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EXTREMAL PROPERTIES OF (EPI)STURMIAN SEQUENCES

AND DISTRIBUTION MODULO 1

by Jean-Paul ALLOUCHE and Amy GLEN

ABSTRACT. Starting from a study of Y. Bugeaud and A. Dubickas (2005) on a
question about the distribution of real numbers modulo 1 via combinatorics on words,
we survey some combinatorial properties of (epi)Sturmian sequences and distribution
modulo 1 in connection to their work. In particular we focus on extremal properties
of (epi)Sturmian sequences, some of which have been rediscovered several times.

1. INTRODUCTION

Not long ago, the first author came across a paper of Y. Bugeaud and

A. Dubickas [22] where the authors describe all irrational numbers 0

such that the fractional parts bn , n 0, all belong to an interval of length

1 b , where b 2 is a given integer. They also prove that 1 b is minimal,

i.e., for any interval I of length 1 b , there is no irrational number 0,

such that the fractional parts bn , n 0, all belong to I . An interesting and

unexpected result in their paper is the following : the irrational numbers 0

such that the fractional parts bn , n 0 , all belong to a closed interval of

length 1 b are exactly the positive real numbers whose base b expansions are

characteristic Sturmian sequences on k k 1 , where k 0 1 b 2 .

We recall that Sturmian sequences (resp. characteristic Sturmian sequences)

are the codings of trajectories on a square billiard that start from a side

(resp. from a corner) with an irrational slope; alternatively a Sturmian (resp.
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characteristic Sturmian) sequence can be obtained by coding the sequence of

cuts in an integer lattice over the positive quadrant of R2 made by a line

of irrational slope (resp. a line of irrational slope through the origin), see

Theorem 4 below for some other definitions.

We will see in particular that the combinatorial results underlying [22]

were stated several times, in particular by P. Veerman who proved Bugeaud-

Dubickas’ number-theoretical statement in the case b 2 as early as 1986–

1987 (see [85, 86]).

The structure of the paper is as follows. Section 2 gives the combinatorial

background of Bugeaud-Dubickas’ result, Section 3 gathers results on Sturmian

and episturmian sequences, Sections 4 and 5 address the relevant combinatorial

extremal properties (including the description of the lexicographic world) and

the history of their (re)discoveries, while Section 6 translates everything in

terms of distribution modulo 1.

2. THE COMBINATORIAL BACKGROUND OF A RESULT

OF BUGEAUD AND DUBICKAS

The main result of Bugeaud and Dubickas [22, Theorem 2.1] will be

recalled in Section 6. Looking at the proof, we see that its core is a

result in combinatorics on words that is encompassed by Theorems 1 and 2

below.

2.1 STURMIAN SEQUENCES SHOW UP

In this section sequences take their values in 0 1 . We let T denote

the shift map defined as follows : if s : (sn)n 0 , then T(s) T((sn)n 0) :

(sn 1)n 0 , and we let denote the lexicographical order on 0 1 N induced

by 0 1.

THEOREM 1. An aperiodic sequence s : (sn)n 0 on 0 1 is Sturmian

if and only if there exists a sequence u : (un)n 0 on 0 1 such that 0u

Tk(s) 1u for all k 0 . Moreover, u is the unique characteristic Sturmian

sequence with the same slope as s , and we have 0u inf T k(s) k 0

and 1u sup Tk(s) k 0 .
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THEOREM 2. An aperiodic sequence u on 0 1 is a characteristic

Sturmian sequence if and only if, for all k 0 ,

0u Tk(u) 1u

Furthermore, we have 0u inf Tk(u) k 0 and 1u sup Tk(u) k 0 .

[Theorem 2 is an easy consequence of Theorem 1. For a proof of Theorem 1,

see Section 5.1.]

Actually Theorem 2 was known prior to [22]. G. Pirillo (who published it

in [73]) indicated it to the first author who suggested that this could well be

already in a paper by S. Gan [36] under a slightly disguised form (which is

indeed the case). About eight years earlier J. Berstel and P. Séébold [19] and

also J.-P. Borel and F. Laubie [20] proved one direction of Theorem 2, namely

that characteristic Sturmian sequences satisfy the inequalities 0u T k(u) 1u

for all k 0. In fact, it seems that both theorems were proved for the first

time (including the number-theoretical aspect for the case of base 2) by

P. Veerman [85, 86]. For more on the history of that result (including other

papers like [23]), see Section 5 (in particular Section 5.4).

2.2 GENERALIZATIONS

Two directions for generalizations are possible. One is purely combinatorial

and looks at generalizations of Sturmian sequences; in particular episturmian

sequences, which share many properties with Sturmian sequences and have

similar extremal properties. In this direction, characterizations of finite and

infinite (epi)Sturmian sequences via lexicographic orderings have recently been

studied (see [38, 39, 41, 49, 52, 73, 74, 75]). The other type of generalization

is number-theoretic and looks at distribution modulo 1 from a combinatorial

point of view. Recent papers of Dubickas go in this direction; we cite two of

them showing an unexpected occurrence of the Thue-Morse sequence [30, 31]

(see Section 6).

3. MORE ON STURMIAN AND EPISTURMIAN SEQUENCES

Here we give some background on Sturmian and episturmian sequences.

3.1 TERMINOLOGY & NOTATION

In what follows, we shall use the following terminology and notation from

combinatorics on words (see, e.g., [66]).
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Let denote a finite non-empty alphabet. If x1x2 xm is a finite

word over , where each xi , then the length of is : m ,

and we let a denote the number of occurrences of a letter a in . The

word of length 0 is called the empty word, denoted by . The reversal

of is given by : xmxm 1 x1 , and if , then is called

a palindrome.

An infinite word (or simply sequence) x over is a sequence indexed

by N with values in , i.e., x x0x1x2 , where each xi . A finite

word is a factor of x if or xi xj for some i , j with i j .

Furthermore, if is not empty, is said to be a prefix of x if i 0, and

we say that is right (resp. left) special if a , b (resp. a , b ) are

factors of x for some letters a , b , a b . The set of all factors of x is

denoted by F(x) , and Fn(x) denotes the set of factors of length n of x , i.e.,

Fn(x) : F(x) n . Moreover, the alphabet of x is Alph(x) : F(x) .

A factor of an infinite word x is recurrent in x if it occurs infinitely many

times in x . The sequence x itself is said to be recurrent if all of its factors are

recurrent in it. Moreover x is said to be uniformly recurrent (or minimal) if it

is recurrent and if, for any factor, the gaps between its consecutive occurrences

are bounded.

If u , are non-empty words over , then (resp. u ) denotes the

periodic (resp. ultimately periodic) infinite word (resp. u )

having as a period. An infinite word that is not ultimately periodic is said

to be aperiodic.

For any infinite word x x0x1x2x3 , recall that the shift map T is

defined by T(x) x1x2x3 . This operator naturally extends to finite words

as a circular shift by defining T(x ) x for any letter x and finite word .

The set of all finite (resp. infinite) words over is denoted by

(resp. ), and we define : , the set of all non-empty words

over .

A morphism on is a map : such that (u ) (u) ( )

for all words u , over . Clearly a morphism on is uniquely determined

by its restriction to ( : ).

3.2 STURMIAN SEQUENCES

Sturmian sequences were introduced in [71]. They are in some sense the

“least complicated” aperiodic sequences on a binary alphabet, as is evident

from Lemma 3 and Theorem 4 below. The following lemma can essentially

be found in [71].
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LEMMA 3 ([71]). Let s be a sequence taking exactly a 2 distinct

values. Let p(k) be the number of distinct factors of length k of s (the

function k p(k) is called the block-complexity of the sequence s). Then

the following properties are equivalent.

(i) There exists k0 1 such that p(k0 1) p(k0) .

(ii) The sequence (p(k))k 1 is ultimately constant (i.e., constant from some

index on).

(iii) There exists M such that p(k) M for all k 1 .

(iv) There exists k1 1 such that p(k1) k1 a 2 .

(v) Let (k) p(k) k . There exists k2 1 such that (k2 1) (k2) .

(vi) The sequence s is ultimately periodic.

Proof. For any sequence, we clearly have p(k 1) p(k) for all k 0.

This implies on the one hand that properties (ii) and (iii) are equivalent. On

the other hand, this implies the equivalence of properties (i) and (v). Namely

letting (k) : p(k) k , we have (k 1) (k) p(k 1) p(k) 1 .

The implications (vi) (ii) (iv) are straightforward. It thus suffices

to prove that (iv) (i), and (i) (vi).

(iv) (i) : if (i) is not true, then the sequence (p(k))k 0 is (strictly)

increasing. Thus, for all k 1, one has p(k 1) p(k) 1 . Hence, by an

easy induction, one has p(k) p(1) k 1 a k 1, i.e., p(k) a k 2,

for all k 1.

(i) (vi) : the equality p(k0 1) p(k0) shows that s has no right special

factor of length k0 . But this implies in turn that s has no right special factor

of length k0 1 (such a factor would give a right special factor of length k0
by removing its first letter). Iterating shows that s has no right special factor

of length k , for any k k0 . This implies that s is ultimately periodic (s can

be written as a concatenation of words of length k0 and each of these words

must always be followed by the same word).

We see from Lemma 3 above that an aperiodic sequence taking exactly

a distinct values must satisfy p(k) k a 1. The “simplest” aperiodic

sequences would thus be sequences with the smallest p(k) , i.e., sequences (if

any) satisfying p(k) k 1 for all k 1. Such sequences do exist ; they are

called Sturmian sequences. They are characterized in Theorem 4 below (see,

e.g., [66]). Note that Sturmian sequences admit several equivalent definitions

and have numerous characterizations; for instance, they can be characterized

by their palindrome or return word structure [28, 54].
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THEOREM 4. For any infinite word s over a b , the following properties

are equivalent. If s satisfies these properties, then s is called Sturmian.

! The number of factors of s of length n is equal to n 1 , for all n 1 .

! There exist an irrational real number 0 and a real number ,

respectively called the slope and the intercept of s , such that s is equal

to one of the following two infinite words :

s s : N a b

defined by

s (n)
a if (n 1) n

b if (n 1) n

s (n)
a if (n 1) n

b if (n 1) n

for n 0 (where x denotes the greatest integer x and x denotes

the least integer x). Moreover, s is said to be characteristic Sturmian

if , in which case s s s .

EXAMPLE 5. Taking a 0, b 1, and (3 5) 2, we get the

characteristic Sturmian sequence 01001010 , which is called the (binary)

Fibonacci sequence.

REMARK 6. By definition it is clear that any Sturmian sequence is over a

2-letter alphabet. It also follows from Lemma 3 that Sturmian sequences are

aperiodic. Note that if we choose to be rational in the above definition, we

obtain (purely) periodic sequences, referred to as periodic balanced sequences

– see below. (Some authors also use the name periodic Sturmian sequences.)

We will call characteristic periodic balanced sequences those obtained with

a rational slope 0 and intercept in Theorem 4. Also note

that the names “slope” and “intercept” refer to the geometric realization of

Sturmian words as approximations to the line y x (called mechanical

words, see, e.g., [66, Chapter 2]). Finally, note that, given an irrational number

(0 1) , the characteristic Sturmian sequence s (sn)n 1 of slope is

given by sn 0 if (n 1)(1 ) modulo 1 is in the interval [0 1 )

and sn 1 otherwise, for n 1. For example, the infinite Fibonacci

word f ( fn)n 1 01001010010010100101001001 (which has slope

(3 5) 2) is given by fn 0 if (n 1)( 5 1) 2 modulo 1 is in the
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interval [0 ( 5 1) 2) and fn 1 otherwise, for n 1. More generally, a

Sturmian sequence of slope and intercept is given by a coding over a

2-letter alphabet of the orbit of under the action of the irrational rotation

R : x x (mod 1) . A good reference for this description is [76, Chapter 6].

All Sturmian sequences are “balanced” in the following sense.

DEFINITION 7. A finite or infinite word over a b is said to be

balanced if, for any factors u , of with u , we have u b b 1

(or equivalently u a a 1).

The term “balanced” for this property is relatively new; it appeared in

[19, 18] (see also [66, Chapter 2]), and the notion itself dates back to

[71, 25]. [Note that the French term is “équilibré”.] In the pioneering paper

[71], balanced infinite words over a 2-letter alphabet are called “Sturmian

trajectories” and belong to three classes corresponding to : Sturmian; periodic

balanced; and a class of non-recurrent infinite words that are ultimately periodic

(but not periodic), called skew words. That is, the family of balanced infinite

words over a b consists of all the Sturmian and periodic balanced infinite

words over a b (which are recurrent), and the (non-recurrent) skew infinite

words over a b , the factors of which are balanced. In particular, we have the

following result due to Morse and Hedlund [71], and Coven and Hedlund [25]

(see also [66, Theorem 2.1.3]) :

THEOREM 8. A binary sequence is Sturmian if and only if it is balanced

and aperiodic.

NOTE. A description of skew words is given in part (ii) of Theorem 21.

Simple examples are infinite words of the form a ba , where N .

It is important to note that a finite word is finite Sturmian (i.e., a factor

of some Sturmian word) if and only if it is balanced [66, Chapter 2,

Proposition 2.1.17]. Accordingly, balanced infinite words are precisely the

infinite words whose factors are finite Sturmian. This concept is generalized

in [41] by showing that the set of all infinite words whose factors are

finite episturmian consists of the (recurrent) episturmian words and the (non-

recurrent) episkew infinite words (i.e., non-recurrent infinite words, all of

whose factors are finite episturmian), see Section 3.3.2.
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For a comprehensive introduction to Sturmian words, see for instance

[9, 66, 76] and references therein. Also see [23, 45, 75, 83, 84] for further

work on skew words.

We end this section with a simple and useful proposition which deserves

to be better known. Its two parts were suggested several years ago to the

first author in the case of binary sequences by J. Cassaigne and J. Berstel

respectively (private communications).

PROPOSITION 9. Let s be a sequence taking exactly a 2 distinct values

and let p(k) be the number of distinct factors of length k of s .

(i) If s is aperiodic and admits at most one left special factor of each length,

then one has k a 1 p(k) (a 1)k 1 for all k 1 . In particular

an aperiodic binary sequence which has at most one left special factor

of each length is Sturmian.

(ii) If there exists k0 1 such that p(k) k a 1 for all k k0 , then

p(k) k a 1 for all k 1 . In particular if a binary sequence satisfies

p(k) k 1 for all k larger than some k0 , then it is Sturmian.

Proof. (i) Using part (iv) of Lemma 3, we have p(k) k a 1 for all

k 1, since s is aperiodic. On the other hand, erasing the first letter of all

factors of s of length k 1 gives all factors of length k . There is at most

one of these factors of length k which can be obtained from distinct factors

of length k 1 (since s admits at most one left special factor of length k ),

and if so there can be at most a such distinct factors of length k 1 (since

a left special factor can be extended on the left by at most a letters). Hence

p(k 1) p(k) a 1 for all k 1. By telescopic summation, this implies

p(k) (a 1)(k 1) p(1) (a 1)(k 1) a ak k 1.

(ii) Let k1 be the least integer 1 such that for all k k1 , one

has p(k) k a 1. Suppose that k1 1, and let : k1 1. Then

p( ) a 1. But p( ) p(k1) k1 a 1 a . Hence either

p( ) a , or p( ) a 2. In either case s would be ultimately

periodic (by Lemma 3 (i), resp. by part (iv) of Lemma 3), a contradiction.

Hence k1 1 and the claim about Sturmianicity follows from Theorem 4.

3.3 EPISTURMIAN SEQUENCES

It is well known that the set of factors of any Sturmian sequence is closed

under reversal, i.e., if u is a factor of a Sturmian sequence s , then its reversal

u is also a factor of s (e.g., see [68] or [66, Proposition 2.1.19]). In fact :
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THEOREM 10. An aperiodic binary sequence s is Sturmian if and only if

F(s) is closed under reversal and s admits exactly one left special factor of

each length.

Proof. Let s be an aperiodic binary sequence. First suppose that s is

Sturmian. For a proof of the fact that F(s) is closed under reversal, see [68]

or [66, Proposition 2.1.19]. Now we will show that s has exactly one left

special factor of each length.

Let p(n) denote the number of factors of length n of s . Since F(s) is

closed under reversal, a factor of s is left special (resp. right special) if and

only if its reversal is right special (resp. left special). Hence, for all n 1,

the difference p(n 1) p(n) is equal to the number of left special factors

of s of length n . Therefore, since p(n 1) p(n) 1 for all n 1 (by

Theorem 4), s admits exactly one left special factor (or equivalently, right

special factor) of each length.

The converse follows immediately from part (i) of Proposition 9.

Inspired by results of this flavour, Droubay, Justin, and Pirillo [27, 51]

introduced the following natural generalization of Sturmian sequences on an

arbitrary finite alphabet .

DEFINITION 11 ([27]). An infinite word t is said to be episturmian

if its set of factors F(t) is closed under reversal and t admits at most one

left special factor (or equivalently, right special factor) of each length.

NOTE. When is a 2-letter alphabet, this definition gives the Sturmian

words as well as the periodic balanced words.

In the seminal paper [27], episturmian words were defined as an extension

of standard episturmian words, which were first introduced as a general-

ization of characteristic Sturmian words using iterated palindromic closure

(a construction due to de Luca [26]).

The palindromic right-closure ( ) of a finite word is the (unique)

shortest palindrome beginning with (see [26]). More precisely, if u

where is the longest palindromic suffix of , then ( ) u u . For

example, ( ) . The iterated palindromic closure function [50],

denoted by Pal , is defined recursively as follows. Set Pal( ) and, for

any word and letter x , define Pal( x) : (Pal( )x)( ) . For instance,

Pal(abc) (Pal(ab)c)( ) (abac)( ) abacaba . Note that Pal is injective;
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and moreover, it is clear from the definition that Pal( ) is a prefix of Pal( x)

for any word and letter x . Hence, if is a prefix of , then Pal( ) is a

prefix of Pal( ) .

THEOREM 12 ([27]). For an infinite word s , the following properties

are equivalent.

(i) There exists an infinite word 6 x1x2x3 (xi ), called the directive

word of s , such that s limn Pal(x1x2 xn) .

(ii) F(s) is closed under reversal and all of the left special factors of s are

prefixes of it.

An infinite word s satisfying the above properties is said to be standard

episturmian (or epistandard for short).

The above characterization of epistandard words extends to the case of

an arbitrary finite alphabet a construction given in [26] for all characteristic

Sturmian words.

EXAMPLE 13. The epistandard word r directed by 6 (abc) is known

as the Tribonacci word ; it begins in the following way :

r abacabaabacababacabaabacabacabaabaca

where each palindromic prefix Pal(x1 xn 1) is followed by an underlined

letter xn . More generally, for k 2, the k-bonacci word is the epistandard

word over a1 a2 ak directed by (a1a2 ak) .

REMARK 14. In [27], Droubay et al. proved that an infinite word t is

episturmian if and only if F(t) F(s) for some epistandard word s . They also

proved that episturmian words are uniformly recurrent ; hence any such infinite

word is either (purely) periodic or aperiodic. The aperiodic episturmian words

are precisely the episturmian words that admit exactly one left special factor of

each length. In fact, an epistandard word s (and hence any episturmian word

with the same set of factors s ) is periodic if and only if exactly one letter

occurs infinitely often in the directive word of s (see [51, Proposition 2.9]).

The notion of a directive word (as defined for epistandard words in The-

orem 12) extends to all episturmian words with respect to episturmian mor-

phisms, which play a central role in the study of these words. Introduced first

as a generalization of Sturmian morphisms, Justin and Pirillo [51] showed that
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episturmian morphisms are exactly the morphisms that preserve the aperiodic

episturmian words (i.e., the morphisms that map aperiodic episturmian words

onto aperiodic episturmian words). Such morphisms naturally generalize to

any finite alphabet the Sturmian morphisms on two letters. A morphism is

said to be Sturmian if (s) is Sturmian for any Sturmian word s . The set

of Sturmian morphisms over a b is closed under composition, and con-

sequently it is a submonoid of the endomorphisms of a b . Moreover, it

is well known that the monoid of Sturmian morphisms is generated by the

three morphisms : (a ab b a) , (a ba b a) , (a b b a) (see

[19, 69] ; see also Section 5.2 later).

By definition (see [27, 51]), the monoid of all episturmian morphisms is

generated, under composition, by all the morphisms :

! a : a(a) a , a(x) ax for any letter x a ;

! ¯
a : ¯

a(a) a , ¯a(x) xa for any letter x a ;

! ab : exchange of letters a and b .

Moreover, the monoid of so-called epistandard morphisms is generated

by all the a and the ab , and the monoid of pure episturmian morphisms

(resp. pure epistandard morphisms) is generated by the a and ¯
a only

(resp. the a only). The monoid of the permutation morphisms (i.e., the

morphisms such that ( ) ) is generated by all the ab .

As shown in [51], any episturmian word is the image of another episturmian

word by some pure episturmian morphism and any episturmian word can be

infinitely decomposed over the set of pure episturmian morphisms. This last

property allows an episturmian word to be defined by one of its morphic

decompositions or, equivalently, by a certain spinned directive word, which

is an infinite sequence of rules for decomposing the given episturmian word

by morphisms. See [42, 53] for recent work concerning directive words of

episturmian words.

REMARK 15. The shift-orbit of an infinite word x is the set

(x) T i(x) i 0 and its closure is given by

(x) y Pref(y) i 0 Pref(T
i(x))

where Pref( ) denotes the set of prefixes of a finite or infinite word . Note

that for any infinite word t and x (t) , F(x) F(t) . If, moreover, t is

uniformly recurrent, then it follows that for each n 1, Fn(x) Fn(t) , and

hence F(x) F(t) for any x (t) (see for instance [76, Proposition 5.1.10]

or [66, Proposition 1.5.9]). This implies that (x) (t) for any x (t) ;
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in other words, (t) is a minimal dynamical system (see, e.g., [66, 76]).

Accordingly, since episturmian words are uniformly recurrent, the closure

of the shift-orbit of any episturmian t is a minimal dynamical system; in

particular, (t) consists of all the episturmian words with the same set of

factors as t (see, e.g., [79]).

Note that if t is aperiodic, then (t) contains a unique epistandard word

with the same set of factors as t , whereas if t is periodic, (t) contains two

different epistandard words (see for instance [40, 42]).

3.3.1 STRICT EPISTURMIAN WORDS

DEFINITION 16. An epistandard word s (or any episturmian word with

the same set of factors as s ) is said to be strict if every letter in the alphabet

of s occurs infinitely often in its directive word.

Strict episturmian words on k letters are often said to be k-strict ; these

words have (k 1)n 1 distinct factors of length n for all n 1 (as proven

in [27, p. 549]) and they coincide with the k -letter Arnoux-Rauzy sequences,

introduced in [15] for k 3 and later defined for arbitrary k 3 in [79].

In particular, the 2-strict episturmian words are exactly the Sturmian words

since these words have n 1 distinct factors of length n for each n 1

(recall Theorem 4).

Note that any episturmian word takes the form (t) with an episturmian

morphism and t an Arnoux-Rauzy sequence (or strict episturmian word). In

this sense, episturmian words are only a slight generalization of Arnoux-

Rauzy sequences. For example, the family of episturmian words on three

letters a b c consists of the Arnoux-Rauzy sequences over a b c , the

Sturmian words over a b , b c , a c and their images under episturmian

morphisms on a b c , and periodic infinite words of the form (x) , where

is an episturmian morphism on a b c and x a b c .

3.3.2 EPISKEW WORDS. A finite word is said to be finite Sturmian

(resp. finite episturmian) if is a factor of some infinite Sturmian (resp. epi-

sturmian) word.

Recall from Section 3.2 that skew words are ultimately periodic (but

not periodic) infinite words, all of whose factors are finite Sturmian (or

equivalently, balanced). Over a 2-letter alphabet, skew words constitute the

family of non-recurrent balanced infinite words, whereas the recurrent balanced

infinite words consist of the Sturmian words and the periodic balanced words.
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Inspired by Morse and Hedlund’s [71] skew words, episkew words were

recently defined in [41] as non-recurrent infinite words, all of whose factors

are finite episturmian. A number of equivalent definitions of such words were

given in [41] (see also Theorem 21, to follow).

Episkew words were first alluded to (but not explicated) in [38]. Following

that paper, these words showed up again in the study of inequalities char-

acterizing finite and infinite episturmian words in relation to lexicographic

orderings [41] ; in fact, as detailed in Section 5.1, episturmian words have

extremal properties similar to those of Sturmian words.

To learn more about episturmian and episkew words, see for instance the

recent surveys [17, 40].

4. EXTREMAL WORDS

Suppose the alphabet is totally ordered by the relation . Then we can

totally order by the lexicographic order , defined as follows. Given

two non-empty finite words u , on , we have u if and only if either

u is a prefix of (with u ) or u xau and xb , for some finite

words x , u , and letters a , b with a b . This is the usual alphabetic

ordering in a dictionary, and we say that u is lexicographically less than .

This notion naturally extends to infinite words, as follows. Let u u0u1u2
and 0 1 2 , where uj , j . We define u if there exists an

index i 0 such that uj j for all j 0 i 1 and ui i .

Let be a finite or infinite word on , and let k be a positive integer.

We let min( k) (resp. max( k) ) denote the lexicographically smallest

(resp. greatest) factor of of length k for the given order (where k

if is finite).

If is infinite, then it is clear that min( k) and max( k) are prefixes

of the respective words min( k 1) and max( k 1) . So we can define,

by taking limits, the following two infinite words (see [74]) :

min( ) lim
k

min( k) and max( ) lim
k

max( k)

That is, we can associate with any infinite word t two infinite words min(t) and

max(t) such that any prefix of min(t) (resp. max(t) ) is the lexicographically

smallest (resp. greatest) amongst the factors of t of the same length.

For a finite word on a totally ordered alphabet , min( ) denotes

min( k) where k is maximal such that all min( j) , j 1 2 k , are

prefixes of min( k) . The word max( ) is defined similarly (see [41]).
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The following definition, given in [41], will be useful in the next section,

where we survey recent work concerning extremal properties of (epi)Sturmian

sequences, particularly inequalities characterizing such words (finite and

infinite).

DEFINITION 17. An acceptable pair for an alphabet is a pair (a ) ,

where a is a letter in and is a total order on such that a min( )

5. EXTREMAL PROPERTIES

In 2003, Pirillo [73] (see also [74]) proved that, for infinite words s on a

2-letter alphabet a b with a b , the inequality

(1) as min(s) max(s) bs

characterizes the characteristic Sturmian words and characteristic periodic

balanced words.

REMARK 18. Characteristic periodic balanced sequences, which correspond

to the “Sturmian” sequences with rational slope 0 and intercept

(see Theorem 4 and Remark 6), are precisely the sequences of the form

(Pal( )xy) , where a b and x y a b (see for instance

[8, 17, 27]). Also note that if s is a characteristic Sturmian sequence, then

as min(s) and bs max(s) . On the other hand, if s is a characteristic

periodic balanced sequence, then either :

! as min(s) and bs max(s) when s takes the form (Pal( )ab) , or

! as min(s) and max(s) bs when s takes the form (Pal( )ba) .

For example, the characteristic periodic balanced sequence s : (Pal(ab)ab)

(abaab) satisfies

as a(abaab) min(s) (aabab) and bs b(abaab) max(s)

whereas s : (Pal(ab)ba) (ababa) satisfies

as a(ababa) min(s ) and max(s ) (babaa) bs b(ababa)

More generally, given two characteristic periodic balanced sequences s , s of

the form s (Pal( )ab) and s (Pal( )ba) for some a b , we

have

min(s) min(s ) (aPal( )b) and max(s) max(s ) (bPal( )a)

See [8, 74] for more details.
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The preceding result of Pirillo concerning characteristic Sturmian words and

characteristic periodic balanced words (property (1)) encompasses Theorem 2

– one of the key properties underlying the main theorem in Bugeaud and

Dubickas’ paper [22]. In fact, as mentioned previously, Theorem 2 was

known much earlier – in 1993, Berstel and Séébold [19] (as well as

Borel and Laubie [20]) proved one direction of the theorem, namely that

characteristic Sturmian words satisfy (1). This Sturmian extremal property

also resurfaced in 2001, under a different guise, in a paper of S. Gan

[36]. However, it seems that P. Veerman [86] was actually the first to

prove (1) for Sturmian sequences in 1987, albeit from a symbolic dynamical

perspective and in an implicit way. A year prior, Veerman had already proved

in [85, Theorem 2] that characteristic Sturmian sequences have the above

extremal property; it was not until [86, Theorem 2.1] that he proved the

equivalence. Motivated by the combinatorics of the Mandelbrot set, Bullett

and Sentenac [23] reproved these results of Veerman, in the language of

ordered sets.

In this section, we shall first discuss the combinatorial work of Pirillo and

others in relation to the inequalities (1) and their generalizations. Following

this, we will consider in more detail the earlier work by Berstel and

Séébold [19], Gan [36], and Veerman [85, 86].

5.1 PIRILLO’S WORK CONTINUED

Continuing his work in relation to the inequalities (1), Pirillo [74] proved

further that, in the case of an arbitrary finite alphabet , an infinite word

s on is epistandard if and only if, for any acceptable pair (a ) , we

have

(2) as min(s)

Moreover, s is a strict epistandard word if and only if (2) holds with strict

equality for any order [52].

In a similar spirit, Pirillo [75] defined fine words over two letters ; that

is, an infinite word t over a 2-letter alphabet a b (a b ) is said

to be fine if (min(t) max(t)) (as bs) for some infinite word s . These

infinite words were characterized in [75] by showing that fine words on

a b are exactly the Sturmian and skew infinite words (see Section 3.2).

Specifically :
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THEOREM 19. Let t be an infinite word over a b . The following

properties are equivalent :

(i) t is fine,

(ii) either t is Sturmian, or t is an ultimately periodic (but not periodic)

shift of an infinite word of the form (x yx ) for some N , where is a

pure standard morphism on a b and x y a b (these words are the

skew words).

In other words, a fine word over two letters is either a Sturmian word or

an ultimately periodic (but not periodic) infinite word, all of whose factors

are Sturmian.

Pirillo [75] remarked that perhaps his characterization of fine words

could be generalized to an arbitrary finite alphabet ; indeed, Glen [38] soon

generalized this result by extending Pirillo’s definition of fine words to more

than two letters. That is :

DEFINITION 20 ([38]). An infinite word t on is said to be fine if there

exists an infinite word s such that min(t) as for any acceptable pair (a ) .

NOTE. It is easy to see that Pirillo’s original 2-letter definition of a

fine word is a special instance of the above definition. Certainly, as there

are only two lexicographic orders on words over a 2-letter alphabet, it

follows from Definition 20 that a fine word t over a b (a b ) satisfies

(min(t) max(t)) (as bs) for some infinite word s .

Glen [38] characterized these generalized fine words (given in Definition 20)

by showing that such an infinite word is either a strict episturmian word or

a strict episkew word. More precisely :

THEOREM 21 ([38]). Let t be an infinite word with Alph(t) . Then,

t is fine if and only if one of the following holds :

(i) t is an -strict episturmian word;

(ii) t is non-recurrent and takes the form (xs) , where x is a letter, s is

a strict epistandard word on x , and is a pure episturmian morphism

on .

REMARK 22. Note that part (ii) of Theorem 21 gives the form of so-called

strict episkew words ; it is slightly simpler to what was originally given in [41],
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thanks to Richomme (private communication). Also note that strict episkew

words on a 2-letter alphabet are precisely the skew words (see [40]). One

can also compare Theorem 21 with Theorem 19. A simple example of an

episkew word is c f : cabaababaaba , where f is the Fibonacci sequence

on a b .

EXAMPLE 23 ([38]). Let a b c with a b c . Let f denote

the infinite Fibonacci word over a b , i.e., the epistandard word directed by

(ab) . Then, the following infinite words are fine.

! f abaababaabaaba

! c f cabaababaabaaba

! f4c f aabacabaababaabaaba

! a( f) aabaaabaabaaabaaaba

! c(c f) ccacbcacacbcacbcacacbcacacbca

! c( f4c f) cacacbcaccacbcacacbcacbcacacbcaca

Let us note, for example, that c( f) is not fine since it is a non-strict

epistandard word. That is, c( f) is an epistandard word with directive word

c(ab) , so it is not strict, nor does it take the second form given in Theorem 21.

Continuing this work, Glen, Justin, and Pirillo [41] recently proved new

characterizations of finite Sturmian and episturmian words via lexicographic

orderings. As a consequence, they were able to characterize by lexicographic

order all episturmian words in a wide sense (episturmian and episkew infinite

words). Similarly, they characterized by lexicographic order all balanced infinite

words on a 2-letter alphabet ; in other words, all Sturmian, periodic balanced,

and skew infinite words, the factors of which are (finite) Sturmian.

In the finite case :

THEOREM 24 ([41]). A finite word on is episturmian if and only if

there exists a finite word u on such that, for any acceptable pair (a ) ,

we have

(3) au m 1 m

where m min( ) for the considered order.

A corollary of Theorem 24 is the following new characterization of finite

Sturmian words (i.e., finite balanced words).
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COROLLARY 25 ([41]). A finite word on a b , a b, is not

Sturmian (in other words, not balanced) if and only if there exists a finite

word u a b such that aua is a prefix of min( ) and bub is a prefix of

max( ) .

In the infinite case, a characterization of episturmian words in the wide

sense follows almost immediately from Theorem 24. That is :

COROLLARY 26 ([41]). An infinite word t on is episturmian in the

wide sense (i.e., episturmian or episkew) if and only if there exists an infinite

word u on such that

au min(t)

for any acceptable pair (a ) .

Consequently, an infinite word s on a b (a b ) is balanced (i.e.,

Sturmian, periodic balanced, or skew) if and only if there exists an infinite

word u on a b such that

(4) au min(s) max(s) bu

For any sequence s , max(s) is the same as sup T k(s) k 0 , and similarly

min(s) inf Tk(s) k 0 , where the infimum and supremum are taken with

respect to the lexicographic order. The preceding result therefore shows that

a sequence s in 0 1 is balanced if and only if there exists a sequence

u 0 1 such that 0u Tk(s) 1u for all k 0. In particular, a

sequence s on 0 1 being Sturmian is equivalent to s being aperiodic and

the existence of a sequence u on 0 1 such that 0u Tk(s) 1u . Moreover,

it follows from the proof of Theorem 19 (or Theorem 21) that u is the unique

characteristic Sturmian sequence having the same slope as s . This is exactly

Theorem 1. For the sake of completeness, we give a direct proof here.

Direct proof of Theorem 1 . Let s be an aperiodic sequence on 0 1 .

First suppose that s is a Sturmian sequence. Since it contains both 0’s and 1’s,

there exist two binary sequences x and y such that 0x : inf Tk(s) k 0

and 1y : sup Tk(s) k 0 . We claim that x y . Namely, if x y , there

exist a (possibly empty) word and two infinite sequences x and y such

that x 0x and y 1y . Hence 0x 0 0x and 1y 1 1y . Since
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any factor of inf Tk(s) k 0 and of sup Tk(s) k 0 is a factor of s ,

we have that both 0 0 and 1 1 are factors of s . Hence s is unbalanced (see

Definition 7 and the comments following it), but it was supposed Sturmian,

a contradiction (Theorem 8). Thus x y , and hence

k 0 0x Tk(s) 1y 1x

Now suppose that s has the property that there exists a binary sequence u

such that

(5) k 0 0u Tk(s) 1u

Let z be a left special factor (if any) of s , and let z be the prefix of u that

has the same length as z . Since 0z and 1z are both factors of s , there exist

two integers 1 and 2 such that T 1(s) begins with 0z and T 2(s) begins

with 1z . We deduce from the inequalities (5) with k 1 (resp. 2 ) that

0z 0z and 1z 1z

This implies

z z and z z

hence z z . Thus s has at most one left special factor of each length.

Hence s is Sturmian (Proposition 9), and its left special factors are exactly

the prefixes of u .

This implies furthermore that u belongs to the closure of the shift-orbit

of s , hence it is Sturmian. But the prefixes of 0u and 1u are also factors

of s . Hence 0u and 1u are also in the closure of the shift-orbit of s ,

thus Sturmian. This implies that u is Sturmian characteristic (see, e.g., [66,

Proposition 2.1.22]). Thus u is the (unique) characteristic Sturmian sequence

having the same slope as s .

REMARK 27. We noted in the Introduction that Theorem 2 can be easily

deduced from Theorem 1. Actually Theorem 1 can also be deduced from

Theorem 2 : it suffices to remember that the closure of the shift-orbit of a

characteristic Sturmian sequence u is exactly the set of all Sturmian sequences

having the same slope as u (see for instance [66, Proposition 2.1.25]), and all of

these Sturmian sequences have the same set of factors ([66, Proposition 2.1.18],

or [68]). See also Remark 33 later.

Recently, Richomme [78] proved that episturmian words can be character-

ized via a nice “local balance property”. That is :
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THEOREM 28 ([78]). For a recurrent infinite word t , the following

assertions are equivalent :

(i) t is episturmian;

(ii) for each factor u of t , there exists a letter a such that u F(t)

au ua ;

(iii) for each palindromic factor u of t , there exists a letter a such that

u F(t) au ua.

Roughly speaking, the above theorem says that for any factor u of a given

episturmian word t , there exists a unique letter a such that every occurrence

of u in t is immediately preceded or followed by a in t . When 2,

property (ii) of Theorem 28 is equivalent to the definition of balance. Indeed,

Coven and Hedlund [25] stated that an infinite word s over a b is not

balanced if and only if there exists a palindrome u such that aua and bub

are both factors of s . As pointed out in [78], this property can be rephrased

as follows : an infinite word s is Sturmian if and only if s is aperiodic and,

for any factor u of s , the set of factors belonging to u is a subset of

au ua or a subset of bu ub .

REMARK 29. Recall that the set of all infinite words in having

episturmian factors consists of the (recurrent) episturmian words and the (non-

recurrent) episkew words in . Therefore, since properties (ii) and (iii) in

Theorem 28 concern only factors, one readily deduces that these properties in

fact characterize the episturmian and episkew words in . So the recurrence

hypothesis in the statement of the theorem restricts attention to episturmian

words only.

We will now use Theorem 28 to give an alternative (simpler) proof of

the following analogue of Theorem 1 for episturmian sequences, which was

originally proved in [39] (also see [41]). This result, in particular, gives a

more precise version of Corollary 26 under the recurrence hypothesis.

THEOREM 30. A recurrent infinite word t on is episturmian if and

only if there exists an infinite word u on such that, for any acceptable

pair (a ) ,

au T i(t) for all i 0

Moreover, if t is aperiodic, then u is the unique epistandard word with the
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same set of factors as t (i.e., the unique epistandard word in the closure of the

shift-orbit of t), and for any acceptable pair (a ) , au inf Tk(t) k 0

if and only if the letter a occurs infinitely often in the directive word of u .

Proof. Let t be a recurrent infinite word on .

First suppose that t is episturmian. Let x be a letter in and consider

two different total orders 1 and 2 on such that (x 1) and (x 2) are

acceptable pairs. Then there exist infinite words u and on such that

(6) xu inf1 Tk(t) k 0 for the total order 1 on

and

(7) x inf2 Tk(t) k 0 for the total order 2 on

(Here, infi denotes the infimum with respect to the order i for i 1 2.)

We will show that u . By equations (6) and (7), we have

xu 1 x and x 2 xu

Hence, if u and are prefixes of the respective words u and with u ,

then we have u 1 and 2 u . This implies that u , and therefore

u . Hence, for a given letter x in , there exists a unique infinite word

u on such that

(8) xu infx Tk(t) k 0 for any acceptable pair (x x)

Now consider another letter y in x . By what precedes, we know there

exists a unique infinite word on such that

(9) y infy Tk(t) k 0 for any acceptable pair (y y)

Again, we will show that u . Suppose not. Then there exist a (possibly

empty) word and two infinite words u and over such that u z1u

and z2 for some letters z1 and z2 with z1 z2 . Hence xu x z1u

and y y z2 , and therefore the words x z1 and y z2 are both factors

of t , since any factor of xu and of y is also a factor of t (by (8) and (9)).

But then, by Richomme’s local balance property (Theorem 28), z2 x or

z1 y .

If z2 x , then for any acceptable pair (x x) , we have x x z1 (since

z1 z2 ), and hence x ( x x ) x xu ( x z1u ) , contradicting the

(lexicographical) minimality of u with respect to the total order x . Likewise,

if z1 y , then for any acceptable pair (y y) , we have y y z2 (since z1 z2 ),

and hence yu ( y z1u ) y y ( y z2 ) , a contradiction. Thus u .
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Hence, there exists a (unique) infinite word u on such that, for any

acceptable pair (a ) , au T i(t) for all i 0 .

Conversely, suppose there exists an infinite word u on such that, for

any acceptable pair (a ) , we have

(10) au T i(t) for all i 0

Let z be a left special factor (if any) of t , and let z denote the prefix of u

with z z . Since z is left special in t , there exist at least two distinct

letters x , y such that xz and yz are both factors of t . In particular, there exist

non-negative integers 1 and 2 such that T 1(t) begins with xz and T 2(t)

begins with yz . Thus, by inequality (10), we have

xz x xz for any acceptable pair (x x)

and

yz y yz for any acceptable pair (y y)

Hence z x z and z y z , and this implies that z z . Therefore t has at

most one left special factor of each length and the left special factors of t

are exactly the prefixes of u . Thus F(u) F(t) ; in particular, u is in the

closure of the shift-orbit of t .

Now suppose that t is not episturmian. Then, by Theorem 28, there exists a

word (possibly empty) and letters a , b , c , and d with a b c d

such that a b and c d are both factors of t . Since a c , the word is

a left special factor of t , and therefore is a prefix of u .

Let 1 and 2 be non-negative integers such that T 1(t) begins with a b

and T 2(t) begins with c d . Then, for any two acceptable pairs (a a) and

(c c) , we have

(11) au ( a z ) a T
1(t) ( a b )

and

(12) cu ( c z ) c T
2(t) ( c d )

Inequality (11) implies that z a b , whereas inequality (12) implies that

z c d , and moreover z c b and z a d . These inequalities imply that

z b d , a contradiction.

Hence t is episturmian, and therefore u is episturmian too (since u is

in the closure of the shift-orbit of t , which consists of all episturmian words

with the same set of factors as t – see Remark 15 or [40]). Moreover, u is

epistandard since all of its left special factors are prefixes of it. Therefore, for
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any letter x in , xu is episturmian if and only if x occurs infinitely often in

the directive word of u (see [51, Theorem 3.17], [39, Theorem 2.6], or [78,

Theorem 6]). Hence, for any acceptable pair (a ) , au inf Tk(t) k 0 if

and only if the letter a occurs infinitely often in the directive word of u .

REMARK 31. An unrelated connection between finite balanced words

(i.e., finite Sturmian words) and lexicographic ordering was recently studied

by Jenkinson and Zamboni [49], who presented three new characterizations

of “cyclically” balanced finite words via orderings. Their characterizations are

based on the ordering of shift-orbits, either lexicographically or with respect

to the 1-norm 1 , which counts the number of occurrences of the symbol 1

in a given finite word over 0 1 .

5.2 STURMIAN MORPHISMS

Prior to the recent work of Pirillo and others, the extremal property (1) was

shown to hold for characteristic Sturmian sequences in a paper by Berstel and

Séébold [19]. Here is a reformulation of their result (recalling the definition

of s from Section 3.2, and letting c : s s denote the unique

characteristic Sturmian sequence of slope ) :

PROPOSITION 32 ([19, Property 7]). Let 0 be an irrational number.

Then, for all i 1 , we have

ac T i(ac ) and bc T i(bc )

In particular, for all i 0 , we have

ac T i(c ) bc

REMARK 33. Recall from Remark 15 that the closure of the shift-

orbit of any Sturmian word s is a minimal dynamical system consisting

of all the Sturmian words with the same set of factors as s (see also [66,

Proposition 2.1.25]). In particular, if s is a Sturmian word with (irrational)

slope , then (s) consists of all Sturmian words of slope (e.g., see [66,

Propositions 2.1.18] or [68]). Accordingly, the second part of Proposition 32

(see also Theorems 1 and 2) tells us that ac and bc are the lexicographically

least and greatest Sturmian words of slope , respectively.

Proposition 32 was also proved by Borel and Laubie [20] in the same year

(1993). In [19], Berstel and Séébold showed that it is an easy consequence

of the following more general result.
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PROPOSITION 34. Let 0 be an irrational number and let , be

real numbers such that 0 , 1 . Then

s s

The above proposition was one of numerous results in [19] leading to

the proof of a now well-known characterization of Sturmian morphisms, i.e.,

morphisms that preserve Sturmian words. Specifically, a morphism on a b

is Sturmian if and only if it can be expressed as a finite composition of the

following morphisms, in any number and order :

E :
a b

b a
:

a ab

b a
:

a ba

b a

(Note that a ab and ¯
a ab ; see Section 3.3.)

This result played a particularly important role in Berstel and Séébold’s

characterization of morphisms that preserve characteristic Sturmian words –

the so-called characteristic or standard (Sturmian) morphisms. That is, a

morphism on a b is standard if and only if it is expressible as a finite

composition of the morphisms E and in any number and order [19]. The

fact that there is no occurrence of the morphism in such a composition is

due to Proposition 32.

5.3 THE LEXICOGRAPHIC WORLD

As mentioned previously, a disguised form of Theorem 2 (see also (1))

appeared in S. Gan’s paper [36] ; in fact, as we shall see, Theorem 1 can

be deduced from the main results in [36]. Gan came across this property of

Sturmian sequences whilst endeavouring to obtain a complete description of

the lexicographic world, defined as follows.

For any two infinite words x , y 0 1 , define the set

xy : s 0 1 i 0 x T i(s) y

The lexicographic world is defined by

: (x y) 0 1 0 1 xy

Gan proved in [36, Lemma 2.1] that

(u ) 0 1 0 1 (u)

where : 0 1 0 1 is the map defined by

(x) : inf y 0 1 xy
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As Gan points out in that paper, the set is closely related to the bifurcation

of a Lorenz-like map (see [64] for example).

The following theorem combines Corollary 5.6 and Theorem 5.7 from

Gan’s paper [36] (see also Theorem 1.1 in the same paper). It shows in

particular that any element in the image of is a Sturmian or periodic

balanced sequence in 0 1 (and such sequences are the lexicographically

greatest amongst their shifts).

THEOREM 35. For any sequence s 0 1 , the following conditions

are equivalent.

(i) s (x) for some sequence x 0 1

(ii) s is a Sturmian or periodic balanced sequence satisfying T i(s) s

for all i 0 . Moreover, if x begins with 1 , then (x) 1 , and if

x 0u for some u 0 1 , then (x) is the unique Sturmian or

periodic balanced sequence s in 0 1 satisfying 0u T i(s) 1u and

T i(s) s for all i 0 .

In the process of establishing Theorem 35, Gan also proved the following

description of Sturmian minimal sets (see [44] for a definition; also note that

minimal sets correspond to minimal dynamical systems).

THEOREM 36 ([36]). A minimal set M is a Sturmian minimal set if and

only if M [0x 1x] : y 0 1 0x y 1x for some x 0 1 .

Moreover, for any x 0 1 , there exists a unique Sturmian minimal set in

[0x 1x] .

Theorem 36 actually encompasses the first part of Theorem 1; indeed, it can

be interpreted as follows : a uniformly recurrent sequence y 0 1 satisfies

0x T i(y) 1x for all i 0 and some binary sequence x if and only if y

is a Sturmian or periodic balanced sequence. As discussed in Section 5.1, this

result was recently rediscovered by Glen, Justin, and Pirillo [41] (see (4)), but

in a slightly stronger form without the uniform recurrence condition, giving

that y is either a Sturmian sequence, a periodic balanced sequence, or a skew

sequence (i.e., y is a balanced sequence).

The second part of Theorem 1 can also be deduced from Gan’s work,

as follows. Let u be any characteristic Sturmian sequence on 0 1 . Then,

by Theorem 35, the sequence s : (0u) is the unique Sturmian sequence

satisfying 0u T i(s) 1u and T i(s) s for all i 0. Suppose x is the
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unique characteristic Sturmian sequence in (s) , the closure of the shift-

orbit of s . Then 0x and 1x are Sturmian sequences, by [66, Proposition

2.1.22]. Moreover, 0x and 1x have the same set of factors as x since the

prefixes of x are exactly its left special factors. Hence, both 0x and 1x

are in (s) , and therefore, since 0u T i(s) 1u for all i 0, we have

0u 0x and 1x 1u . These inequalities imply that u x . Thus, for any

characteristic Sturmian sequence x , we have 0x T i(x) 1x for all i 0.

This establishes the forward direction of Theorem 2, and it follows that for

any Sturmian sequence s on 0 1 , we have 0u T i(s) 1u for all i 0,

where u is the unique characteristic Sturmian sequence with the same slope

as s (recall Remark 33). This proves the second part of Theorem 1 and

from this theorem one can easily deduce both directions of Theorem 2 (see

Remark 27).

REMARK 37. By Remark 33, the lexicographically greatest and least

Sturmian sequences in the closure of the shift-orbit of a Sturmian sequence

s on 0 1 are 0u and 1u , where u is the unique characteristic Sturmian

sequence with the same slope as s . We thus deduce from Theorems 1 and 35

that, for any sequence x on 0 1 beginning with 0, the sequence (x) is

a Sturmian or periodic balanced sequence of the form 1u . Moreover, if (x)

is Sturmian, then u is the unique characteristic Sturmian sequence with the

same slope as (x) .

The following lemma was a key step in Gan’s proof of Theorem 36. It

involves the block condition (BC) : a sequence s 0 1 satisfies the BC

if, for any finite word on 0 1 , at least one of the words 0 0 and 1 1

is not a factor of s .

LEMMA 38 ([36, Lemma 4.4]). A sequence s 0 1 satisfies the BC

if and only if there exists a sequence u such that 0u T i(s) 1u for all

i 0 .

This result is essentially the characterization of balanced infinite words

given in [41] (see (4)). Indeed, the BC is equivalent to the balance property,

as defined in Definition 7. See Section 3 in [25], in which the balance property

is called the Sturmian block condition (see also [78]). Note that the BC of

Coven and Hedlund [25, Lemma 3.06, p. 143] is (seemingly) stronger than

Gan’s in that “for any finite word ” is replaced by “for any palindrome ”;

actually both BC conditions are equivalent to the balance property.
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REMARK 39. As explained by Labarca and Moreira in [61], the termi-

nology “lexicographical world” was coined in 2000, in a preprint version

of [63] (which appeared only in 2006) in which the authors extended the

work of Hubbard and Sparrow [46]. For more on the lexicographic(al) world,

the reader can look at, e.g., [62, 63] and the references therein. See also the

recent paper [8], in which the present two authors give a complete description

of the lexicographic world in the process of describing the minimal intervals

containing all fractional parts 2n , for some positive real number , and

for all n 0.

5.4 THE EARLY WORK OF VEERMAN : 1986 & 1987

Let denote the set of all Sturmian sequences of (irrational) slope

0 over the alphabet 0 1 (i.e., a 0, b 1 in Theorem 4). As

noted, e.g., in [16], each Sturmian sequence s can be viewed as

the binary expansion of some real number r(s) modulo 1. Moreover, it is

easily verified that, for any s , s , we have s s if and only if

r(s) r(s ) . Furthermore, by Remark 33, we know that the lexicographically

least and greatest sequences in are 0c and 1c , respectively. In

terms of binary expansions, as r(1c ) 1 2 r(0c ) , it follows that

the set r( ) : r(s) [0 1) s is completely contained within

the closed interval [r(0c ) r(1c )] of length 1 2 and not in any smaller

interval.

This latter result (to compare with Bugeaud-Dubickas’ result where base 2

is replaced with base b [22]) is essentially a reformulation of Theorem 2,

p. 558 in Veerman’s paper [85], which also states that r( ) is a Cantor set

of Lebesgue measure zero. The converse of this theorem was proved one year

later by Veerman in [86, Theorem 2.1, p. 193–194]. As such, it seems that

Veerman was the first to (implicitly) prove the Sturmian extremal property

given in Theorem 1, under the framework of symbolic dynamics.

Actually, Veerman’s main result in [86] shows that a sequence s in 0 1

satisfies the inequalities 0u T i(s) 1u for some sequence u 0 1 and

for all i 0 if and only if s is a Sturmian sequence or a periodic balanced

sequence (cf. (4)). A few years earlier (in 1984), Gambaudo et al. [35] had

already proved the periodic case (i.e., the case when is rational) ; Veerman

considered his Theorem 2.1 in [86] to be a generalization of their main

result.
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REMARK 40. Note that the set r( ) is a dynamical system under the

operation of the doubling map : x 2x (mod 1) on the one-dimensional

torus T R Z . This was the point of view of Veerman and also that of Bullet

and Sentenac [23], who gave reformulations and self-contained combinatorial

proofs of some of Veerman’s results in [85, 86]. In particular, Bullett and

Sentenac gave another proof of the following result (which can be deduced

from Veerman’s work) : for each closed interval C [ 1 2 ] of length

1 2 (where T ), there exists a unique such that r( ) is contained

in C and there is no other dynamical system for the doubling map that

is a strict subset of C . This fact was recently used by Jenkinson [47] to

prove new characterizations of Sturmian measures, which have applications to

ergodic optimization of convex functions. Another important application is in

the combinatorial description of the Mandelbrot set (e.g., see [23, 57]).

REMARK 41. In the study of kneading sequences of Lorenz maps (i.e.,

a certain class of piece-wise monotonic maps on [0 1] with a single

discontinuity), Glendinning, Hubbard, and Sparrow [43, 46] have investigated

so-called allowed pairs (r s) of distinct binary sequences in 0 1 satisfying

r T i(r) s and r T i(s) s for all i 0

In particular, it was shown in [46] that these allowed pairs are exactly the

pairs of (distinct) binary sequences in 0 1 that are realizable as kneading

invariants of a topologically expansive Lorenz map. (Note that the case s 1

was studied by Acquier, Cosnard, and Masse in [1].) Moreover it can be

deduced from property (1) that the allowed pairs of the form (0u 1u) are

those where u is a characteristic Sturmian sequence.

6. BACK TO DISTRIBUTION MODULO 1 :

THE THUE-MORSE SEQUENCE SHOWS UP

As indicated in the Introduction, we began writing this survey after the

publication of the paper of Bugeaud and Dubickas [22], whose starting point

goes back to a paper of Mahler [67]. In that paper Mahler defines the set of

Z -numbers

R 0 n 0 0
3

2

n 1

2
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where x is the fractional part of the real number x . Mahler proved that

this set is at most countable. It is still an open problem to prove that this set

is actually empty. More generally, given a real number 1 and an interval

(s t) (0 1) one can ask whether there exists 0 such that, for all n 0,

we have s n t . Flatto, Lagarias, and Pollington [34, Theorem 1.4]

proved that, if p q with p q coprime integers and p q 2, then

any interval (s t) such that for some 0, one has that (p q)n (s t)

for all n 0, must satisfy t s 1 p . The main result in [22] reads as

follows.

THEOREM 42 (Bugeaud-Dubickas). Let b 2 be an integer and

let be an irrational number. Then the numbers bn cannot all lie

in an interval of length 1 b. Furthermore there exists a closed in-

terval I of length 1 b containing the numbers bn for all n 0

if and only if the sequence of base b-digits of the fractional part

of is a Sturmian sequence s on the alphabet k k 1 for some

k 0 1 b 2 . If this is the case, then is transcendental, and

the interval I is semi-open. It is open unless there exists an integer j 1

such that T j(s) is a characteristic Sturmian sequence on the alphabet

k k 1 .

The reader will easily see the relation between Theorem 42 and Theorems 1

and 2. Note that the first assertion in Theorem 42 is generalized to algebraic

real numbers 1 by Dubickas in [29]. Also note that two other papers by

Dubickas [30, 31] deal with links between distribution of n modulo 1

and combinatorics on words. Furthermore the Thue-Morse sequence, defined

as the fixed point beginning with 0 of the morphism 0 01, 1 10, shows

up in these two papers : in [30] for the study of “small” and “large” limit

points of (p q)n , the distance to the nearest integer of the product of any

non-zero real number by the powers of a rational ; in [31] for the study

of the “small” and “large” limit points of the sequence of fractional parts

bn , where b 1 is a negative rational number and is a real number.

For work in a similar vein and with an avatar of the Thue-Morse sequence,

see [55].

Interestingly enough, the Thue-Morse sequence also appeared in 1983 in

another question of distribution, as a by-product of the combinatorial study

of a set of sequences related to iterating continuous maps of the unit interval

(see [4, 6]).
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THEOREM 43. Define the set K by

K : x [0 1] k 0 1 x 2kx x

Then the smallest limit point of K is the number : an 2
n , where (an)n 0

is the Thue-Morse sequence. The set K contains only countably many elements

less than and they are all rational. Furthermore any segment on the right of

contains uncountably many elements of K . This structure around repeats

at infinitely many scales : K is a fractal set.

The reader will have guessed that Theorem 43 above is a by-product of

the combinatorial study of the set

(13) K : u 0 1 N k 0 u Tk(u) u

where u is the sequence obtained by switching 0’s and 1’s in u (see [4]).

An avatar of the set K (where large inequalities are replaced by strict

inequalities) was studied in [33] in the description of univoque numbers, i.e.,

real numbers in (1 2) such that there exists a unique base -expansion

of 1 as 1 j 1 uj
j , with uj 0 1 . See [7] for more details.

In [5] the first author uses Theorem 1 to prove that a Sturmian sequence

s on 0 1 belongs to the set K (see (13)) if and only if there exists a

characteristic Sturmian sequence u beginning with 1 such that s 1u . (In

particular, a Sturmian sequence belonging to K must begin with 11.) As an

immediate corollary we have that a real number (1 2) is univoque and

self-Sturmian (i.e., the greedy -expansion of 1 is a Sturmian sequence) if and

only if the -expansion of 1 is of the form 1u , where u is a characteristic

Sturmian sequence beginning with 1. Self-Sturmian numbers were introduced

in [24], where it was proved that such numbers are transcendental (see also

[60] for more on related questions). Theorem 2 was used in [24] and a

proof of Theorem 1 was also given in a preprint version of that paper (see

http://arxiv.org/abs/math/0308140); it was deleted from the final version, as

D.Y. Kwon explained to J.-P. Allouche : first because a referee suggested it was

“folklore”, and second because actually only one direction of Theorem 2 was

needed. Self-sturmian numbers have since been generalized to self-episturmian

numbers in [39], where an analogue of Theorem 1 for episturmian sequences

can also be found (see Theorem 30).

Also note that sets related to the set K and to the lexicographic world

occur in the study of badly approximable numbers in [72].

We end this section with a last remark which, while pointing to a new

statement, might lead number-theorists to a yet-to-be explored field.
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REMARK 44. It is tempting to try to convert the extremal property

for episturmian sequences given in Corollary 26 (see [41]) to a result in

distribution modulo 1. From now on, will denote the “usual” order on

D : 0 1 d 1 ; other orders will be denoted by . As we have seen,

an infinite word t on D is episturmian in the wide sense (i.e., episturmian or

episkew) if and only if there exists an infinite word u such that

( ) au min(t)

for any acceptable pair (a ) . Actually, replacing the “usual” order on D by

another total order is the same as keeping the order but replacing each j in

this set by ( j) , where is a permutation of D . More precisely, (a ) is an

acceptable pair if and only if there exists a permutation of D such

that (a) 0 and i j (i) ( j) . Hence, another way of formulating

( ) above is as follows : there exists an infinite word u such that for all

permutations of D one has

0 (u) min( (t))

where (u0u1u2 ) : (u0) (u1) (u2) (for finite or infinite words on D ).

Hence translating extremal properties of episturmian sequences to properties

of distribution modulo 1 for real numbers consists of looking at reals x in

(0 1) such that there exists a real y in (0 1) with 1
d
y dkx for all

integers k and for all permutations (where x is the real number obtained

from x by applying the permutation digitwise). If d 2, permuting 0’s

and 1’s in a real number x written in base 2 is the same as replacing x by

1 x . Hence, in that case, the inequalities 1
2
y 2kx boil down to the two

families of inequalities 1
2
y 2kx and 1

2
(1 y) 2k(1 x) 1 2kx ,

i.e., 1
2
y 2kx 1

2
1
2
y for all k . This is precisely the question from which

we started our paper, but for general d it does not seem that number-theorists

have been interested in distribution modulo 1 combined with permuting

digits.

7. ADDENDUM

While writing this survey we came across several extra relevant references;

other extra references were suggested by the referees. We give them here.

About combinatorics of words and Lorenz maps [10, 11, 12, 13, 56, 81],

about extremal properties of Sturmian sequences or measures [21, 48, 58, 59],

about the distribution of n [2, 3, 32, 87, 88], and last but not least
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the historical paper of Lorenz [65] (see also [82]). Finally note that relations

between Sturmian sequences and Markoff numbers would need a separate

survey, since many results were found since the nice survey [80].
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familles à un paramètre de fonctions croissantes par morceaux possédant
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[9] ALLOUCHE, J.-P. and J. SHALLIT. Automatic Sequences. Theory, Applications,
Generalizations. Cambridge University Press, Cambridge, 2003.
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