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CONTINUA AS MINIMAL SETS OF HOMEOMORPHISMS OF S2

by Shigenori MATSUMOTO and Hiromichi NAKAYAMA

ABSTRACT. Let f be an orientation preserving homeomorphism of S2 which has
a continuum X as a minimal set. Then there are exactly two connected components
of S2 X which are left invariant by f and all the others are wandering. The
Carathéodory rotation number of an invariant component is irrational.

1. INTRODUCTION

Let f be an orientation preserving homeomorphism of S2 which has a

continuum X as a minimal set. By a continuum we mean a compact connected

subset which is not a single point. There are a great variety of examples of

such homeomorphisms. The simplest one is an irrational rotation on S2 , with

a round circle as a minimal set. Besides this, a pathological diffeomorphism

of S2 is constructed in [Ha] which has a pseudo-circle as a minimal set. See

also [He] for a curious diffeomorphism. Also a homeomorphism of S2 with

a minimal set homeomorphic to a variant of the Warsaw circle is constructed

in [W]. The fast approximation by conjugacy method is discussed in [FK],

which may produce such diffeomorphisms with various topological natures.

In all these examples the minimal sets X separate S2 into two domains.

So it is natural to ask if this is the case with any minimal continuum. It is well

known that for any n N , there is a continuum X in S2 which separates S2

into n open domains U1 Un such that the frontier of each Ui coincides

with X ([K]).

A connected component U of S2 X is called an invariant domain if

f U U , a periodic domain if f nU U for some n 1, and a wandering

domain otherwise.
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THEOREM 1.1. Consider an orientation preserving homeomorphism of S2

which admits a continuum as a minimal set. Then there are exactly two

invariant domains and all the other domains are wandering. The Carathéodory

rotation numbers of both invariant domains are identical and irrational.

The overall strategy to prove Theorem 1.1 is to use the Carathéodory

prime end theory and to apply the Cartwright-Littlewood theorem. Sections 2

and 3 are expositions of the prime end theory and the Cartwright-Littlewood

theorem, which are included since they are short and self-contained, and some

special features pointed out in these sections are needed in the development

of Section 4, which is devoted to the proof of Theorem 1.1. Both Sections 2

and 3 concern simply connected domains of closed oriented surfaces of any

genus, and Section 4 solely orientation preserving homeomorphisms of the

sphere S2 . In Section 5 we will construct a homeomorphism which actually

admits a wandering domain.

2. PRIME ENDS

Denote by Y a closed oriented surface equipped with a smooth Riemannian

metric and the associated area form d ol . Let U Y be a hyperbolic

domain, i.e. an open simply connected subset such that Y U is not a singleton.

(A nonhyperbolic simply connected domain exists only on the 2-sphere.) The

purpose of this section is to show that a homeomorphism of U which extends

to a homeomorphism of the closure U does extend to a homeomorphism of the

so called Carathéodory compactification U , a closed disc. Here we are only

concerned with a simply connected domain in Y . But there are generalizations

to more general domains, which can be found in [E] and [M]. As general

references of prime end theory, see also Sect. 17, [Mi] and Chapter IX, [T].

The proof of the main lemma here (Lemma 2.2) is taken from [E].

Let 0 U be a base point. A real line properly embedded in U and

not passing through 0 is called a cross cut. A cross cut c separates U

into two hyperbolic domains, as can be seen by considering the one point

compactification of U and applying the Jordan curve theorem. The one not

containing 0 is called the content of c and denoted by U(c) . A sequence of

cross cuts ci i 1 is called a chain if ci 1 U(ci) for each i . Two chains ci
and ci are called equivalent if for any i , there is a j such that cj U(ci) and

cj U(ci) . An equivalence class of chains is called an end of U . (This is quite

different from the notion of ends for general noncompact spaces developed by
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FIGURE 1

Topological chains

H. Freudenthal et al., and set out e.g. in [E2].) A homeomorphism between

two hyperbolic domains induces in an obvious way a bijection between the

sets of ends. Given an end , the relatively closed set C( ) iU(ci) is

independent of the choice of a chain ci from the end , and is called the

content of .

A chain ci is called topological if the closures ci of ci in Y are mutually

disjoint and the diameter diam(ci) converges to 0 as i . Examples of

topological chains, ci and ci , are given in Figure 1. An end is called

prime if it admits a topological chain.

LEMMA 2.1. The content C( ) of a prime end is empty.

Proof. Assume the contrary and choose a point x from C( ) . Consider

an arc in U joining 0 to x . See Figure 2. Then the distance from a

point in to Y U is a continuous function on , and thus has a positive

minimum. This contradicts the assumption that is prime.

0

U

c1
c2

x

FIGURE 2
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A positive valued continuous function on U is called admissible if

U

2d ol

Given a subset c in U , -diam(c) denotes the diameter of c with respect to

the Riemannian metric 2 . (Function theorists often denote the same metric

by dz .) An end is called conformal if for any admissible function

there is a chain ci representing such that -diam(ci) 0 .

If : U V is a conformal equivalence and if : V (0 ) is

admissible, then the function : U (0 ) defined by (z) ( (z)) (z)

is admissible, and for c V , we have -diam(c) -diam( 1(c)) . This

shows that induces a bijection between the sets of the conformal ends of

the two hyperbolic domains.

LEMMA 2.2. An end is prime if and only if it is conformal.

Proof. First of all assuming that is a prime end which is represented

by a topological chain ci , we shall show that is a conformal end. By

passing to a subsequence one may further assume that ci converges to a

point x0 . Since x0 belongs to at most one ci , one may also assume that

x0 ci for any i . Take polar coordinates (r ) around x0 . Let be an

arbitrary admissible function on U , extended to the whole Y by letting 0

outside U . Then by the Schwarz inequality

0

2

0

(r )rd dr
2 2

r

2d ol

Since is admissible,
r

2d ol 0 as 0, and we have

1

0

2

0

(r )rd dr 0 ( 0)

Therefore we can find a sequence k 0 such that

2

0

( k ) kd 0 (k )

Notice that the left-hand side above coincides with the -length of the union

of arcs r k U .

Now from the sequences ci and k , let us construct subsequences

ci and k in the following fashion. See Figure 3. First define c1 c1

and choose 1 to be any k from the sequence such that c1 r 1 .

Then choose c2 to be any ci from the sequence such that c2 r 1 .
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Next choose 2 such that c2 r 2 , c3 such that c3 r 2 ,

and so forth.

Then there is a connected component ci of r i U which separates

the cross cut ci 1 from ci . To see this, construct a graph K ; the vertices are

connected components of U r i and the edges connected components

of U r i . See Figure 4. By a transversality argument any two distinct

vertices can be joined by a finite edge path. Actually K is a tree, since U

is simply connected and any edge corresponds to a cross cut of U . Thus

0

ci

ci 1

ci

x0

r i

FIGURE 4
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there is a unique shortest edge path joining the two vertices corresponding

to the components, one containing ci , the other ci 1 . The component ci
of U r i corresponding to any edge of separates ci 1 from ci .

Clearly the chains ci and ci are equivalent and the latter satisfies -

diam(ci ) 0 , showing that is conformal.

Next assume that is conformal. First of all if we choose an admissible

function 0 which is constantly equal to 1 on U , we can find a chain ci

such that diam(ci) 0 as i . Passing to a subsequence if necessary, one

may assume ci x0 . Again let (r ) be the polar coordinates around x0 .

Define a function by

(r )

1

r log r
if r 1 2 ,

2

log 2
otherwise.

Computation shows that the restriction of to U is admissible. Now for any

small , the -distance of the -circle and the -circle is given by

dr

r log r
log(log log )

which diverges to if we fix and let 0 . Let ci be a chain

representing such that -diam(ci) 0 . Since is bigger than a constant

multiple of 0 , this implies also that diam(ci) 0 .

First consider the case where ci converges to x0 (passing to a subsequence).

See Figure 5. The above computation shows that for i large enough ci is

0
U

r 1 2

ci

ci 1

x0

FIGURE 5

U with the metric 2 ( -diam ci 0)
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a compact subset of 0 r 1 2 and we can take a subsequence such

that the closures ci are mutually disjoint. Thus we obtain a topological chain

representing .

In the remaining case, we may assume that ci converges to a point x1
distinct from x0 . See Figure 6. We shall still use the polar coordinates (r )

c1

c2

c3

x1x0

r 2

U

c1
c1

c2

c2

c3

r 1

0

FIGURE 6

around x0 . Recall that we have another chain ci converging to x0 . The

chain ci has no particularly good property other than diam(ci) 0 . In

the worst case x0 may belong to any ci . However passing to subsequences

of ci and ci (denoted by the same letters) and choosing a sequence of

positive numbers i 0, we may assume the following :

(1) the cross cut ci is contained in r i ;

(2) all the ci are disjoint from r 1 ;

(3) the sequence c1 c1 c2 c2 forms a chain.

Then there is a component ci of r i U which separates ci from ci .

The chain ci is the desired topological chain.

A cross cut c : R U is called extendable if the limits limt c(t) and

limt c(t) exist. Then c is either a compact arc or a Jordan curve in Y .

A topological chain ci is called extendable if each ci is extendable. The

proof of the above lemma also establishes the following lemma useful in the

sequel.
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LEMMA 2.3. A prime end is represented by an extendable topological

chain.

For a hyperbolic domain U of Y , denote by (U) the set of prime ends

of U . The union U U (U) , topologized in a standard way, is called

the Carathéodory compactification of U . Let us explain it in more detail.

A neighbourhood system in U of a point in U is the same as a given system

in U . Choose a point (U) represented by a topological chain ci . The

set of points in the content U(ci) , together with the prime ends represented

by topological chains contained in U(ci) for each i , forms a neighbourhood

system of .

Lemma 2.2 shows that a conformal equivalence : U V extends to

a homeomorphism ˆ : U V . In particular U is homeomorphic to D by

the natural extension ˆ of a Riemann mapping : U D , and for D it

is clear that D is homeomorphic to the closed disc D D . Thus U

is homeomorphic to a closed disc for any hyperbolic domain U . On the

other hand by the definition of topological chains, a homeomorphism f of

U which extends to a homeomorphism of the closure U does extend to a

homeomorphism f of the compact disc U . Especially important is the rotation

number of the restriction of f to (U) , which is called the Carathéodory

rotation number.

A proper embedding : [0 ) U is called a ray. A ray is said to

belong to a prime end if is represented by a chain ci and for any i ,

there is t 0 such that [t ) U(ci) . The ray is called extendable if

the limit limt (t) , called the end point of , exists. The end point of an

extendable ray in U belongs to the frontier Fr(U) .

A prime end of U is called extendable if there is an extendable ray

belonging to . Denote by (U) the set of extendable prime ends.

LEMMA 2.4. The end points of two extendable rays i (i 1 2) belonging

to the same prime end coincide.

Proof. The end point of i is the limit point of any topological chain

representing .

Lemma 2.4 enables us to define a natural map \ : (U) Fr(U) .

LEMMA 2.5. Any extendable ray belongs to some prime end.
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Proof. Given an extendable ray with end point x Fr(U) , one can

construct a topological chain from the concentric circles centered at x , by

much the same argument as in the proof of Lemma 2.2.

The above lemma says that a ray extendable in U Y is extendable

in the closed disc U .

By an identification ˆ : (U) D induced from a Riemann mapping

: U D , the Lebesgue measure on D is transformed to a probability

measure on (U) . It depends upon the choice of the Riemann mapping ,

but its class (called the Lebesgue class) is unique.

LEMMA 2.6. The set (U) of extendable prime ends is conull with

respect to the Lebesgue class. Especially (U) is dense in (U) .

Proof. Let : D U be the inverse Riemann mapping. Then another

application of the Schwarz inequality shows that

2

0

1

1 2

(rei ) rdrd

That is, for Lebesgue almost all 0 , we have

2
1

1 2

(rei 0) dr 4
1

1 2

(rei 0) rdr

Notice that the left-hand side is the length of the ray rei 0 1 2 r 1 .

REMARK 2.7. It is not the case that an extendable prime end always

admits a ray of finite length. See Figure 7.

U
ray

FIGURE 7
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3. THE CARTWRIGHT-LITTLEWOOD THEOREM

Let f : Y Y be an orientation preserving homeomorphism which leaves a

hyperbolic domain U in Y invariant. Now f induces an orientation preserving

homeomorphism on the Carathéodory compactification, f : U U . The

purpose of this section is to give a proof of the following theorem due

to M. L. Cartwright and J. E. Littlewood ([CL]).

THEOREM 3.1. Let f and U be as above. Assume that there is no fixed

point in Fr(U) and that the Carathéodory rotation number of U is 0 . Then

the restriction of f to (U) is Morse-Smale, and if (U) is an attractor

(resp. repellor) of the restriction of f to (U) , then is an attractor (resp.

repellor) of the homeomorphism f of U .

U

f

FIGURE 8

See Figure 8. One consequence of this is the famous Cartwright-Littlewood

fixed point theorem stated as Theorem 4.5 at the end of Section 4. Before

giving the proof, we shall give two examples of an invariant domain with

Carathéodory rotation number 0.

EXAMPLE 3.2. There is a simple homeomorphism h of S2 which satisfies

the following conditions :

(1) the homeomorphism h preserves a continuum X ;

(2) there is no periodic point in X ;

(3) S2 X consists of three open discs U , U and V ;
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(4) all three open discs are invariant by h ;

(5) the Carathéodory rotation number of V is 0.

To construct h , we start with a Morse-Smale diffeomorphism of the

interval [0 1] whose fixed points are 0 and 1. Consider the suspension flow

of on the annulus S1 [0 1] . Define h to be the time map of the flow,

where is any irrational number. Choose an orbit Y from S1 (0 1) and

let X S1 0 1 Y and V S1 [0 1] X . Finally extend h to S2 in an

obvious way. See Figure 9. Then the homeomorphism f on the Carathéodory

compactification V has two fixed prime ends.

V

FIGURE 9

T2

U

FIGURE 10

EXAMPLE 3.3. Let be a Denjoy C1 diffeomorphism of S1 whose

minimal set is a Cantor set . We put the suspension T2 S1 R (x y)

( (x) y 1) . For an irrational number , we define f : T2 T2 by

f ([x y]) [x y] . Then the minimal set of f is R . Its complement U

is a simply connected invariant domain. For the same reason as in Example 3.2,

the Carathéodory rotation number of U is 0. See Figure 10.

Proof of Theorem 3.1. By the assumption on the Carathéodory rotation

number, the homeomorphism f has a fixed point in (U) . Let ci be an

extendable topological chain representing . Recall that the ci are mutually

disjoint in Y . Also a ray that is a half-ray in ci is extendable and therefore

belongs to some prime end by Lemma 2.5. This implies that the cross cut ci

is extendable in the Carathéodory compactification U . The closure of ci in U

is denoted by ĉi . By Lemma 2.4 the ĉi are also mutually disjoint.
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Assume, by contradiction, that f ĉi ĉi for infinitely many i . Then

again by Lemma 2.4 we have f ci ci . Since diam(ci) 0 , the point

of accumulation of ci must be a fixed point of f . Therefore we can assume

that f ĉi ĉi for any i .

Let U(ci) be the component of U ĉi not containing the base point

0 U . Notice that U(ci) U U(ci) . Then we have for each large i either

f ĉi U(ci) or ĉi f U(ci) because is a fixed point of f . Assume, to fix

our ideas, that f ĉi U(ci) for any i , by passing to a subsequence.

Now let N be a neighbourhood of the frontier Fr(U) which does not

intersect the fixed point set Fix( f ) of f . Then since iU(ci) Fr(U) in Y by

Lemma 2.1, the closure of the domain U(ci) for some large i is contained in

N . Fix once and for all such a ci and denote it by c . The two end points

and of ĉ determine an interval [ ] in (U) containing the prime end ,

a fixed point of f . On this interval we have

f f 2 f 2 f

Assume that

(3.1) lim f n lim f n

See Figure 11. A contradiction will show that the map f is Morse-Smale

on (U) .

f
f 2 f 2

f

c

fc

f 2c

U

FIGURE 11

Hatched area is U U0

Consider a domain

U0 U n f
nU(c)

and notice that Fix( f ) Fr(U0) , by the choice of c . The chain f nc

of U is also a chain of U0 , and each cross cut f
nc is of course extendable.
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An important feature of U0 is that the intersection of the contents is empty,

i.e.

(3.2)

n 0

f nU0(c)

Let us denote by f 0 the homeomorphism induced by f on the Carathéodory

compactification U0 of U0 . Let 0 and 0 be the prime ends in (U0)

corresponding to the end points of c . Then we have

0 f 0 0 f 20 0 f 20 0 f 0 0 0

Let 0 lim f n
0 0 and 0 lim f n

0 0 . It follows from the definition of

topological chains that there is an order preserving homeomorphism between

(U) [ ] and (U0) [ 0 0 ] . Let us show that 0 0 . Assuming

the contrary, we get an extendable topological chain ci representing 0 0 .

Let i
0 and

i
0 be the two prime ends in (U0) corresponding to ci . Then

clearly the sequences f n
0 0 and

i
0 have the same limit 0 0 . In other

words, they are cofinal, that is, for any i , there is an n such that i
0 f n

0 0

and for any n , there is an i such that f n
0 0

i
0 . Likewise

i
0 and f n

0

are cofinal. Now ci is also an extendable topological chain of U joining i

and i in (U) . Since (U) [ ] and (U0) [ 0 0 ] are order

preserving homeomorphic, we see that i and f n are cofinal and i and

f n are cofinal. Since ci is also a topological chain of U , this shows that

, against the assumption (3.1).

Since f is fixed point free on Fr(U0) and the natural map \ : (U0)

Fr(U0) is equivariant, \ f 0 f \ , the set of extendable ends (U0) is

disjoint from Fix( f 0) . Lemma 2.6 implies that the fixed point set of f 0 is

nowhere dense in (U0) . Thus there is a point in the interval [ 0 0 ]

which is not fixed by f 0 . See Figure 12.

f

0 0

FIGURE 12

To fix our ideas assume that f 0 and let f n
0 . Let ci be an

extendable topological chain of U0 representing . Denote by U0(ci ) the
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content of ci in U0 . As before we have f 0(ci ) ci if we pass to a

subsequence. But is repelling on its right side. Therefore U0(ci ) f 0U0(ci ) .

If we choose i large enough, we have U0(ci ) U0(c) . But this is contrary

to (3.2), concluding the proof that f is Morse-Smale on (U) .

Let us prove the last part of the theorem. Assume that is an attractor

of f (U) . Choose an extendable topological chain ci representing . Then

as before we can assume that f U(ci) U(ci) and U(ci) Fix( f ) for

any large i . Fix some such i and let c ci . Let U1 U n 1 f
nU(c) . See

Figure 13.

fci

U1

1

f1
n

1 f1
n

1

U1

1

ci

FIGURE 13

No topological chain ci

Our purpose is to show that U1 U . Notice that this implies that is an

attractor of f . Denote the two end points of c in (U1) by 1 and 1 and

let 1 lim f n
1 1 and 1 lim f n

1 1 , where f 1 is the homeomorphism

of U1 induced by f . We have 1 1 , for otherwise the same argument

as before yields a contradiction. Take an extendable topological chain ci
representing this prime end in (U1) . It is also a topological chain for U

and we have

U U(ci ) U1 U1(ci )

Since iU(ci ) iU1(ci ) by Lemma 2.1, this shows that U1 U , as

required.

4. MINIMAL CONTINUUM

Let f be an orientation preserving homeomorphism of the 2-sphere S2

which has a continuum X as a minimal set. Recall that a connected

component U of S2 X is called an invariant domain if f U U . The

purpose of this section is to prove Theorem 1.1. We begin with the following

lemma.
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LEMMA 4.1. The Carathéodory rotation number of an invariant domain U

is nonzero.

Before the proof, let us mention that Example 3.2 shows the necessity of

the minimality assumption and that Example 3.3 shows that Lemma 4.1 does

not hold for surfaces of nonzero genus.

Proof of Lemma 4.1. Denote by f the homeomorphism that f induces

on U . Assume, by contradiction, that the rotation number of f (U) is 0.

Then the conclusion of Theorem 3.1 holds. Let and be adjacent repelling

and attracting fixed points on (U) and choose an interval ( ) in (U)

so that ( ) Fix( f ) . By Lemma 2.6 there is a prime end ( )

belonging to the set (U) of the extendable prime ends near . Then one

can choose an extendable curve ˆ joining and f such that ˆ U

is contained in an open fundamental domain F of f . (Recall that is an

attractor of the homeomorphism f .) See Figure 14.

F
f 1

f

V

FIGURE 14

U

Notice that the natural map \ : (U) X is equivariant, f \ \ f .

Therefore the closure of the curve in S2 joins a point, say p , with fp .

Notice that p X . The cross cuts f n in U (n Z ) are mutually disjoint

and its closure f n( ) joins a point f n(p) with f n 1(p) .

Since X is minimal and p X , there is an n 0 such that f np is arbitrarily

near p . Consider a small disc B centered at p such that B f B . The
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connected component of f 1 that contains the point p divides B into

two domains. One of them, V , corresponding to V in Figure 14, is contained

in U (if we choose B small enough) and the point f np can be chosen from

the component of B ( f 1 ) adjacent to V . Choose a small arc in B

joining p with f np which does not intersect f 1 except at p . Notice

that f . See Figure 15.

V

p

f np
f 1

fp

f

fB

B

FIGURE 15

Consider a long simple curve K n 0 f
n . Let q be the first point of

intersection of K p with (possibly q f np ) and let be the subarc

of joining p and q . Notice that q is not from since p . The

tiny arc together with the subarc K0 of K that joins p and q form a

Jordan curve J . See Figure 16.

Let D be the connected component of S2 J which contains fq . Then the

half open arc f fp cannot intersect J since q is the first intersection

point. Thus f fp and in particular its end point f n 1p is contained in D .

We also have f 1 D . In fact f 1 is an orientation preserving

homeomorphism mapping a neighbourhood of fp to a neighbourhood of p .

So the cyclic order of the three curves , f , f emanating from the point fp

is the same as the cyclic order of the curves f 1 , , emanating from p .

That is, the curve f 1 tends towards outside of D , and thus f 1 D .

Another long curve K n 0 f
n must pass arbitrarily near the

point f n 1p which is in D , and therefore must intersect . Let s be the

first intersection point of K p with . Then an open arc K0 in K with

end points p and s cannot intersect J and therefore K0 D . By the

construction of , s is not from f 1 and thus fs K0 . On the other hand

fs lies on f and therefore belongs to D . A contradiction.
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fp

fq

f n 1p

f 2p

D

J

f np

q

fs

f 1p p

s

FIGURE 16

The curve J

A closed disc D in S2 is called adapted if D Fix( f ) and

D fD S2 . Given an adapted disc D , choosing the point at infinity in

S2 (D fD) , one may consider D fD to be contained in R2 . Then the

degree of the map

id f : D R
2 0

is called the index of f with respect to D and is denoted by Indf D . An

application of the Lefschetz index theorem yields the following lemma.

LEMMA 4.2. Let D1 Dr be mutually disjoint adapted discs such that

there is no fixed point of f in the complement of r
j 1Dj . Then we have

r

j 1

Indf Dj 2

Let us return to the hypothesis of Theorem 1.1, that X is a connected

minimal set of f . Given an invariant domain U , we have Fix( f ) U by

Lemma 4.1 and the Brouwer fixed point theorem applied to the Carathéodory

compactification U .

LEMMA 4.3. The invariant domains are finite in number.

Proof. Assume there are infinitely many invariant domains and denote

them by Ui ( i 1 2 ). Choose a fixed point xi from Ui . Then passing to
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a subsequence, xi converges to a point x in S2 , which must be a fixed point

of f . If x is contained in X , then X has a fixed point, which contradicts

the assumption. Otherwise, the Ui coincide for large i . A contradiction.

Choose a closed disc D in U which contains Fix( f ) U in its interior.

Then D is adapted and its index Indf D is independent of the choice of D .

Choose one of them and denote it by D(U) .

LEMMA 4.4. For any invariant domain U , the index Indf D(U) is equal

to 1 .

Proof. By Lemma 4.1, the Carathéodory rotation number of U is nonzero.

On U the region bounded by D(U) and (U) has no fixed point. Thus

one needs only compute the index of f with respect to the boundary

curve (U) .

Now let us conclude the proof of Theorem 1.1. Lemmata 4.2, 4.3 and 4.4

clearly show that there are exactly two invariant domains.

For any n 1, the minimal set X is minimal for f n since it is connected.

Applying the above result to f n , one can show that there is no further invariant

domain of f n . Also the Carathéodory rotation number of an invariant domain

must be irrational, as is shown by applying Lemma 4.1 to the iterates of f .

Finally that both Carathéodory rotation numbers coincide follows from the

main results of [BG]. The proof is complete.

Let us set out the Cartwright-Littlewood fixed point theorem.

THEOREM 4.5. Let f be an orientation preserving homeomorphism of S2 .

Let X be a continuum invariant by f . Assume that U S2 X is connected.

Then f has a fixed point in X .

Proof. Assume the contrary. If the Carathéodory rotation number of U is

nonzero, then Lemma 4.4 shows that Indf D(U) 1 . If the rotation number

is 0, Theorem 3.1 says that the homeomorphism f (U) is Morse-Smale, with

2n (n 1) fixed points. Moreover the attractors (resp. repellors) are attractors

(resp. repellors) of the whole map f . In this case one can compute the index

just following the definition, with the result that Indf D(U) 1 n . Both

cases contradict Lemma 4.2.
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5. MINIMAL CONTINUUM WITH WANDERING DOMAIN

In [Ha] a pathological C diffeomorphism is constructed which has a

pseudo-circle C as a minimal set. See also [He]. It is well known in continuum

theory that there are points x in C which are not accessible from both sides.

Blowing up x , as well as all the points of its orbit, we can construct a

homeomorphism which has a minimal continuum with wandering domain (see

[AO]). Conversely if there are wandering domains whose domains Ui satisfy

that Ui is a null-sequence of mutually disjoint discs, one can pinch each

domain to a point, which characterize the complement of wandering domains

(see [BNW]).
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curve. Proc. Amer. Math. Soc. 120 (1994), 965–968.

[BG] BARGE, M. and R.M. GILLETTE. Rotation and periodicity in plane separat-
ing continua. Ergodic Theory Dynam. Systems 11 (1991), 619–631.
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