeping X and Y fixed. More precisely,

given an infinitesimal deformation of f , say H0 Y f (TX) , we ask if

is effective, i.e., if comes from a deformation of f .

It is a classical result that any infinitesimal deformation is effective if

the associated obstruction space vanishes. We refer to [Hor73], or to [Kol96,

Chap. 1] for a thorough discussion of the algebraic case.

THEOREM 1.1. If H1 Y f (TX) 0 , then any infinitesimal deformation

of f is effective.

Theorem 1.1 is not sharp however. There are many examples of infinitesimal

deformations that are effective even though h1 Y f (TX) is large. In these

cases, it is often possible to find a geometric reason that explains the behavior.

Here, we consider the geometric context where there is a subsheaf TX ,

and where H0 Y f (TX) is an infinitesimal deformation along , i.e.,

where is in the image of the natural map

H0 Y f ( ) H0 Y f (TX)

If is closed under the Lie bracket, we show that an analogue of Theorem 1.1

holds for deformations along .

The proof of our main result, Theorem 1.5, is completely elementary and

does not use any of the sophisticated methods of deformation theory. The

methods also illustrate the proof of Theorem 1.1.

1.B MAIN RESULT

In order to formulate the main results precisely in Theorem 1.5 below, recall

a few standard definitions and notation used in the discussion of deformations.

DEFINITION 1.2. A deformation of f is a holomorphic mapping

F : 6 Y X whose restriction to 0 Y Y equals f . Here 6 C

is a disk centered about 0.
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NOTATION 1.3. If F is a deformation and t 6 any number, we often

write Ft : Y X for the obvious restriction of F to t Y Y . Given a

point y Y , we can consider the curve

Fy : 6 X t F(t y)

Given t 6 and taking derivatives in t for all y , this gives a section

F t H0 Y (Ft) (TX)

called velocity vector field at time t . For t 0, we obtain a section

F 0 H0 Y f (TX) . Elements of H0 Y f (TX) are thus called initial

velocity vector fields or first order infinitesimal deformations of f .

DEFINITION 1.4. A first order infinitesimal deformation H0 Y f (TX)

is effective if there exists a deformation F with F 0 .

With this notation, the main result of the present paper is formulated as

follows.

THEOREM 1.5 (Deformation along an involutive subsheaf). Let f : Y X

be a morphism of complex manifolds and assume that Y is compact. Let

TX be a subsheaf of X -modules which is closed under the Lie bracket,

let Y f (TX) be the image of f ( ) under the pull-back of the inclusion

map, and let

H0 Y Y H0 Y f (TX)

be a first order infinitesimal deformation of the morphism f that comes

from .

If H1 Y Y 0 , then there exists a deformation F of f such that

F 0 , and such that for all times t 6 the section F t is in the image

of

(1.5.1) H0 Y (Ft) ( ) H0 Y (Ft) (TX)

NOTATION 1.6. If F is any deformation of f such that (1.5.1) holds for

all t , we say that F is a deformation along the sheaf .

REMARK 1.7. The subsheaf TX need not be a foliation because

need not be saturated in TX . We recall a few special cases of Theorem 1.5

that we have found in the literature :
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(1.7.1) Foliations. The case where is an algebraic foliation is studied

in Miyaoka’s theory of deformation along an algebraically defined

foliation, [Miy87, MP97].

(1.7.2) Logarithmic tangent sheaves. The case where X contains a reduced

divisor D and TX( logD) appears in Keel and McKernan’s

work on the Miyanishi conjecture, [KMc99, Sect. 5].

(1.7.3) Deformation with fixed points. A variant of the case where TX p

is the tangent bundle twisted with the ideal sheaf of a point p is used

in Mori’s Bend-and-Break technique.

1.C OUTLINE OF THE PAPER

In Section 2, we recall the definition of jet bundles on a complex

manifold X and recall their main properties. The language of jets makes

it easy to discuss n -th order deformations of a given morphism, and gives an

elementary way to construct classes in H1 Y f (TX) that are obstructions

to extending n -th order deformations to (n 1)-th order. We illustrate these

concepts by reproducing Horikawa’s proof of Theorem 1.1 in the language

of jets, referring to Artin’s paper [Art68] for the necessary convergence

results.

In Section 3, we outline the proof of Theorem 1.5, explain the main

strategy and motivate two sets of problems which are discussed in Sections 4

and 5 before completing the proof of Theorem 1.5 in Section 6.

Section 4 concerns the relation between vector fields and higher order jets

of the integral curves they define. Given two vector fields D1 and D2 on X

with integral curves 1 and 2 , we are interested in expressing the difference

of higher order terms in the power series expansions of the i in terms of

iterated Lie brackets involving D1 and D2 .

In Section 5, we discuss an elementary generalization of the classical

Frobenius Theorem of Differential Geometry, where the Lie-closed subsheaf

TX is not necessarily a foliation. This will allow us to construct local

analytic subspaces of the Douady space Hom(Y X) which locally parametrize

deformations along the sheaf .
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2. JET BUNDLES AND DEFORMATIONS OF MORPHISMS

In Sections 2.A–2.C we recall the definition and briefly discuss the main

properties of jet bundles of a complex manifold, which are higher order

generalizations of the tangent bundle. Jet bundles are then used in Section 2.D

to describe higher-orderinfinitesimal deformations of morphisms. To illustrate

the use of jets in deformation theory, we end this chapter with a short and

very transparent proof of the classical Theorem 1.1.

REMARK 2.1. There are two notions of “jet bundle” found in the literature.

In this paper, an “n -jet” is an n -th order curve germ. This notion was, originally

introduced in slightly higher generality in real geometry by Ehresmann,

cf. [Arn88, Chapt. 6.29C].

Other authors use the word “n -jet” to denote an n -th order germ of a

section in a given vector bundle. This notion is found, e.g., in the work of

Kumpera-Spencer on Lie equations, [KS72, Chap. 1].

NOTATION 2.2. If X and Y are any two complex spaces where Y is

compact, we denote the Douady space of morphisms from Y to X by

Hom Y X . Like the Hom-scheme of algebraic geometry, the Douady space

of morphisms represents a functor and is therefore uniquely determined by its

universal properties. We refer to [CP94, Sect. 2] for a brief overview and for

further references.

The reader who is content with algebraic morphisms of projective varieties

is free to use the Hom-scheme instead of the Douady space throughout this

paper.

2.A TANGENT BUNDLES

Let X be a complex manifold. Before discussing jet bundles of arbitrary

order, we recall two equivalent standard constructions of the tangent bundles

for the reader’s convenience.
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CONSTRUCTION 2.3. As a manifold, the tangent bundle TX is the set of

equivalence classes of germs of arcs 6 X , under the equivalence relation that

if they agree to first order. Coordinate charts on X induce coordinate

charts on TX in the obvious canonical manner, and the map (0) induces

a canonical morphism : TX X .

CONSTRUCTION 2.4. As a complex space or scheme, the tangent bundle

is defined as TX : Hom SpecC[ ] ( 2) X , where SpecC[ ] ( 2) denotes

the double point on the affine line. The obvious map C[ ] ( 2) C induces

a canonical morphism : TX X Hom(SpecC X) .

Using either construction, an elementary computation immediately gives

the following

FACT 2.5. The tangent bundle TX of a complex manifold X has the

structure of a vector bundle over X .

Local coordinates on U X induce vector bundle coordinates on
1(U) TX . More precisely, if U X is a coordinate neighborhood,

and is a germ of an arc : 6 U, described in U -coordinates as

(t) x0 x1 t (higher-order terms)

then the associated point of TX has
1(U)-coordinates (x0 x1) U C

dim X .

2.B JET BUNDLES

In complete analogy with Constructions 2.3–2.4, the jet bundle of a complex

manifold X can be defined in one of the following equivalent ways.

CONSTRUCTION 2.6. As a manifold, the n -th jet bundle Jetn(X) is the

set of equivalence classes of germs of arcs 6 X , under the equivalence

relation that if they agree to n -th order. Coordinate charts on X induce

coordinate charts on Jetn(X) in the obvious canonical manner, and for any

m n the restriction of arcs to m -th order induces a canonical morphism

n m : Jet
n(X) Jetm(X) .

CONSTRUCTION 2.7. As a complex space or scheme the n -th jet bundle

is defined as Jetn(X) : Hom SpecC[ ] ( n 1) X . For m n , the

truncation map C[ ] ( n 1) C[ ] ( m 1) induces a canonical morphism

n m : Jet
n(X) Jetm(X) .
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It is clear from the construction that Jet0(X) X and Jet1(X) TX . In

complete analogy with Fact 2.5, an elementary computation in local coordinates

shows the following

FACT 2.8. Let X be a complex manifold and let m n be any two

integers. Then the following hold :

(2.8.1) The morphisms n m : Jet
n(X) Jetm(X) are fiber bundles, locally

trivial in Zariski topology with fibers isomorphic to A(n m) dim X . In general,

the transition maps are neither linear nor affine, and n m is generally

neither a vector bundle nor an affine bundle.

(2.8.2) Local coordinates on U X induce vector bundle coordinates on
1

n 0 (U) Jetn(X) , for all n . More precisely, if U X is a coordinate

neighborhood, and is a germ of an arc : 6 U, described in

U -coordinates as

(t) 0 1 t n tn (higher-order terms)

then the associated point of Jetn(X) has 1
n 0 (U) -coordinates

(x0 x1 x2 xn) U C
n dim X

with xi i! i . In particular, the coordinate xi is computed in local

coordinates as the i-th derivative, xi
(i)(0) .

(2.8.3) If m n 1 , the fiber bundle m 1 m : Jet
m 1(X) Jetm(X) has

affine transition maps and is therefore an affine bundle.

2.C AFFINE BUNDLES ASSOCIATED WITH JETS

We need to discuss the affine bundle structure of Jetn(X) Jetn 1(X)

in more detail. For that, we briefly recall the relevant properties of affine

spaces.

By definition, any affine space A comes with a canonical vector space

V , the space of translations, whose additive group V acts on A . The action

map, often called translation map is usually denoted as follows :

: V A A ( a) a

Given any a A , the natural map V A , a is an isomorphism of

complex manifolds. Consequently, given any two elements a b A , there is

a uniquely defined difference vector V , often denoted as a b , such

that b a .
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In complete analogy, any affine bundle A B naturally comes with a

vector bundle : V B , the “bundle of translations”. The translation maps

on fibers glue to give a translation map

: V B A A

Given any section : B A , the natural map V A , ( ( ))

is a fiber bundle isomorphism. Consequently, given any two sections

1 2 : B A , there is a uniquely defined difference section, : B V ,

often denoted as 1 2 , such that (b) 2(b) 1(b) for all b B .

For the affine bundle Jetn 1(X) Jetn(X) , the elementary computation

used to prove Fact 2.9 immediately identifies the translation bundle.

FACT 2.9. Let X be a complex manifold and let n 0 be any number.

Then the vector bundle Vn of translations associated with the affine bundle

Jetn 1(X) Jetn(X) is precisely the pull-back of the vector bundle TX to

Jetn(X) . In other words, Vn n 0(TX) .

In the setup of Fact 2.9, if 1 2 : X Jetn 1(X) are two sections that

agree to n -th order, n 1 n 1 n 1 n 2 , then the difference is given by

a section 1 2 H0 X TX . We will later need the following elementary

generalization of this fact.

REMARK 2.10. If f : Y X is a morphism of complex manifolds and if

1 2 : Y f Jetn 1(X) Jetn 1(X) X Y are two sections in the pull-back

bundles that agree to n -th order, f ( n 1 n) 1 f ( n 1 n) 2 , then the

difference is given by a section 1 2 H0 Y f (TX) .

We end this section with a remark that shows how to compute the difference

of jets in local coordinates. The (easy) proof is again left to the reader.

REMARK 2.11. If U X is a coordinate neighborhood, and if 1 ,

2 Jetn 1(X) are two jets with n 1 n( 1) n 1 n( 2) , represented in

the induced coordinates on 1
n 1 0(U) Jetn 1(X) as

1 (x0 x1 xn xn 1 1) and 2 (x0 x1 xn xn 1 2)

then the difference 1 2 is given by the tangent vector written in the

induced coordinates on TX as 1 2 (x0 xn 1 1 xn 1 2) TX 1(0) .

If the base point 1(0) is clear, we will often write

1 2 xn 1 1 xn 1 2 TX 1(0)
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2.D HIGHER-ORDER INFINITESIMAL DEFORMATIONS IN JET LANGUAGE

The following notion is the higher-order analogue of the infinitesimal

deformation discussed in the introduction.

DEFINITION 2.12. Let f : Y X be a morphism of complex manifolds.

An n-th order infinitesimal deformation of f is a morphism

fn : SpecC[ ] (
n 1) Y X

whose restriction to Y SpecC Y agrees with f .

It is clear from the universal property of the Douady space of morphisms

that an n -th order infinitesimal deformation of f is the same as a morphism

SpecC[ ] ( n 1) Hom(Y X) which maps the closed point to the point

of Hom(Y X) that represents f . For our purposes, however, the following

description is more useful. It also shows that for n 1, Definition 2.12 and

Notation 1.3 agree.

PROPOSITION 2.13. To give an n-th order infinitesimal deformation of f ,

it is equivalent to give a section Y f Jetn(X) , where f Jetn(X) :

Jetn(X) X Y .

Proof. It is clear from the universal property of Hom(Y X) that to give an

n -th order infinitesimal deformation of f , it is equivalent to give a morphism

n : Y Hom SpecC[ ] ( n 1) X Jetn(X)

with n 0 n f . By the universal property of the fiber product, this is the

same as to give a section.

2.E APPLICATIONS TO DEFORMATIONS AND TO THEOREM 1.1

As an application of the methods and the language outlined in the previous

sections, we reproduce in part Horikawa’s proof of Theorem 1.1, referring

to Artin’s paper [Art68] for the necessary convergence results. More detailed

computations are found in [Hor73].

The proof follows the common approach to first construct a formal

deformation of f , which is then turned into a holomorphic solution. The

existence of a formal solution is guaranteed by the following lemma which

asserts that any n -th order infinitesimal deformation can be lifted to (n 1)-th

order.
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LEMMA 2.14. In the setup of Theorem 1.1, let n : Y f Jetn(X) be

any section. Then there exists a lifting to (n 1) -th order, i.e., a section

n 1 : Y f Jetn 1(X) making the following diagram commutative :

(2.14.1)

f Jetn 1(X)

f ( n 1 n)

Y

n 1

n

f Jetn(X)

Proof. Since both f Jetn(X) and f Jetn 1(X) are locally trivial on Y , it

is clear that liftings to (n 1)-th order always exist locally. More precisely,

there exists a covering of Y with open sets (U ) A and there are sections

n 1 : U f Jetn 1(X) such that f ( n 1 n) n 1 n U . We have seen

in Remark 2.10 that for any A , the difference defines a section

n 1 U U n 1 U U H0 U U f (TX)

The obviously satisfy the Čech cocycle condition and we obtain a

cohomology class ( ) H1 Y f (TX) which is zero by assumption.

Consequently, there are sections H0 U TX with .

If we set

n 1 : ( ) n 1

then n 1 and n 1 agree on U U for any A and therefore define

a global section n 1 : Y f Jetn 1(X) that lifts n .

Proof of Theorem 1.1. Let H0 Y f (TX) be any first order infinites-

imal deformation. Choose a neighborhood U of the point [ f ] Hom Y X ,

and view U as a subset of An , given by equations U f1 fm 0 .

With this notation, our aim is to find a holomorphic map : 6 A
n which

agrees with to first order and satisfies fi 0 for all i . By Michael

Artin’s result on solutions of analytic equations, [Art68, Thm 1.2], a holo-

morphic solution will exist if there is a formal solution to the problem.

Using Lemma 2.14 inductively, we can find a sequence 1 2

of liftings to arbitrary order, with n 1 n n 1 n . If we view the n as

morphisms

n : SpecC[ ] (
n 1) Hom Y X

this defines a formal map

: SpecC[[ ]] Hom Y X

which satisfies fi 0 for all i , and whose first order part agrees with .

Artin’s result therefore applies.
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3. STRATEGY FOR THE PROOF OF THEOREM 1.5

3.A INTRODUCTION

Before giving a complete proof of Theorem 1.5 in Section 6 below, we first

outline the main strategy of the proof and recall a few elementary facts. We

hope that the explanations given below will help to motivate the preparatory

Sections 4 and 5 where we gather several technical results used in the proof.

We will constantly use a number of elementary facts concerning vector

fields on manifolds, their associated ordinary differential equations, flow maps

and local actions of 1-parameter groups. Since all relevant results hold without

change in the holomorphic as well as in the C category, we have chosen to

use [War83] as our main reference, for the reader’s convenience. A thorough

introduction to vector fields and their flows on possibly singular complex

spaces is found in [Kau65].

3.B OUTLINE OF THE PROOF

To start the outline, consider the setup of Theorem 1.5 in the simple case

where f : Y X is a closed immersion and where both X and Y are compact.

Viewing Y as a subspace of X , let

Image H0 Y Y H0 Y TX Y

be a first order infinitesimal deformation of f along .

If is the restriction of a global vector field D H0 X , we can

integrate the vector field D globally on X , obtaining a holomorphic action of

a 1-parameter group, say

: 6 X X

such that for each point x X , the arc x : 6 X , t (t x) is a solution

to the initial value problem associated with the ordinary differential equation

described by D . In down-to-earth terms, the germ of x is the unique solution

to the problem of finding a germ of an arc : 6 X that satisfies the two

following requirements,

(0) x and(3.0.1)

(t) D (t) for all t 6(3.0.2)

NOTATION 3.1. We call x the integral curve of D through x .
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Viewing as a deformation of f , this gives a proof of Theorem 1.5 in case

comes from a global vector field. For this, observe that requirement (1.5.1)

of Theorem 1.5 immediately follows from (3.0.2) above.

If is the restriction of a vector field D H0 U that is defined

only on an open neighborhood U of Y , but perhaps not on all of X ,

essentially the same strategy applies. In this setup, there exists a local action,

cf. [War83, Thm 1.48]. More precisely, there exists an open, relatively compact

neighborhood V of Y with Y V U , there exists a disk 6 and a map

: 6 V U

such that the arcs t (t x) are again solutions to the initial value

problems (3.0.2). As before gives a deformation of f that solves the

problem.

In general, however, is not the restriction of a vector field that lives on

a neighborhood of Y , and extensions of to open subsets of X exist only

locally, cf. [War83, Rem. 1.52]. More precisely, there exist finitely many open

sets Ui that are open in X , cover Y and admit vector fields Di H0 Ui TX
whose restrictions Di Y Ui

equal Y Ui
. As before, we find relatively compact

open subsets Vi Ui that still cover Y , and local action morphisms

i : 6i Vi Ui

again with the property that if x is a point in Vi , we obtain an arc x i : 6 X

that solves the initial value problem for Di , as in (3.0.1) and (3.0.2) above.

However, if i j are any two indices, the local action morphisms will

generally not agree on the overlap Vi Vj , and if x is in Vi Vj Y , the

arcs x i and x j will likewise not agree.

There are a few things we can say about x i and x j , though. Since

Di Vi Vj Y Dj Vi Vj Y Vi Vj Y

and since x i and x j satisfy (3.0.2), it is clear that for any point

x Vi Vj Y , the arcs x i and x j agree to first order, though perhaps not

to second order. In other words, the i induce sections
1 )

2
Di
: Vi Y Jet2(X) Vi Y and 2

Dj
: Vj Y Jet2(X) Vj Y

whose first-order parts 2 1( !) : V! Y Jet1(X) V! Y agree on the overlap

Vi Vj Y . We have seen in Section 2.C that the difference 2
Dj

2
Di
can be

1 ) Since the x are holomorphic for each x , the i give sections in Jet
n(X) V! Y , for any

number n . For the purposes of this outline, we concentrate on the case n 2.
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expressed as a section of TX Vi Vj Y , and we will see in Theorem 4.3 below

that this difference is expressed in terms of the Lie bracket of the vector

fields D! , as follows :

2
Dj Vi Vj Y

2
Di Vi Vj Y Di Dj Vi Vj Y

This will allow us to describe the Čech cocycles associated with the problem

of lifting the infinitesimal deformation from first to second order in terms

of Lie brackets. An argument similar to the proof of Lemma 2.14 will then

allow us to adjust the vector fields Di , in such a way that the associated

local group actions give a well-defined lifting of to second order, globally

along Y . An iterated application of this method will give liftings to arbitrary

order.

4. JETS ASSOCIATED WITH VECTOR FIELDS

If D1 and D2 are two vector fields on X and x X is a point, the integral

curves i of Di through x do generally not agree. If 1 and 2 agree to

n -th order, we have seen that the difference between the (n 1)-th order parts

of the i can be expressed as an element TX x . In this section, we aim

to express purely in terms of the vector fields Di and their Lie brackets.

Before formulating the result in Theorem 4.3 below, we need to introduce

some notation.

DEFINITION 4.1 (Jets associated with a vector field). Let U X be an

open set, and let D H0 U TX be a vector field. Given any number n N ,

let n
D : U Jetn(X) be the section in the n -th jet bundle induced by the

local action of the vector field.

In other words, if x U is any point, and x : 6 X the unique curve

germ that satisfies (3.0.1) and (3.0.2), then n
D(x) is exactly the n -th order jet

associated with x .

DEFINITION 4.2 (Iterated Lie brackets). Let U X be an open set,

and let D1 D2 H0 U TX be two vector fields. For any integer n 2,

we recursively define a vector field, called the n-th iterated Lie bracket of

D1 and D2 , as follows :

[D1 D2]
(2) : [D1 D2] and [D1 D2]

(n) : D1 [D1 D2]
(n 1)
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THEOREM 4.3. Let U X be an open set, and let D1 D2 H0 U TX

be two vector fields. If x U is any point and n any integer such that the

n-th order jets associated with D1 and D2 agree at x , i.e. n
D1
(x) n

D2
(x) ,

then the tangent vector that describes the difference between the (n 1) -th

order jets is expressed in terms of iterated Lie brackets as follows :

(4.3.1) n 1
D2

(x) n 1
D1

(x) [D1 D2]
(n 1)

x

Proof of Theorem 4.3 for n 1 . Choose a coordinate neighborhood U of

x and let i : 6 X be the germs of the integral curves of Di through x for

i 1 2 . By Remark 2.11 and Fact 2.8, the difference between the second

order parts of the i is then expressed in U -coordinates as the difference of

the second derivatives,

(4.3.2) : 2
D2
(x) 2

D1
(x) 2 (0) 1 (0) TX x

We aim to express the right hand side of (4.3.2) in terms of the vector

fields Di . For that, it is convenient to recall that to give a vector field D on

U , it is equivalent to give a derivation X U X U , written as f Df .

Likewise, to give a tangent vector at x , it is equivalent to give a derivation

X x C , where X x denotes the stalk of X at x . For a given tangent

vector TX x , the derivation is f f (x) , where f is the derivative of f

in U -coordinates, and the dot is matrix-vector multiplication. The derivations

commute with restriction, so that (Df )(x) f (x) D x for all f .

Now, if f X x is any germ of a function, taking the second derivative

of f i yields

(4.3.3) f (x) f (x) 2 (0) 1 (0) ( f 2 f 1) (0)

In order to relate the right hand side of (4.3.3) to the vector fields Di ,

recall Equation (3.0.2), which asserts that for any function , we have

( i) (Di ) i . Applying this to f and Di f , we obtain the following

expression for the second derivatives of f i ,

(4.3.4) ( f i) (Di f ) i Di(Di f ) i (D2i f ) i

Substituting (4.3.4) into (4.3.3) we find that the equality

f (x) (D22 D21) f (x)

holds for all f X x , and therefore expresses in terms of the vector

fields Di . To prove (4.3.1), it is therefore sufficient to show that

(4.3.5) (D22 D21) f (x) [D1 D2] f (x) (D1D2 D2D1) f (x)
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holds true for all f X x . We show a stronger statement : for all f we have

(4.3.6) (D21 f )(x) (D2D1 f )(x) and (D22 f )(x) (D1D2 f )(x)

To prove (4.3.6), note that the equality D1 x D2 x implies that (D1 )(x)

(D2 )(x) for every X x . An application to D1 f and D2 f ,

respectively, gives the two equalities in (4.3.6).

Sketch of proof of Theorem 4.3 for arbitrary n. The line of argumentation

used to show Theorem 4.3 in case n 1 also works for arbitrary n . As a

first step, one shows that the difference vector : n 1
D2

(x) n 1
D1

(x)
(n 1)
2 (0)

(n 1)
1 (0) TX x is determined by that fact that it satisfies the

equation

(4.3.7) f (x) (Dn 1
2 Dn 1

1 ) f (x)

for all f X x . Once this is established, it remains to show that

(4.3.8) (Dn 1
2 Dn 1

1 ) f (x) [D1 D2]
(n 1)f (x)

again for all f X x . Equations (4.3.7) and (4.3.8) can be shown by induction

on n , using elementary but tedious computations in local coordinates. We refer

to [Loh08, Satz 1.4] for details.

5. FROBENIUS THEOREMS AND DEFORMATIONS ALONG SUBSHEAVES

In Theorem 1.5, we aim to deform the morphism f along the sheaf .

For that, we aim to define an analytic subspace Hom Y X Hom Y X

which parametrizes such deformations. If is a regular foliation, the space

Hom Y X can be defined as a relative analytic Douady space of morphisms,

using the classical Frobenius Theorem which asserts that is the foliation

associated with a morphism, at least locally.

THEOREM 5.1 (Frobenius Theorem, cf. [War83, Thm 1.60]). Let Z be a

complex manifold and TZ a regular foliation, i.e., a vector subbundle of

TZ which is closed under the Lie bracket. If z Z is any point, then there

exists an analytic neighborhood U U(z) Z which has a product structure,

U A B, such that A(TA) , where A : A B A is the projection

to the first factor.
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After introducing some notation and after proving the auxiliary Proposi-

tion 5.3, we give a generalization of the Frobenius Theorem that works for

arbitrary Lie-closed sheaves. While this result, formulated in Corollary 5.4,

is probably known to experts, we include a full proof, for lack of an ade-

quate reference. We will use this version of the Frobenius Theorem to define

the space Hom Y X in Corollary 5.6 and to prove some of its universal

properties.

Throughout the present section, we maintain the notation of Theorem 1.5

where X is a complex manifold and TX a sheaf which is closed under

the Lie bracket.

NOTATION 5.2 (Stratification of X ). It follows immediately from semi-

continuity of rank that for any integer r , the subset

Xr : x X rank( x TX x) r X

is a locally closed analytic subspace of X . We consider the natural sequence

of closed analytic subspaces of Xr ,

Xr X0r X1r Xmr
r Xmr 1

r

where Xi 1
r is defined inductively as the singular locus of Xir . We obtain

a decomposition of X into finitely many disjoint, smooth and locally closed

analytic subspaces,

X

!

r s

Z sr with Z sr : X s
r Xs 1

r

PROPOSITION 5.3. Let r be any number such that Xr , let x Xr

be any point and D H0 U a vector field, defined in a neighborhood

U U(x) X of x . If x : 6 X is the integral curve of D through x, as

defined in Notation 3.1, then x(t) Xr for all t 6 .

Proof. Let q r be the least integer such that the set 6q :
1

x (Xq)

is not empty. By semicontinuity, 6q 6 is a closed analytic subset, and

to prove Proposition 5.3, it suffices to show that 6q is also open. Using

the fundamental property that (t0)(t) x(t t0) for all t0 6q and all

sufficiently small numbers t , we can assume without loss of generality that

0 6q and r q . For the same reason, it suffices to show that 6q contains

a neighborhood 6 of 0 6 .
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To this end, we will show that near 0 6 , the local group action induced

by D yields an injective linear map from Image(
x(t) TX x(t)) to a

q -dimensional vector space, for every sufficiently small number t . Shrinking

U , if necessary, we can assume without loss of generality that the sheaf U

is generated by vector fields D1 Ds H0 U . The vector field D

induces a local group action : 6 V U , where V U and 6 6 are

suitably small open neighborhoods of x and 0, respectively.

To prove Proposition 5.3, we need to show that 6 6q . For this, pick

any element t 6 and set y : x(t) . We consider the vector spaces

Wx : D1(x) Ds(x) TX x and Wy : D1(y) Ds(y) TX y

Since Wx Image( x TX x) , the dimension of Wx equals r q , and

since q is chosen minimal, Proposition 5.3 is shown once we prove that

dimWy q . In order to relate the spaces Wx and Wy we consider the open

immersion t : V U , t( ) : (t ) , whose pull-back morphism yields an

isomorphism of vector spaces t : TX y TX x .

To understand the morphism t better, let Di(y) be any generator of Wy ,

and define the map

K : 6 TX x

t ( t Di) t (x)

and notice that K(0) Di(x) Wx and K(t) t Di(y) . Since t is

injective, it remains to prove that K(t) is an element of Wx . Recall from

[War83, Def. 2.24, Prop. 2.25] that K is analytic and that its derivative is

K (t ) ( t [D Di]) t (x)

In particular, we have that K (0) [D Di](x) is an element of Wx . It follows

by induction that the higher-orderderivatives are given by

K(n)(t ) ( t [D Di]
(n)) t (x)

In particular, we have that K(n)(0) [D Di]
(n)(x) is an element of Wx , for

all numbers n . Expanding K in a Taylor series, it follows that K(t ) is an

element of Wx , for all t 6 .

In summary, we see that the isomorphism t : TX y TX x maps each gen-

erator Di(y) of Wy to Wx . As a consequence, we obtain dimWy dimWx q ,

as claimed. This ends the proof of Proposition 5.3.
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COROLLARY 5.4 (Frobenius Theorem for ). If r s are any two integers

such that Z : Z sr is not empty, then

(5.4.1) the image of along Z is contained in the tangent bundle of Z ,

i.e.,

Z : Image( Z TX Z) TZ

(5.4.2) the sheaf Z TZ is a regular foliation, and

(5.4.3) every point z Z admits an open neighborhood U U(z) Z

with a product structure, U A B such that Z A(TA) , where

A : A B A is the projection to the first factor.

Proof. Let U X be any open subset of X , and let D H0 U be

any vector field, with an associated local group action : 6 V X , where

6 is again a sufficiently small disk and V U a suitable open subset that

contains x . By Proposition 5.3, we know that for any point x V and any

t 6 , we have (t x ) Xr if and only if x Xr . In fact, more is true :

since the morphisms (t ) : V X are open immersions, they must stabilize

the singular set of Xr . Eventually, it follows that for any number s , we have

(t x ) X s
r if and only if x X s

r . Since

D x t
(0 x)

t x (0)

this implies Claim (5.4.1).

By definition of Xr , it is clear that Z is a vector subbundle of TZ .

The assertion that Z is closed under the Lie bracket of TZ follows from

Claim (5.4.1) and a standard computation, cf. [War83, Prop. 1.55], giving

Claim (5.4.2). Claim (5.4.3) follows when one applies the classical Frobenius

Theorem 5.1 to Z TZ .

Using Corollary 5.4, we can now define the analytic space Hom Y X

which parametrizes deformations along . The following notation is useful

for the description of its universal properties.

DEFINITION 5.5 (Infinitesimal deformations that are pointwise induced by a

subsheaf). Let n : Y f Jetn(X) be an n -th order infinitesimal deformation

of the morphism f . We say that n is pointwise induced by vector fields in

, if for any point y Y there is a neighborhood U X of f (y) and a vector

field D H0 U such that n(y)
n
D f (y) , where n

D : U Jetn(X) is

the section in the n -th jet bundle described in Definition 4.1.
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COROLLARY 5.6 (Existence of a parameter space for deformations along a

subsheaf). There exists a locally closed analytic subspace Hom Y X

Hom Y X which contains the morphism f and has the following universal

properties.

(5.6.1) If n is an n-th order infinitesimal deformation of the morphism

f which is pointwise induced by vector fields in , then the associated

morphism SpecC[ ] ( n 1) Hom Y X factors via Hom Y X .

(5.6.2) If : 6 Hom Y X is any arc with (0) f , and if

F : 6 Y X is the associated deformation, then F is a deformation

along , in the sense of Notation 1.6.

Proof. We begin with the construction of the space Hom Y X . Choose

integers r s with f (Y) Z sr , an irreducible component Y f 1(Z sr ) ,

a general point y0 Y and a neighborhood V V f (y0) X , with a

decomposition V Z sr A B as in Corollary 5.4. Let U U(y0)

Y f 1(V) be a relatively compact neighborhood. By relative compactness

of U , there exists an analytically open neighborhood H1r s Y Hom Y X of

f Hom Y X such that (y) V for all points y U and all morphisms

H1r s Y . The set

(5.6.3) H2r s Y :

y U

H1r s Y (y) Z sr H1r s Y

is then the intersection of finitely or infinitely many analytic subspaces, and

therefore, by the analytic version of Hilbert’s Basissatz [KK83, Prop. 23.1], an

analytic subspace itself. We remark that neither H2r s Y nor any of the spaces

on the right hand side of (5.6.3) are necessarily reduced.

Identifying V Z sr A B , with projection B : A B B , we can then

consider the following analytic subspace of H2r s Y :

(5.6.4) Hr s Y :

y U

H2r s Y ( B )(y) ( B f )(y) H2r s Y

In order to define the subspace Hom Y X Hom Y X , repeat this

construction for each of the finitely many numbers r and s , and for each of

the finitely many components Y f 1(Z sr ) . Finally, let Hom Y X be the

connected component of the intersection which contains f ,

Hom Y X

r s Y

Hr s Y

r s Y

H1r s Y

open in Hom(Y X)

Hom Y X

It remains to show that the Universal Properties (5.6.1) and (5.6.2) hold.
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For Property (5.6.1), assume that an n -th order deformation n is given

as in (5.6.1). Given any two integers r s and any connected component

Y f 1(Z sr ) , let V X and U Y f 1(V) be the sets considered above

in the construction of Hr s Y , with decomposition V Z sr A B . Now, if

y U is any point and D the associated vector field near f (y) , with integral

curve f (y) : 6 X , it is clear from Corollary 5.4 that f (y)(t) Z sr , for all

t . In particular, the associated morphism

(5.6.5) n : SpecC[ ] (
n 1) Hom Y X

factors via H2r s Y . In a similar vein, it follows from Corollary 5.4 that

B f (y)(t) B f (y) for all t 6 . In particular, viewing n as a map

n : SpecC[ ] (
n 1) Y X , we have

B n SpecC[ ] ( n 1) y B f (y)

so that the morphism (5.6.5) actually factors via Hr s Y . Since this is true for

all r s and Y , the morphism (5.6.5) factors via Hom Y X , as claimed.

This ends the proof of Property (5.6.1).

To prove Property (5.6.2), let be any arc that satisfies the conditions

of (5.6.2) and let F be the associated deformation. For t 6 , let

F t H0 Y (Ft) (TX)

be the velocity vector field, as introduced in Notation 1.3 on page 289. We

aim to show that the F t are really sections in (Ft) ( ) . Again, if any two

integers r s and any connected component Y f 1(Z sr ) are given, it is clear

from (5.6.3) and (5.6.4) that

F t U H0 U (Ft) ( Z sr
)

where Z sr
is the sheaf introduced in Corollary 5.4. Since U is analytically

open in the irreducible space Y f 1(Z sr ) and since we have seen in

Corollary 5.4 that Z sr
is a vector bundle, it follows immediately from the

identity principle that

F t Y H0 Y (Ft) ( Z sr
)

Since this holds for all numbers r and s , and all irreducible components

Y f 1(Z sr ) , Property (5.6.2) follows.
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6. PROOF OF THEOREM 1.5

6.A SETUP OF NOTATION, OVERVIEW OF THE PROOF

We end this paper with the proof of Theorem 1.5. Throughout the present

Section 6, we maintain the assumptions and the notation of the theorem. In

particular, we assume that we are given a morphism f : Y X of complex

manifolds, with Y compact, an involutive subsheaf TX and a first order

infinitesimal deformation of f , denoted H0 Y Y , where Y f (TX)

is the image of f ( ) under the pull-back of the inclusion map. We also

assume that H1 Y Y 0 .

The proof is given in three steps. Replacing the target manifold X with

the product Y X , and the morphism f with the natural graph map, we

first show that it suffices to prove Theorem 1.5 in the case where f is a

closed immersion. In Step 2, we construct a setting where the tangent vectors

(y) TX y and the vector spaces TY y TX y are transversal at all points

y Y . A third step will then complete the proof.

6.B STEP 1 : REDUCTION TO THE CASE OF A CLOSED IMMERSION

In Section 3.B we have discussed the situation where f is a closed

immersion, and where the infinitesimal deformation was locally given by

restrictions of vector fields that live on open subsets of X . In order to reduce

to this simpler situation, we will show that to give a deformation of f , it is

equivalent to give a relative deformation of the graph morphism,

: Y Y X where (y) y f (y)

which is a closed immersion that identifies the domain Y with the graph of f .

We will then aim to construct an involutive subsheaf TY X that comes

from , and an infinitesimal deformation of the graph morphism along the

sheaf that is related to .

For this, recall that the tangent bundle of the product is a direct sum

TY X Y (TY ) X(TX) , where the ! are the natural projections, and set

: 0 X( ) TY X . Since is generated by vector fields that are

X -related to vector fields in , it follows from [War83, Prop. 1.55] that

is closed under the Lie bracket. Finally, consider the first order infinitesimal

deformation : Y (TY X) of , given by (y) : (0 (y)) .

The following lemmas are then immediate from the construction.

LEMMA 6.1. The infinitesimal deformation is contained in the subspace

H0 Y Image( ( ) (TX Y )) H0 Y (TX Y ) .
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LEMMA 6.2. There exist natural isomorphisms ( ) f ( ) and

Image ( ) (TX Y ) Image f ( ) f (TX) : Y

In particular, we have

H1 Y Image( ( ) (TX Y )) H1 Y Y 0

LEMMA 6.3. If F : 6 Y Y X is a deformation of the graph morphism

along , then F : X F : 6 Y X is a deformation of f along .

If F is a lifting of , then F is a lifting of .

In summary, Lemmas 6.1–6.3 show that all assumptions made in Theo-

rem 1.5 also hold for the morphism , and that it suffices to find a lifting

of along . Without loss of generality, we can therefore maintain the

following assumption throughout the rest of the proof.

ASSUMPTION 6.4. The morphism f : Y X is a closed immersion.

6.C STEP 2 : TIME-DEPENDENT VECTOR FIELDS

The explicit computations of Čech cocycles that we will use in Step 3 of

this proof become rather complicated if the infinitesimal deformation has

zeros or if its associated tangent vectors are not transversal to f (Y) X . As

in Section 6.B, we avoid this problem by enlarging X .

CONSTRUCTION 6.5. Set Z : X C , with projections X : Z X and

C : Z C . Throughout the remainder of the proof, the coordinate on C will

be denoted by t and referred to as “time”. Using that the tangent bundle of

Z decomposes as a direct sum, we consider the sheaf

: X( ) C(TC) X(TX) C(TC) TZ

the inclusion map

: Y Z y f (y) 0

and the infinitesimal deformation

H0 Y (TZ) :
d

dt
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As in Section 6.B, the following is immediate from the construction :

LEMMA 6.6. The sheaf is closed under Lie bracket. If G : 6 Y Z

is a deformation of the morphism along , then F : X G : 6 Y X

is a deformation of f along . If the deformation G is a lifting of , then

F is a lifting of .

WARNING 6.7. If Y (TZ) denotes the image of ( ) under the pull-

back of the inclusion map, then Y Y Y . It is therefore generally wrong

that H1 Y Y 0 , and the assumptions of Theorem 1.5 will generally

not hold for the morphism . Rather than using cohomological vanishing

for Y , the arguments given in Step 3 will therefore only use cohomological

vanishing of Y and the special form of , in order to construct infinitesimal

liftings of arbitrary order.

The following special types of vector fields on Z will play a role in the

computations.

DEFINITION 6.8 (Time-dependent vector field). A vector field on Z is

called a time-dependent vector field in if it is a section of the sheaf

X( ) 0 X( ) C(TC) TZ

DEFINITION 6.9 (Vector field with constant flow in time). A vector field

D on Z is called a vector field in with constant flow in time if it is of the

form

D D
d

dt

where D is a time-dependent vector field in .

We remark that the first-order infinitesimal deformation of Construc-

tion 6.5 is induced by a vector field with constant flow in time, in the sense

of the following definition.

DEFINITION 6.10 (Infinitesimal deformations induced by vector fields). An

n -th order infinitesimal deformation n : Y Jetn(Z) Jetn(Z) Y of the

closed immersion is induced by vector fields in with constant flow in

time if for every point y Y there are a neighborhood U U (y) Z

and a vector field D H0 U with constant flow in time, such that the

restriction n U Y is given by the section
n
D U Y discussed in Definition 4.1.
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In Step 3 of the proof, we need to consider iterated Lie brackets of vector

fields with constant flow in time. We end this section with an elementary

observation, asserting that Lie brackets of time-dependent vector fields, or of

vector fields with constant flow in time will always be time dependent.

LEMMA 6.11. Let U Z be any open set and let D1 and D2 be any two

time dependent vector fields in , defined on U . Then the following hold :

(6.11.1) The Lie bracket [D1 D2] is a time-dependent vector field in .

(6.11.2) The Lie bracket [ d
dt
D1] is a time-dependent vector field in .

Proof. Assertion (6.11.(6.11.1)) follows from an elementary computation,

cf. [War83, Prop. 1.55], when one observes that a vector field in is a

time-dependent vector field in if and only if it is C -related to the trivial

vector field 0 H0
C TC . Observing that a vector field has constant flow

in time if and only if it is C -related to the vector field
d
dt

H0
C TC , the

same computation also gives (6.11.(6.11.2)).

COROLLARY 6.12. Let D1
d
dt
and D2

d
dt
be any two vector fields in

with constant flow in time. If n is any integer, then the iterated Lie bracket

[D1
d
dt
D2

d
dt
](n) is a time dependent vector field in .

6.D STEP 3 : END OF PROOF

The end of the proof of Theorem 1.5 is now very similar to the proof of

Theorem 1.1. First, we prove an analogue of Lemma 2.14 that gives liftings

of to arbitrary order. These liftings will locally be induced by vector

fields in with constant flow in time. Finally, we apply Artin’s result to

construct the required deformation of f . The universal properties of the space

Hom Y X , as spelled out in Corollary 5.6, will then guarantee that this is

in fact a deformation along the subsheaf .

LEMMA 6.13. Let n : Y Jetn(Z) be an n-th order infinitesimal

deformation of the closed immersion that is induced by vector fields in

with constant flow in time. Then there exists a lifting n 1 : Y Jetn 1(Z)

of n that is likewise induced by vector fields in with constant flow in time.

Proof. As a first step, we construct liftings locally. Using the cohomo-

logical vanishing for Y , we can then correct the local liftings, to ensure that

they glue on overlaps. This will define a global lifting, which is then shown

to be induced by vector fields in with constant flow in time.
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It follows from Definition 6.10 that there exists an acyclic covering of

(Y) Z by open subsets (Ui)i I Z such that there are time-dependent

vector fields Di H0 Ui X( ) 0 that satisfy n Ui Y
n
Di

d
dt
Ui Y .

We consider the induced section of the (n 1)-th jet bundle,

i :
n 1

Di
d
dt

Ui Y
: Ui Y Jetn 1(Z)

Obviously, the i are local liftings of n , but they do not necessarily glue on

overlaps. However, it follows from Theorem 4.3 that for any pair of indices

i j I , the affine differences are given by iterated Lie brackets,

i j : i Ui Uj Y j Ui Uj Y

Di
d

dt Ui Uj

Dj
d

dt Ui Uj

(n 1)

:Ai j

Ui Uj Y

Corollary 6.12 asserts that the iterated Lie brackets Ai j are time-dependent

vector fields in . The differences i j therefore yield cohomology classes

in H1 Y Y which are zero by assumption. We can thus find sections

i H0 Ui Y Y such that i j i j . As in the proof of Lemma 2.14,

viewing the i as sections in H0 Ui Y Y Y H0 Ui Y Y

H0 Ui Y (TZ) , the sections obtained by translation,

i i : Ui Y Jetn 1(Z) Ui Y

glue on overlaps Ui Uj Y and define a lifting to (n 1)-th order,

(6.13.1) n 1 : Y Jetn 1(Z) with n 1 Ui Y i i for all i .

It remains to show that n 1 is an infinitesimal deformation induced

by vector fields in with constant flow in time. To check the conditions

of Definition 6.10, let y Y be any point, and let i I be any index

with (y) Ui . Then it suffices to construct a time-dependent vector field

D H0 Ui X( ) such that n 1 Ui Y
n 1

D d
dt
Ui Y .

To this end, consider the sections i and i defined above. Recall that i

is induced by the vector field Di
d
dt
. Since the covering of Z is acyclic,

the section i H0 Ui Y Y is given as the restriction of a vector field

E H0 Ui X( ) . Set D : (Di
tn

n!
E) . With Theorem 4.3 at hand, it is then
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easy to compute the affine differences of n 1

D d
dt
Ui Y and n 1

Di
d
dt
Ui Y on Ui

as
n 1

D d
dt
Ui Y

n 1

Di
d
dt
Ui Y

i

E i

We obtain n 1

D d
dt
Ui Y i i and Equation (6.13.1) then gives

n 1

D d
dt
Ui Y

n 1 Ui Y , as required.

Proof of Theorem 1.5 ; end of proof. Consider the analytic subset

Hom (Y Z) of the Douady space Hom(Y Z) constructed in Corollary 5.6

and the sequence of liftings 1 2 of Lemma 6.13. By Proposition 2.13,

we can view the i as morphisms SpecC[ ] (
i 1) Y Z . Assertion (5.6.1)

of Corollary 5.6 then implies that these morphisms factor via Hom (Y Z) ,

for each i .

Arguing as in the proof of Theorem 1.1, only replacing Hom(Y Z) by the

analytic subspace Hom (Y Z) , Artin’s Theorem [Art68, Thm 1.2] guarantees

the existence of a deformation G of that factors via Hom (Y Z) and

lifts the infinitesimal deformation . Lemma 6.6 and Assertion (5.6.2) of

Corollary 5.6 then implies that F X G is in fact a deformation along

that lifts the infinitesimal deformation .
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