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QUADRATIC FORM MADE A PERFECT POWER

BY A NEW COMPOSITION THEOREM

ON ARBITRARY QUADRATIC FORMS

by Ajai CHOUDHRY

ABSTRACT. This paper deals with the diophantine equation Q(x1 x2 xm) yn ,
where m and n are arbitrary positive integers and Q(x1 x2 xm) is an arbitrary
quadratic form in the m variables x1 x2 xm . While solutions of special cases of
this equation have been published earlier, the general equation of this type has not
been solved till now. To solve this equation, we first show that, given an arbitrary
quadratic form Q(x1 x2 xm) in m variables, there exists a composition formula
Q(ui)Q

2( i) Q( i) where ui and i ( i 1 2 m ) are arbitrary variables and the

i ( i 1 2 m ) are cubic forms in the variables ui and i ( i 1 2 m ).
This is a new composition formula, different from the standard composition formulae
of the type Q(ui)Q( i) Q( i) which are known for certain classes of quadratic
forms. As the equation Q(xi) yn is not always solvable, we prove a theorem giving
a necessary and sufficient condition for its solvability. We use the aforementioned
composition formula to obtain parametric solutions of the equation Q(x i) yn , and
also give some numerical examples.

1. INTRODUCTION

This paper deals with the diophantine equation

(1.1) Q(x1 x2 xm) yn

where m and n are arbitrary positive integers and Q(x1 x2 xm) is an

arbitrary quadratic form in the m variables x1 x2 xm . The case m 2

has received considerable attention [1, Chapter 20, pp. 533–543] and a number

of authors have also considered several special cases when m 3 [1, pp. 543–

544]. However, the equation does not seem to have been solved in the most

general case as represented by equation (1.1).
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We first show in Section 2 that, given any arbitrary quadratic form

Q(x1 x2 xm) in m variables, there exists a very general composition

formula of the type

(1.2) Q(u1 u2 um)Q
2( 1 2 m) Q( 1 2 m)

where the ui and i ( i 1 2 m ) are arbitrary variables while the i

( i 1 2 m ) are cubic forms in the variables ui and i .

As we shall see in Section 3, equation (1.1) does not always have a

solution in integers. Accordingly, we first prove a theorem in Section 3 giving

a necessary and sufficient condition for the solvability of this equation. When

equation (1.1) is solvable in integers, it is easy to find a parametric solution

such that xi ( i 1 2 m ) are given by polynomials that have a common

polynomial factor. We show in Section 3 that, using the identity proved in

Section 2, parametric solutions of equation (1.1) can be obtained such that

xi ( i 1 2 m ) are given by polynomials that do not have a common

polynomial factor. While there are equations of type (1.1) for which solutions

in relatively prime integers simply do not exist, when such solutions are

possible, the parametric solutions obtained in the paper may yield solutions

of (1.1) in relatively prime integers.

2. A COMPOSITION THEOREM ON ARBITRARY QUADRATIC FORMS

In this section we prove a general composition theorem for arbitrary

quadratic forms in any number of variables. This theorem establishes the

identity (1.2) which is reminiscent of the well-known composition formulae

of the type

(2.1) Q(xi)Q(yi) Q(zi)

where Q(xi) is a certain quadratic form in the variables xi , and the zi are

bilinear forms in the xi and yi . All the composition formulae of type (2.1)

are known [2, pp. 417–427] but in all such formulae there are restrictions on

the quadratic forms Q(xi) as well as on the number of the variables xi . The

identity (1.2) differs from the standard composition formulae in view of the

squared quadratic form Q2( i) occurring in (1.2) but there is no restriction

either on the quadratic form Q(ui) or on the number of the variables ui .

We note that in the identity (1.2), while the ui and i are completely

arbitrary, the i ( i 1 2 m ) are cubic forms in the ui i such that if

ui ( i 1 2 m ) are taken as constants, the i become quadratic forms
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in the variables i whereas if i ( i 1 2 m ) are taken as constants,

the i become linear forms in the variables ui .

THEOREM 1. If Q(x1 x2 xm) is an arbitrary quadratic form in m

variables x1 x2 xm , with m being an arbitrary integer, there is an identity

given by

(2.2) Q(u1 u2 um)Q
2( 1 2 m) Q( 1 2 m)

where ui and i ( i 1 2 m) are arbitrary variables while i

( i 1 2 m ) are cubic forms in the variables ui and i defined by

(2.3) i i

m

i 1

i

Q(u)

ui
uiQ( 1 2 m) i 1 2 m

Proof. To prove the identity (2.2), we will first obtain a solution of the

following diophantine equation in the variables t1 t2 tm u1 u2 um :

(2.4) Q(t1 t2 tm) Q(u1 u2 um)

We substitute

(2.5) ti i ui i 1 2 m

in equation (2.4), and get

(2.6) Q( 1 2 m)
2

m

i 1

i

Q(u)

ui
0

If Q( 1 2 m) 0 , a non-zero solution of this equation is given by

(2.7)

m

i 1

i

Q(u)

ui
Q( 1 2 m)

With this value of , using (2.5), we get a solution of (2.4) given by

(2.8) ti
i

Q( 1 2 m)
i 1 2 m

where

(2.9) i i

m

i 1

i

Q(u)

ui
uiQ( 1 2 m) i 1 2 m

We now have a solution of (2.4) with ui ( i 1 2 m ) being arbitrary

while ti ( i 1 2 m ) are given in terms of ui ( i 1 2 m ) as well
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as additional arbitrary parameters i ( i 1 2 m ). Substituting the above

values of ti ( i 1 2 m ) in (2.4), and multiplying by Q2( 1 2 m) ,

we get the identity (2.2). This proves the theorem when Q( 1 2 m) 0 .

Finally we note that when Q( 1 2 m) 0 , the identity (2.2) is readily

verified. This completes the proof.

As an example, we have the identity

(u21 u22 u23)(
2
1

2
2

2
3)
2 ( 2

1
2
2

2
3)u1 2u2 1 2 2u3 1 3

2

2u1 1 2 ( 2
1

2
2

2
3)u2 2u3 2 3

2

2u1 1 3 2u2 2 3 ( 2
1

2
2

2
3)u3

2

As a more general example, we have the identity

(au21 bu22 cu23 du24)(a
2
1 b 2

2 c 2
3 d 2

4)
2 a 2

1 b 2
2 c 2

3 d 2
4

where

1 ( a 2
1 b 2

2 c 2
3 d 2

4)u1 2bu2 1 2 2cu3 1 3 2du4 1 4

2 2au1 1 2 (a 2
1 b 2

2 c 2
3 d 2

4)u2 2cu3 2 3 2du4 2 4

3 2au1 1 3 2bu2 2 3 (a 2
1 b 2

2 c 2
3 d 2

4)u3 2du4 3 4

4 2au1 1 4 2bu2 2 4 2cu3 3 4 (a 2
1 b 2

2 c 2
3 d 2

4)u4

with a b c d ui i ( i 1 2 3 4) being arbitrary parameters.

3. QUADRATIC FORM MADE A PERFECT POWER

In Section 3.1 we consider the solvability of equation (1.1). In the following

two subsections, Section 3.2 and Section 3.3, we obtain parametric solutions

of equation (1.1) in terms of m arbitrary parameters.

3.1 SOLVABILITY OF THE EQUATION Q(xi) yn

Equation (1.1) is not always solvable in integers. Apart from the obvious

cases when n is even and Q(x1 x2 xm) is a negative definite form so

that (1.1) cannot have any integer solutions, it is well known that the quadratic

equation Q(x1 x2 xm) y2 is not always solvable when m 4. For

instance, it is readily established that the quadratic equation

(3.1) 2x21 3x22 y2

has no solution in integers.
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Even when equation (1.1) has an integer solution, it is possible that it may

have no solutions in relatively prime integers. As an example, consider the

equation

(3.2) 2x21 2x22 y4

If x1 and x2 are both odd integers, it is easily seen that the left-hand side

of (3.2) is 4 (mod 16) , while if one of the integers x1 x2 is odd and one

is even, then the left-hand side of (3.2) is 2 or 10 (mod 16) . Since the

only fourth power residues modulo 16 are 0 and 1, it is clear that neither

can x1 and x2 be both odd nor can one of them be odd and one even. Thus,

for any solution of (3.2), both x1 and x2 must be even, and hence cannot

be relatively prime. A numerical solution of (3.2) is x1 2 x2 2. Thus,

equation (3.2) has solutions in integers but no solution in relatively prime

integers.

We further note that if a solution of (1.1) is given by xi Xi
( i 1 2 m ) and y Y , another solution of (1.1) is given by xi rn Xi

( i 1 2 m ) and y r2Y , where r is an arbitrary parameter. It follows

that if we find a solution of (1.1) in rational numbers, or a parametric solution

in terms of polynomials with rational numbers as coefficients, by choosing a

suitable integer value of r , we can readily obtain a solution in integers, or in

terms of polynomials with integer coefficients.

We now prove a theorem about the solvability of equation (1.1).

THEOREM 2. If Q(x1 x2 xm) is any arbitrary quadratic form with

integer coefficients in m variables x1 x2 xm , the diophantine equation

(3.3) Q(x1 x2 xm) yn

always has a solution in integers when n is odd. Further, when n is even,

equation (3.3) has a solution in integers if and only if the quadratic diophantine

equation

(3.4) Q(x1 x2 xm) Y2

has a solution in integers.

Proof. When n 2k 1 is an odd integer, a simple parametric solution

of (3.3) is given by xi rk si , y r , where r Q(s1 s2 sm) and the

si are arbitrary, for with these values of xi , we have Q(xi) r2kQ(si)

r2k 1 yn . This parametric solution readily yields solutions of equation (3.3)

in integers.
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When n 2k , any integer solution of equation (3.3) immediately gives

an integer solution of (3.4) with Y yk . Conversely if equation (3.4) has

a solution in integers, say, xi si ( i 1 2 m ), Y r , a solution in

integers of equation (3.3) is given by xi rk 1si ( i 1 2 m ), y r ,

since then Q(xi) Q(rk 1si) r2k 2Q(si) r2k yn .

The conditions of solvability of equation (3.4) are well-known [3, p. 42].

Thus, given any arbitrary quadratic form Q(xi) in any number of variables, we

can readily determine whether or not equation (3.3) has a solution in integers.

In fact, if (3.4) has an integer solution, we can easily find a parametric

solution of (3.4), and use it as indicated above to obtain a parametric solution

of (3.3).

While we have obtained parametric solutions of equation (3.3) whenever

this equation is solvable, we note that these parametric solutions give values

of xi ( i 1 2 m ) in terms of polynomials which necessarily have

a common polynomial factor. We will obtain in the next two subsections

parametric solutions that do not have this property, and hence may lead to

solutions of (3.3) in coprime integers.

3.2 THE EQUATION Q(xi) yn WHEN n IS ODD

In this section we consider the equation (3.3) when n is odd, that is, the

diophantine equation

(3.5) Q(x1 x2 xm) y2k 1

where k is an arbitrary positive integer and Q(x1 x2 xm) is an arbitrary

quadratic form with integer coefficients in m variables x1 x2 xm . We

will use the composition theorem of Section 2 to obtain parametric solutions

of equation (3.5) such that xi ( i 1 2 m ) do not have a common

polynomial factor.

Since ui and i ( i 1 2 m ) are completely arbitrary in (2.2), we

can use this formula h times as follows :

(3.6)

Q(ui)Q
2h( i) Q( i)Q

2h 2( i)

Q( i )Q
2h 4( i)

...

Q(z1 z2 zm)

where z1 z2 zm are forms of degree 2h 1 in the variables ui i

( i 1 2 m ).
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Another, more interesting way of using the identity (2.2) is as follows :

(3.7)

Q(ui)Q
2( i)Q

2(ui)Q
2( i)Q

2(ui)

h terms

Q( i)Q
2(ui)Q

2( i)Q
2(ui)

h 1 terms

Q( i )Q
2( i)Q

2(ui)

h 2 terms...

Q(z1 z2 zm)

or, Qh1(ui)Q
h2 ( i) Q(z1 z2 zm)

where h1 h 1, h2 h if h is even and h1 h , h2 h 1 if h is

odd, and as before, z1 z2 zm are forms of degree 2h 1 in the variables

ui i ( i 1 2 m ). Naturally, the forms zi in the identity (3.6) and the

forms zi in the identity (3.7) are different.

If we take h k and substitute ui si , i si ( i 1 2 m )

in the final identity given either by (3.6) or by (3.7), we get an identity

Q2k 1(si) Q(z1 z2 zm) , and it follows that a solution of (3.5) is given

by xi zi , y Q(si) . However, in both cases the forms zi ( i 1 2 m )

reduce respectively to the forms Qk(si)si ( i 1 2 m ) and we get the

solution of (3.5) already mentioned in Theorem 1. A similar situation arises

if we take ui si , i si ( i 1 2 m ) and use either of the two

identities (3.6) or (3.7).

If, on the other hand, we substitute values of ui i in (3.7) such that

Q(ui) Q( i) but ui and i are not of the type already mentioned, we

obtain a parametric solution of (3.5) such that xi ( i 1 2 m ) do not

have a common polynomial factor. For instance, if Q(xi)
m

i 1 aix
2
i , we

may simply take 1 u1 , i ui ( i 2 3 m ), when we have

Q(ui) Q( i) , and substituting these values of i in the identity (3.7), we

get Q2h 1(ui) Q(z1 z2 zm) , where zi ( i 1 2 m ) are forms in

the variables ui and it follows that a parametric solution of equation (3.5) is

given by

(3.8)
xi zi(u1 u2 um) i 1 2 m

y Q(u1 u2 um)

This solution gives xi ( i 1 2 m ) in terms of polynomials that do not

have a common factor.

As an example, a parametric solution of the equation

(3.9) ax21 bx22 cx23 y7
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98 A. CHOUDHRY

obtained as described above, is given by

(3.10)

x1 ( a3u61 21a2bu41u
2
2 21a2cu41u

2
3 35ab2u21u

4
2

70abcu21u
2
2u
2
3 35ac2u21u

4
3 7b3u62 21b2cu42u

2
3

21bc2u22u
4
3 7c3u63)u1

x2 (7a3u61 35a2bu41u
2
2 35a2cu41u

2
3 21ab2u21u

4
2

42abcu21u
2
2u
2
3 21ac2u21u

4
3 b3u62 3b2cu42u

2
3

3bc2u22u
4
3 c3u63)u2

x3 (7a3u61 35a2bu41u
2
2 35a2cu41u

2
3 21ab2u21u

4
2

42abcu21u
2
2u
2
3 21ac2u21u

4
3 b3u62

3b2cu42u
2
3 3bc2u22u

4
3 c3u63)u3

y au21 bu22 cu23

where u1 u2 and u3 are arbitrary parameters.

As a numerical example, a solution of the equation

(3.11) x21 2x22 3x23 y7

obtained by substituting a 1 b 2 c 3 u1 1 u2 3 u3 4 in (3.10),

is as follows :

(3.12) x1 1861397 x2 594969 x3 793292 y 67

This solution is in coprime integers, that is, gcd(x1 x2 x3) 1 .

When the quadratic form Q(xi) in equation (3.5) contains terms of the

type xixj , we can reduce it by an invertible linear transformation to the type
m

i 1 aiX
2
i , solve the equation Q(Xi) yn as described above and thereby

obtain a parametric solution for (3.5) in terms of polynomials that do not

have a common polynomial factor but which may have coefficients given by

rational numbers depending on the initial invertible linear transformation. As

observed in Section 3.1, such a solution readily yields a solution in terms of

polynomials with integer coefficients.

3.3 THE EQUATION Q(xi) yn WHEN n IS EVEN

When n is an even positive integer, we may write n 2h(2k 1) where

h is a positive and k a nonnegative integer, and so equation (3.3) may be

written as

(3.13) Q(x1 x2 xm) y2
h(2k 1)
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We will obtain a parametric solution of this equation if the condition of

solvability stated in Theorem 1 is satisfied. Equation (3.13) is equivalent to

the following two diophantine equations :

Q(x1 x2 xm) y21(3.14)

y1 y2
(h 1)(2k 1)(3.15)

When equation (3.13) is solvable in integers, it follows from Theorem 1 that

equation (3.14) also has a solution in integers. Any solution of equation (3.14)

in integers yields, on appropriate scaling, another solution of (3.14) in rational

numbers such that y1 1. We use such a solution to obtain a parametric

solution of (3.14), substitute the value of y1 so obtained in equation (3.15),

and solve the resulting equation.

If xi i ( i 1 2 m ), y1 1 is a solution in rational numbers

of equation (3.14) so that Q( i) 1 , we obtain a parametric solution of this

equation by writing

(3.16)
xi xi1 i i 1 2 m

y1 1

where xi1 ( i 1 2 m ) are arbitrary parameters. With these values,

equation (3.14) gives

(3.17) Q(x11 x21 xm1)
2

m

i 1

xi1
Q(x)

xi xi i

Q( i) 1

Since Q( i) 1 , we can readily solve (3.17) to get a nonzero value of

which on being substituted in (3.16) gives a solution of equation (3.14) that

may be written, after multiplying by Q(x11 x21 xm1) , as follows :

xi Qi(x11 x21 xm1) i 1 2 m(3.18)

y1 Q (x11 x21 xm1)(3.19)

where Qi(x11 x21 xm1) ( i 1 2 m ) are certain quadratic forms

in m arbitrary parameters x11 x21 xm1 . Substituting this value of y1 in

equation (3.15), we get the equation

(3.20) Q(x11 x21 xm1) y2
(h 1)(2k 1)

Since Q(x11 x21 xm1) is a quadratic form in m arbitrary variables

xi1 ( i 1 2 m ), equation (3.20) is exactly of the same type as

equation (3.13) and is equivalent to the following two equations :

Q(x11 x21 xm1) y22(3.21)

y2 y2
(h 2)(2k 1)(3.22)
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We now obtain a solution of (3.21) in terms of m new arbitrary parameters

xi2 ( i 1 2 m ) and proceeding as before, we substitute the value of y2
in equation (3.22) to obtain the equation

(3.23) Q(x12 x22 xm2) y2
(h 2)(2k 1)

where x12 x22 xm2 are m arbitrary parameters. Equation (3.23) is again

of the same type as equation (3.13), and by repeating this process h times,

we will obtain the equation

(3.24) Q(x1h x2h xmh) y2k 1

where x1h x2h xmh are m arbitrary parameters.

We can obtain a parametric solution of equation (3.24) as described

in Section 3.2, and working backwards, we successively obtain parametric

solutions of all intermediate equations such as (3.23) and (3.20), and eventually

we obtain a parametric solution of equation (3.13). In general, the values of

xi ( i 1 2 m ) and y given by this solution are in terms of polynomials

that do not have a common polynomial factor. Further, these polynomials may

have rational coefficients but, as already noted, we can readily use such a

solution to obtain a solution in terms of polynomials with integer coefficients.

As an example, a parametric solution of the equation

(3.25) X21 2X22 3X23 Y8

obtained by the above method, is as follows :

(3.26)

X1 x81 56x61x
2
2 84x61x

2
3 280x41x

4
2 840x41x

2
2x
2
3

630x41x
4
3 224x21x

6
2 1008x21x

4
2x
2
3 1512x21x

2
2x
4
3

756x21x
6
3 16x82 96x62x

2
3 216x42x

4
3 216x22x

6
3 81x83

X2 8x1x2( x21 2x22 3x23)

(x41 12x21x
2
2 18x21x

2
3 4x42 12x22x

2
3 9x43)

X3 8x1x3( x21 2x22 3x23)

(x41 12x21x
2
2 18x21x

2
3 4x42 12x22x

2
3 9x43)

Y x21 2x22 3x23

where x1 x2 and x3 are arbitrary parameters. Taking x1 1 x2 4 x3 2,

we get the following solution of (3.25) in coprime integers :

x1 1497233 x2 2302048 x3 1151024 Y 45

We also note that if we substitute in (3.26) the values of x1 x2 and x3
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obtained by taking a 1 b 2 c 3 in (3.10), we will get a parametric

solution of the diophantine equation

(3.27) X21 2X22 3X23 Y56

While this solution is cumbersome to write, substituting in (3.26) the numerical

values of x1 x2 and x3 stated in (3.12), we find the following solution of

equation (3.27) in coprime integers :

X1 1131964395580295061121284789093517073064318753427441

X2 271146391211682262765778908184694414526742521916520

X3 361528521615576350354371877579592552702323362555360

Y 67

The above method does not always yield solutions in coprime integers

of a given equation of type (3.13). This is not surprising since, as seen in

Section 3.1, solutions in coprime integers do not always exist. We give below

an example where the parametric solution obtained as described above does

not give a solution in coprime integers.

A parametric solution of the diophantine equation

(3.28) 2x21 3x22 7x23 y8

obtained by the above method, is as follows :

x1 21552u81 3234147u83 3619728u31u
4
2u3 76952736u31u

2
2u
3
3

25873176u21u
6
3 177147u82 26046048u51u

3
3 18480840u41u

4
3

91161168u31u
5
3 2112096u61u

2
3 51152472u21u

4
2u
2
3

137433240u21u
2
2u
4
3 7715736u1u

6
2u3 5630688u51u

2
2u3

966168u41u
4
2 33030900u22u

6
3 45580584u1u

7
3 6062364u62u

2
3

1547910u42u
4
3 1063104u71u3 16532208u41u

2
2u
2
3

59344488u1u
4
2u
3
3 25412184u1u

2
2u
5
3 1102248u21u

6
2 143136u61u

2
2

x2 24u2(2u1 7u3)( 10u21 56u1u3 27u22 35u23)

(124u41 2240u31u3 108u21u
2
2 2604u21u

2
3

6048u1u
2
2u3 7840u1u

3
3 729u42 7182u22u

2
3 1519u43)
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x3 37968u81 5697573u83 4953312u31u
4
2u3 24018624u31u

2
2u
3
3

45580584u21u
6
3 177147u82 4224192u51u

3
3 32557560u41u

4
3

14784672u31u
5
3 3720864u61u

2
3 14410872u21u

4
2u
2
3

84280392u21u
2
2u
4
3 5353776u1u

6
2u3 737856u51u

2
2u3 476280u41u

4
2

2309076u22u
6
3 7392336u1u

7
3 9369108u62u

2
3 35316162u42u

4
3

172416u71u3 17675280u41u
2
2u
2
3 67305168u1u

4
2u
3
3

88037712u1u
2
2u
5
3 157464u21u

6
2 252000u61u

2
2

y 9(2u21 3u22 7u23)

where u1 u2 and u3 are arbitrary parameters. Here the values of x1 x2 and

x3 are always divisible by 3 but not necessarily by a larger factor. Taking

u1 1 u2 2 u3 3 in the above solution, we get the following solution

of (3.28) :

x1 20601098187 x2 86152445040 x3 65551346853 y 693

for which gcd(x1 x2 x3) 3 .
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