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QUADRATIC FORM MADE A PERFECT POWER
BY A NEW COMPOSITION THEOREM
ON ARBITRARY QUADRATIC FORMS

by Ajai CHOUDHRY

ABSTRACT. This paper deals with the diophantine equation Q(x1, x2, ..., x») = )",
where m and n are arbitrary positive integers and Q(xi, X2, ..., X») iS an arbitrary
quadratic form in the m variables xi, x2, ..., X, . While solutions of special cases of
this equation have been published earlier, the general equation of this type has not
been solved till now. To solve this equation, we first show that, given an arbitrary

quadratic form Q(xi, x2, ..., x) in m variables, there exists a composition formula
O(u;) O*(v)) = O(w;) where u; and v; (i=1,2, ..., m) are arbitrary variables and the
w; (i=1,2,...,m) are cubic forms in the variables u#; and v; (i=1, 2, ..., m).

This is a new composition formula, different from the standard composition formulae
of the type Q(ui)Q(vi) = Q(w;) which are known for certain classes of quadratic
forms. As the equation Q(x;) =" is not always solvable, we prove a theorem giving
a necessary and sufficient condition for its solvability. We use the aforementioned
composition formula to obtain parametric solutions of the equation Q(x;) = y", and
also give some numerical examples.

1. INTRODUCTION

This paper deals with the diophantine equation

(1.1 O(x1, x2, "'7-xm):yn7
where m and n are arbitrary positive integers and Q(xy, xp, ..., X,) 1S an
arbitrary quadratic form in the m variables xi, x, ..., X,,. The case m =2

has received considerable attention [1, Chapter 20, pp.533-543] and a number
of authors have also considered several special cases when m > 3 [1, pp.543—
544]. However, the equation does not seem to have been solved in the most
general case as represented by equation (1.1).
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92 A. CHOUDHRY

We first show in Section 2 that, given any arbitrary quadratic form
O(x1, x2, ..., x,) in m variables, there exists a very general composition
formula of the type

(12) Q(uh Upy vy Mm)QZ(Ula V2, vy vm) = Q(wlv W2y «vvy wm)7

where the u; and v; (i = 1,2, ..., m) are arbitrary variables while the wj;
(i=1,2,...,m) are cubic forms in the variables u; and v;.

As we shall see in Section 3, equation (1.1) does not always have a
solution in integers. Accordingly, we first prove a theorem in Section 3 giving
a necessary and sufficient condition for the solvability of this equation. When
equation (1.1) is solvable in integers, it is easy to find a parametric solution
such that x; (i =1, 2, ..., m) are given by polynomials that have a common
polynomial factor. We show in Section 3 that, using the identity proved in
Section 2, parametric solutions of equation (1.1) can be obtained such that
x; (i=1,2,..., m) are given by polynomials that do not have a common
polynomial factor. While there are equations of type (1.1) for which solutions
in relatively prime integers simply do not exist, when such solutions are
possible, the parametric solutions obtained in the paper may yield solutions
of (1.1) in relatively prime integers.

2. A COMPOSITION THEOREM ON ARBITRARY QUADRATIC FORMS

In this section we prove a general composition theorem for arbitrary
quadratic forms in any number of variables. This theorem establishes the
identity (1.2) which is reminiscent of the well-known composition formulae
of the type

2.1) Ox) Oy = 0(z)),

where Q(x;) is a certain quadratic form in the variables x;, and the z; are
bilinear forms in the x; and y;. All the composition formulae of type (2.1)
are known [2, pp.417-427] but in all such formulae there are restrictions on
the quadratic forms Q(x;) as well as on the number of the variables x;. The
identity (1.2) differs from the standard composition formulae in view of the
squared quadratic form Q%*(v;) occurring in (1.2) but there is no restriction
either on the quadratic form Q(u;) or on the number of the variables ;.
We note that in the identity (1.2), while the u; and v; are completely
arbitrary, the w; (i=1, 2, ..., m) are cubic forms in the u;, v; such that if
w; (i=1,2,...,m) are taken as constants, the w; become quadratic forms
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QUADRATIC FORM MADE A PERFECT POWER 93

in the variables v; whereas if v; (i = 1, 2, ..., m) are taken as constants,
the w; become linear forms in the variables u;.

THEOREM 1. If Q(xi, X2, ..., X;y) is an arbitrary quadratic form in m
variables xy, Xz, ..., Xy, with m being an arbitrary integer, there is an identity
given by
(22) Q(u17 u27 MR | um) Qz(vlv v27 st Um) = Q(wla 'LU2, st wm)v
where u; and v; (i = 1,2,...,m) are arbitrary variables while w;
(i=1,2,...,m) are cubic forms in the variables u; and v; defined by

—~ 90w
(23) wi=—v {Zvi ™ }+uiQ(vl, vy, ey ), i=1,2,..0,m.
i=1 !

Proof. To prove the identity (2.2), we will first obtain a solution of the
following diophantine equation in the variables t, tp, ..., ty, Uy, Uz, ..., Uy :
(24) Q(tla Iy vy tm):Q(ula Uz, ooy um)-

We substitute
2.5) ti:Ui9+Mi, i=1,2,....,m

in equation (2.4), and get

—~ 00)
2 _
(2.6 01, 2y ..y Um) 0 —f-{;vi o 0=0.
If Q(vy, va, ..., uym) # 0, a non-zero solution of this equation is given by
—~ 00w
2.7 0=— — s V2 ey Up) -
@7 {;“ P (/O v s )
With this value of 6, using (2.5), we get a solution of (2.4) given by
Wi .
2.8) t; = , i=1,2,....,m
Q(Ula V2, -+, Um)
where
"9
29 w=-—v {;U,‘ gb(:)}—i-uiQ(U], V2y eevy Upm), i=1,2,...,m.
We now have a solution of (2.4) with u; (i =1, 2, ..., m) being arbitrary
while ¢, (i =1, 2, ..., m) are given in terms of u; (i=1,2, ..., m) as well
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94 A. CHOUDHRY

as additional arbitrary parameters v; (i = 1, 2, ..., m). Substituting the above
values of #; (i =1, 2, ..., m) in (2.4), and multiplying by Q*(vy, va, - .., Un),
we get the identity (2.2). This proves the theorem when Q(vy, va, ..., vy) # 0.
Finally we note that when Q(vy, vy, ..., v,) = 0, the identity (2.2) is readily
verified. This completes the proof.

As an example, we have the identity
U2 + 15 + u3)(W + 03 + 0 = {(—v? + v} +vDuy — 2uwovivr — 2uzvivs )R
+ {—2uyv1v, + (vf — v% + ’U%)Mz — 21431;21)3}2
+ {—2uyv1v3 — 2upvpv3 + W +v3 — v%)u3}2 .
As a more general example, we have the identity
(au} + bub + cu3 + dul)(av} + bv3 + cv3 + dvl)? = aw? + bw3 + cwl + dw] ,
where

wy = (fav% + bv% + C'U% + dvi)ul — 2buyvivy — 2cuzv vz — 2dugvivg

wy = —2au;v vy + (av% — bv% + cv% + dvf)uz — 2cuzvrvy — 2dugvpvy
w3 = —2au;v1v; — 2burv,vz + (avl2 + bv% — cv% + d’Ui)M}, — 2dugvsvy ,
wy = —2au;v1vs — 2burv,vy — 2cuzv3v4 + (av% + bv% + cv% — dvi)m ,

with a, b, ¢, d, u;, v; (i =1, 2, 3, 4) being arbitrary parameters.

3. QUADRATIC FORM MADE A PERFECT POWER

In Section 3.1 we consider the solvability of equation (1.1). In the following
two subsections, Section 3.2 and Section 3.3, we obtain parametric solutions
of equation (1.1) in terms of m arbitrary parameters.

3.1 SOLVABILITY OF THE EQUATION Q(x;) = y"

Equation (1.1) is not always solvable in integers. Apart from the obvious
cases when n is even and Q(xy, x, ..., X,) iS a negative definite form so
that (1.1) cannot have any integer solutions, it is well known that the quadratic
equation Q(x1, X, ..., X,,) = y> is not always solvable when m < 4. For
instance, it is readily established that the quadratic equation

3.1 2% +3x3 =7,

has no solution in integers.
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Even when equation (1.1) has an integer solution, it is possible that it may
have no solutions in relatively prime integers. As an example, consider the
equation

(3.2) 270 +2x5 =yt

If x; and x, are both odd integers, it is easily seen that the left-hand side
of (3.2) is =4 (mod 16), while if one of the integers x;, x, is odd and one
is even, then the left-hand side of (3.2) is = 2 or 10 (mod 16). Since the
only fourth power residues modulo 16 are 0 and 1, it is clear that neither
can x; and x, be both odd nor can one of them be odd and one even. Thus,
for any solution of (3.2), both x; and x, must be even, and hence cannot
be relatively prime. A numerical solution of (3.2) is x; = 2, x, = 2. Thus,
equation (3.2) has solutions in integers but no solution in relatively prime
integers.

We further note that if a solution of (1.1) is given by x; = X;
(i=1,2,...,m)and y =Y, another solution of (1.1) is given by x; = r* X;
(i=1,2,...,m)and y=r’Y, where r is an arbitrary parameter. It follows

that if we find a solution of (1.1) in rational numbers, or a parametric solution
in terms of polynomials with rational numbers as coefficients, by choosing a
suitable integer value of r, we can readily obtain a solution in integers, or in
terms of polynomials with integer coefficients.

We now prove a theorem about the solvability of equation (1.1).

THEOREM 2. If Q(x1, X2, ..., X;y) is any arbitrary quadratic form with
integer coefficients in m variables xi, x3, ..., X, the diophantine equation
(33) Q(xla X2y veey xm) :yn

always has a solution in integers when n is odd. Further, when n is even,
equation (3.3) has a solution in integers if and only if the quadratic diophantine
equation

(34) Q(x1, X2, -y X) = Y7
has a solution in integers.

Proof. When n=2k+1 is an odd integer, a simple parametric solution
of (3.3) is given by x; = rks;, y =r, where r = Q(sy, $2, ..., Sp) and the
s; are arbitrary, for with these values of x;, we have Q(x;) = r*Q(s;) =
r?+1 = y* This parametric solution readily yields solutions of equation (3.3)
in integers.
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When n = 2k, any integer solution of equation (3.3) immediately gives
an integer solution of (3.4) with ¥ = y*. Conversely if equation (3.4) has
a solution in integers, say, x; =s; (i =1,2,...,m), Y = r, a solution in
integers of equation (3.3) is given by x; = = ls; (i=1,2,....,m), y=r,
since then Q(x;) = Q(r*~'s;) = r’*2Q(s;) = r*k = y".

The conditions of solvability of equation (3.4) are well-known [3, p.42].
Thus, given any arbitrary quadratic form Q(x;) in any number of variables, we
can readily determine whether or not equation (3.3) has a solution in integers.
In fact, if (3.4) has an integer solution, we can easily find a parametric
solution of (3.4), and use it as indicated above to obtain a parametric solution
of (3.3).

While we have obtained parametric solutions of equation (3.3) whenever
this equation is solvable, we note that these parametric solutions give values
of x;, (i =1,2,...,m) in terms of polynomials which necessarily have
a common polynomial factor. We will obtain in the next two subsections
parametric solutions that do not have this property, and hence may lead to
solutions of (3.3) in coprime integers.

3.2 THE EQUATION Q(x;) =y" WHEN n IS ODD

In this section we consider the equation (3.3) when »n is odd, that is, the
diophantine equation

(35) O, X2, oy ) = YT
where k is an arbitrary positive integer and Q(xj, X3, ..., X,) is an arbitrary
quadratic form with integer coefficients in m variables xi, xz, ..., X,,. We
will use the composition theorem of Section 2 to obtain parametric solutions
of equation (3.5) such that x; (i = 1,2,...,m) do not have a common
polynomial factor.

Since u; and v; (i = 1,2, ..., m) are completely arbitrary in (2.2), we

can use this formula % times as follows:
Qu)Q” (v;) = Q(w)Q™*(vy)
= QDO *(v)
(3.6) .
= Q(Z17 22y « vy Zm)v

where zy, 22, ..., 2n are forms of degree 2h + 1 in the variables u;, v;
(i=1,2,...,m).
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Another, more interesting way of using the identity (2.2) is as follows:

O(;) Q*(v)Q* () Q* W) Q*(wy) - . . = Qwy) Q2 () Q* () Q) - -
h terms h—1 terms
= 0w)) Q*(v)Q*(wy) . . .
——

h — 2 terms

(3.7)

=01, 225 -+ -5 Zm),
or, Q"w)Q" W) =0, 22 -, Zn),
where hy = h+ 1, hp, = h if h iseven and hy = h, hh, = h+ 1 if h is
odd, and as before, z, 22, ..., 2 are forms of degree 2h+ 1 in the variables
u, v; (i=1,2,..., m). Naturally, the forms z; in the identity (3.6) and the
forms z; in the identity (3.7) are different.

If we take h = k and substitute w; = s;, v; = s (i = 1,2, ..., m)
in the final identity given either by (3.6) or by (3.7), we get an identity
0**1(s;) = O(z1, 22, ..., Zm), and it follows that a solution of (3.5) is given
by x; = z;, y = QO(s;). However, in both cases the forms z; (i=1, 2, ..., m)
reduce respectively to the forms OfGsp)s; (i=1,2,...,m) and we get the
solution of (3.5) already mentioned in Theorem 1. A similar situation arises
if we take u; = s;, v; = —s; (i = 1,2, ..., m) and use either of the two
identities (3.6) or (3.7).

If, on the other hand, we substitute values of u;, v; in (3.7) such that
Q(u;) = Q(v;) but u; and v; are not of the type already mentioned, we
obtain a parametric solution of (3.5) such that x; (i =1, 2, ..., m) do not

have a common polynomial factor. For instance, if Q(x;) = Z;"Zla,-x2 we

may simply take vy = —uy, v; = w; (i = 2,3,...,m), when we have
O(u;) = O(v;), and substituting these values of v; in the identity (3.7), we
get 0"\ () = Q(z1, 22, ..., Zm), Where z; (i =1,2, ..., m) are forms in
the variables u; and it follows that a parametric solution of equation (3.5) is
given by

xi = zi(uy, Upy ooy Uy), i=1,2,...,m,
338) (w1, up )
y:Q(ula Uz, )um)
This solution gives x; (i=1, 2, ..., m) in terms of polynomials that do not

have a common factor.
As an example, a parametric solution of the equation

(3.9) ax? +bxs+cex3 =y,
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obtained as described above, is given by

x| = (—a’ul + 21a*butu3 + 214 cu1u3 35ab*ulus
— T0abcudubu3 — 35ac’utuly + Tb°ul + 210> cuiu
+ 21t + 7 uuy
= (7a*u® — 35a°bujul — 35a°cutu’ + 21ab*utu}
+ 2abcid a3 + 2lactidul — b*ub — 3b7cuiu
(3.10) ) 24
—3bctudus — Cuus
= (Td*u6 — 35a°bujul — 35a°cutu’ + 21ab*utul
+ R2abcudurul + 21actuiul — b*u
— 3bcusul — 3bc*udu — Audus
y = au? + buj + cu

where u;, u, and u3 are arbitrary parameters.
As a numerical example, a solution of the equation

(3.11) x4 2x 433 =y,

obtained by substituting a =1, b =2, ¢ =3, u; = l,up = 3,u3 = 4 in (3.10),
is as follows:

(3.12)  x; = 1861397, x, = —594969, x3 = —793292, y=67.

This solution is in coprime integers, that is, gcd(x;, x2, x3) = 1.

When the quadratic form Q(x;) in equation (3.5) contains terms of the
type x;x;, we can reduce it by an invertible linear transformation to the type
oy 1aX solve the equation Q(X;) = y" as described above and thereby
obtain a parametric solution for (3.5) in terms of polynomials that do not
have a common polynomial factor but which may have coefficients given by
rational numbers depending on the initial invertible linear transformation. As
observed in Section 3.1, such a solution readily yields a solution in terms of
polynomials with integer coefficients.

3.3 THE EQUATION Q(x;) =" WHEN n IS EVEN

When 7 is an even positive integer, we may write n = 2"(2k + 1) where
h is a positive and k a nonnegative integer, and so equation (3.3) may be
written as

(3.13) Q(x1, X2, + .y Xp) = Y2 ORI
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We will obtain a parametric solution of this equation if the condition of
solvability stated in Theorem 1 is satisfied. Equation (3.13) is equivalent to
the following two diophantine equations :

(3.14) OCx1, X2, ..oy X) =7,
(3.15) no=y e,

When equation (3.13) is solvable in integers, it follows from Theorem 1 that
equation (3.14) also has a solution in integers. Any solution of equation (3.14)
in integers yields, on appropriate scaling, another solution of (3.14) in rational
numbers such that y; = 1. We use such a solution to obtain a parametric
solution of (3.14), substitute the value of y; so obtained in equation (3.15),
and solve the resulting equation.

Ifx,=¢& (i=1,2,...,m), yy =1 is a solution in rational numbers
of equation (3.14) so that Q(&;) = 1, we obtain a parametric solution of this
equation by writing

(3.16) xi=xp0+&, i=1,2,...,m,
=1,
where x;; (i = 1,2,..., m) are arbitrary parameters. With these values,

equation (3.14) gives

(GA7) QG o1, -y B) 6+ {Zx,-l <ag(x)> }9+Q(@-> ~1.
xi=§;

ox;
i=1 !

Since Q(&;) = 1, we can readily solve (3.17) to get a nonzero value of 6
which on being substituted in (3.16) gives a solution of equation (3.14) that

may be written, after multiplying by Q(xi1, X21, ..., Xm1), as follows:
(318) xi:Qi(xllaxﬂa"'axml)a izlaza"'ama

(3.19) y1 =0 (x11, %21, -+ - Xm1)

where Q;(x11, X215 .-+, Xm1) (i = 1,2, ..., m) are certain quadratic forms
in m arbitrary parameters Xji, Xai, ..., X . Substituting this value of y; in
equation (3.15), we get the equation

(3.20) Qxit, Xat, oy ) = 2D,

Since QO(xiy, X21, - .., Xm1) 1S a quadratic form in m arbitrary variables
xp (i = 1,2,...,m), equation (3.20) is exactly of the same type as
equation (3.13) and is equivalent to the following two equations:

(3:21) O(x11, Xat, -y Xt) = 33,
(3.22) yp = y2(h_2)(2k+1) .
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We now obtain a solution of (3.21) in terms of m new arbitrary parameters
xp (i=1,2,...,m) and proceeding as before, we substitute the value of y,
in equation (3.22) to obtain the equation

(3.23) O(X12, X225+« oy X)) = yz(hiz)ak“) )

where xp, X2, ..., X2 are m arbitrary parameters. Equation (3.23) is again
of the same type as equation (3.13), and by repeating this process h times,
we will obtain the equation

(3.24) OX1ny Xans « - vy X)) = YT

where Xy, Xop, ..., Xy are m arbitrary parameters.

We can obtain a parametric solution of equation (3.24) as described
in Section 3.2, and working backwards, we successively obtain parametric
solutions of all intermediate equations such as (3.23) and (3.20), and eventually
we obtain a parametric solution of equation (3.13). In general, the values of
x; (i=1,2,...,m)and y given by this solution are in terms of polynomials
that do not have a common polynomial factor. Further, these polynomials may
have rational coefficients but, as already noted, we can readily use such a
solution to obtain a solution in terms of polynomials with integer coefficients.

As an example, a parametric solution of the equation

(3.25) X} +2X5 4 3X3 =
obtained by the above method, is as follows:
Xy = —x% 4 56x8x3 + 84x%x3 — 280xx} — 840x}x3x3
— 630x}x3 + 224x3x5 + 1008xTx3x3 + 1512x7x5x%
+ 756x3x5 — 1625 — 96x5x3 — 216x3x3 — 216315 — 8148,
5 = 8xxa(—x] + 243 4+ 3x3)
x (X} — 12x7x5 — 18x3x3 + 40§ + 12x3x3 + 9x3),
X3 = 8x1x3(—x1 + 2x2 + 3x3)
x (X — 122303 — 18x3x3 + 40§ + 12x3x3 + 9x3),
Y =x3 + 205 + 313,

(3.26)

where x;, x, and x3 are arbitrary parameters. Taking x; = 1,x, = 4,x3 = 2,
we get the following solution of (3.25) in coprime integers:

x; = —1497233, x, =2302048, x3 =1151024, Y =45.

We also note that if we substitute in (3.26) the values of x;, x, and x3
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obtained by taking a =1,b=2,c =3 in (3.10), we will get a parametric
solution of the diophantine equation

(3.27) X} +2X3 +3X; = 7°.

While this solution is cumbersome to write, substituting in (3.26) the numerical
values of xj, x, and x; stated in (3.12), we find the following solution of
equation (3.27) in coprime integers:

X; = —1131964395580295061121284789093517073064318753427441,

X, = —271146391211682262765778908184694414526742521916520,

X3 = —361528521615576350354371877579592552702323362555360,
Y =67.

The above method does not always yield solutions in coprime integers
of a given equation of type (3.13). This is not surprising since, as seen in
Section 3.1, solutions in coprime integers do not always exist. We give below
an example where the parametric solution obtained as described above does
not give a solution in coprime integers.

A parametric solution of the diophantine equation

(3.28) 2% 4+ 3x3 4 7x5 =8,
obtained by the above method, is as follows:

x; = — 21552u8 — 3234147ul — 36197283 ujus + 76952736u; uiu;
+25873176uu§ — 177147u5 + 260460481313 — 18480840u7 15
—91161168u3u3 + 2112096uSu3 — 51152472uu313
+ 137433240utu3us + 7715736uuSus — 5630688u3usu3
+ 96616813 — 33030900u3u§ + 45580584u;u}, + 6062364u5u3
+ 1547910u5u3 — 1063104u]uz — 16532208u}usu3
— 59344488u ubu; — 25412184u15u5 + 110224813 ub + 1431361513

Xy = 24uy2uy + Tuz)(—10u] + 56uius — 27u5 + 35u3)
x (124u 4 2240u3us — 108utu3 — 2604u3u3
+ 6048u 1313 — T840u 13 — 729u5 + T182u3u3 + 1519u3)
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x3 =37968ud + 5697573ul + 495331213 ujus — 24018624u; u3u3
— 4558058412us — 177147u§ + 42241921313 + 32557560uu}
— 14784672u3u5 — 3720864ulu3 — 14410872u u3u3
+ 84280392uu5u’ + 5353776uuSus + 73785613 ubus + 476280u7u;
+ 2309076u3uS + 73923361} + 9369108uSu3 — 35316162u5u}
— 172416u]us — 17675280u usu3 — 67305168u; 113
+ 88037712u 1513 + 157464utus + 252000u8us

y =9Qu? + 3u3 + Tud),

where u;, up and u3 are arbitrary parameters. Here the values of x;, x, and
x3 are always divisible by 3 but not necessarily by a larger factor. Taking

uy =1, uy =2, u3 =3 in the above solution, we get the following solution
of (3.28):

x1 = —20601098187, x, = 86152445040, x3 = 65551346853, y =693,

for which ged(x;, xp, x3) = 3.
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