
L’Enseignement Mathématique (2) 56 (2010), 315–363

ORBIFOLDS AS STACKS ?

by Eugene LERMAN

ABSTRACT. The first goal of this survey paper is to argue that if orbifolds are
groupoids, then the collection of orbifolds and their maps has to be thought of as
a 2-category. Compare this with the classical definition of Satake and Thurston of
orbifolds as a 1-category of sets with extra structure and/or with the “modern” definition
of orbifolds as proper étale Lie groupoids up to Morita equivalence.

The second goal is to describe two complementary ways of thinking of orbifolds
as a 2-category : (1) the weak 2-category of foliation Lie groupoids, bibundles and
equivariant maps between bibundles and (2) the strict 2-category of Deligne-Mumford
stacks over the category of smooth manifolds.

1. INTRODUCTION

Orbifolds are supposed to be generalizations of manifolds. While manifolds

are modeled by open balls in the Euclidean spaces, orbifolds are supposed

to be modeled by quotients of open balls by linear actions of finite groups.

Orbifolds were first defined in the 1950’s by Satake [25, 26]. The original

definition had a number of problems. The chief problem was the notion of

maps of orbifolds : different papers of Satake had different definitions of maps

and it was never clear if maps could be composed. Additionally :

1. The group actions were required to be effective (and there was a spurious

condition on the codimension of the set of singular points). The requirement of

effectiveness created a host of problems : there were problems in the definition

of suborbifolds and of vector (orbi-)bundles over the orbifolds. A quotient of

a manifold by a proper locally free action of a Lie group was not necessarily

an orbifold by this definition.

2. There were problems with pullbacks of vector (orbi-)bundles — they

were not defined for all maps.
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Over the years various patches to the definition have been proposed. See,

for example, Chen and Ruan [6], Haefliger [8, 9], Moerdijk [20], Moerdijk and

Pronk [22]. In particular Moerdijk’s paper on orbifolds as groupoids has been

quite influential among symplectic topologists. At about the same time the

notion that orbifolds are Deligne-Mumford/geometric stacks over the category

of manifolds started to be mooted.

There are two points to this paper.

1. If one thinks of orbifolds as groupoids then orbifolds have to be treated

as a 2 -category : it is not enough to have maps between groupoids, one

also has to have maps between maps. This point is not new; I have learned

it from [13]. Unfortunately it has not been widely accepted, and it bears

repetition.

2. There are two complementary ways of thinking of orbifolds as a

2-category. One way uses bibundles as maps. The other requires embedding

Lie groupoids into the 2-category of stacks. Since stacks and the related mental

habits are not familiar to many differential geometers I thought it would be

useful to explain what stacks are. While there are several such introductions

already available [19, 3, 12], I feel there is room for one more, especially for

the one with the emphasis on “why”.

I will now outline the argument for thinking of orbifolds as a 2-category (the

possibly unfamiliar terms are defined in subsequent sections). The simplest

solution to all of the original problems with Satake’s definition is to start

afresh. We cannot glue together group actions, but we can glue together action

groupoids. Given an action of a finite group, the corresponding groupoid is

étale and proper. This leads one to think of a C orbifold (or, at least,

of an orbifold atlas) as a proper étale Lie groupoid. The orbit spaces of

such groupoids are Hausdorff, and locally these groupoids look like action

groupoids for linear actions of finite groups. Since a locally free proper action

of a Lie group on a manifold should give rise to an orbifold, limiting oneself

to étale groupoids is too restrictive. A better class of groupoids consists of Lie

groupoid equivalent to proper étale groupoids. These are known as foliation

groupoids.

If orbifolds are Lie groupoids, what are maps ? Since many geometric

structures (metrics, forms, vector fields, etc.) are sections of vector bundles,

hence maps, one cannot honestly do differential geometry on orbifolds without

addressing this question first.

Since groupoids are categories, their morphisms are functors. But our

groupoids are smooth, so we should require that the functors are smooth too

(as maps on objects and arrows). One quickly discovers that these morphisms
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are not enough. The problem is that there are many smooth functors that are

equivalences of categories and that have no smooth inverses. So, at the very

least, we need to formally invert these smooth equivalences. But groupoids

and functors are not just a category; there are also natural transformations

between functors. This feature is dangerous to ignore for two reasons. First

of all, it is “widely known” that the space of maps between two orbifolds is

some sort of an infinite dimensional orbifold. So if one takes the point of view

that orbifolds are groupoids, then the space of maps between two orbifolds

should be a groupoid and not just a set. The most natural groupoid structure

comes from natural transformations between functors. There are other ways

to give the space of maps between two orbifolds the structure of a groupoid,

but I do not find these approaches convincing.

The second reason has to do with gluing maps. Differential geometers

glue maps all the time. For example, when we integrate a vector field on

a manifold, we know that a flow exists locally by an existence theorem for

a system of ODEs. We then glue together these local flows to get a global

flow. However, if we take the category of Lie groupoids, identify isomorphic

functors and then invert the equivalences (technically speaking we localize

at the equivalences), the morphisms in the resulting category will not be

uniquely determined by their restrictions to elements of an open cover. We

will show that any localization of the category of groupoid will have this

feature, regardless of how it is constructed ! See Lemma 3.41 below.

Having criticized the classical and “modern” approaches to orbifolds, I feel

compelled to be constructive. I will describe two geometrically compelling and

complementary ways to localize Lie groupoids at equivalences as a 2-category.

These are :

1. replace functors by bibundles and natural transformations by equivariant

maps of bibundles or

2. embed groupoids into the 2-category of stacks.
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Mrčun [21]. The paper by Laurent-Gengoux et al. [15] has also been very

useful. I have benefited from conversations with my colleagues. In particular

I would like to thank Matthew Ando, Anton Malkin, Tom Nevins and
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1.1 CONVENTIONS AND NOTATION

We assume that the reader is familiar with the notions of categories, functors

and natural transformations. Given a category C we denote its collection of

objects by C0 ; C0 is not necessarily a set. The reader may pretend that

we are working in the framework of Von Neumann–Bernays–Gödel (NBG)

axioms for set theory. But for all practical purposes set theoretic questions,

such as questions of size will be swept under the rug, i.e., ignored. We denote

the class of morphisms of a category C by C1 . Given two objects x y C0

we denote the collection of all morphisms from x to y by HomC(x y) or by

C(x y) , depending on what is less cumbersome.

1.2 A NOTE ON 2-CATEGORIES

We will informally use the notions of strict and weak 2 -categories. For for-

mal definitions the reader may wish to consult Borceux [4]. Roughly speaking

a strict 2 -category A is an ordinary category A that in addition to ob-

jects and morphisms has morphisms between morphisms, which are usually

called 2 -morphisms (to distinguish them from ordinary morphisms which

are called 1 -morphisms). We will also refer to 1-morphisms as (1-)arrows.

The prototypical example is , the category of categories. The objects of

are categories, 1-morphisms (1-arrows) are functors and 2-morphisms

(2-arrows) are natural transformations between functors. We write : f

and ! !

f

, when there is a 2-morphism from a 1-morphism f to

a 1-morphism .

Natural transformations can be composed in two different ways :

vertically : ! !

f

h

! !

f

h

and

horizontally : ! !

f

!

k

l

! !

k f

l
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The two compositions are related by a 4-interchange law that we will not

describe. Axiomatizing this structure gives rise to the notion of a strict

2 -category.

Note that for every 1-arrow f in a 2-category we have a 2-arrow idf : f f .

A 2-arrow is invertible if it is invertible with respect to the vertical composition.

So it makes sense to talk about two 1-arrows in a 2-category being isomorphic.

Weak 2 -categories (also known as bicategories) also have objects, 1-arrows

and 2-arrows, but the composition of 1-arrows is no longer required to be

strictly associative. Rather, given a triple of composable 1-arrows f h one

requires that ( f )h is isomorphic to f ( h) . That is, one requires that there is

an invertible 2-arrow : ( f )h f ( h) . As in a strict 2-category it makes

sense to talk about two 1-arrows in a weak 2-category being isomorphic (the

vertical composition of 2-arrows is still strictly associative). If f : x y is

an arrow in a weak 2-category for which there is an arrow : y x with f

isomorphic to 1y and f isomorphic to 1x we say that f is weakly invertible

and that is a weak inverse of f .

2. ORBIFOLDS AS GROUPOIDS

In this section we define proper étale Lie groupoids. A comprehensive

reference on Lie groupoids is [18]. Proposition 2.23 below is the main

justification for thinking of proper étale groupoids as orbifolds (or orbifold

atlases) : locally they look like finite groups acting linearly on a disk in some

Euclidean space. Proper étale Lie groupoids are not the only groupoids we

may think of as orbifolds. For example, a locally free proper action of a

Lie group on a manifold defines a groupoid that is also, in some sense, an

orbifold. We will explain in what sense such an action groupoid is equivalent

to an étale groupoid. This requires the notion of a pullback of a groupoid

along a map. We start by recalling the definition of a fiber product of sets.

DEFINITION 2.1. Let f : X Z and : Y Z be two maps of sets. The

fiber product of f and , or more sloppily the fiber product of X and Y over

Z is the set

X f Z Y X Z Y : (x y) f (x) (y)

REMARK 2.2. If f : X Z and : Y Z are continuous maps between

topological spaces then the fiber product X ZY is a subset of X Y and hence

is naturally a topological space (it is closed if Z is Hausdorff). If f : X Z



320 E. LERMAN

and : Y Z are smooth maps between manifolds, then the fiber product is

not in general a manifold. It is a manifold if the map ( f ) : X Y Z Z

is transverse to the diagonal 6Z .

DEFINITION 2.3. A groupoid is a small category (objects form a set) where

all morphisms are invertible.

Thus a groupoid G consists of the set of objects (0-morphisms) G0 , the set

of arrows (1-morphisms) G1 together with five structure maps : s : G1 G0
(source), t : G1 G0 (target), u : G0 G1 (unit), m (multiplication) and

inv : G1 G1 (inverse) satisfying the appropriate identities. We think of an

element G1 as an arrow from its source x to its target y : x y .

Thus s( ) x and t( ) y . For each object x G0 we have the identity

arrow x
1x

x , and u(x) 1x . Note that s(u(x)) t(u(x)) x . Arrows with

the matching source and target can be composed : x ! ! y ! z .

Therefore the multiplication map m is defined on the fiber product

G1 G0 G1 G1 s G0 t G1 : ( ) G1 G1 s( ) t( ) ;

m : G1 G0 G1 G1 m( x ! ! y ! z ) x ! ! z

Since all 1-arrows are invertible by assumption (G is a groupoid) there is the

inversion map

inv : G1 G1 inv( x ! ! y ) x ! ! y

1

The five maps are subject to identities, some of which we already mentioned.

NOTATION 2.4. We will write G G1 G0 when we want to

emphasize that a groupoid G has the source and target maps.

EXAMPLE 2.5. A group is a groupoid with one object.

EXAMPLE 2.6 (Sets are groupoids). Let M be a set, G0 G1 M ,

s t id : M M , inv id etc. Then M M is a groupoid with all the

arrows being the identity arrows.

EXAMPLE 2.7 (Action groupoid). A left action of a group K on a set X

defines an action groupoid as follows : we think of a pair ( x) K X as

an arrow from x to x , where K X ( x) x X denotes the action.
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Formally G1 K X , G0 X , s( x) x , t( x) x , u(x) (1 x) ,

where 1 K is the identity element, inv( x) ( 1 x) and the

multiplication is given by

(h x)( x) (h x)

DEFINITION 2.8 (Orbit space/Coarse moduli space). Let G be a groupoid.

Then

: (x y) G0 G0 there is G1 with x y

is an equivalence relation on G0 . We denote the quotient G0 by G0 G1 and

think of the projection G0 G0 G1 as the orbit map. We will refer to the set

G0 G1 as the orbit space of the groupoid G . Note that if G K X X

is an action groupoid, then G0 G1 X K . The orbit space G0 G1 is also

referred to as the coarse moduli space of the groupoid G .

DEFINITION 2.9 (Maps/Morphisms of groupoids). A map/morphism

from a groupoid G to a groupoid H is a functor. That is, there is a map

0 : G0 H0 on objects, a map 1 : G1 H1 on arrows that makes the

diagram

G1
1

(s t)

H1

(s t)

G0 G0
( 0 0)

H0 H0

commute and preserves the (partial) multiplication and the inverse maps.

REMARK 2.10. Note that 0 s 1 u , where u : G0 G1 is the unit

map. For this reason we will not distinguish between a functor : G H

and the corresponding map on the set of arrows 1 : G1 H1 .

Next we define Lie groupoids. Roughly speaking a Lie groupoid is a

groupoid in the category of manifolds. Thus the spaces of arrows and objects

are manifolds and all the structure maps s t u m inv are smooth. Additionally

one usually assumes that the spaces of objects and arrows are Hausdorff and

paracompact (except in foliation theory where this assumption is usually

dropped).

There is a small problem with the above definition : in general there is

no reason for the fiber product G1 G0 G1 of a Lie groupoid G1 G0

to be a manifold. Therefore one cannot talk about the multiplication being
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smooth. This problem is corrected by assuming that the source and target

maps s t : G1 G0 are submersions. We therefore have :

DEFINITION 2.11. A Lie groupoid is a groupoid G such that the set G0

of objects and the set G1 of arrows are (Hausdorff paracompact) manifolds,

the source and target maps s t : G1 G0 are submersions and all the rest of

the structure maps are smooth as well.

REMARK 2.12. Since inv2 id , inv is a diffeomorphism. Since s inv t ,

the source map s is a submersion if and only if the target map t is a

submersion.

REMARK 2.13. The coarse moduli space G0 G1 of a Lie groupoid G is

naturally a topological space.

EXAMPLE 2.14 (Manifolds as Lie groupoids). Let M be a manifold,

G0 G1 M , s t id : M M , inv id etc. Then M M is a Lie

groupoid with all the arrows being the identity arrows.

EXAMPLE 2.15 (Action Lie groupoid). Let K be a Lie group acting

smoothly on a manifold M . Then the action groupoid K M M is a Lie

groupoid.

EXAMPLE 2.16 (Cover Lie groupoid). Let M be a manifold with an open

cover U . Let U be the disjoint union of the sets of the cover

and U U the disjoint union of double intersections. More formally

U U M

where Ui M is the evident map. We define s : U U U

and t : U U U to be the inclusions. Or, more formally, we have two

projection maps s t : M . We think of a point x U U as an

arrow from x U to x U . One can check that M is a Lie

groupoid. Alternatively it is the pull-back of the groupoid M M by the

“inclusion” map M (see Definition 2.25 below).

REMARK 2.17. Occasionally it will be convenient for us to think of a

cover of a manifold M as a surjective local diffeomorphism : M.

Here is a justification : If Ui is an open cover of M then Ui and
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: M is the “inclusion”. Conversely, if : M is a surjective local

diffeomorphism then there is an open cover Vi of so that Vi : Vi M

is an open embedding. Moreover the “inclusion” (Vi) M “factors”

through : M . So any cover in the traditional sense is a cover in the

generalized sense. And any cover in the new sense gives rise to a cover in

the traditional sense.

DEFINITION 2.18 (Proper groupoid). A Lie groupoid G is proper if the

map (s t) : G1 G0 G0 , which sends an arrow to the pair of points (source,

target), is proper.

DEFINITION 2.19 (Étale groupoid). A Lie groupoid G is étale if the source

and target maps s t : G1 G0 are local diffeomorphisms.

EXAMPLE 2.20. An action groupoid for an action of a finite group is

étale and proper. A cover groupoid M is étale and proper. An

action groupoid K M M is proper if and only if the action is proper (by

definition of a proper action).

DEFINITION 2.21 (Restriction of a Lie groupoid). Let G be a Lie groupoid

and U G0 an open set. Then s
1(U) t 1(U) is an open submanifold of G1

closed under multiplication and taking inverses, hence forms the space of

arrows of a Lie groupoid whose space of objects is U . We call this groupoid

the restriction of G to U and denote it by G U .

REMARK 2.22. We will see that the restriction is a special case of a

pull-back construction defined below (Definition 2.25).

We can now state the proposition that justifies thinking of proper étale Lie

groupoids as orbifolds. It asserts that any such groupoid looks locally like a

linear action of a finite group on an open ball in some Rn . More precisely,

we have :

PROPOSITION 2.23. Let G be a proper étale Lie groupoid. Then for any

point x G0 there is an open neighborhood U G0 so that the restriction

G U is isomorphic to an action groupoid R U U where R is a finite group.

That is, there is an invertible functor f : G U R U U . Moreover,

we may take U to be an open ball in some Euclidean space centered at the

origin and the action of R to be linear.
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Proof. This is a special (easy) case of Theorem 2.3 in [30]. For proper

étale effective groupoids the result was proved earlier in [22].

REMARK 2.24. One occasionally runs into an idea that a proper étale Lie

groupoid G is an atlas on its coarse moduli space G0 G1 . Indeed, there is an

analogy with atlases of manifolds : if M is a manifold and Ui is a cover

by coordinate charts then M is the coarse moduli space of the cover groupoid

M , where Ui . This idea leads to endless trouble.

Next I would like to explain how to obtain a proper étale Lie groupoid

from a proper and locally free action of a Lie group on a manifold.

DEFINITION 2.25. The pull-back of a groupoid G by a map f : N G0
is the groupoid f G with the space of objects N , the space of arrows

( f G)1 : (N N) G0 G0 G1

(x y ) N N G1 s( ) f (x) t( ) f (y)

(x y ) N N G1 f (x) ! ! f (y)

the source and target maps s(x y ) x , t(x y ) y and multiplication

given by (y z h)(x y ) (x z h ) Note that the maps f0 f : N G0 and

f1 : f G1 G1 , f1(x y ) , form a functor f : f G G .

It is not always true that the pull-back of a Lie groupoid by a smooth map

is a Lie groupoid : we need the space of arrows ( f G)1 to be a manifold and

the source and target maps to be submersions. The following condition turns

out to be sufficient.

PROPOSITION 2.26. Let G be a Lie groupoid and f : N G0 a smooth

map. Consider the fiber product

N f G0 s G1 (x ) N G1 f (x) s( )

If the map N f G0 sG1 G0 , (x ) t( ) is a submersion, then the pullback

groupoid f G is a Lie groupoid and the functor f : f G G defined above

is a smooth functor.

Proof. See, for example, [21], pp. 121–122.

REMARK 2.27. If the map N f G0 sG1 G0 , (x ) t( ) is a surjective

submersion then the functor f : f G G is an equivalence of groupoids in
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the sense of Definition 3.5 below.

EXAMPLE 2.28. Let G be a Lie groupoid, U an open subset of the space

of objects G0 . The inclusion map : U G0 satisfies the conditions of the

proposition above and so the pull-back groupoid G is a Lie groupoid. It is

not hard to see that G is the restriction G U of G to U .

Next recall that an action of a Lie group K on a manifold M is locally

free if for all points x M the stabilizer group

Kx : K x x

is discrete. An action of K on M is proper if the map

K M M M ( x) (x x)

is proper (this is exactly the condition for the action groupoid K M M

to be proper). A slice for an action of K on M at a point x M is an

embedded submanifold Y M with x Y so that

1. Y is preserved by the action of Kx : for all s Y and Kx , we have

s Y .

2. The set K Y : s K s Y is open in M .

3. The map K Y K Y M , ( s) s descends to a diffeomorphism

(K Y) Kx K Y (here Kx acts on K Y by a ( s) ( a 1 a s) ).

Thus, for every point s Y the orbit K s intersects the slice Y in a unique

Kx orbit. A classical theorem of Palais asserts that a proper action of a Lie

group K on a manifold M has a slice at every point of M .

With these preliminaries out of the way, consider a proper locally free action

of a Lie group K on a manifold M . Pick a collection of slices Y A so

that every K orbit intersects a point in one of these slices : K Y M .

Let Y and f : M be the “inclusion” map : for each x Y ,

f (x) x M . The fact that Y ’s are slices implies (perhaps after a moment

of thought) that Proposition 2.26 applies with G K M M and

f : M . We get a pullback Lie groupoid f G , which is, by construction,

étale. By Remark 2.27 the functor f : f K M M K M M

is an equivalence of groupoids. Note that f is not surjective and may not be

injective either. In particular, it is not invertible. Reasons for thinking of it as

some sort of an isomorphism are explained in the next section.

Note that if we pull G back further by the inclusion Y Y , we get

an action groupoid of the form R Y Y where R is a discrete compact

group, that is, a finite group.
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EXAMPLE 2.29. An industrious reader may wish to work out the example

of the action of C z C z 0 on C
2 0 given by

(z1 z2) ( pz1
qz2) for a pair of positive integers (p q) . The reader

will only need two slices : C 1 1 C C
2 0 .

3. LOCALIZATION AND ITS DISCONTENTS

At this point in our discussion of orbifolds we reviewed the reasons for

thinking of smooth orbifolds as Lie groupoids. If orbifolds are Lie groupoids

then their maps should be smooth functors. It will turn out that many such maps

that should be invertible are not. We therefore need to enlarge our supply of

available maps. We start by recalling various notions of two categories being

“the same”. More precisely recall that there are two equivalent notions of

equivalence of categories.

Recall our notation : if A is a category, then A0 denotes its collection

of objects and A(a a ) denotes the collection of arrows between two objects

a a A0 .

DEFINITION 3.1. A functor F : A B is full if for any a a A0 the map

F : A(a a ) B(F(a) F(a )) is onto. It is faithful if F : A(a a ) B(F(a) F(a ))

is injective. A functor that is full and faithful is fully faithful.

A functor F : A B is essentially surjective if for any b B0 there is

a A0 and an invertible arrow B1 from F(a) to b .

EXAMPLE 3.2. Let denote the category of finite-dimensional vector

spaces over R and linear maps. Let be the category of real matrices.

That is, the objects of are non-negative integers. A morphism from n

to m in is an n m real matrix. The functor which sends

n to Rn and a matrix to the corresponding linear map is fully faithful and

essentially surjective.

The following theorem is a basic result in category theory.

THEOREM 3.3. A functor F : A B is fully faithful and essentially surjec-

tive if and only if there is a functor G : B A with two natural isomorphisms

(invertible natural transformations) : FG idA and : GF idB .
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DEFINITION 3.4. A functor F : A B satisfying one of the two equivalent

conditions of the theorem above is called an equivalence of categories. We

think of the functor G : B A above as a (weak) inverse of F .

There is no analogous theorem for C functors between Lie groupoids :

there are many fully faithful essentially surjective smooth functors between Lie

groupoids with no continuous (weak) inverses. The simplest examples come

from cover groupoids. If M is a cover groupoid associated to a

cover M of a manifold M then the natural functor M

M M is fully faithful and essentially surjective and has no continuous

weak inverse (unless one of the connected components of is all of M ).

Additionally, not every fully faithful and essentially surjective smooth

functor between two Lie groupoids should be considered an equivalence of

Lie groupoids (just like not every smooth bijection between manifolds is a

diffeomorphism). The accepted definition is (see for example [21]) :

DEFINITION 3.5. A smooth functor F : G H from a Lie groupoid G

to a Lie groupoid H is an equivalence of Lie groupoids if

1. the induced map

G1 (G0 G0) (F F) H0 H0 (s t) H1 (s( ) t( ) F( ))

is a diffeomorphism;

2. the map G0 F H0 t H1 H0 , (x h) s(h) is a surjective submersion.

REMARK 3.6. The first condition implies that F is fully faithful and the

second that it is essentially surjective.

REMARK 3.7. In literature this notion of equivalence variously goes by

the names of “essential” and “weak” equivalences to distinguish it from

“strict” equivalence : a smooth functor of Lie groupoids F : G H is a

strict equivalence if there is a smooth functor L : H G with two smooth

natural isomorphisms (invertible natural transformations) : FL idG and

: LF idH . We will not use the notion of strict equivalence of Lie groupoids

in this paper.

EXAMPLE 3.8. As we pointed out above, if f : M is a surjective

local diffeomorphism then the functor f : M M M is an

equivalence of Lie groupoids in the sense of Definition 3.5.
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EXAMPLE 3.9. As we have seen in the previous section, if a Lie

group K acts locally freely and properly on a manifold M , Y

is a collection of slices with K Y M and f K M M is

the pullback of the action groupoid along f : M , then the functor

f : f K M M K M M is an equivalence of Lie groupoids.

This is a reason for thinking of the action groupoid K M M as an

orbifold.

REMARK 3.10. We cannot fully justify the correctness of Definition 3.5.

And indeed the reasons for it being “correct” are somewhat circular. If one

embeds the category of Lie groupoids either into the Hilsum-Skandalis category

of groupoids and generalized maps (see below) or into stacks (stacks are

defined in the next section), the functors that become invertible are precisely

the equivalences and nothing else ! But why define the generalized maps or

to embed groupoids into stacks ? To make equivalences invertible, of course !

Let us recapitulate where we are. An orbifold, at this point, should be a

Lie groupoid equivalent to a proper étale Lie groupoid. If this is the case,

what should be the maps between orbifolds ? Smooth functors have to be

maps in our category of orbifolds, but we need a more general notion of

a map to make equivalences invertible. There is a standard construction in

category theory called localization that allows one to formally invert a class

of morphisms. This is the subject of the next subsection.

3.1 LOCALIZATION OF A CATEGORY

Let C be a category and W a subclass of morphisms of C (i.e. W C1 ).

A localization of C with respect to W is a category D and a functor L : C D

with the following properties :

1. For any W , L( ) is invertible in D .

2. If : C E is a functor with the property that ( ) is invertible in E for

all W then there exists a unique map : D E so that L ,

that is,

C D

E

L

commutes.
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REMARK 3.11. The second condition is there to make sure, among other

things, that the localization D is not the trivial category with one object and

one morphism.

The next two results are old and well known. The standard reference is

Gabriel-Zisman [7]. We include them for completeness.

LEMMA 3.12. If a localization L : C D of C with respect to W C1
exists, then it is unique.

Proof. This is a simple consequence of the universal property of the

localization. If L : C D is another functor satisfying the two conditions

above then there are functors : D D and : D D so that L L

and L L . Hence L L . Since idD L L as well, idD
by uniqueness. Similarly idD .

NOTATION 3.13. We may and will talk about the localization of C with

respect to W and denote it by W : C C[W 1] .

LEMMA 3.14. The localization W : C C[W 1] of a category C with

respect to a subclass W of arrows always exists.

REMARK 3.15. Some readers may be bothered by the issues of size :

the construction we are about to describe may produce a category where the

collections of arrows between pairs of objects may be too big to be mere sets.

Later on we will apply Lemma 3.14 to the category of Lie groupoids. There is

a standard solution to this “problem”. One applies the argument below only to

small categories, whose collection of objects are sets. What about the category

of Lie groupoids which is not small (the collection of all Lie groupoids

is a proper class) ? There is a standard solution to this problem as well. Fix

the disjoint union E of Euclidean spaces of all possible finite dimensions;

E : R
0

R
1

R
n . Given a Lie groupoid G , we consider its

space of objects G0 as being embedded in its space G1 of arrows. By the

Whitney embedding theorem the manifold G1 may be embedded in some

Euclidean space Rn
E . It follows that the category of Lie groupoids

is equivalent to the category of E of Lie groupoids embedded in E .

Clearly E is small.

Proof of Lemma 3.14. The idea of the construction of C[W 1] is to keep

the objects of C the same, to add to the arrows of C the formal inverses of
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the arrows in W and to divide out by the appropriate relations. Here are the

details.

Recall that a directed graph consists of a class of objects 0 , a class of

arrows 1 and two maps s t : 1 0 (source and target). In other words,

for us a directed graph is a “category without compositions”.

Given a category C and a subclass W C1 , let W 1 be the class

consisting of formal inverses of elements of W : for each W we have

exactly one 1 W 1 and conversely. We then have a directed graph

C[W 1] with objects C0 and arrows C1 W 1 .

A directed graph generates a free category F( ) on : the objects of

F( ) are objects 0 of and arrows are paths. That is, an arrow in F( )1

from x 0 to y 0 is a finite sequence ( n n 1 1) of elements of

1 with s( 1) x and t( n) y (think : x
1
!

2 n
y ). In addition, for

every x 0 there is an empty path ( )x from x to x . Paths are composed

by concatenation :

( m 1)( n 1) ( m 1 n 1)

We now construct C[W 1] from the category F(C[W 1]) by dividing out

the arrows of F(C[W 1]) by an equivalence relation. Namely let be the

equivalence relation generated by the following equations :

1. ( )x (1x) for all x G0 (1x is the identity arrow in C1 for an object

x C0 ).

2. ( )( ) ( ) for any pair of composable arrows in C .

3. For any x y W , ( 1) (1y) and (
1 ) (1x) .

Thus we set C[W 1]0 C0 and C[W 1]1 F(C[W 1])1 . We have the

evident functor W : C C[W 1] induced by the inclusion of C into the

directed graph C[W 1] .

It remains to check that W : C C[W 1] is a localization. Note first that

for any W the arrow W( ) is invertible in C[W 1] by construction of

C[W 1] . If : C E is any functor such that ( ) is invertible for any

W , then induces a map : C[W 1] E : ( 1) : ( ) 1 . This

map drops down to a functor : C[W 1] E with ([ 1]) ( ) 1 for

all W (here [ 1] denotes the equivalence class of the path ( 1) in

F(C[W 1]) ).

We now come to a subtle point. It may be tempting to apply the local-

ization construction to the category whose objects are Lie groupoids,

morphisms are functors and the class W consists of equivalences, and then
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take the category of orbifolds to be the subcategory whose objects are iso-

morphic to proper étale Lie groupoids. Let us not rush. First of all, it will

not at all be clear what the morphisms in [W 1] are, since they are

defined by generators and relations. A more explicit construction would be

more useful. Secondly, is really a 2-category : there are also natural

transformations between functors. We are thus confronted with three choices :

(1) Forget about natural transformations and localize; we get a category.

(2) Identify isomorphic functors and then localize. 1 ) We get, perhaps, a

smaller category.

(3) Localize as a 2-category.

It is not obvious what the correct choice is. Option (1) is never used;

perhaps it is not clear how to do it geometrically. Option (2) is fairly popular

[11, 20, 16]. There are several equivalent geometric ways of carrying it out.

We will review the one that uses isomorphism classes of bibundles. It is

essentially due to Hilsum and Skandalis [14]. We will prove that it is, indeed,

a localization. We will show that it has the unfortunate feature that maps

from one orbifold to another do not form a sheaf : we cannot reconstruct a

map from its restrictions to elements of an open cover. We will argue that

this feature of option (2) is unavoidable : it does not depend on the way the

localization is constructed. For this reason I think that choosing option (2) is

a mistake.

There is another reason to be worried about option (2). It is “widely

known” that the loop space of an orbifold is an orbifold. So if we take the

point of view that an orbifold is a groupoid, the loop space of an orbifold

should be a groupoid as well. But if we think of the category of orbifolds as

a 1-category the space of arrows between two orbifolds is just a set and not a

category in any natural sense. There are, apparently, ways to get around this

problem [5, 11, 17], but I do not understand them.

There are many ways of carrying out option (3), localizing as a

2-category. Let me single out three :

! Pronk constructed a calculus of fractions and localized as a weak

2-category [23]. She also proved that the resulting 2-category is equivalent

to the strict 2-category of geometric stacks over manifolds.

! One can embed the strict 2-category into a weak 2-category

whose objects are Lie groupoids, 1-arrows are bibundles and 2-arrows

1 ) Two smooth functors f : G H between two Lie groupoids are isomorphic if there
is a natural transformation : G0 H1 from f to . Note that since all arrows in H1 are
invertible, is automatically a natural isomorphism.
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equivariant diffeomorphisms between bibundles. We will explain the

construction of in the next subsection.

! One can embed into the strict 2-category of stacks over manifolds.

We will explain this in Section 4.

In the rest of the section we discuss option (2) in details. We start by

introducing bibundles and reviewing some of their properties. Thereby we will

introduce the weak 2-category . Next we will discuss a concrete localization

of the category of Lie groupoids due to Hilsum and Skandalis ; it amounts

to identifying isomorphic 1-arrows in . We will then demonstrate that lo-

calizing groupoids as 1-category is problematic no matter which particular

localization is being used.

3.2 BIBUNDLES

DEFINITION 3.16. A right action of a Lie groupoid H on a manifold P

consists of the following data :

1. a map a : P H0 (anchor) and

2. a map

P a H0 t H1 P (p h) p h (the action)

(as usual t : H1 H0 denotes the target map) such that

(a) a(p h) s(h) for all (p h) P a H0 t H1 ;

(b) (p h1) h2 p (h1h2) for all appropriate p P and h1 h2 H1 ;

(c) p 1a(p) p for all p P .

DEFINITION 3.17. A manifold P with a right action of a Lie groupoid H

is a principal (right) H -bundle over B if there is a surjective submersion

: P B so that

1. (p h) (p) for all (p h) P a H0 t H1 , that is, is H -invariant ; and

2. the map P a H0 t H1 P B P , (p h) (p p h) is a diffeomorphism,

that is, H acts freely and transitively on the fibers of : P B .

EXAMPLE 3.18. For a Lie groupoid H the target map t : H1 H0

makes H1 into a principal H -bundle with the action of H being the

multiplication on the right (the anchor map is s : H1 H0 ). This bundle

is sometimes called the unit principal H -bundle for the reasons that may

become clear later.
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Principal H -bundles pull back : if : P B is a principal H -bundle and

f : N B is a map then the pullback

f P : N B P N

is a principal H -bundle as well. The action of H on f P is the restriction of

the action of H on the product N P to N B P N P . It is not difficult

to check that f P N is indeed a principal H -bundle.

LEMMA 3.19. A principal H -bundle : P B has a global section if and

only if P is isomorphic to a pull-back of the principal H -bundle H1
t
H0 .

Proof. Since P B is H -principal we have a diffeomorphism

P a H0 t H1 P B P (p h) (p p h)

Its inverse is of the form (p1 p2) (p1 d(p1 p2)) P a H0 t H1 , where

d(p1 p2) is the unique element h in H1 so that p2 p1 h . The map

d : P B P H1 (“the division map”)

is smooth. Note that d(p p) 1a(p) . If : B P is a section of : P B ,

define f : P H1 by

f (p) d( ( (p)) p)

Then

p ( (p)) f (p) for all p P

Note that f is H -equivariant : observe that for all (p h) P H0 H1

( (p h)) f (p) h p h ( (p h)) f (p h)

Hence, since P is H -principal, f (p) h f (p h)

Consequently we get a map

: P f H1 (p) ( (p) f (p))

where f : B H0 is defined by f (b) a( (b)) . The map has a smooth

inverse : f H1 P , (b h) (b) h , hence is a diffeomorphism.

Conversely, since H1
t
H0 has a global section, namely u(x) 1x for

x H0 , any pullback of H1
t
H0 has a global section as well.

REMARK 3.20. It is useful to think of principal groupoid bundles with

global sections as trivial principal bundles.
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The next result is technical and will not be needed until we start discussing

stacks in the next section. It should be skipped on the first reading.

COROLLARY 3.21. Let G be a Lie groupoid, 1 N , 2 N two

principal G-bundles with anchor maps a1 a2 respectively. Any G-equivariant

map : 1 2 inducing the identity on N is a diffeomorphism.

Proof. Note that a2 a1 ; this is necessary for to intertwine the

two G -actions.

Since is G -equivariant and induces the identity map on the base N ,

for any open set U N , ( 1 U) 2 U . Therefore it is enough to show

that for any sufficiently small subset U of N the map : 1 U 2 U is

a diffeomorphism. Since 1 N is a submersion, it has local sections. The

two observations above allow us to assume that 1 N has a global section

: N 1 .

We have seen in the proof of Lemma 3.19 that the section together with

the “division map" d : 1 N 1 G1 defines a G -equivariant diffeomorphism

f : 1 f (G1 G0)

where f a1 . Similarly the section : N 2 together with the

division map for 2 defines a G -equivariant diffeomorphism

h : 2 h (G1 G0)

where h a2 ( ) . Since (a2 ) a1 , we have h f . By tracing

through the definitions one sees that

(h) 1 f

Hence is a diffeomorphism.

DEFINITION 3.22. A left action of a Lie groupoid G on a manifold M is

1. A map aL a : M G0 (the (left) anchor) and

2. a map

G1 s G0 a M M ( x) x (the action)

such that

(a) 1a(x) x x for all x M ,

(b) a( x) t( ) for all ( x) G1 s G0 a M ,

(c) 2 ( 1 x) ( 2 1) x for all appropriate 1 2 G1 and x M .
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REMARK 3.23. Given a right action aR : M G0 , M G0 G1 M of

a Lie groupoid G on a manifold M , we get a left action of G on M by

composing it with the inversion map G1 G1 ,
1 .

REMARK 3.24. If f : G H is a smooth functor between two Lie

groupoids then the pullback

f0 H1 G0 f0 H0 t H1 G0

of the principal H -bundle H1
t
H0 by f0 : G0 H0 is a principal H -bundle.

In addition it has a left G -action :

G1 s G0 (G0 f0 H0 t H1) (G0 f0 H0 t H1) ( (x h)) (t( ) f1( )h)

This left G -action commutes with the right H -action.

The manifold f0 H1 with the commuting actions of G and H constructed

above is an example of a bibundle from G to H , which we presently define.

DEFINITION 3.25. Let G and H be two Lie groupoids. A bibundle from

G to H is a manifold P together with two maps aL : P G0 , aR : P H0
such that

1. there is a left action of G on P with respect to an anchor aL and a right

action of H on P with respect to an anchor aR ;

2. aL : P G0 is a principal H -bundle;

3. aR is G -invariant : aR( p) aR(p) for all ( p) G1 H0 P ;

4. the actions of G and H commute.

If P is a bibundle from a Lie groupoid G to a Lie groupoid H we write

P : G H .

DEFINITION 3.26. Two bibundles P Q : G H are isomorphic if there is

a diffeomorphism : P Q which is G H equivariant : ( p h) (p) h

for all ( p h) G1 G0 P H0 H1 .

REMARK 3.27 (Bibundles defined by functors). By Remark 3.24 any

functor f : G H defines a bibundle

f : f0 H1 G0 f H0 t H1 : G H

The bibundle idG corresponding to the identity functor idG : G G is G1
with G acting on G1 by left and right multiplications.

Note that f G0 has a global section (x) : (x f (1x)) .



336 E. LERMAN

EXAMPLE 3.28. A map f : M N between two manifolds tautologically

defines a functor f : M M N N . The corresponding bibundle

f is simply the graph graph( f ) of f . It is not hard to show that a converse

is true as well : any bibundle P : M M N N is a graph of a

function fP : M N .

Note also that given two maps f : M N , : M N , an equivariant

map of bibundles : graph( f ) graph( ) has to be of the form (x f (x))

(h(x) (h(x))) for some map h : M M . That is, : graph( f ) graph( )

corresponds to h : M M with the diagram

M

M

Nh

f

commuting. This

example is also important for embedding the category of manifolds into the

2-category of stacks.

EXAMPLE 3.29. Let M be a manifold and K a Lie group. As we have

seen a number of times the manifold M defines the groupoid M M .

The group K defines the action groupoid K for the action of K on

a point . A bibundle P : M M K is a principal K -bundle

over M . A bibundle P is isomorphic to a bibundle of the form f for some

functor f : M M K only if it has a global section, that is, only

if it is trivial. Thus there are many more bibundles than functors.

Note, however, that any principal K -bundle P M is locally trivial.

Hence, after passing to an appropriate cover : M , the bibundle

P : M K is isomorphic to f for some functor

f : M K . This is a special case of Lemma 3.37 below.

Note also that the functor f : M K is a Čech

1-cocycle on M with coefficients in K with respect to the cover .

REMARK 3.30. Bibundles can be composed : if P : G H and Q : H K

are bibundles, we define their composition to be the quotient of the fiber product

P H0 Q by the action of H :

Q P : (P H0 Q) H

This makes sense : Since Q H0 is a principal K -bundle, the fiber product

P H0 Q is a manifold. Since the action of H on P is principal, the action of

H on P H0 Q given by (p q) h (p h h 1 q) is free and proper. Hence

the quotient (P H0 Q) H is a manifold. Since the action of H on P H0 Q

commutes with the actions of G and K , the quotient (P H0 Q) H inherits
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the actions of G and K . Finally, since Q H0 is a principal K -bundle,

(P H0 Q) H G0 is a principal K -bundle.

REMARK 3.31. The composition of bibundles is not strictly associative :

if P1 P2 P3 are three bibundles then P1 (P2 P3) is not the same manifold

as (P1 P2) P3 . On the other hand the two bibundles are isomorphic

in the sense of Definition 3.26 : there is an equivariant diffeomorphism

: P1 (P2 P3) (P1 P2) P3 . This is the reason why we end up

with a weak 2-category when we replace functors by bibundles.

REMARK 3.32. A natural transformation : f between two functors

f : K L gives rise to an isomorphism : f of the corresponding

bibundles.

REMARK 3.33. If a bibundle P : G H is G -principal, then it defines

a bibundle P 1 : H G : switch the anchor maps, turn the left G -action

into the right G -action and the right H -action into a left H -action. Indeed,

the compositions P 1 P and P 1 P are isomorphic to idG and idH

respectively.

We summarize (without proof) :

1. The collection (Lie groupoids, bibundles, isomorphisms of bibundles) is a

weak 2-category. We denote it by .

2. The strict 2-category of Lie groupoids, smooth functors and natural

transformations embeds into . For this reason bibundles are often referred

to as “generalized morphisms."

The lemma below allows us to start justifying our notions of equivalence of

Lie groupoids.

LEMMA 3.34. A functor f : G H is an equivalence of Lie groupoids

if and only if the corresponding bibundle f : G H is G-principal, hence

(weakly) invertible.

Proof. Recall that a functor f : G H is an equivalence of Lie groupoids

if and only if two conditions hold (cf. Definition 3.5) :

1. the map : G1 (G0 G0) ( f f ) H0 H0 (s t) H1 ( ) (s( ) t( ) f ( ))

is a diffeomorphism and

2. the map b : G0 F H0 t H1 H0 , b(x h) s(h) is a surjective submersion.
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Recall also that f G0 f H0 tH1 and that the right anchor aR : f H0

is precisely the map b , while the left anchor is the projection on the first

factor : aL(x h) x . Tautologically aR is a surjective submersion if and only

if b is a surjective submersion.

Suppose that G acts freely and transitively on the fibers of aR : f H0 .

That is, suppose aR : f H0 is a principal G -bundle. Then the map

: G1 s G0 aL (G0 f H0 tH1) f H0 f ( x h) ((x h) (t( ) f ( )h ))

is a diffeomorphism. Hence it has a smooth inverse. Thus for any (x h) (x h )

G0 H1 with f (x) t(h) , f (x ) t(h ) and s(h) s(h ) there is a unique

G1 depending smoothly on x x h and h with s( ) x , t( ) x and

h f ( )h . Therefore for any x y G0 and any h H1 with s(h ) f (x)

and t(h ) f (y) there is a unique G1 depending smoothly on x y and

h so that h f ( )1f (x) . That is, the map

: G1 (G0 G0) ( f f ) H0 H0 (s t) H1

has a smooth inverse. Therefore if f H0 is left G -principal bundle then

f is an equivalence of Lie groupoids.

Conversely suppose has a smooth inverse. Then for any ((x h) (x h ))

f H0 f there is a unique G1 with s( ) x , t( ) x and

f ( ) h(h ) 1 . Hence the map has a smooth inverse. Therefore, if

f : G H is an equivalence of Lie groupoids, then f H0 is left

G -principal bundle.

COROLLARY 3.35. Let G be a Lie groupoid and : G0 a cover

(a surjective local diffeomorphism). Then the bibundle defined by the

induced functor : G G is invertible.

Proof. We have seen that the functor : G G is an equivalence.

The result follows from Lemma 3.34 above.

LEMMA 3.36. Let P : G H be a bibundle from a Lie groupoid G to a

Lie groupoid H . Then P is isomorphic to f for some functor f : G H

if and only if aL : P G0 has a global section.

Proof. We have seen that for a functor f : G H the map

aL : G0 H0 H1 G0

has a global section.
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Conversely, suppose we have a bibundle P : G H and the principal

H -bundle aL : P G0 has a global section. Then by Lemma 3.19 the bundle

P G0 is isomorphic to G0 H0 tH1 for some map : G0 H0 . Therefore

we may assume that P G0 H0 tH1 . Now the left action of G on P defines

a map f : G1 H1 by

(t( )1 (t( ))) (s( ) 1 (s( ))) f ( )

The map f is well defined since the action of H is principal. Finally the map

f preserves multiplication : if z
2
y

1
x are two composable arrows in G1

then, on one hand,

2 ( 1 (x 1 (x)) 2 (y 1 (y)) f ( 1) ((z 1 (z)) f ( 2)) f ( 1)

and on the other,

( 2 1) (x 1 (x)) (z 1 (z)) f ( 2 1)

Hence f ( 2) f ( 1) f ( 2 1) , that is, f is a functor.

LEMMA 3.37. Let P : G H be a bibundle from a groupoid G to a

groupoid H . There is a cover : G0 and a functor f : G H so

that

P f

where : G G is the induced functor and an isomorphism of

bibundles.

Proof. Since aL : P G0 is an H -principal bundle, it has local sections

i : Ui P with Ui G . Let Ui and : G0 be the inclusion.

Then P has a global section. Hence, by Lemma 3.36 there is a functor

f : G H with f P .

3.3 HILSUM-SKANDALIS CATEGORY OF LIE GROUPOIDS

Recall that denotes the weak 2-category with objects Lie groupoids,

1-arrows bibundles and 2-arrows equivariant maps between bibundles. The

2-arrows are always invertible. Recall that denotes the (2-)category of

Lie groupoids, functors and natural transformations.

DEFINITION 3.38. Define the 1-category to be the category with objects

Lie groupoids and arrows the isomorphism classes [ f ] of smooth functors.

Define the 1-category (for Hilsum and Skandalis [14], who invented it)

to be the category constructed out of by identifying isomorphic bibundles.



340 E. LERMAN

There is an evident functor z : which is the identity on objects

and takes a functor f to the equivalence class of the bibundle f defined by

f : z( f ) [ f ] . Clearly it drops down to a faithful functor

z : z(G
[ f ]

H) (G
[ f ]

H)

By abuse of notation let W denote the collection of isomorphism classes of

equivalences in :

W [ ] 1 is an equivalence

PROPOSITION 3.39. The functor z : defined above localizes

at the class of equivalences W . That is, z induces an equivalence of categories

[W 1] .

Proof. By Lemma 3.34, z([ ]) is invertible in for any equivalence

. Thus the content of the proposition is the universal property of the functor

z : . Suppose \ : is a functor that sends isomorphism

classes of equivalences to invertible arrows. We want to construct a functor

^ : HS so that

^ z \

As the first step, for an object G 0 define ^(G) \(G) . Next let

P : G H be a bibundle. We want to define ^([P]) . By Lemma 3.37 we

can factor P as

P f 1

for some equivalence : G G and a functor f : G G . Define

^([P]) \([ f ])\([ ]) 1

We need to check that this is well defined and that ^ preserves compositions.

Suppose : G G and f : G G is another choice of factorization.

Let

[Q] z[ ] 1z[ ] : G G

Then [Q] can be factored as well :

[Q] z([ ]) z([ ]) 1

for some equivalence : G G and some functor : G G .
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The diagram

G

G

G

G H

z([ ])

z([ ])

z([ ])

[Q]

z([ ])

[P]

z([ f ])

z([ f ])

commutes in . Hence

(3.1) z([ f ]) z([ ]) z([ f ]) z([ ])

Since z is faithful,

[ f ][ ] [ f ][ ]

in . Hence, in ,

\([ f ])\([ ]) \([ f ])\([ ]) \([ f ])\([ ]) 1\([ ])\([ ])

\([ f ])\([ ]) 1\([ ])\([ ])

where we used the fact that z is faithful and (3.1). Since \([ ]) is invertible,

\([ f ]) \([ f ])\([ ]) 1\([ ])

Therefore

\([ f ])\([ ]) 1 \([ f ])\([ ]) 1

and ^ is well-defined.

A similar argument shows that ^ preserves multiplication.

DEFINITION 3.40 (Morita equivalent groupoids). Two Lie groupoids are

Morita equivalent if there they are isomorphic in the localization [W 1]

of the category of groupoids at equivalences. In particular, G and H are

Morita equivalent if there is a bibundle P : G H with the action of G

being principal.

We finally come to the punchline of the section : the localization of the

category of Lie groupoids at equivalences as a 1-category has problems.

LEMMA 3.41. There are a cover U1 U2 of S1 and two morphisms

f : S1 Z 2 in [W 1] so that f Ui Ui
( i 1 2 ) but f .
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Proof. In the category a morphism from a manifold M (that we

think of as the groupoid M M ) to a groupoid G is the equivalence

class of a bibundle P from M M to G . An action of M M on

P is simply a map aL : P M . So a bibundle from M to G is a principal

G -bundle and an morphism from M to G is the equivalence class of some

principal G -bundle over M . Hence an morphism from S1 to Z 2

is the class of a principal Z 2 bundle over S1 (cf. Example 3.29). There

are two such classes : the class of the trivial bundle a and the class of the

nontrivial bundle b . Now cover S1 by two contractible open sets U1 and

U2 . Any principal S
1 bundle over a contractible open set is trivial. Therefore

a Ui
b Ui

, i 1 2. This gives us the two morphisms in from S1 to

Z 2 with the desired properties. Let F : [W 1] denote an

equivalence of categories, which exists by Proposition 3.39. Then f F(a)

and F(b) are the desired morphisms in [W 1] .

It may be instructive to note how this problem does not arise in the weak

2-category . In the 1-arrows are not isomorphism classes of bibundles

but actual bibundles. Let P1 S1 denote a trivial Z 2 principal bundle and

P2 S1 a nontrivial one. Over the open sets U1 , U2 we have isomorphisms

i : P1 Ui
P2 Ui

, rather than equalities, as we had with their isomorphism

classes. These local isomorphisms obviously do not glue together to form

a global isomorphism from P1 to P2 . They cannot, because P1 and P2

are not isomorphic. And they do not because they do not agree on double

intersections : 1 P1 U1 U2
2 P1 U1 U2

.

At this point we can agree that the right setting for orbifolds is the weak

2-category and declare our mission accomplished. That is, a smooth orbifold

would be a Lie groupoid weakly isomorphic in (i.e., Morita equivalent) to

a proper étale Lie groupoid. We would call such groupoids orbifold groupoids.

A map between two orbifolds would be a smooth bibundle.

The geometry of orbifolds would proceed along the lines of Moerdijk’s

paper [20]. For example, let us define vector orbi-bundles. The definition is

modeled on the case where the orbifold is a manifold with an action of a

finite group. That is, suppose a finite group K acts on a manifold M . A vector

bundle over the orbifold “M K” is a K -equivariant vector bundle E M .

Hence, in general, a vector bundle over an orbifold groupoid G is a vector

bundle E G0 over the space of objects together with a linear left action of

G on E (linear means that the map G1 G0 E E is a vector bundle map).

A bit of work shows that one can pull back a vector bundle by a bibundle.

On the other hand, there is still something awkward in this set-up, since
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the composition of bibundles is not strictly associative. This gets particularly

strange when we start thinking about flows of vector fields, or, more generally,

group actions. For example, let the circle S1 act on itself by translations. Now

take an open cover S1 and form the cover groupoid G S1 .

The induced functor G S1 S1 is weakly invertible, so we get an

“action” of S1 on G . The word “action” is in quotation marks because for

any two elements of the group S1 and the corresponding isomorphisms

: G G

Rather,
A

for some isomorphism of bibundles A depending on . We get a so called

weak action of S1 on G .

The same thing happens when we try to integrate a vector field on G :

we do not get a flow in the sense of an action of the reals. We get some sort

of a weak flow. For the same reason the action of the Lie algebra Lie(K) on

a proper étale Lie groupoid G with the compact coarse moduli space G0 G1
will not integrate to the action of the Lie group K . It will only integrate to

a weak action. This is somewhat embarrassing since in literature Lie groups

routinely act on orbifolds.

There is another question that may be nagging the reader : are not

groupoids supposed to be atlases on orbifolds, rather than being orbifolds

themselves ? There is a solution to both problems. It involves embedding the

weak 2-category into an even bigger gadget, the 2 -category of stacks .

Stacks form a strict 2-category. This is the subject of the next and last section.

In particular in the composition of 1-arrows is associative and strict group

actions make perfectly good sense. Additionally there is a way of thinking

of a groupoid as “coordinates” on a corresponding stack. Different choices

of coordinates define Morita equivalent groupoids. And Morita equivalent

groupoids define “the same” (isomorphic) stacks.

4. STACKS

In Section 3.2 we constructed a weak 2-category whose objects are

Lie groupoids, 1-arrows (morphisms) are bibundles and 2-arrows (morphisms

between morphisms) are equivariant maps between bibundles. The goal of this

section is to describe a particularly nice and concrete (?!) strictification of
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this weak 2-category. That is, we describe a strict 2-category of stacks

and a functor B : which is an embedding of weak 2-categories (there

is no established name in literature for this functor, so I made one up). The

2-category of stacks is a sub-2-category of the category of categories .

Recall that the objects of are categories, the 1-arrows are functors and

the 2-arrows are natural transformations.

Here is a description of the 2-functor B : (it will land in

once we define/explain what is) :

1. To a groupoid G assign the category BG , whose objects are principal

G -bundles and morphisms are G -equivariant maps.

2. To a bibundle P : G H assign a functor

BP : BG BH

as follows : A principal G -bundle Q on a manifold M is a bibundle from the

groupoid M M to G . Define

BP(Q) P Q (a composition of bibundles)

A G -equivariant map : Q1 Q2 between two principal G -bundles

Q1 M1 , Q2 M2 induces an H -equivariant map BP( ) : P Q1 P Q2

between the corresponding principal H -bundles. It is not hard to check that

BP is actually a functor.

3. To a G -H equivariant map A : P P assign a natural transformation

BA : BP BP as follows. Given a principal G -bundle Q , the map A : P P

induces a G -H equivariant map A : Q G0 P Q G0 P which descends to

an H -equivariant diffeomorphism

BA(Q) : BP(Q) P Q (Q G0 P) G (Q G0 P ) G BP (Q)

REMARK 4.1. The notation B M M is quite cumbersome. Instead we

will use the notation M .

It follows from Example 3.28 that the category M has the following simple

description. It objects are maps Y
f
M of manifolds into M . A morphism

in M from f : Y M to f : Y M is a map of manifolds h : Y Y

making the diagram

Y

Y

Mh

f

f

commute. The category M is an example

of a slice (or comma) category.
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We now proceed to describe the image of the functor B : .

More precisely we will describe a slightly larger 2-category of geometric

stacks and the functor B will turn out to be an equivalence of weak 2-

categories B : geometric stacks. More precisely, we will see that every

geometric stack is isomorphic to a stack of the form BG for some Lie

groupoid G .

We define geometric stacks in several step. We first define categories

fibered in groupoids (CFGs) over the category of manifolds . Next we

define stacks. These are CFG’s with sheaf-like properties. Then we single

out geometric stacks. These are the stacks that have atlases. Finally any

geometric stack is isomorphic (as a stack) to a stack of the form BG for

some groupoid G .

4.1 CATEGORIES FIBERED IN GROUPOIDS

DEFINITION 4.2. A category fibered in groupoids (CFG) over a category

is a functor : such that

(1) Given an arrow f : C C in and an object with ( ) C

there is an arrow f : in with ( f ) f (we think of as a

pullback of along f ).

(2) Given a diagram

f

h

in and a commutative diagram

( )

( )

( )

( f )

(h)

in there is a unique arrow : in making

f

h

com-

mute and satisfying ( ) . That is, there is a unique way to fill in

the first diagram so that its image under is the second diagram.

We will informally say that is a category fibered in groupoids over ,

with the functor understood.

EXAMPLE 4.3. Fix a Lie groupoid G . I claim that the functor : BG

that sends a principal G -bundle to its base and a G -equivariant map between

two principal G -bundles to the induced map between their bases makes the

category BG into a category fibered in groupoids over the category of

manifolds.

Indeed condition (1) of Definition 4.2 is easy to check. Given a map

f : N M between two smooth manifolds and a principal G -bundle M
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we have the pullback bundle f N and a G -equivariant map f : f

inducing f on the bases of the bundles.

Note that if : N is a principal G -bundle and h : is a

G -equivariant map inducing f : N M then there is a canonical G -equivariant

map : f which is given by (x) ( (x) h(x)) . By Corollary 3.21,

the map is a diffeomorphism.

To check condition (2) suppose that we have three principal G -bundles

M , M , M , two G -equivariant maps f : ,

h : inducing f̄ : M M and h : M M respectively and

a map : M M so that

M

M

M

f

h

commutes. We want to con-

struct a G -equivariant map : with h f . By the pre-

ceding paragraph we may assume that f M M and

h M M . Define : M M M M by (m x)

( (m) x) . Hence h f , and we have verified that : BG is

a CFG.

DEFINITION 4.4 (Fiber of CFG). Let : be a category fibered

in groupoids and C 0 an object. The fiber of over C is the category

(C) with objects

(C)0 : 0 ( ) C

and arrows/morphisms

(C)1 : ( f : ) 1 (C)0 and ( f ) idC

EXAMPLE 4.5. In the case of : BG the fiber of BG over a man-

ifold M is the category of principal G -bundles over M and gauge transforma-

tions (G -equivariant diffeomorphisms covering the identity map on the base).

REMARK 4.6. Let : be a CFG. Suppose Y
f
X is an arrow

in , (X)0 , 1 2 (Y)0 and hi : i ( i 1 2) are two arrows

in with (hi) f . Then by Definition 4.2 (2) there exist unique arrows

k : 1 2 and : 2 1 making the diagrams

1

2

k

h2

h1

and

1

2
h2

h1

commute, with (k) ( ) idY .
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Then, since (k ) idY and

1

1

k

h1

h1

commutes, we must have k id
1
. Similarly, k id

2
. We conclude :

any two pullbacks of along Y
f
X are isomorphic.

CONVENTION. From now on, given a CFG : and (X)0

for each arrow Y
f
X 1 we choose an arrow f in with target . We

denote the source of f by f and refer to it as the pullback of by f . We

always choose id .

Similarly we can define pullbacks of arrows : Suppose ( 1 2) (X)1

is an arrow in and (Y
f
X) is an arrow in . We then have a diagram

in :

(4.1)

f 1

f 2

1

2

f 1

f 2

By Definition 4.2 (2) applied to

f 1

f 2

2

f 1

f 2

we get the unique arrow

f : f 1 f 2 making (4.1) commute.

REMARK 4.7. Similar arguments show that a fiber (C) of a category

fibered in groupoids over is actually a groupoid. That is, all arrows in

(C) are invertible.

DEFINITION 4.8 (Maps of CFGs). Let : and : be

two categories fibered in groupoids. A 1 -morphism (or a 1 -arrow) F :

of CFGs is a functor that commutes with the projections : F .

A 1-morphism F : of CFGs is an isomorphism if it is an equivalence

of categories.

Given two 1-morphisms F F : of CFGs, a 2 -morphism : F F

is a natural transformation from F to F .
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Thus the collection of all categories fibered in groupoids over a given

category is a strict 2-category. Note also that natural transformations

between 1-arrows of CFGs are automatically invertible since the fibers of

CFGs are groupoids. We note that for any two CFGs and over ,

the collection of 1-arrows Hom( ) forms a category. In fact, it is a

groupoid.

4.2 DESCENT

To make sense of the next definition, consider how a principal G -bundle

P M (G a Lie groupoid) can be reconstructed from its restrictions

to elements of an open cover Ui of M and the gluing data 2 ). We

have restrictions Pi P Ui
and isomorphisms Pi Uij

Pj Uij
over double

intersections Uij : Ui Uj satisfying the cocycle conditions. Given a

G -equivariant map : P P of two principal G -bundles covering the identity

map on the base, we have a collection of G -equivariant maps i : Pi Pi

which agree on double intersections : i Pi Uij j Pj Uij
.

Conversely, given a collection of principal G -bundles Pi Ui and

isomorphisms ij : Pi Uij
Pj Uij

satisfying the cocycle conditions, there is a

principal G -bundle P over M with P Ui
isomorphic to Pi for all i .

Similarly, given two collections ( Pi Ui ij : Pi Uij
Pj Uij

) ,

( Pi Ui ij : Pi Uij
Pj Uij

) and a collection of principal G -bundle maps

i : Pi Pi compatible with ij and ij , there is a G -equivariant map

: P P which restricts to i over Ui .

A succinct way of describing the above local-to-global correspondence is

through the language of equivalences of categories. We have the category

BG(M) of principal G -bundles over M and G -equivariant maps covering

idM . We may think of it as the category ( M M G) of bibundles from

M M to G . Given a cover Ui M , we have the cover groupoid

M . A collection ( Pi Ui ij : Pi Uij
Pj Uij

) of principal

G -bundles is nothing but a bibundle from the cover groupoid to G . Similarly,

a map between two such collections is an equivariant map between two

bibundles. And the restriction map P P Ui
induces a map between the

two categories :

^ : ( M M G) ( M G)

2 ) The reader may think of G as a Lie group to avoid getting bogged down in irrelevant
technicalities.
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Formally, on objects,

^(Q) Q U

where U : M M M is the bibundle with the total

space , left anchor the identity map and the right anchor the “embedding”

M . Since a G -equivariant map Q Q induces a G -equivariant map

Q U Q U , ^ is a functor. Moreover, since U is weakly invertible,

^ is an equivalence of categories. One says that the principal G -bundles on

the cover satisfying the compatibility conditions descend to the principal

G -bundles on M .

More generally, given a CFG : and a cover M , one

defines the descent category ( M) . To do it properly, we need to

correct one inaccuracy in the discussion above. We have taken advantage of

the fact that one can restrict principal bundles to open sets. Furthermore if

Ui is a cover of a manifold M and P M a principal G -bundle, then

(P Ui
) Uij

P Uij
(P Uj

) Uij
(here, again, Uij Ui Uj ). But if we want to

think of BG abstractly, as a CFG, then restrictions should be replaced

by pullbacks.

Now if M M
f
M are maps of manifolds and is an object

of over M , then we do not expect ( f ) to equal ( f ) ; we

only expect them to be canonically isomorphic. And indeed if BG

so that is a principal G -bundle, then the pullback f ( P) is not

the same as ( f ) P even as a set ! To talk about descent in gen-

eral we need to replace restrictions by pull-backs : instead of P Ui
we

should think i P where i : Ui M denotes the canonical inclusion.

We will then discover that ij i P is isomorphic but not equal to ji j P

( ij and ji denote the inclusions of the double intersection Uij into Ui

and Uj respectively), so the bookkeeping gets a bit more complicated.

Let us now properly organize all this bookkeeping. We closely follow Vis-

toli [29].

Given an open covering Ui M of a manifold M we think

of the double intersections Uij Ui Uj as fiber products Ui M Uj

and triple intersections Uijk as fiber products Ui M Uj M Uk . Let

pr1 : Ui M Uj Ui and pr2 : Ui M Uj Uj the first and second projec-

tion respectively. Similarly for any three indices i1 i2 i3 we have projection

pa : Ui1 M Ui2 M Ui3 Uia , a 1 2 3. We also have a commuting

cube :
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(4.2)

Uijk

pr23

pr13
pr12

Ujk

Uij Uj

Uik Uk

Ui M

where pr12 , pr13 and pr23 denote the appropriate projections.

DEFINITION 4.9 (Descent category). Let : be a category

fibered in groupoids, M a manifold and Ui an open cover of M . An object

with descent data ( i ij ) on M , is a collection of objects i (Ui) ,

together with isomorphisms ij : pr2 j pr1 i in (Uij) (Ui MUj) , such

that the following cocycle condition is satisfied : for any triple of indices i , j

and k , we have the equality

pr13 ik pr12 ij pr23 jk : pr3 k pr1 i

where prab and pra are the projections discussed above. The isomorphisms

ij are called transition isomorphisms of the object with descent data.

An arrow between objects with descent data

i : ( i ij ) ( i ij )

is a collection of arrows i : i i in (Ui) , with the property that for each

pair of indices i , j , the diagram

pr2 j

pr2 j

ij

pr2 j

ij

pr1 i

pr1 i

pr1 i

commutes.

There is an obvious way of composing morphisms, which makes objects

with descent data the objects of a category, the descent category of Ui M .

We denote it by ( Ui M ) .
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REMARK 4.10. As before let : be a category fibered in

groupoids, M a manifold and Ui an open cover of M . We have a functor

(M) ( Ui M )

given by pullbacks.

We are now in a position to define stacks over manifolds.

DEFINITION 4.11 (Stack). A category fibered in groupoids :

is a stack if for any manifold M and any open cover Ui M the pullback

functor

(M) ( Ui M )

is an equivalence of categories.

EXAMPLE 4.12. The CFG BG is a stack for any Lie groupoid G .

EXAMPLE 4.13. Let K be a Lie group. The category dBK with objects

principal K -bundles with connections and morphisms connection preserving

equivariant maps is a stack.

DEFINITION 4.14 (Maps of stacks). Let : , : be

two stacks. A functor f : is a map of stacks (more precisely a 1-arrow

in the 2-category of stacks) if it is a map of CFGs (cf. Definition 4.8) —

f commutes with the projections to :

f

LEMMA 4.15. Let M be a manifold, H a groupoid. Then any map of

stacks F : M BH is naturally isomorphic to the functor BP induced by a

principal H -bundle P over M .

Proof. As we have seen in Remark 4.1, the objects of the CFG M are

maps Y
f
M . An arrow in M from Y

f
M to Y

f
M is a commuting

triangle

Y

Y

Mh

f

f

. The functor F assigns to each object Y
f
M of M a

principal H -bundle F(Y
f
M) over M . Let P F(M

id
M) . Note that any
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map f : Y M is also an arrow in M : it maps Y
f
M to M

id
M , since

Y

M

Mf

f

id

commutes. Hence we get a map of principal H -bundles

F

Y

M

Mf

f

id

: F(Y
f
M) P

projecting down to the map f : Y M in . But BH is a

CFG and f P P is another arrow in BH projecting down to f : Y M .

Consequently the principal H -bundle F(Y
f
M) Y is isomorphic to the

bundle f P Y . Denote this isomorphism by ( f ) . Varying f (M)0 we

get a map

: (M)0 (BH)1 ;

it is a natural isomorphism of functors : F BP .

COROLLARY 4.16. Let M M be two manifolds. For any map F : M M

of CFGs there is a unique map of manifolds f : M M defining F . That

is, the functor CFG’s over , M M is an embedding of

categories.

Proof. Any two maps of CFGs from M to M are equal since the only

arrows in the fibers of M are the identity arrows.

REMARK 4.17. Note a loss : if we think of smooth manifolds as stacks,

we lose the way to talk about maps between manifolds that are not

smooth.

REMARK 4.18. With a bit of work Lemma 4.15 above can be improved

as follows :

Let G and H be two Lie groupoids. Then any map of stacks F : BG BH

is isomorphic to BP for some principal bibundle P : G H .

Indeed, let P F(G1 G0) . It is an object of BH(G0) , that is, a

principal H -bundle over G0 . Since G1 G0 also has a left G -action and F

is a functor, P also has a left G -action. A bit more work shows that BP is

isomorphic to F .
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4.3 2-YONEDA

Lemma 4.15 generalizes to arbitrary categories fibered in groupoids. The

result is often referred to as 2-Yoneda lemma.

For any category and any object C 0 there exists a CFG C over

defined as follows. The objects of C are maps C
f
C 1 . A morphism

from C
f
C to C C is a commuting triangle

C

C

Ch

f

. There

is an evident composition of such triangles (stick them together along the

common side) making C into a category. There is also a functor C : C :

C(C
f
C) C and C(

C

C

Ch

f

) (h : C C ) .

LEMMA 4.19 (2-Yoneda). Let be a category fibered in groupoids.

For any object X there is an equivalence of categories

O : Hom (X ) (X)

(F : X ) F(X
id
X)

( : F G) ( (X
id
X) : F(X

id
X) G(X

id
X))

where Hom (X ) denotes the category of maps of CFGs and natural

transformations between them.

Proof. Suppose F G : X are two functors with F(idX) G(idX)

0 . We argue that for any Y and any Y
f
X X(Y)0 there is a

unique ( f ) C(Y)1 with G( f )
( f )

F( f ) . Indeed, the diagram

Y

X

Xf

f

id

in defines an arrow in X from (Y
f
X) X(Y)0 to (X

id
X) X(X)0 .

Since X

Y

X

Xf

f

id

(Y
f
X) 1 and since F and G are maps of

CFGs, we also have :

(F

Y

X

Xf

f

id

) (G

Y

X

Xf

f

id

) Y
f
X
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Hence we have a diagram

G( f )

F( f )

G(idX) F(idX)

f

id

in . The functor : takes the diagram above to the commuting

diagram

Y

Y

XidY

G( )

F( )

where :

Y

X

X

f

f
id

Therefore, by the axioms of CFG, there is a unique arrow ( f ) (Y)1 with

( ( f )) idY making the diagram

G( f )

F( f )

G( )

F( )

( f )

commute. The map : X0 1 is a natural transformation from G to F .

We now argue that O is essentially surjective and fully faithful. Let

(X)0 be an object. Recall that for any arrow (Y
f
X) 1 we have

chosen a pullback f (Y)0 . Define a functor F : X by

F (Y
f
X) f

F

Y

Y

Xh

f

the unique arrow in from f to covering Y
h
Y .

Note that F (idX) idX , so by the discussion above there is a natural

transformation : F F . Hence O is essentially surjective.

It remains to prove that O is fully faithful. Suppose ( : ) (X)1

is an arrow. We want to find a natural transformation : F F with

O( ) and prove that such a natural transformation is unique.
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Given (Y
f
X) X0 define

(Y
f
X) ( f

f
f )

Then is a natural transformation from F to F with (idX) idX .

Moreover is unique : if : X0 1 is another natural transformation from

F to F then for any (Y
f
X) X0 the diagram

(4.3)

f F ( f )

f F ( f )

( f )

commutes in . Since ( f ) (Y)1 , ( ( f )) idY . Therefore D takes

the diagram (4.3) to

Y

Y

X

X

idY idX

By construction also maps ( f ) : f f to idY and makes

f

f

( f )

commute. By (4.3) we must have ( f ) ( f ) Therefore O is fully

faithful.

4.4 ATLASES

One last idea that we would like to describe in this fast introduction to

stacks is a way of determining a condition for a stack to be isomorphic to

a stack BG for some Lie groupoid G . This involves the notion of an atlas,

which, in turn, depends on a notion of a fiber product of categories fibered

in groupoids.
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DEFINITION 4.20. Let X : X , Y : Y and Z : Z be three

categories fibered in groupoids over a category . The 2 -fiber product Z X Y

of the diagram

Y

f

Z X

is the category with objects

(Z X Y)0 (y z ) Y0 Z0 X1 Y(y) Z(z) f (y) (z)

and morphisms

HomZ XY (z1 y1 1) (z2 y2 2)

(z1 z2 y1
u
y2) Y(u) Z( ) 1

f (y1)
f (u)

1

f (y2)
2

(z1)
( )

(z2)

X1

together with the functor : Z X Y defined by

((z y )) Z(z) Y(y) ( u) Z( ) Y(u)

REMARK 4.21. It is not hard but tedious to check that Z X Y is a

category fibered in groupoids.

REMARK 4.22. There are two evident maps of CFGs pr1 : Z X Y Z

and pr2 : Z X Y Y , but the diagram

Z X Y

Z

Y

X

pr2

pr1

f

does not strictly

speaking commute. Rather there is a natural isomorphism pr2 f pr1
which need not be the identity.

REMARK 4.23. The fiber product Z f X Y is characterized by the

following universal property : For any category fibered in groupoids W , there

is a natural equivalence of categories

Hom(W Z X Y)

(u ) u : W Z : W Y functors, : u natural isomorphism ;

it sends a functor h : W Z X Y to the pair of functors h pr1 , h pr2 and

the natural isomorphism between them.
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EXAMPLE 4.24. Let G be a groupoid and p : G0 BG be the map of

CFGs defined by the canonical principal G -bundle t : G1 G0 (G acts on G1

by multiplication on the right). Then for any map f : M BG from (the stack

defined by) a manifold M to the stack BG , the fiber product M f BG p G0 is

(isomorphic to) Pf , where Pf M is the principal G -bundle corresponding

to the map f by 2-Yoneda.

Proof. We sort out what the objects of M f BG p G0 are, leaving the

morphism as an exercise to the reader. Fix a manifold Y . The objects of

the fiber M f BG p G0(Y) are triples (z y ) , where z M(Y)0 , y G0(Y)

and is an arrow in BG(Y) from f (z) to p(y) . The objects of M(Y) are

maps of manifolds Y
k
M . The image f (Y

k
M) of such an object is

a principal G -bundle over Y . By 2-Yoneda this bundle is k Pf (recall that

Pf f (idM) BG(M) ). Similarly p(Y G0) (G1 G0) . Finally

: f (Y
k
M) p(Y G0) is an arrow in the category BG(Y) . That is,

: k Pf (G1 G0) is an isomorphism of two principal G -bundles over

Y . Note that since G1 G0 has a global section, the pullback (G1 G0)

also has a global section. And the isomorphism 1 : (G1 G0) k Pf
is uniquely determined by the image of this global section. Hence the objects

of M f BG p G0(Y) are pairs (pullback to Y of Pf M , global section of

the pullback). A global section of k Pf Y uniquely determines a map

: Y Pf making the diagram

Y

Pf

M
k

commute. Therefore objects of M f BG p G0(Y) “are” maps from Y to Pf .

Unpacking the definitions further one sees that M f BG pG0 is isomorphic

to Pf as a category fibered in groupoids, where by “isomorphic” we mean

“equivalent as a category”.

REMARK 4.25. The map of manifolds Pf M in the construction above

is a surjective submersion. Therefore we may think of G0
p
BG as a surjective

submersion.

REMARK 4.26. To keep the notation from getting out of control we now

drop the distinction between a manifold M and the associated stack M .

We will also drop the distinction between stacks isomorphic to manifolds and
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manifolds. Thus, in the example above we would say that for any Lie groupoid

G , any manifold M and any map M BG the fiber product M BG G0 is

a manifold.

DEFINITION 4.27 (Atlas of a stack). Let be a stack over the

category manifolds. An atlas for is a manifold X and a map p : X

such that for any map f : M from a manifold M the fiber product

M f D p X is a manifold and the map pr1 : M f D p X M is a surjective

submersion.

REMARK 4.28. A stack over manifolds which possesses an atlas is

alternatively referred to as a geometric stack, a differentiable stack or an

Artin stack.

EXAMPLE 4.29. Let M be a manifold and let Ui M be a cover

by coordinate charts. Then the map of stacks p : M is an atlas.

EXAMPLE 4.30. For any Lie groupoid G the canonical map p : G0 BG

sending idG0 to the principal G -bundle G1 G0 is an atlas.

PROPOSITION 4.31. Given a stack with an atlas p : X there is a

Lie groupoid G such that is isomorphic to BG. Moreover we may take

G0 X and G1 X p p X . In other words any geometric stack is BG

for some Lie groupoid G.

It is relatively easy to produce the groupoid G out of the atlas p : X .

It is more technical to define a map of stacks : BG and to prove that

it is an isomorphism of stacks (that is, prove that is an equivalence of

categories commuting the projections BG : BG and : ).

We will only sketch its construction and refer the reader to stacks literature for

a detailed proof. The reader may consult, for example, [19, Proposition 70].

Sketch of proof of Proposition 4.31. We first construct a Lie groupoid

out of an atlas on a stack. Let be a stack over manifolds and p : G0

an atlas. Then the stack G0 p p G0 is a manifold; call it G1 . We want

to produce the five structure maps : source, target s t : G1 G0 , unit

u : G0 G1 , inverse i : G1 G1 and multiplication m : G1 G0 G1 G1

satisfying the appropriate identities. We will produce five maps of stacks. By

Corollary 4.16 this is enough. We take as source and target the projection
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maps pr1 pr2 : G0 p p G0 G0 . Since the diagram

G0

G0

G0

id

id

p

p

commutes, there is a unique map of stacks u : G0 G0 p pG0 . Concretely,

on objects, it sends x G0 to (x x idp(x)) . We also have the multiplication

functor

m : (G0 p p G0) G0 (G0 p p G0) (G0 p p G0)

which on objects is given by composition :

m((x1 x2 ) (x2 x3 )) (x1 x3 )

It is easy to see that the multiplication is associative. Finally the inverse map

inv : G0 p p G0 G0 p p G0

is given, on objects, by

inv(x1 x2 ) (x2 x1
1)

Note that the construction above does not use the descent properties of .

That is, we could have just as well defined an atlas for a category fibered in

groupoids. The construction would then still produce a Lie groupoid.

Next we sketch a construction of a map : BG of CFGs. It will

turn out to be a fully faithful functor. We will only need the fact that is a

stack to prove that is essentially surjective.

By 2-Yoneda, an object of over a manifold M is a map of CFGs

f : M . Since p : X is an atlas, the fiber product M X is a

manifold and the map pr1 : M X M is a surjective submersion. There

is a free and transitive action of G on the fibers of pr1 with respect to the

anchor map pr2M X X G0 (once again we identify manifolds with the

corresponding stacks). The right action of G is given by the “composition”

(M X) X (X X) M X

((x1 x2 ) (x2 x3 )) (x1 x3 )

(following the tradition in the subject we only wrote out the map on objects).

It is free and transitive since the map
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(M X) X (X X) (M X) M (M X)

((x1 x2 ) (x2 x3 )) ((x1 x2 ) (x2 x3 ))

is an isomorphism of stacks. Thus

( f : M D) (pr1 : M f p X M)

Next we define on arrows. An arrow from f1 : M1 to f2 : M2

is a 2-commuting triangle

M1

M2

h

f1

f2

(this can be proved more or less

the same way as we proved 2-Yoneda). Since the diagram

M1 X

M1

X

h pr1

f1

p

2-commutes, we get, by the universal property of the 2-fiber product, a map

h : M1 X M2 X

making the diagram

M1 X

M1

M2 X

M2

h

h

2-commute. And since all the objects in the diagram are manifolds, it actually

commutes on the nose. It is not hard to check that h is compatible with the

action of G . This defines on arrows and gives us a functor

: BG

One checks that is fully faithful (I am waving my hands here).

Next we argue that the full subcategory BG of BG consisting of the

trivial bundles is in the image of . A trivial G -bundle on a manifold M is

the pull back of the unit G -bundle G1 G0 X by a map k : M X . The

diagram
M

X
k

p k

p
commutes by definition. Hence pr1 : M X M

has a global section with pr2 k . Therefore M X M is isomorphic

to k (G1 G0) M . That is,
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(p k) k (G1 G0)

Similarly if

M1

M2

Xh

k1

k2

is a commuting diagram of maps of manifolds, then

M1

M2

h

p k1

p k2

is a commuting triangle of maps of CFGs, i.e., a map between two objects

in . One checks that (

M1

M2

h ) is the map h : k1 (G1 G0)

k2 (G1 G0) . Thus the image of includes the full subcategory BG of

trivial bundles.

Finally we use the fact that is a stack to argue that is essentially

surjective. If P M is a principal G -bundle, then M has an open cover

Ui M so that the restrictions P Ui
have global sections. Then for

each i there is i D(Ui)0 with ( i) isomorphic to P Ui
. The cover also

defines descent data ( P Ui ij ) . These descent data really live in BG .

Hence, since the image of contains BG and since is fully faithful,

( P Ui ij ) defines descent data ( i
1( ij) ) in . Since is a stack,

these descent data define an object of (M) . Since is a functor, ( ) is

isomorphic to P . We conclude that : BG is essentially surjective.

REMARK 4.32. Atlases of geometric stacks are not unique. For example, if

p : X is an atlas and f : Y X is map of manifolds which is a surjective

submersion, then p f : Y is also an atlas. However, if p : G0 and

q : H0 are two atlases, then by Proposition 4.31, the stacks BG and BH

are isomorphic. It is not hard to construct an invertible bibundle P : G H

explicitly : P is the fiber product G0 p q H0 . The actions of G and H are

defined as in the proof of Proposition 4.31 and they are both principal.

It is useful to think of these two atlases and of the two corresponding Lie

groupoids as two choices of “coordinates” on the stack .
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REMARK 4.33. In the light of the above remark it makes sense to say that

a geometric stack is an orbifold if there is an atlas p : X so

that the corresponding groupoid X X X is a proper étale Lie groupoid.
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stacks. Ann. Sci. École Norm. Sup. (4) 37 (2004), 841–910.

[29] VISTOLI, A. Grothendieck topologies, fibered categories and descent theory.
In : Fundamental Algebraic Geometry, 1–104. Mathematical Surveys and
Monographs 123. Amer. Math. Soc., Providence, RI, 2005.

[30] ZUNG, N. T. Proper groupoids and momentum maps : linearization, affinity, and
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