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THE STABLE RANK OF ARITHMETIC ORDERS

IN DIVISION ALGEBRAS – AN ELEMENTARY APPROACH

by Joachim SCHWERMER and Ognjen VUKADIN

ABSTRACT. A well-known theorem of Bass implies that 2 defines a stable range
for an arithmetic order in a finite-dimensional semisimple algebra over an algebraic
number field. The purpose of this note is to provide an independent and elementary
proof of this fact for arithmetic orders contained in a finite-dimensional division algebra
over an algebraic number field.

1. INTRODUCTION

In the study of general linear groups over rings and the description of all

their normal subgroups the concept of a stable range is fundamental. Given

a ring R with identity, an element x GLn(R) is an elementary matrix if

x is of the form x 1 aEij where a R , i j and Eij is the matrix

with (i j) -coordinate 1 and zeroes elsewhere. Let En(R) be the subgroup of

GLn(R) generated by all elementary matrices. Define the stable linear group

GL(R) to be the union n 1GLn(R) , where GLm(R) is naturally identified

with a subgroup of GLm 1(R) . This identification sends elementary matrices

to elementary matrices. Thus, we set E(R) n 1 En(R) .

In the case of a field k , the group En(k) coincides with the derived group

of GLn(k) (except if n 2 and k 2). In the case of an arbitrary ring

R , the relation between the group GLn(R) and the group En(R) is much

more intricate. However, for the stable groups, E(R) [GL(R) GL(R)] . More

generally, given a two-sided ideal in R , one has

E(R ) [E(R) GL(R )]

where GL(R ) denotes the union n 1GLn(R ) over the principal congru-

ence subgroups of level .
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Due to the work of Bass [1] one can recover this stable structure theorem

for the linear group GLn(R) subject to the assumption that n is larger

than the so-called stable rank of R . We say that n N n 1, defines

a stable range for GL(R) , or, simply, for the ring R , if, for all m n , given

x (x1 xm 1) unimodular in Rm 1 , there exist 1 m R such that

(x1 1xm 1 xm mxm 1) is unimodular in Rm . The smallest integer n

such that for every k n , k defines a stable range for R , is called the stable

rank of R, to be denoted sr(R) .

There are many important families of rings for which the stable rank is

known. Among these are semi-local rings for which sr(R) 1 (see Section 2)

or Dedekind domains which have stable rank less than or equal 2. More

generally, as proved in [1, Thm11.1], an S -algebra R which is finitely

generated as a module over a commutative Noetherian ring S of finite Krull

dimension d has stable rank less than or equal to d 1.

In view of the applications of this latter result and the methods of proof

within the realm of linear groups over orders in a finite-dimensional semi-

simple algebra over Q (see [1, Sect. 19]), it might be of interest to have an

elementary proof, independent of the result just alluded to, of the following :

THEOREM. Let D be a finite-dimensional division algebra over an

algebraic number field K and let R be an K -order in D. Then 2 defines

a stable range for GL(R) , i.e., sr(R) 2 .

For the lack of reference, retaining the previous notation, we conclude the

note with the following result :

PROPOSITION. Let A Mr(D) with D a finite-dimensional division algebra

over K , and let R be a maximal K -order in A. Let be a nonzero two-sided

ideal in R . Then R is a finite ring, in particular : sr(R ) 1 .

2. SEMI-LOCAL RINGS

Let R be a ring with identity element. The radical rad(M) of an R -module

M is defined to be the intersection of all the maximal submodules of M . If

we view R as a module over itself, the radical rad(R) of R is defined. It

is a two-sided ideal in R , equals the intersection of the annihilators in R of

all simple R -modules. By definition, a non-zero ring R is called local if it

has a unique maximal left ideal, or, equivalently, if R rad(R) is a division
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ring. A ring R is said to be semi-local if R rad(R) is a left artinian ring, or,

equivalently, if R rad(R) is a semi-simple ring. A semi-local ring has only

a finite number of maximal left ideals. The converse holds if R rad(R) is

commutative.

In general, the projection R R rad(R) is a ring homomorphism. If an

element r R is invertible, viewed as an element in R rad(R) , then it is

invertible in R .

The following result [1, 6.4] due to Bass plays a decisive role. For the sake

of completeness, we include the simple proof given by Swan [7, 11.8].

LEMMA. Let R be a semi-local ring, let a R and let I be a left ideal

of R such Ra I R. Then there exists an element x I such that a x

is a unit of R.

Proof. By the previous remark we may assume that rad(R) 0 and

that R is a semi-simple ring. Then there exists a left ideal J I such that

R Ra J . The map : R Ra , defined by the assignment y ya , gives

rise to a short exact sequence

0 ker R Ra 0

of left R -modules. Since R is semi-simple the exact sequence splits, that

is, there exists a splitting : R ker . Thus, there exists an R -submodule

S R such that ker S R . By Ra J R , this induces an isomorphism

: ker ˜ J . The composition of isomorphisms

R Ra ker Ra J R

sends 1 to a x , where x : ( (1)) J . Hence a x is a right unit, and,

by semi-simplicity, a unit of R .

3. STABLE RANGE FOR GL(R)

3.1 THE STABLE RANK OF A RING

Let R be a ring with identity element. Let x (x1 xm) be an

element of the right R -module Rm . By definition, x is unimodular in Rm

if Rx1 Rxm R .

We say that n N , n 1, defines a stable range for GL(R) , or, simply,

for the ring R , if, for all m n , given x (x1 xm 1) unimodular in

Rm 1 , there exist 1 m R such that (x1 1xm 1 xm mxm 1) is
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unimodular in Rm . This definition uses the structure of a right R -module on

Rm . As shown in [9, Thm 2] or [10, Thm 1.6], using the natural left module

structure leads to an equivalent condition. It follows from the definition that

if n defines a stable range for R , then so does any m n . The smallest

integer n such that for every k n , k defines a stable range for R , is called

the stable rank of R, to be denoted sr(R) .

If R is a semi-local ring then sr(R) 1 . This follows from the lemma in

Section 2.

If R k is the ring of integers in an algebraic number field k , or, more

generally, if R is a Dedekind ring, then 2 defines a stable range for GL( k) ,

whereas 1 does not define a stable range for R . Thus sr( k) 2 . A simple

direct proof of these facts is given in [3, Prop. K 13] or [2].

3.2 ARITHMETIC ORDERS

Let k be an algebraic number field and let k denote its ring of integers.

Let A be a finite-dimensional semi-simple algebra over k . We call a subring

R of A an arithmetic order in A (or an k -order in A) if 1 R , R is a

finitely generated k -module and k R A .

EXAMPLES. Given a positive integer m 2, let km be the cyclotomic

field of mth roots of unity over Q . One has km Q( m) with a primitive

root of unity m Q . A field with an abelian Galois group over Q has a

unique maximal totally real subfield. In the case of the cyclotomic field km

this is the field lm Q( m
1

m ) . The ring of integers of the field lm is

lm Z( m
1

m ) .

Now we assume that m is even. Let I be the two-sided ideal in the

free algebra Q : Q(X Y) over X and Y generated by \m , X
2 1, and

XYX 1 Y 1 , where \m denotes the mth cyclotomic polynomial. Then Q I

is a Q -algebra generated by xm X I and ym : Y I . The center of

this algebra is a field, isomorphic to the maximal subfield lm in km . In fact,

A
m
: Q(X Y) I , viewed as an lm -algebra is a central simple algebra with

1 ym xm ymxm as a basis over lm . Thus, A m
is what is usually called a

quaternion algebra over lm . The algebra A
m
ramifies at each archimedean

place V of the field lm , that is, A m
(lm) is isomorphic to the algebra

of Hamilton quaternions.

We denote by Rm the lm -order in A
m
generated by 1 ym xm ymxm . In

the case of a prime power m
2

pk with a prime p 3 mod 4 the order

Rm is a maximal order whereas in the case m
2

pk with a prime p 1
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mod 4 there are two maximal orders which properly contain Rm . If
m
2
is not

a prime power then Rm is a maximal order. (This follows by determining the

discriminant of the order, or see, for example, [4, Satz 3.2.4].)

THEOREM. Let D be a finite-dimensional division algebra over an

algebraic number field k and let R be an arithmetic order in D. Then

2 defines a stable range for GL(R) , i.e., sr(R) 2 .

COROLLARY. For the matrix algebra Mn(R) over an arithmetic order R

of the above type one has sr(Mn(R)) 2 for all n 1 .

Proof. We need to show that given x1 x2 x3 R such that R x1 R x2
R x3 R there exist 1 , 2 R such that R (x1 1 x3) R (x2 2 x3) R .

Without loss of generality we may suppose that x1 0. Let I : R x1 be

the left ideal in R generated by x1 . Since k R D , we have 1 )

x 1
1

n

i 1

ki i

for some k1 kn k and 1 n R . Now, since k is the quotient

field of k , we have ki
ri
si
with ri , si k , si 0 for i 1 n ; so

for s
n

i 1 si we have : sx
1

1 R , with s k , s 0. Then

s sx 1
1 x1 I

so : I k is a nonzero ideal in k . Consider

J R

finite

i bi i R bi

J is obviously a left ideal in R , and since the bi ’s are elements of the center

of R we have that J is a two-sided ideal and R J is a ring. Since R is a

finitely generated module over k , we have that R J is a finitely generated

module over k . Since k is always finite, we have that R J is a finite

ring, in particular, it is a semi-local ring. The equality R x1 R x2 R x3 R

leads to 2 )

R J (x2 J) R J (x1 J) (x3 J) R J

1 ) Note that x 1
1

is the inverse of x1 in D , this element needs not to be in R .
2 ) For a ring R and x1 xk R we denote by R x1 xk the left ideal of R

generated by x1 xk .
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Now we can apply the Lemma in Section 2 for semi-local rings to conclude

that the set

(x2 J) R J (x1 J) (x3 J)

contains a unit, so there exist R such that

R J ((x2 x1 x3) J) R J

This implies that

J R (x2 x1 x3) R

Now, we have Rx1 J and x2 x1 x3 Rx1 R(x2 x3) , which

implies that

Rx1 R(x2 x3) R

By setting 1 : 0 , 2 : we get the desired reduction.

The corollary follows from the result of Vaserstein [9, Thm 3] which states

that for any ring R with identity element sr(Mn(R)) 1 [ sr(R) 1
n

] , where

[x] denotes the smallest integer greater than or equal to x .

REMARKS. (1) Note that the idea for the proof is based on the fact that,

for x1 0, the left ideal R x1 has a nonzero intersection with k . This

allows us to factor the ring modulo J and then at the end capture J with

x1 . However, this is not valid if we omit the condition “D is a division

algebra”. One can easily verify this for Mn(Z) as a Z -order in the matrix

algebra Mn(Q) .

(2) Since a ring is semi-local if and only if R radR is left artinian we

can slightly modify the proof of the theorem using the fact that an algebra

which is finitely generated as a module over an artinian ring is artinian as a

ring, in order to generalize the result for orders in finite-dimensional division

algebras over quotient fields of arbitrary Dedekind rings R .

(3) The idea of the proof can be applied in a simplified version to give a

short simple proof of the fact that 2 defines a stable range for any Dedekind

ring.

4. MAXIMAL ORDERS IN Mn(D)

PROPOSITION. In the above setting, let A Mr(D) and let R be a maximal

arithmetic order in A. Let be a nonzero two-sided ideal in R . Then R

is a finite ring, in particular sr(R ) 1 .
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Proof. By the classification of maximal orders in Mn(D) [6, Thm 27.6],

there are a maximal arithmetic order 6 in D and a right ideal 3 ) J so that R

has the form

R

6 6 J 1

6 6 J 1

J J 6

with J 1 : x D JxJ J , and 6 : x D xJ J . Let be a

nonzero two-sided ideal in R . Then contains a matrix X with some nonzero

entry d xij for some i j 1 r . We want to show that k is a

non-zero ideal in k .

We first consider the case when i j 1 r 1 . Let Ekl denote the

matrix with 1 in the (k l) -coordinate, and zeroes elsewhere. The arithmetic

order 6 contains the identity element, thus Ekl R for k l 1 r 1 .

Now, EiiXEji dEii , and EkidEiiEik dEkk for every k

1 r 1 , thus :

d 0 0 0

0 d

0

0 0 d 0

0 0 0

As in the proof of the theorem in 3.2, we can find s 0, s k , such that

s d 1 6 . Then the product

sd 1 0 0 0

0 sd 1

0

0 0 sd 1 0

0 0 0

d 0 0 0

0 d

0

0 0 d 0

0 0 0

s 0 0 0

0 s

0

0 0 s 0

0 0 0

to be denoted S , is an element of .

Again, as in the proof of the theorem in 3.2, we have J k 0. We

choose any t 0, t J k . Then

tEr(r 1)S tsEr(r 1)

3 ) For the definition of a right ideal of an order, see [6]. In the case of an order in a skewfield,
the definition of a right ideal of an order coincides with the usual ring theoretic definition.
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Since J is a right ideal of 6 we have 1 J 1 , hence E(r 1)r R and

tsEr(r 1)E(r 1)r

Consequently, the product ts , written in the form

0

ts 0 0 0

0 ts

0

0 0 ts 0

0 0 ts

t 0 0 0

0 t

0

0 0 t 0

0 0 0

S tsEr(r 1)E(r 1)r

is an element in k .

The cases where i 1 r 1 , j r , reduce to the previous

one by observing that XtEri . Analogously, the cases where i r ,

j 1 r 1 also reduce to the first case by using the fact that sEjrX ,

and the case i j r reduces to the latter case by observing that XtEr1 .

We obtain that : k is a nonzero ideal in k . Thus, as in the

proof of the theorem we have that R is a finitely generated k -module,

hence finite, in particular, R is a semi-local ring and sr(R ) 1 .
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