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A WREATH PRODUCT APPROACH

TO CLASSICAL SUBGROUP THEOREMS

by Luis RIBES and Benjamin STEINBERG )

ABSTRACT. We provide elementary proofs of the Nielsen-Schreier Theorem and
the Kurosh Subgroup Theorem via wreath products. Our proofs are diagrammatic in
nature and work simultaneously in the abstract and profinite categories. A new proof
that open subgroups of quasifree profinite groups are quasifree is also given.

1. INTRODUCTION

The purpose of this paper is to provide a conceptual framework for simple

algebraic proofs, in both their abstract and profinite versions, of the classical

subgroup theorems from combinatorial group theory : the Nielsen-Schreier

Theorem and the Kurosh Theorem. Our proof of the Nielsen-Schreier Theorem,

for instance, could very easily be presented in a first course introducing free

groups. The fundamental idea is to exploit the functoriality of the wreath

product in order to reduce these theorems to diagram chasing. By removing

as much as possible the combinatorics on words, we are able to present proofs

that also work in the profinite category. Traditionally, the subgroup theorems

for profinite groups are obtained via a reduction to the abstract case; here we

prove the abstract and profinite theorems simultaneously.

In addition to proving the classical subgroup theorems, we also give a

very simple and natural proof of a result of the first author, Stevenson and

Zalesskiı̆ [17] on open subgroups of quasifree profinite groups.

The origins of our approach via wreath products lie in two sources :

profinite group theory and profinite semigroup theory. The genesis of the

wreath product technique for subgroup theorems is [4], where Cossey, Kegel

and Kovács used wreath products to prove that closed subgroups of projective

profinite groups are again projective. The usual proofs of this result rely on

) The authors gratefully acknowledge the support of NSERC.



50 L. RIBES AND B. STEINBERG

the Nielsen-Schreier Theorem for abstract free groups or on cohomological

techniques, see [18, Theorem 7.7.4] for example. The wreath product approach

was further developed by Haran to study closed subgroups of free products

of profinite groups [8]. Ershov [6] seems to be the first to have attempted to

use wreath products to deal with subgroup theorems for discrete groups. In

particular, he gives a proof of the Kurosh Theorem using Haran’s notion of

a projective family. However, his proof is not conceptually appealing since it

follows this route of projective families, and moreover it relies on the Nielsen-

Schreier Theorem, which normally should be deducible as a special case of

the Kurosh Theorem.

The same wreath product techniques arose independently in the work

of semigroup theorists investigating the structure of free profinite monoids.

Wreath products were first introduced into semigroup theory by Schützen-

berger [19] and came to play a major role in the subject with the advent

of the Krohn-Rhodes Theorem [12], which definitively established the wreath

product as the principal instrument for decomposing semigroups into simpler

parts ; see Eilenberg’s book [5] or [16] for details. There is no Nielsen-Schreier

Theorem for free monoids; also cohomological techniques do not work well

for semigroups because the Eckmann-Shapiro Lemma fails in this context.

Semigroup theorists were then naturally led to the wreath product to prove

structural results about free profinite monoids. Margolis, Sapir and Weil [14]

first exploited this technique in order to show that those finitely generated

clopen submonoids of a free profinite monoid that have any chance to be

free are indeed free; this was extended to the non-finitely generated case by

Almeida and the second author [1]. Rhodes and the second author rediscovered

the proof from [4] that closed subgroups of projective profinite groups are

projective and used an analogous argument to establish that closed subgroups

of free profinite monoids are projective profinite groups [15] ; see also [20]

where a similar idea was used.

We soon came to realize that the theorems for abstract groups should also

be amenable to these techniques, leading to the current paper. The paper is

organized as follows. The first section sets up our notation for wreath products

and establishes the basic functorial properties of this construction. Next we

turn to the Nielsen-Schreier Theorem, which is proved for abstract groups and

then adapted to profinite groups. The Nielsen-Schreier Theorem is followed

up by the Kurosh Theorem, which is the most technical part of the paper. The

paper closes with a proof that open subgroups of quasifree profinite groups are

again quasifree. The aim of this paper is to be a self-contained and elementary

exposition, so many well-known results are included.
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2. NOTATION AND CONVENTIONS

If K and L are groups, K L indicates that K is a subgroup of L .

Composition of maps in this paper is always assumed to be right-to-left, except

when dealing with permutations in a symmetric group SY , which we multiply

left-to-right. If x y L , we define xy y 1xy and Ky y 1Ky . The inner

automorphism inny of L determined by y is the automorphism x yxy 1

(x L) .

2.1 THE SEMIDIRECT PRODUCT

Recall that a group G is said to act on a group R on the left, if there

exists a homomorphism : G Aut(R) denoted by ( G ).

Equivalently, G acts on R on the left if there is a function G R R

denoted by (x r) xr , such that

(a) 1r r , r R ,

(b) xyr x(yr) , r R , x y G ,

(c) x(r1r2)
xr1

xr2 , r1 r2 R , x G .

Indeed, just define xr x(r) .

Given such an action, define the corresponding semidirect product R G

to be the group with underlying set R G and multiplication given by

(r x)(r1 x1) (r(xr1) xx1) (r r1 R x x1 G)

One checks that indeed this multiplication makes R G into a group with

identity element (1 1) . Note that

(r x) 1 (x
1

(r 1) x 1) (1 x)(r 1)(1 x) 1 (xr 1)

Moreover, the maps

R R G r (r 1) (r R) and G R G x (1 x) (x G)

are injective homomorphisms. If we identify R and G with their images under

these injections, we have R G RG , with R G 1 and R R G . When

using this identification we sometimes write the elements of R G RG as

r x (r R , x G ). Throughout the paper we use the notation (r x) or r x

for an element of R G , according to convenience.

2.2 PERMUTATIONAL WREATH PRODUCTS

Fix a set Y . Given a group A , define AY to be the group of all functions

f : Y A . We write the argument of such a function f on its right ; thus the
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operation on AY is given by

( f )(s) f (s) (s) ( f AY s Y)

We denote by : A AY the diagonal homomorphism : it assigns to a A

the constant function a AY defined by a(s) a , for all s Y . The image

of is denoted A .

Assume that a group G acts on Y on the right. Define the permutational

wreath product A G (with respect to the G -set Y ) to be the semidirect

product

A G AY G

where the action of G on AY is defined by

f (s) f (s ) ( G f AY s Y)

The usage of left exponentiation follows Eilenberg [5]. Observe that G

centralizes A in A G , so that A G A G .

2.2.1 ELEMENTARY PROPERTIES. Several fundamental properties of the

wreath product are recorded in the following proposition.

PROPOSITION 2.2.1. (a) If B A are groups, and H G, then

B H BY H A G AY G

(b) Functoriality on A : ( ) G is a functor, i.e., for each homomorphism

: A B, there is a homomorphism

G : A G AY G B G BY G

given by ( f ) ( f ) , where f AY and G, so that

(b1) idA G idA G , and

(b2) if A B C are group homomorphisms, then

G ( G)( G)

(c) Furthermore, G is an epimorphism (respectively, a monomorphism) if

and only if is an epimorphism (respectively, a monomorphism).
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2.3 THE STANDARD EMBEDDING

Let H be a subgroup of a group G . Let Y H G be the set of all

right cosets of H in G . Denote by : G SY the associated permutation

representation of G in SY , i.e., is the homomorphism defined by ( ) ¯

( G) , where ¯ : Y Y is the permutation Hx Hx (x G) . Note that

ker( )

x G

xHx 1 HG

the core of H in G .

Fix a right transversal T of H in G , i.e., a complete set of representatives

of the right cosets Hx (x G) . We denote the representative of Hx in T by

either tHx or x , as convenient. Define sT GY as the map that assigns to

each right coset of H in G its representative in T :

sT(Hx) tHx x T (x G)

Consider the monomorphism of groups : G G (G) given by the

composition of homomorphisms

G G (G) G (G)
innST

G (G)

Explicitly, if G , then

( ) sT( ( )) s 1
T f ( )

where f GY is defined by f sT
( )(s 1

T ) , i.e.,

f (Hx) tHx t 1
Hx (x G)

We remark that (G) H (G) , because f (Hx) tHx t 1
Hx H (x G ).

Therefore, we have proved

THEOREM 2.3.1 (Embedding Theorem). Let H G be groups.

(a) There is an injective homomorphism : G H (G) defined by

( ) f ( )

where f : Y H G H is given by f (Hx) tHx t 1
Hx ( x G).

(b) H(H) HY (H) H (H) .

We record the following facts for future use; they follow by routine

computation in the wreath product.
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LEMMA 2.3.2. Let A be a group and : G A (G) be a homomorphism

such that

G A (G)

(G)

commutes, where is the projection. Put ( ) ( f ( )) ( G) . Then

the following hold :

(a) f
1 2 n

f
1

( 1)f
2

( 1 n 1)f
n

for 1 n G ;

(b) f 1 ( (
1)f ) 1 ( 1)( f

1
) for G.

REMARK 2.3.3. If H G , then Y has the structure of a group that

we denote K . Identifying K with its canonical image in SY SK , we have

K (G) , so that : G H K . This is the so called Kaluznin-Krasner

Theorem : every extension of a group H by a group K can be embedded in

H K [11]. The standard embedding is very closely related to the monomial

map [7, Chap. 14] and the theory of induced representations; see [21] for a

detailed discussion.

From now on we shall use the notation T ti i I (if T is finite,

we write T t1 tk ), and we shall assume that there is a symbol 1 I

such that t1 1 is the representative of the coset H , i.e., tH t1 1.

Fix i I . Then the action of Hti t 1
i Hti on Y H G fixes the element

Hti Y . Hence if A is a group and f AY , one has (x)f (Hti) f (Hti) , for

all x Hti . Therefore, the copy

f (Hti) f AY A

of the group A corresponding to the Hti Y component of the direct product

AY centralizes (Hti ) in A (Hti ) . Thus

A (Hti ) AY (Hti ) A AY Hti (Hti )

We denote by A i : A (Hti ) A the corresponding projection :

A i( f (x)) f (Hti) (x Hti f AY)

The case i 1 will be used so often, that it is convenient to set A A 1 .

Part (b) of the following lemma expresses the naturality of A i .
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LEMMA 2.3.4. We continue with the above setting. Let i I .

(a) There is a commutative diagram

Hti
Hti

innti Hti

H (Hti )

H i

H

In particular, for i 1 , H H H 1 H idH .

(b) If : A B is a homomorphism of groups, then the diagram

A (Hti )

A i

(Hti )
B (Hti )

B i

A B

commutes.

(c) One has i I(A (Hti )) A (HG) AY , where HG is the core of H .

The restriction ( A i) AY : A
Y A is the usual direct product projection.

Proof. To prove (a) observe that, for r Hti , one has

H i (r) fr(Hti) tHtirt
1

Htir
tirt

1
i

since Hti stabilizes Hti . The proof of (b) follows directly from the definitions

of A i , B i , and (Hti ) . Part (c) is clear, as i I H
ti HG ker .

2.4 THE EMBEDDING THEOREM FOR PROFINITE GROUPS

By a variety of finite groups we mean a nonempty class of finite

groups closed under taking subgroups, finite direct products and homomorphic

images. In this paper, we assume in addition that the variety is closed under

extensions of groups (we say then that is an extension closed variety of

finite groups). A pro- group is a profinite group whose continuous finite

quotients are in , i.e., an inverse limit of groups in . Suppose now that G is

a pro- group and H is an open subgroup of G (cf. [18] for basic properties

of profinite groups). Let Y H G ; then Y is finite, and the quotient topology

on Y is discrete. Let : G SY be as before; since HG ker is open

in G , the homomorphism is continuous. If A is any pro- group, then

AY is a pro- group and the left action (G) AY AY , as defined above,

is continuous since Y and (G) are finite and the action just permutes the
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coordinates. Thus the wreath product A (G) AY (G) is a pro- group

(here we use that is extension closed). Moreover, if T is a transversal for

Y , then it follows immediately from the definition that the standard embedding

: G H (G) is continuous.

3. THE NIELSEN-SCHREIER THEOREM

We present an elementary proof of the Nielsen-Schreier Theorem, stating

that subgroups of free groups are free, using wreath products. Our proof

is algebraic in nature, rather than combinatorial, and proceeds by direct

verification of the universal property. Let F be a free group on X and H a

subgroup. Elements of F can be viewed as reduced words over X X 1 [13].

3.1 SCHREIER TRANSVERSALS

A Schreier transversal for H F is a right transversal T of H in F

that is closed under taking prefixes (and in particular contains the empty

word) : if y1 yi yn T with y1 yn X X 1 in reduced form, then

y1 yi T , for all i 0 n 1. The existence of Schreier transversals

is a standard exercise in Zorn’s Lemma.

LEMMA 3.1.1. There exists a Schreier transversal T of H in F .

Proof. Consider the collection of all prefix-closed sets of reduced words

in X X 1 that intersect each right coset of H in at most one element, and

order by inclusion. Then 1 , so it is non-empty. It is also clear that

the union of a chain of elements from is again in , so has a maximal

element T by Zorn’s Lemma. We need to show that each right coset of H

has a representative in T . Suppose this is not the case and choose a minimum

length word so that H T . Since 1 T , it follows that 1 and

hence ux in reduced form, where x X X 1 . By assumption on , we

have Hu Ht for some t T . If tx is reduced as written, then T . tx ,

contradicting the maximality of T . If tx is not reduced as written, then tx T

by closure of T under prefixes and H Htx , contradicting the choice of

. This completes the proof that T is a transversal.

3.2 THE NIELSEN-SCHREIER THEOREM

We now proceed with our proof that subgroups of free groups are free via

wreath products.
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THEOREM 3.2.1 (Nielsen-Schreier). Subgroups of free groups are free.

More precisely, let F be a free group on X and let H be a subgroup. Let T

be a Schreier transversal for H and

(3.1) B tx(tx) 1 (t x) T X tx(tx) 1 1

Then H is freely generated by B.

Proof. Our goal is to show that any map : B G with G a group

extends uniquely to a homomorphism : H G . First define an extension

: B 1 G by (1) 1. Denote by Y the set H F of right cosets

of H in F and let : F SY be the associated permutation representation

of F .

To motivate our construction of the extension, we start with a proof of

uniqueness. So let : H G be any homomorphism extending . Consider

the standard wreath product embedding : F H (F) of Theorem 2.3.1.

The functoriality of the wreath product and Lemma 2.3.4 yield the commutative

diagram

F H (F)
(F)

G (F)

H
H

idH

H (H)
(H)

H

G (H)

G

H G

Hence is uniquely determined by ( (F)) , which is in turn determined

by its values on X . But if x X , then ( (F)) (x) ( fx (x)) . Now recall

that fx(H ) tH xt 1
H x B 1 and hence fx fx . Thus the unique

possible extension of to a homomorphism is given by G( H) , where

: F G (F) is the homomorphism defined on X by (x) ( fx (x)) .

Let us show that G( H) extends .

Let b B . Then b tx(tx) 1 for some t T , x X . Let us suppose

that t x1 xk 1 and (tx)
1 xk 1 xn in reduced form. We put xk x

so that b x1 xn , although this product may not be reduced as written.

Set ti x1 xi , for i 0 n . Using that Schreier transversals are prefix-

closed one easily deduces the formulas :

(3.2)
ti x1 xi for i k

ti x 1
n x 1

i 1 for i k
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Indeed, the first formula is clear. The second follows because, for i k 1,

Hti Htxxk 1 xi Hx 1
n x 1

k 1xk 1 xi Hx 1
n x 1

i 1 .

Our aim now is to verify G (b) (b) . Put (r) ( fr (r)) , for r F .

We claim that if tH xt 1
H x 1 (x X X 1 F ), then fx (H ) 1 . This

is immediate if x X , since fx fx and fx(H ) tH xt 1
H x . Next assume

x X 1 . Hence, taking into account that x 1 X ,

fx (H ) ( fx 1 (H x)) 1 ( (tH x x
1t 1
H )) 1 1

since tH x x
1t 1
H (tH x t 1

H x)
1 1.

In light of (3.2) it follows that ti 1 xi t
1

i 1 for all i k . Thus by the

claim and Lemma 2.3.2,

G (b) fb(H) fx1 xn
(H)

fx1(H) fx2 (Hx1) fxn(Hx1 xn 1)

fx1(Ht0) fx2(Ht1) fxn(Htn 1)

fxk (Htk 1) (tk 1xk t
1

k ) (b)

as required. This completes the proof that H is freely generated by B .

REMARK 3.2.2. Notice that the above proof only shows that B is a basis

for H . It does not follow from the proof that B is in bijection with the set

of pairs (t x) T X such that tx(tx) 1 1, although this can be deduced

by straightforward combinatorial reasoning.

3.3 THE NIELSEN-SCHREIER THEOREM FOR FREE PROFINITE GROUPS

Let X be a profinite space (i.e., a compact Hausdorff and totally

disconnected topological space). Then a pro- group F is said to be a

free pro- group on X if there is a continuous map : X F such that

if : X G is any continuous map into a pro- group G , then there is a

unique continuous homomorphism : F G such that

X F

G

commutes. If (X ) is a pointed profinite space, one defines in an analogous

manner the concept of free pro- group on (X ) : it satisfies the same

universal property as above, but with all the maps assumed to be continuous
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maps of pointed spaces (the maps send distinguished points to distinguished

points ; the distinguished point of a group being its identity element). The map

is an embedding, and we identify X with its image (X) .

Observe that a free pro- group F on a profinite space X can be viewed

as free pro- group on the pointed profinite space (X . ) in an obvious

way; so we deal here only with pointed spaces. Let \ denote the abstract

subgroup of F generated by X . Then (cf. [18, Propositions 3.3.13 and 3.3.15]),

\ is a free abstract group with basis X ; furthermore \ is dense in F .

Let H be an open subgroup of F . Then the natural map

(H \) \ H F Y

is a bijection. Choose a Schreier transversal T of H \ in \ . The map

T X B tx(tx) 1 t T x X H F

given by (t x) tx(tx) 1 tx(t (tx))
1 (where : F Y H F is the

projection) is continuous, since and the section Hf tHf from H F to F

are obviously continuous. And so, B is closed by the compactness of T X ,

i.e., B is profinite. Observe that 1 B . We think of B as a pointed space

with distinguished point 1 . The proof of the Nielsen-Schreier Theorem that

we have presented above now goes through mutatis mutandis to show that H

is a free profinite group on the pointed space (B 1) . Thus we have :

THEOREM 3.3.1. Let be an extension closed variety of finite groups.

Let F be a free pro- group on a pointed profinite space (X ) and let H be

an open subgroup of F . Then H is a free pro- group on a pointed profinite

space.

4. THE KUROSH THEOREM

In this section, we give what may arguably be considered the first algebraic

proof of the Kurosh Theorem on subgroups of free products. The original

proof is essentially combinatorial, while modern proofs have a topological

character. Perhaps, Higgin’s proof can also be considered algebraic, but it

relies on groupoids [10]. Our proof has a similar flavor to the above proof

of the Nielsen-Schreier Theorem in that it relies on wreath products. A key

difference is that the transversals used are more complicated.
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4.1 FREE PRODUCTS

Let G A G be the free product of the groups G , A . We shall

freely use the Normal Form Theorem for free products [13, Chap. IV], stating

that each non-trivial element of G can be uniquely written in the form

1 2 m where each i belongs to some G and i G implies

i 1 G , for i 1 m 1. The number m will be called the syllable

length of and we write ( ) m . If S G , denote by (S) the smallest

syllable length of an element of S . By convention, the syllable length of the

identity is 0 . If m G , then we shall say that ends in the syllable or

that is the last syllable of .

4.2 KUROSH SYSTEMS

Let us begin by setting up notation. Suppose that G A G . Let

H G and set Y H G . Denote by : G SY the associated permutation

representation. Let Hi i I be the right cosets of H and assume there

is a symbol 1 I such that H1 H . Assume that we have a transversal

T of the right cosets of H in G for each A . Denote by (Hi) the

representative of Hi in T . We require (H) 1 , all A .

DEFINITION 4.2.1 (Kurosh system). A collection D D A

of systems D of representatives (H G ) of the double cosets H G G ,

A , together with a system T A of transversals for H G is

called a Kurosh system if the following holds :

(i) if (H G ) , then (H ) ;

(ii) (H G ) is either 1 or ends in a syllable ;

(iii) Hi H G and (H G ) implies (Hi) G ;

(iv) if 1 (H G ) ends in the syllable , then (H ) ;

(v) ( (H G )) (H G ) .

PROPOSITION 4.2.2. Kurosh systems exist.

Proof. We proceed by induction on the length of the double cosets H G .

If (H G ) 0 , i.e. H G HG , choose (H G ) 1 and (H) 1 ;

if H Hi HG , choose a G so that Hi Ha , and put (Hi) a .

Then conditions (i)–(v) hold. Let n 1, and assume representatives (HrG )

and (Hi) have been chosen whenever Hi HrG and (HrG ) n 1

( A r G) , satisfying conditions (i)–(v). Let (H G ) n with ( ) n .

Then ¯a , where ( ¯) n 1, 1 a G and . Since
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(H G ) n 1, representatives (H G ) t and (H ) tb (b G )

have already been chosen; in particular, (t) n 1 by (v). Since (H ) n ,

we deduce that b 1 and (tb ) n . Define (H G ) tb (H ) ,

and whenever H Hi H G , choose c G so that Hi H c , and

put (Hi) tb c . Clearly, conditions (i)–(v) are satisfied.

Let us define some key elements of H . Fix an index 0 A . For x G

and Hi H G , define :

yi x (Hi)x (Hix)
1 ;

zi (Hi) 0(Hi)
1

It is immediate that yi x zi H for all i , x and . Notice that

z1 1 zi 0
for all A , i I . If Hi H , we often write yH x and

zH for yi x and zi . We begin with some simple observations concerning

these elements.

PROPOSITION 4.2.3. Retaining the above notation, we have :

(1) if x1 x2 G , then yi x1yj x2 yi x1x2 where Hix1 Hj ;

(2) if x G , Hi HuG with u (HuG ) , then yi x uG u 1 H ;

(3) if h uG u 1 H with u (HuG ) , then h yHu x for some x G ;

(4) if 1 u (HuG ) ends with the syllable , then zHu zHu .

Proof. First we handle (1). The definition yields

yi x1yj x2 (Hi)x1 (Hix1)
1 (Hix1)x2 (Hix1x2)

1 yi x1x2

Next we turn to (2). By condition (iii) of a Kurosh system, (Hi) u and

(Hix) u for some G , whence yi x u x(u ) 1 uG u 1 H .

To prove (3), suppose h uxu 1 with x G . Then Hu Hux and

(Hu) u by (i). We conclude that yHu x (Hu)x (Hux) 1 uxu 1 h .

For (4) we simply observe that (Hu) u (Hu) by (i) and (iv).

4.3 THE KUROSH THEOREM

Set Z zi i I A zi 1 and F Z . Our goal is to prove

H
A u D

uG u 1 H F

and F is freely generated by Z . We use wreath products and the universal

property to effect this proof. From now on we work with a fixed Kurosh

system. If : Z K is a map, with K a group, then we extend to

Z 1 by setting (1) 1.
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PROPOSITION 4.3.1. Given a family u : uG u 1 H K A u D

of group homomorphisms and a map : Z K , there exists, for each A,

a homomorphism ^ : G K (G) defined by ^ (x) ( fx (x)) with

fx(Hi) (zi )
1

u(yi x) (zj )

where Hix Hj and u (HiG ) . If ^ : G K (G) denotes the induced

homomorphism, then the following diagram commutes :

(4.1)

G
^

K (G)

(G)

where is the projection.

Moreover, the construction of ^ is functorial in the sense that given

another family of homomorphisms u : uG u 1 H K A u D ,

a map : Z K and a homomorphism : K K such that the diagrams

(4.2)

uG u 1 H

u u

K K

Z

K K

commute, then the following diagram commutes :

(4.3)

K (G)

(G)

G

^

^
K (G)

where ^ is the map associated to the family .

Proof. We begin by verifying that ^ is a homomorphism. Proposi-

tion 4.2.3 (2) implies that yi x uG u 1 H so that ^ makes sense.

Let x1 x2 G . Clearly, Hix1G Hix2G Hix1x2G HiG ; set

u (HiG ) . From

( fx1 (x1))( fx2 (x2)) fx1(
(x1)fx2) (x1x2)

it follows that we just need fx1(Hi) fx2(Hix1) fx1x2(Hi) . Putting Hj Hix1
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and Hk Hix1x2 , an application of Proposition 4.2.3 (1) yields

fx1(Hi) fx2(Hix1) (zi )
1

u(yi x1 ) (zj ) (zj )
1

u(yj x2) (zk )

(zi )
1

u(yi x1x2) (zk ) fx1x2(Hi)

as required. The ^ induce the desired map ^ by the universal property of

a free product. The commutativity of (4.1) and (4.3) are immediate from the

definition of ^ and the universal property of a free product.

From the proposition and Lemma 2.3.4, we obtain

COROLLARY 4.3.2. Let ^ , ^ and be as in Proposition 4.3.1. Then

there is a commutative diagram

(4.4)

K (H)
K

(H)

K

H

^ H

^ H

K (H)
K

K

Our next lemma is where we make use of the full strength of the Kurosh

system.

LEMMA 4.3.3. Let u (Hu) . Then fu(H) (zHu ) .

Proof. We induct on the syllable length of u . If u 1, there is nothing

to prove as zH 1 for all . So assume u 1. The proof divides into

two cases.

CASE 1. Assume u (HuG ) . Then (iii) implies that we can write

u x with (HuG ) and x G . Moreover, ( ) (u) by (ii).

Since (H ) by (i), by induction f (H) (zH ) . Then we find by

Lemma 2.3.2

fu(H) f (H) fx(H ) (zH ) (zH ) 1 (yH x) (zHu )

(yH x) (zHu )

But yH x (H )x (H x) 1 (H )x (Hu) 1 xu 1 1, establishing

fu(H) (zHu ) .
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CASE 2. Suppose u (HuG ) . Since u 1, (ii) implies that u

ends in a syllable with and (iv) yields (Hu) u . By (ii)

u (HuG ) , so Case 1 implies that fu(H) (zHu ) . Proposition 4.2.3 (4)

provides zHu zHu , so fu(H) (zHu ) .

This establishes the lemma.

An important special case is when K H and the u and

are the inclusions. Let us denote the induced map in this case by

^ : G H (G) .

PROPOSITION 4.3.4. The map ^ : G H (G) is the standard wreath

product embedding associated to the transversal T
0
. Consequently, H^ H

is the identity.

Proof. Writing ^( ) (F ( )) , if x G and Hix Hj , then

Fx(Hi) z 1
i yi xzj 0(Hi) (Hi)

1[ (Hi)x (Hj)
1] (Hj) 0(Hj)

1

0(Hi)x 0(Hix)
1

Thus ^ is the standard embedding associated to the transversal T
0
.

In the proof of the next theorem, we retain all the notation introduced in

this section.

THEOREM 4.3.5 (Kurosh). Let D T A be a Kurosh system for

H G A G . Then

H
A u D

uG u 1 H F

and F is a free group with basis Z .

Proof. Let u : uG u 1 H K A u D be a family of group

homomorphisms and : Z K a map. Let ^ : G K (G) be as

in Proposition 4.3.1. We show that K^ H extends the u and , where

K K 1 is as in Lemma 2.3.4. Suppose u (HuG ) and h uG u 1 H .

By Proposition 4.2.3 (3), h yi x for some x G , where Hi Hu .

Setting Hj Hix , an application of Lemmas 4.3.3 and 2.3.2 (and the fact



A WREATH PRODUCT APPROACH 65

H (Hi) Hi ) yields

K^(h) fyi x(H) f (Hi)x (Hj) 1(H)

f (Hi)(H) fx(Hi) f (Hj)(Hj (Hj)
1)

1

f (Hi)(H) fx(Hi)( f (Hj)(H))
1

(zi )[ (zi )
1

u(yi x) (zj )] (zj )
1

u(yi x) u(h)

Similarly, we calculate using Lemmas 4.3.3 and 2.3.2

K^(zi ) fzi (H) f (Hi)(H) f
0(Hi)(Hi 0(Hi)

1)
1

f (Hi)(H)( f 0(Hi)(H))
1

(zi ) (zi 0
) 1 (zi )

since zi 0
1.

The uniqueness of K^ H follows from the functoriality of our construc-

tion. Namely, in Proposition 4.3.1 take K H and u , the inclusions

(and so ^ : G H (G) is ^ from Proposition 4.3.4). Suppose : H K

is an extension of the u and . Then (4.2) commutes and so diagrams (4.3)

and (4.4) commute. Since H^ H H^ H is the identity in this case by

Proposition 4.3.4, we conclude that K^ H .

REMARK 4.3.6. As we mentioned earlier, there is a close relationship

between the standard embedding and induced representations [21]. From this

viewpoint, our proof of the Kurosh Theorem has a similar flavor to Mackey’s

Theorem on the restriction to one subgroup of a representation induced from

another.

4.4 THE KUROSH SUBGROUP THEOREM FOR PROFINITE GROUPS

Let K be a pro- group and let K A be a collection of pro-

groups indexed by a set A . For each A , let : K K be a continuous

homomorphism. One says that the family A is convergent if

whenever U is an open neighborhood of 1 in K , then U contains all but a

finite number of the images (K ) . We say that K together with the is

the free pro- product of the groups K if the following universal property

is satisfied : whenever K is a pro- group and : K K A is a

convergent family of continuous homomorphisms, then there exists a unique
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continuous homomorphism : K K such that

K K

K

commutes, for all A . We denote such a free pro- product by

K A K . Free pro- products exist and are unique. To construct the

free pro- product K one proceeds as follows : let G A K be the free

product of the groups K as abstract groups. Consider the pro- topology on

G determined by the collection of normal subgroups N of finite index in G

such that G N , N K is open in K , for each A , and N K ,

for all but finitely many . Then

K lim
N

G N

It turns out that G is naturally embedded in K as a dense subgroup. One can

take the homomorphism to be the composition of inclusions

K G K ( A)

If the set A is finite, the ‘convergence’ property of the homomorphisms

is automatic.

For such free products, one has the following analogue of the Kurosh

Subgroup Theorem [3].

THEOREM 4.4.1. Let H be an open subgroup of the free pro- product

K

A

K

Then, for each A, there exists a set D of representatives of the double

cosets H K K such that the family of inclusions

uK u 1 H H u D A

converges, and H is the free pro- product

H

A u D

uK u 1 H \

where \ is a free pro- group of finite rank.
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Proof. First we show that we may assume that A is finite. Consider the

core HK K H 1 of H in K . Since H is open, we have that HK is

open in K . So there exists a finite subset B of A such that K HK for all

A B . Put K A B K ; then

K

B

K K

is a free pro- product of finitely many factors, and one easily sees that it

suffices to prove the theorem for this product. Indeed, observe first that for

all A B , HK K and since HK K , one has HuK Hu HuK

(u K) , i.e., H K K H K H K K ; on the other hand,

uK u 1 H uK u 1

A B

uK u 1

A B

(uK u 1 H)

Hence from now on we assume that A is a finite indexing set.

Choose a Kurosh system D T A for the subgroup G H of

the abstract free product G A K , and observe that, for each , T

and D are systems of representatives of the cosets H G and of the double

cosets H K K , respectively. The remainder of the proof can be carried out

mutatis mutandis as is done in the proof of Theorem 4.3.5 (one simply has to

require initially that the homomorphisms u are continuous, and then verify

that all the maps involved in the proof are also continuous; this is an easy

consequence of our comments in 2.4).

Let us point out that this proof is independent of the result for abstract

free products (Theorem 4.3.5) ; it simply follows the same procedure.

We leave open the question of whether or not the same simple procedure

works in case one deals with pro- products of pro- groups indexed by a

profinite space [22].

5. QUASIFREE PROFINITE GROUPS

This section contains a simpler proof of the main result of [17]. A similar

approach, using the twisted wreath product, was independently discovered by

Bary-Soroker et al. [2].
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5.1 QUASIFREE GROUPS

An epimorphism of groups is termed proper if it is not an isomorphism.

Let be an extension closed variety of finite groups and let m be an infinite

cardinal number. A pro- group G is called m-quasifree if whenever A and

B are groups in , : A B is a proper epimorphism of groups that splits

(i.e., there is a section : B A of : idB ), and : G B is a

continuous epimorphism,

G

A B

then there exist precisely m different continuous epimorphisms : G A

such that . See [17, 9] for motivation and elementary properties

of these groups; one knows in particular that the minimal number d(G) of

generators converging to 1 of such an m -quasifree group G is m (see [17,

Lemma 1.2]). In [17] it is proved that open subgroups of m -quasifree groups

are m -quasifree. Here we provide a simpler and more natural proof of this

result by means of wreath products.

THEOREM 5.1.1. Let G be an m-quasifree pro- group, and let H be

an open subgroup of G. Then H is m-quasifree.

Proof. Given A B , a proper split epimorphism : A B and

a continuous epimorphism : H B , we need to prove the existence of

exactly m continuous epimorphisms : H A such that .

Set Y H G and let : G SY be the corresponding permutation

representation as in Section 2. Consider the standard embedding

: G H (G)

constructed in Theorem 2.3.1. Note that (G) : A (G) B (G) is a

split proper epimorphism by Proposition 2.2.1; observe also that A (G) and

B (G) are finite groups in , as is extension closed. Let B ( (G)) (G)

and A ( (G)) 1(B ) . Then A B , and the restriction : A B

of (G) to A is a split proper epimorphism. See Figure 1. Since G

is m -quasifree, there exists a continuous epimorphism : G A such that

( (G)) . Then, for each G , ( ) ( f ( )) , for some f AY .
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A (G)
(G)

B (G)

A B

H (G)

(G)

G

FIGURE 1

A commutative diagram

Let T t1 1 t2 tk be a right transversal of H in G . For

i 1 k , define i : H
ti A to be i A i Hti , i.e., i(x) fx(Hti) ,

for x Hti . According to Lemma 2.3.4, the diagram

A B

A (Hti )
(Hti )

A i

B (Hti )

B i

AY H (Hti )
H i

(Hti )

H

Hti

Hti

Hti

innti Hti

HG

HG

commutes. Thus innti Hti i .

We claim that i is surjective. Let a A and let b (a) . Since

is surjective, the commutativity of the above diagram ensures that there

exists ( f (x))) (B (Hti )) B , where x Hti , with f (Hti) b . Choose
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f : Y A to be any function such that f (Hti) a and f f ; then

( f (x)) A . Therefore, A i takes A (A (Hti )) onto A . Because

ker ker HG Hti , it follows that ( ) A (Hti ) implies Hti .

We deduce that Hti : Hti A (A (Hti )) is an epimorphism, and hence

so is i , proving the claim.

Since G is quasifree, the total number of epimorphisms : G A such

that ( (G)) is m . Since HG
k

i 1 H
ti has finite index in G ,

these restrict to m different homomorphisms

HG
: HG A (HG) AY

Recalling from Lemma 2.3.4 that the A i : A
Y A ( i 1 k ) are the

direct product projections, we conclude that HG
is determined by the maps

A i HG i HG
, i 1 k . It follows that there exists some j 1 k ,

such that the number of different maps j HG
constructed in this manner is

precisely m .

For each of these j , define j inn
t

1
j

H . Then, since HG has finite

index in H , we have constructed m different epimorphisms : H A such

that . Finally, observe that there cannot be more such ’s since the

minimal number d(H) of generators of H converging to 1 is m and A is

finite. This completes the proof.

It is an open question whether the results of [2] for semifree profinite

groups also hold for quasifree groups.
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