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WEIL AND GROTHENDIECK APPROACHES TO ADELIC POINTS

by Brian CONRAD )

1. INTRODUCTION

In [We, Ch. 1], Weil defines a process of “adelization” of algebraic varieties

over global fields. There is an alternative procedure, due to Grothendieck, using

adelic points. One aim of this (largely) expository note is to prove that for

schemes of finite type over global fields (i.e., without affineness hypotheses),

and also for separated algebraic spaces of finite type over such fields, Weil’s

adelization process naturally coincides (as a set) with the set of adelic points

in the sense of Grothendieck (and that in the affine case the topologies defined

by these two viewpoints coincide; Grothendieck’s approach does not provide

a topology beyond the affine case). The other aim is to prove in general

that topologies obtained by Weil’s method satisfy good functorial properties,

including expected behavior with respect to finite flat Weil restriction of scalars.

The affine case suffices for most applications, but the non-affine case is useful

(e.g., adelic points of G P for connected reductive groups G and parabolic

subgroups P ). We also discuss topologizing X(k) for possibly non-separated

algebraic spaces X over locally compact fields k ; motivation for this is given

in Example 5.5.

Although everything we prove (except perhaps for the case of algebraic

spaces) is “well known” folklore, and [Oes, I, §3] provides an excellent

summary in the affine case, some aspects are not so easy to extract from the

available literature. Moreover, (i) some references that discuss the matter in

the non-affine case have errors in the description of the topology on adelic

points, and (ii) much of what we prove is needed in my paper [Con], or

in arithmetic arguments in [CGP]. In effect, these notes can be viewed as
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an expanded version of [Oes, I, §3], and I hope they will provide a useful

general reference on the topic of adelic points of algebro-geometric objects

(varieties, schemes, algebraic spaces) over global fields.

In §2 we carry out Grothendieck’s method in the affine case over any

topological ring R , characterizing the topology on sets of R -points by means

of several axioms. The generalization to arbitrary schemes of finite type via a

method of Weil is developed in §3. We explore properties of these topologies in

§4, especially for adelic points and behavior with respect to Weil restriction of

scalars. Finally, in §5 everything is generalized to the case of algebraic spaces.

ACKNOWLEDGEMENTS. I am grateful to D. Boyarchenko, A. J. deJong, and

especially L. Moret-Bailly for helpful comments and suggestions.

NOTATION. We write AF to denote the adele ring of a global field F ,

and likewise An
F denotes Euclidean n -space over AF . There is no risk of

confusion with the common use of such notation to denote affine n -space

over SpecF since we avoid ever using this latter meaning for the notation.

2. PRELIMINARY FUNCTORIAL CONSIDERATIONS

Let F be a global field and S a finite non-empty set of places of F ,

with S always understood to contain the set of archimedean places of F .

We let AF S AF denote the open subring of adeles that are integral at all

places away from S , so the topological ring AF is the direct limit of the open

subrings AF S over increasing S . For a separated finite type F -scheme X ,

we would like to endow the set X(AF) with a natural structure of Hausdorff

locally compact topological space in a manner that is functorial in AF and

compatible with the formation of fiber products (for topological spaces and

F -schemes) ; in §5 we will address the case of algebraic spaces.

For affine X the coordinate ring K(X X) is F -isomorphic to F[t1 tn] I ,

so as a set X(AF) is identified with the closed subset of the adelic Euclidean

space An
F where the functions f : AnF AF for f I all vanish. This zero

set has a locally compact subspace topology. To see that this topology trans-

ferred to X(AF) is independent of the choice of presentation of K(X X) , it is

more elegant to uniquely characterize this construction by means of functorial

properties, as the proof of the following result shows :
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PROPOSITION 2.1. Let R be a topological ring. There is a unique way

to topologize X(R) for affine finite type R-schemes X in a manner that is

functorial in X , compatible with the formation of fiber products, carries closed

immersions to topological embeddings, and for X SpecR[t] gives X(R) R

its usual topology. Explicitly, if A is the coordinate ring of X then X(R)

has the weakest topology relative to which all maps X(R) R induced

by elements of A are continuous, or equivalently the natural injection

of X(R) HomR-alg(A R) into HomSet(A R) RA endowed with the product

topology is a homeomorphism onto its image.

If R is Hausdorff then X(R) is Hausdorff and closed immersions X X

induce closed embeddings X(R) X (R) . If in addition R is locally compact

then X(R) is locally compact.

The Hausdorff property is necessary to require if we want closed immer-

sions to go over to closed embeddings. Indeed, by considering the origin in

the affine line we see that such a topological property forces the identity point

in R to be closed, and compatibility with products makes X(R) a topological

group when X is an R -group scheme, so this forces R to be Hausdorff since

(viewing R Ga(R) as an additive topological group) a topological group

whose identity point is closed must be Hausdorff (because in any category

admitting fiber products, the diagonal morphism for a group object is a base

change of the identity section). Viewing the topology on X(R) as a sub-

space topology from RA is reminiscent of how Milnor topologizes manifolds

in [Mil].

Proof. To see uniqueness, we pick a closed immersion

i : X SpecR[t1 tn]

By forming the induced map on R -points and using compatibility with products

(view affine n -space as product of n copies of the affine line), as well as

the assumption on closed immersions, the induced set map X(R) Rn is a

topological embedding into Rn endowed with its usual topology. This proves

the uniqueness, and that X(R) has to be Hausdorff when R is Hausdorff.

Likewise, we see that X(R) is closed in Rn in the Hausdorff case, so when R

is also locally compact then so is X(R) .

There remains the issue of existence. Pick an R -algebra isomorphism

(2.1) A : K(X X) R[t1 tn] I

for an ideal I , and identify X(R) with the subset of Rn on which the elements

of I (viewed as functions Rn R ) all vanish. We wish to endow X(R) with
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the subspace topology, and the main issue is to check that this construction

is independent of the choice of (2.1) and enjoys all of the desired properties.

We claim that the topology defined using (2.1) is the same as the subspace

topology defined by the canonical injection X(R) RA (so the definition

of this topology is independent of the choice of (2.1)). Let a1 an A

correspond to t1 mod I tn mod I via (2.1), so the injection X(R) Rn is

the composition of the natural injection X(R) RA and the map RA Rn

defined by (a1 an) An . Hence, every open set in X(R) is induced by

an open set in RA because RA Rn is continuous. Since every element of A

is an R -polynomial in a1 an and R is a topological ring (so polynomial

functions Rn R over R are continuous), it follows that the map X(R) RA

is also continuous. Thus, indeed X(R) has been given the subspace topology

from RA , so the topology on X(R) is clearly well-defined and functorial in X .

Consider a closed immersion i : X X corresponding to a surjec-

tive R -algebra map between coordinate rings h : A A . The natural

map j : RA RA defined by (ra) (rh(a )) is visibly a topological em-

bedding; it topologically identifies RA with the subset of RA cut out by

a collection of equalities among components, so j is a closed embedding

when R is Hausdorff. We have X (R) j(RA) j(X(R)) because a set-theoretic

map A R is an R -algebra map if and only if its composition with the

surjection h : A A is an R -algebra map. Hence, i : X(R) X (R) is an

embedding of topological spaces, and is a closed embedding when R is

Hausdorff. By forming products of closed immersions into affine spaces, we

see that (X Spec R X )(R) X(R) X (R) is a topological isomorphism via

reduction to the trivial special case when X and X are affine spaces.

Finally, to see that (X Y Z)(R) X(R) Y(R) Z(R) is a topological

isomorphism (for given maps X Y and Z Y between affine R -schemes),

consider the isomorphism

X Y Z (X R Z) Y RY Y

and its topological counterpart. Since we have already checked compatibility

with absolute products (over the final object in the category), the separatedness

of Y over R reduces us to the case in which one of the structure maps of

the scheme fiber product is a closed immersion. But we have already seen

that closed immersions are carried into topological embeddings, so we are

done. .

EXAMPLE 2.2. If R R is a continuous map of topological rings (e.g., the

inclusion of F into AF or of F S into AF S , with the subring having the dis-
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crete topology in both cases), then for any affine finite type R -scheme X with

base change X over R , the natural map X(R) X(R ) X (R ) is continu-

ous, and when R R is a topological embedding then so is X(R) X(R ) .

Moreover, if R is closed (resp. open) in R then X(R) X(R ) is a closed

(resp. open) embedding. These claims are immediate from the construction

of the topologies by means of closed immersions of X into an affine space

over R (and the base change on this to give a closed immersion of X into an

affine space over R ). The same argument shows that if R is discrete in R

then X(R) is discrete in X(R ) .

EXAMPLE 2.3. Since F is discrete in AF , so Fn is discrete in AnF , it

follows that for any affine finite type F -scheme X , X(F) X(AF) is a

topological embedding onto a discrete subset. Similarly, if X is affine of finite

type over F S , then X( F S) is a discrete subset of X(AF S) . If X is affine

of finite type over a discrete valuation ring R with fraction field L then X(R)

is open and closed in X(L) XL(L) .

EXAMPLE 2.4. Let R R be a module-finite ring extension that makes R

locally free as an R -module. Assume that R and R are endowed with

topological ring structures such that R has the quotient topology from one

(equivalently, any) presentation as a quotient of a finite free R -module. In

particular, R has the subspace topology from R because R is projective as

an R -module (so the inclusion R R admits an R -linear splitting). The

main examples of interest are a finite extension of complete discrete valuation

rings, local fields, or adele rings of global fields. For an affine R -scheme X

of finite type, consider the Weil restriction ResR R(X ) that is an affine

R -scheme of finite type [BLR, §7.6]. (In [CGP, App. A.5] there is given

a detailed discussion of properties of Weil restriction, supplementing [BLR,

§7.6].) There is a canonical bijection of sets X (R ) (R) , and by viewing X

and as an R -scheme and R -scheme respectively we get topologies on both

sides of this equality.

We claim that these two topologies agree. Using a closed immersion

of X into an affine space over R reduces us to the case when X is

such an affine space, because Weil restriction carries closed immersions to

closed immersions in the affine case. Choose a finite free R -module P such

that there exists an R -linear surjection from the dual P onto the dual

module R HomR(R R) . The dual map R P is a direct summand,

so for any R -algebra A the natural map R R A P R A is injective and

functorially defined by a system of R -linear equations in A . For M R n
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with a suitable n 0 we have X Spec(SymR (M )) with M R R M ,

so is naturally a closed subscheme of Spec(SymR(M R P )) . The

set X (R ) HomR (M R ) HomR(M R ) is endowed with its natural

topology as a finite free R -module, and via the inclusion R P the set (R)

is HomR(M R ) M RR with the subspace topology from M RP . Thus,

the agreement of topologies comes down to R inheriting its given topology

as a subspace of P . But R is a direct summand of P , so the subspace

topology on R coincides with the quotient topology via a surjection from P .

By hypothesis, such a quotient topology is the given topology on R .

3. ELIMINATION OF AFFINENESS HYPOTHESES

When attempting to generalize Proposition 2.1 beyond the affine case, an

immediate problem is that if U is an open affine in an affine X of finite type

over R then U(R) X(R) need not be an open embedding; it may even fail to

be a topological embedding. For example, if X is the affine line over R and U

is the complement of the origin, then U(R) X(R) is the map R R

where R has its usual topology but R has a structure of topological group

coming from the affine model U Gm SpecR[x y] (xy 1) inside the

plane (i.e., r r R are close when r is near r in R and r 1 is near r
1

in R ). The example of adele rings shows that the unit group of a topological

ring need not be a topological group with respect to the induced topology

from the ring. Since the topology on R Gm(R) is a topological group

structure, we see that in such examples the inclusion R R cannot be a

topological embedding.

More generally, if X SpecA and U SpecAf with f A , then the

subset U(R) X(R) is the locus where the continuous map f : X(R) R is

unit-valued – the preimage of the subset R – and this preimage might not

be open. Such openness in general (for a fixed R ) is equivalent to the set

of non-units in R being closed, but this fails for adele rings (in which one

can find sequences of non-units that converge to 1). Regardless of whether or

not R is open in R , since Af A[T] ( f T 1) we see that U(R) X(R)

is a topological embedding onto its image if and only if 1 f : U(R) R is

continuous when U(R) is given the subspace topology from X(R) . Taking X

to be the affine line and U to be the multiplicative group, such an embedding

property for general affine finite type R -schemes would force R to be a

topological group with its subspace topology from R (which is false for

many R ).
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We conclude that the failure of openness of R in R and the failure

of R to be a topological group with its subspace topology from R are the

only obstacles to basic open affine immersions inducing open embeddings

on spaces of R -points. Hence, it is natural to try to globalize the topology

on X(R) beyond the affine case by gluing along Zariski-opens in X when R

is open in R with continuous inversion. In order for the gluing to work, we

also need to ensure that if Ui is an affine open covering of an affine X of

finite type over R then X(R) is covered by the subsets Ui(R) . This works for

local R :

PROPOSITION 3.1. Let R be a local topological ring such that R is open

in R and has continuous inversion. There is a unique way to topologize X(R)

for arbitrary locally finite type R-schemes X subject to the requirements

of functoriality, carrying closed (resp. open ) immersions of schemes into

embeddings (resp. open embeddings ) of topological spaces, compatibility

with fiber products, and giving X(R) R its usual topology when X is the

affine line over R.

This agrees with the earlier construction for affine X , and if R is Hausdorff

then X(R) is Hausdorff when X is separated over R. If R is locally compact

and Hausdorff then X(R) is locally compact.

Proof. The key to the proof is to show that if U X is an arbitrary open

immersion between affine R -schemes of finite type then U(R) X(R) is an

open immersion relative to the topology already defined in the affine case.

Once this is proved, the rest is immediate by gluing arguments, so we explain

just this assertion concerning open immersions between affine schemes.

Consider the special case that U is a basic affine open in X , say

U SpecAf and X SpecA for some f A . Clearly U(R) is the preimage

of the open R R under the map X(R) R associated to f . To see

that this equips U(R) with a subspace topology coinciding with its intrinsic

topology (using that U is affine of finite type over R ), the fiber square

U
f

Gm

X
f

A1R

reduces the problem to the special case X A1R and U Gm . In this case

U(R) acquires the topology of the hyperbola xy 1 in R2 , and this is
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homeomorphic to R with its subspace topology due to the hypothesis that

inversion on R is continuous.

To reduce the general affine case to the special case just treated, one uses

that R is local (and that U is covered by basic affine opens of X , each of

which is necessarily a basic affine open in U ). The main point is that if Ui

is an open cover of X , then X(R) Ui(R) because a map SpecR X that

carries the closed point into Ui must land entirely inside Ui since the only

open subscheme of SpecR that contains the closed point is the entire space.

(The equality X(R) Ui(R) fails for non-local R in general.) .

REMARK 3.2. If X is a locally finite type scheme over a local field k

(such as C or Qp ), then X(k) is a locally compact topological space via

Proposition 3.1. The same goes for X( ) with a compact discrete valuation

ring and a locally finite type -scheme X .

REMARK 3.3. If Z is a closed subscheme in X and U is its open

complement then the disjoint subsets Z(R) and U(R) in X(R) may not

cover X(R) , even if X is affine. The problem is that “Zariski open” corresponds

to a unit condition on R -points whereas “Zariski closed” corresponds to a

nilpotence condition on R -points. If R contains elements that are neither

nilpotent nor units then X(R) may fail to be the union of U(R) and Z(R) .

More geometrically, if we consider maps SpecR X then the image might

hit both Z and U (a simple example being the affine R -line X , its origin Z ,

and complement U X Z , for which Z(R) and U(R) are both non-empty

and do not cover X(R) R whenever SpecR is not a point). For local

artinian R this does not happen, which is why the construction of a topology

on X(R) is especially straightforward when R is a field.

In view of the above discussion, it is a remarkable fact that when R AF

is the adele ring of a global field F , one can (following a method due to

Weil) naturally topologize X(R) for arbitrary finite type F -schemes X . It

is not true in such generality that immersions of schemes are carried into

topological embeddings, but the topology is functorial and compatible with

fiber products, it gives closed embeddings when applied to closed immersions,

and it recovers the earlier construction in the affine case. We now present a

Grothendieck-style development of Weil’s construction.

The key to Weil’s construction in the affine case is that if X is

a finite type affine F -scheme (for a global field F ) then by chasing

denominators in a finite presentation of the coordinate ring of X we
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can find a finite set S of places of F (non-empty and containing the

archimedean places, as always) and a finite-type algebra over F S whose

generic fiber is the coordinate ring of X . Geometrically, this amounts to

giving an affine finite type F S -scheme XS whose generic fiber is X .

As will be recorded below, Grothendieck’s technique of limits of schemes

[EGA, IV3 , §8–§11] shows that an analogous result holds for all finite

type F -schemes (not just the affine ones) : every finite type F -scheme X

is the generic fiber of a finite type F S -scheme XS for some S . We

can transfer many properties of X to XS by increasing S , as we now

explain.

We first mention a useful concept : a scheme X over a ring R is

finitely presented if it is covered by finitely many open affines Ui , each

of the form Ui Spec R[t1 tni ] ( f1 i fmi i) , with quasi-compact

overlaps Ui Ui (this latter condition being automatic in the separated case, for

which an overlap of two affine opens is affine). Finite presentation coincides

with finite type when R is noetherian, but the adele ring AF is not noetherian.

Loosely speaking, finite presentation over R means being “described by a finite

amount of information” in R .

Since F lim F S and AF limAF S (limits taken over increasing S ),

the following link between finite presentation and direct limits is an essential

step in Weil’s construction (especially beyond the affine case).

THEOREM 3.4. Let Ai be a directed system of rings, A lim Ai . Let X

be a finitely presented A-scheme.

(1) There exists some i0 and a finitely presented Ai0 -scheme Xi0 whose base

change over A is isomorphic to X . Moreover, if Xi0 and Yi0 are two

finitely presented Ai0 -schemes for some i0 , and we write Xi and Yi to

denote their base changes over Ai for all i i0 (and likewise for X and

Y over A ) , then the natural map of sets

limHomAi (Xi Yi) HomA(X Y)

is bijective.

(2) A map fi0 : Xi0 Yi0 acquires property P upon base change to some

Ai if and only if the induced map f : X Y over A has property P ,

where P is any of the following properties : closed immersion, separated,

proper, smooth, affine, flat, open immersion, finite, fibers non-empty and

geometrically connected of pure dimension d .
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(3) Any “descent” Xi0 over Ai0 of a finitely presented A-scheme X is

essentially unique up to essentially unique isomorphism in the following

sense : for finitely presented Ai0 -schemes Xi0 and Xi0 whose base changes

over A are identified with X , there exists some i i0 and an isomorphism

hi : Xi Xi compatible with the common identification with X upon base

change to A, and if hi and Hi are two such isomorphisms then for

some i i the induced isomorphisms hi and Hi are equal.

Proof. Apart from (2), this is [EGA, IV3 , §8.8, §8.9]. To handle the

list of properties P is a lengthy task that is exhaustively developed in [EGA,

IV3 , §8.10 – §11], where many more properties are also considered (but we

only need the ones mentioned above) ; a good place to begin is [EGA, IV 3 ,

8.10.5]. .

REMARK 3.5. In practice, the two examples of Ai of most interest to

us will be AF S (with limit AF ) and F S (with limit F ). Due to the

example F S , in which XS is visualized as fibered over the curve Spec F S

with X as the generic fiber, in general we sometimes call Xi0 a “spreading

out” of X .

We now apply Theorem 3.4(1) to a finite type F -scheme X : pick a

finite set S of places such that there is a finite type F S -scheme XS with

generic fiber X . For any finite set S of places of F containing S , we

define XS over F S to be the base change of XS . Note that for any

morphism of F S -schemes SpecAF S XS for some S , if S is a finite

set of places of F containing S then we get an induced map of F S -schemes

SpecAF S XS by base change since AF S F S F S
AF S . Likewise,

by passing to generic fibers we get an F -scheme map SpecAF X . Putting

this together, we get a natural map of sets

(3.1) limXS (AF S ) limXS(AF S ) XS(AF) X(AF)

that is readily checked to equal the limit of the base change maps. In this

limit process we only consider S containing S , and increasing S at the outset

has no impact. Theorem 3.4(1) makes precise the sense in which the direct

limit on the left side of (3.1) is intrinsic to X . By Theorem 3.4(3), the left

side of (3.1) is naturally a (set-valued) functor of the F -scheme X .

We can do better : the left side of (3.1) is naturally a topological space

in a manner that respects functoriality in X , and (3.1) is bijective. Before

explaining this, we note that the left side of (3.1) is what Weil defines to be
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the adelization of a finite type F -scheme X . It is by means of this bijection

that we shall transport a topological structure to the right side of (3.1) for

general X , recovering the topological construction for affine X in §2.

Bijectivity of (3.1) is obvious for affine X , because if

F[t1 tn] ( f1 fm) AF

is a map of F -algebras then for some finite set S of places of F , the tj ’s all

land in AF S and the fj ’s all have coefficients in F S . To establish bijectivity

without assuming X to be affine, the key point is that since AF limAF S

and XS is of finite type over the noetherian ring F S , we can rewrite (3.1)

as the natural map

limHomAF S
(SpecAF S (XS)AF S

) HomAF (SpecAF XAF )

and this is a bijection by Theorem 3.4(1) (applied to AF limAF S ).

Before we establish some topological properties of (3.1), we need some

notation. For an F S -scheme XS and a place of F not in S (i.e., is a

maximal ideal of F S ), we will write XS to denote the base change of XS

over the completion at . For any , we write X to denote the base

change of XS (or XS ) over the fraction field F of .

THEOREM 3.6. Let XS be a finite type F S -scheme. Using the projections

from AF S to F for S and to for S , the natural map of sets

(3.2) XS(AF S)

S

X (F )

S

XS ( )

is a bijection. When X is affine and we give both sides their natural topologies,

using the product topology on the right side, this is a homeomorphism.

In general, if we use the bijection (3 2) to define a topology on XS(AF S) ,

then for any finite sets of places S S containing S and the corresponding

base changes XS and XS of XS over F S and F S respectively, the natural

map XS (AF S ) XS (AF S ) is an open continuous map of topological spaces

and it is injective when XS is separated over F S .

In this theorem, we are using Remark 3.2 to give the X (F ) ’s

and XS ( ) ’s their natural topologies.

Proof. The bijectivity aspect amounts to the claim that a morphism of

F S -schemes SpecAF S XS is uniquely determined by its restriction to

the open subschemes SpecF ( S ) and Spec ( S ), and that it
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may be constructed from such arbitrary given data. Note that the quasi-

compact SpecAF S is not the disjoint union of these infinitely many pairwise

disjoint non-empty affine open subschemes.

The bijectivity assertion has nothing to do with adele rings, and is a special

case of the following more general fact. Let Ri be a collection of C -algebras

for a ring C , and let R Ri denote the product. Note that Spec(Ri) is a

collection of disjoint open subschemes of the quasi-compact scheme Spec(R)

(so this is not a cover of Spec(R) if infinitely many of the Ri are nonzero).

Let X be an arbitrary C -scheme, and consider the natural map of sets

(3.3) X(R) X(Ri)

where X(R) denotes the set of R -valued points of X over C , and similarly

for each X(Ri) . We claim that this map is injective when X is quasi-separated

(i.e., quasi-compact opens in X have quasi-compact overlap, such as locally

noetherian or separated X ) and is surjective when X is quasi-compact and

the Ri ’s are all local. (This is [Oes, Ch. I, Lemme 3.2], except that the

quasi-separatedness hypothesis is missing from the statement but is used in

the proof.) By taking C F S , Ri to be F S S , and X to be

a scheme of finite type over F S , we would then get the asserted bijectivity

of (3.2).

To prove the injectivity of (3.3) when X is quasi-separated, consider f

X(R) that induce the same Ri -points for all i . To prove that f , it is

necessary and sufficient that the product map

( f ) : SpecR X C X

factors through the diagonal morphism 6X C . Consider the cartesian diagram

V Spec(R)

( f )

X
6X C

X C X

whose bottom side is an immersion (as for any diagonal morphism of schemes).

We shall prove that the top side is an isomorphism, which will provide the

desired factorization. The immersion 6X C : X X C X is a quasi-compact

since X is quasi-separated, so V is a quasi-compact subscheme of Spec(R) .

Letting U Spec(R) denote the open subscheme that is the union of the

disjoint open subschemes Spec(Ri) Spec(R) , by hypothesis ( f ) U factors

through 6X C and so U V as subschemes of Spec(R) . Thus, it suffices to



WEIL AND GROTHENDIECK APPROACHES TO ADELIC POINTS 73

prove that the only quasi-compact (locally closed) subscheme V Spec(R)

which contains U is Spec(R) . (This is an assertion entirely about R ; we have

eliminated X . Note also that when there are infinitely many nonzero Ri ’s

it is essential to assume that V is quasi-compact, as otherwise we could

take V U to get a counterexample.)

By quasi-compactness of the locally closed V in the affine scheme Spec(R) ,

there is a quasi-compact open subscheme W Spec(R) in which V lies as

a closed subscheme. Since U V W , if we first treat the case of quasi-

compact open subschemes containing U then we will have W Spec(R) ,

which is to say that V is closed in Spec(R) . Hence, it suffices to treat two

cases : V is open and V is closed. First suppose V is open. In this case,

by quasi-compactness of V the closed complement Spec(R) V is the zero

locus of a finitely generated ideal I R . The containment U V of open

subschemes of Spec(R) is the set-theoretic property that U Spec(Ri)

is disjoint from the zero locus of I , or in other words the image of I

under each projection R Ri is the unit ideal. We are therefore reduced to

proving that a finitely generated ideal I in R is the unit ideal if it induces

the unit ideal in each Ri . (The finiteness hypothesis on I is crucial ; it is

easy to construct ideals in AF S that are not finitely generated but generate

the unit ideal in each standard factor ring : consider the ideal generated by

elements that have a uniformizer component in all but finitely many places.)

Let a1 an R Ri be generators of I . By hypothesis, for each i

the elements a1 i an i Ri generate 1, say j rj i aj i 1 with rj i Ri .

Hence, for rj (rj i) R we have rj aj 1 in R , so I (1) .

This settles the case when V is open in Spec(R) , and now consider the

case when V is closed. In this case we run through a similar argument with

the (perhaps not finitely generated) ideal of R whose zero locus is V : the

algebraic problem is to show that if I is an ideal in R that projects to 0 in

each Ri then I 0. But this is trivial, and so completes the proof that (3.3)

is injective when X is quasi-separated.

(Our trivial argument in the closed case shows that U is scheme-

theoretically dense in Spec(R) , but beware that it need not be topologically

dense and so it is essential that the containment U V is taken in the

scheme-theoretic sense rather than in the weaker topological sense. This is

illustrated by the following example which was brought to my attention by

Moret-Bailly. Take C k to be a field and Rn k[t] (tn 1) for n 0, and

consider the closed subscheme V Spec R (r) of Spec(R) defined by killing

the “diagonal” element r (t t ) . This V does contain U topologically

since it clearly contains every point of U , but it does not contain U scheme-
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theoretically since Spec(Rn) is not contained in V for any n 1. Moreover,

the underlying space of V is not all of Spec(R) since r is not nilpotent

in R .)

Now we prove that (3.3) is surjective when X is quasi-compact and

each Ri is local. Assume we are given C -maps xi : SpecRi X for

all i . We claim that there exists x X(R) inducing the given local data.

Let U1 Un be a finite affine open covering of X . Since each Ri

is a local ring, the image of xi lands in some Uj (chase the closed

point). Pick one such j(i) for each i , and let Vj be the set of i ’s

for which j(i) j (i.e., those i for which we have selected Uj as an

open affine through which xi factors). We have a natural finite product

decomposition R j RVj , where RVj is the subproduct of the product

ring R corresponding to local factors for indices i Vj . Since the Spec

functor carries finite products into disjoint unions, we may focus on each RVj
separately. In other words, we may replace X with Uj so as to reduce to

the case that X is affine. Now the claim is that if i : SpecRi SpecB are

maps of affine schemes over some affine base SpecC , then there exists a

map of C -schemes : Spec( Ri) SpecB inducing each i . By restating

in terms of ring maps, this is obvious.

Now that (3.2) is proved to be a bijection, we may use the product

topology on its target to endow XS(AF S) with a topology. For affine XS , this

recovers the topology constructed earlier : by using a finite presentation of the

coordinate ring of XS as an F S -algebra, and recalling how the topology on

points of affine schemes (of finite type) was defined by means of embeddings

into affine spaces, the problem comes down to the trivial claim that the product

topology on AnF S agrees with the product topology on

S

Fn

S

n

Finally, we have to check that if S S is an inclusion of finite sets of

places of F containing S , then the map XS (AF S ) XS (AF S ) is an open

continuous map of topological spaces, and is injective when XS is separated.

Via (3.2), this map is (topologically) the product of three maps : the identity

maps on S X (F ) and on S XS ( ) , and the base change map

S S

XS ( )

S S

X (F )

Thus, we are reduced to show that for S , the natural map XS ( ) X (F )

is continuous and open, and injective when XS is separated. The injectivity



WEIL AND GROTHENDIECK APPROACHES TO ADELIC POINTS 75

for separated XS follows from the valuative criterion for separatedness, so we

just have to check continuity and openness.

In general, for a finite type scheme X over a complete discrete val-

uation ring with fraction field K given its natural topology, we claim

that X( ) XK(K) is a continuous open map. If U is an open subscheme

of X , then by Proposition 3.1, U( ) is open in X( ) . Since X( ) is the

union of the Ui( ) ’s for Ui an open covering of X , our problem is of

local nature on X . Hence, we may assume X is affine. By picking a closed

immersion of X into an affine space over , the fact that n is open in Kn

then provides what we need. .

Using Theorem 3.6 to topologize XS(AF S) for finite type F S -schemes XS ,

it is immediate from the construction that this topology is functorial in XS , has

a countable base of opens, carries fiber products into fiber products, and carries

closed immersions into closed embeddings (use Proposition 3.1 and the fact

that an arbitrary product of closed embeddings is a closed embedding). For

open immersions US XS it is not true in general that US(AF S) XS(AF S)

is an open embedding, though it is a topological embedding. Indeed, an

arbitrary product of open embeddings is a topological embedding but usually

does not have open image. This is the reason that the construction of the

topology on XS(AF S) in the non-affine case has to be done globally via the

product decomposition in (3.2), without trying to glue topologies coming from

open affines in XS .

COROLLARY 3.7. Let XS be a finite type F S -scheme. The topological

space XS(AF S) is locally compact, and is Hausdorff when XS is separated.

Proof. Since our topology construction commutes with products and

carries closed immersions to closed embeddings, it is clear that if XS

is separated then XS(AF S) is Hausdorff. As for local compactness, we

want the infinite product space XS(AF S) to be locally compact. Since

the factor spaces X (F ) are locally compact for S , we just have

to check that XS ( ) is compact for S . More generally, for any

compact discrete valuation ring R and any finite type R -scheme X , we

claim X(R) is compact. Proposition 3.1 shows that for a finite open affine

covering Ui of X the spaces Ui(R) form a finite open covering

of X(R) , so the problem comes down to the affine case, which in turn

is reduced to the trivial case of affine space (Rn is compact since R is

compact). .
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4. TOPOLOGICAL PROPERTIES

Let X be a finite type F -scheme. We use Theorems 3.4 and 3.6 along

with the bijection (3.1) to give X(AF) a topological structure that is functorial

in X and coincides with the topology in Proposition 2.1 when X is affine. To

make sense of this, we need to briefly recall how one topologizes direct limits.

If T is a directed system of topological spaces, with direct limit set T

as sets, we declare U T to be open if and only if the preimage of U in

each T is open. This is readily checked to be a direct limit in the topological

category. In general such abstract topologies are hard to handle. However, the

case when transition maps are open involves no subtlety : if T T is an

open continuous map for all , then T is the directed union of the

images U of the T , and by giving each U the quotient topology from T

it is clear that the topology on T is characterized by declaring the topological

spaces U to be open subspaces.

The functor X X(AF) does not generally carry open immersions over

to topological embeddings, but closed immersions do go over to closed

embeddings of topological spaces (due to openness of the transition maps in

the above topological direct limits). Since the behavior of quotient topologies

with respect to fiber products (or even absolute products) is subtle in general,

the topology on X(AF) is probably rather hard to work with unless we impose

a hypothesis on X to ensure injectivity and openness of the transition maps

in the limit of XS (AF S ) ’s. We see from the final part of Theorem 3.6,

as well as Theorem 3.4(1), that assuming X is separated over F ensures

the injectivity. Thus, if X is F -separated then (3.1) expresses X(AF) as a

direct limit of locally compact Hausdorff spaces with transition maps that

are open embeddings. In this way, we see that X(AF) is locally compact

and Hausdorff (with a countable base of opens) when X is F -separated,

and moreover that this topology is compatible with fiber products for

general X .

The preceding defines, for finite type separated F -schemes X , a functorial

locally compact Hausdorff topology on X(AF) with a countable base of

opens, and this topology is compatible with fiber products and carries closed

immersions between such F -schemes into closed embeddings of topological

spaces. Moreover, if X is the generic fiber of a separated finite type

F S -scheme XS , then XS(AF S) is naturally an open subset of X(AF) . As a

special case, when X is a group scheme of finite type over F (automatically

separated), the set X(AF) is naturally a locally compact Hausdorff topological

group.
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EXAMPLE 4.1. It is a common mistake to expect that if Ui is an open

affine cover of X then Ui(AF) covers X(AF) set-theoretically. This is false

even if X is affine, because the image of a morphism SpecAF X need not

be contained in any of the Ui ’s. Moreover, the set Ui(AF) inside X(F )

is not independent of Ui in general, and in particular it is not intrinsic

to X .

EXAMPLE 4.2. Let F F be a finite extension of global fields, and X

a quasi-projective F -scheme. Let denote the Weil restriction ResF F(X ) ,

which exists and is separated and finite type over F [BLR, pp. 194–196].

(The same reference applies with F F replaced by any finite locally free

ring map, such as a finite extension of Dedekind domains. In the generality

of finite locally free ring maps, the Weil restriction operation preserves

quasi-projectivity, although this is not obvious from the construction; see

[CGP, Prop. A.5.8].) Since naturally (AF) X (AF ) as sets, we are led

to ask if this is an equality as topological spaces. Here is an affirmative

proof.

In the affine case the equality of topologies follows from Example 2.4

(applied to the base changes of X and over R AF and R AF

respectively). In the general case, fix a finite set S0 of places of F such

that X extends to a quasi-projective F S
0
-scheme XS

0
, where S0 is the

preimage of S0 in F . Thus, Res
F S

0
F S0
(XS

0
) exists as a finite type

and separated F S0 -scheme 0 , and 0(AF S) X
S
0
(AF S ) as sets for

any finite set S of places of F containing S0 and for its preimage S

in F . By the definition of the topology on the adelic points (as a di-

rect limit with open transition maps), the problem of topological equality is

reduced to checking that the equality of sets 0(AF S0 ) XS
0
(AF S

0
) (for

general S0 ) is a homeomorphism. These topologies are defined as prod-

uct topologies, and so the problem reduces to checking that for each place

S0 the equality of sets X (F ) ResF F(X )(F ) is a home-

omorphism and that for each place of F not in S0 the equality of

sets

XS
0
( F ) Res

F S
0

F S0
(XS

0
)( F )

is a homeomorphism. This second homeomorphism claim is a formal conse-

quence of the first one (applied with S0 increased to contain ), so we can

focus on the case of field-valued points with any place .
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Defining F F F F F and

X F F X X

we have

ResF F(X )F ResF F (X ) ResF F (X )

Thus, the problem reduces to one over local fields : if k k is a finite

extension of fields complete with respect to compatible nontrivial absolute

values and if Y is a quasi-projective k -scheme of finite type, then we claim

that the identification of sets Resk k(Y )(k) Y (k ) is a homeomorphism.

Since any finite subset of Y lies in an open affine, the construction of these

Weil restrictions in terms of affine opens reduces us to the case when Y

is affine. We can then apply Example 2.4 with the ring extension k k .

This concludes the proof that Weil restriction for quasi-projective schemes is

compatible with the topology on adelic points.

Though Example 2.2 shows that X(F) is a discrete closed set in X(AF) for

finite type affine F -schemes X (as F is discrete and closed in AF ), globalizing

to the non-affine case usually destroys such properties. The following example

shows that for separated X , it can happen that the Hausdorff space X(AF) is

compact with X(F) a dense proper subset that is neither closed nor discrete

in X(AF) . In general, a dense proper subset of a compact Hausdorff space

can have the discrete topology as its subspace topology, such as 1 n n 1

inside 0 1 n n 1 .)

EXAMPLE 4.3. Choose n 0. Since Pn( ) Pn(F ) for all , the

bijection in Theorem 3.6 yields a bijection

Pn(AF) Pn(F ) Pn( ) Pn(F ) Pn(F ) Pn(F )

with the infinite product defining the topology (so it is compact Hausdorff).

In the special case n 1, when AF is identified with the set of AF -points

of the standard affine line in P1F its resulting subspace topology is induced

by the product topology on F (so it is not locally compact).

For any finite non-empty set S of places of F , let FS S F . By

weak approximation in the affine space of matrices Matn 1 over F , GLn 1(F)

is dense in GLn 1(FS) . Thus, PGLn 1(F) is dense in PGLn 1(FS) , so any
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point in Pn(FS) can be moved by a suitable projective change of coordinates

over F so that its projection into each Pn(F ) ( S ) is not in the standard

hyperplane at infinity. It then follows from weak approximation in affine

n -space that Pn(F) is dense in Pn(FS) . Varying S , P
n(F) is dense in Pn(AF) .

The subspace topology on Pn(F) is not the discrete topology, as we can see

by computing away from the standard hyperplane at infinity.

PROPOSITION 4.4. Let X Y be a proper map between separated

F -schemes of finite type. The induced map X(AF) Y(AF) between locally

compact Hausdorff spaces is topologically proper.

In particular, if X is proper over F then X(AF) is compact, and

if moreover XS is a finite type F S -scheme with generic fiber X then

X(AF) XS (AF S ) for every sufficiently large finite set of places S of F

that contains S .

Proof. By increasing S if necessary, by Theorem 3.4(2) we can assume

that X Y arises from a proper map XS YS between separated finite type

F S -schemes. Since X(AF) has an open covering given by the XS(AF S )

for S containing S , the assertions for F -proper X are immediate from the

general properness assertion for X(AF) Y(AF) . Thus, we focus on this

latter assertion.

For any S , the valuative criterion for properness ensures that under the

map X (F ) Y (F ) the preimage of YS ( ) is XS ( ) . Hence, for any S

containing S , the preimage of YS(AF S ) under X(AF) Y(AF) is XS(AF S ) .

Upon renaming S as S , it suffices to prove that XS(AF S) YS(AF S) is proper.

Since YS(AF S) is a topological product of the spaces Y (F ) for S and

the compact spaces YS ( ) Y (F ) for S , and similarly for XS ,

we are reduced to proving that if f : X Y is a proper map between

separated schemes of finite type over a locally compact field K , then the

map X(K) Y(K) between locally compact Hausdorff spaces is proper.

We will say that a proper map of schemes is projective if it factors,

Zariski-locally over the base, as a closed immersion into a projective space

over the base. The properness assertion on K -points is clear when f : X Y

is projective in this sense. In general, we shall argue by induction on

dimX (allowing any Y ), the case of dimension 0 being clear (for all Y ).

We may assume that X is reduced and irreducible, so by Chow’s Lemma

there is a surjective projective birational K -map f : X X with X a

reduced and irreducible scheme such that X is also projective over Y .

Choose a proper closed subset Z X such that f is an isomorphism
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over X Z . Clearly X(K) Z(K) f (X (K)) , and Z(K) is Y(K)-proper

since dim Z dimX . Also, X (K) is Y(K)-proper and X(K)-proper since X

is projective over Y and X , so the maps Z(K) X (K) Y(K) and

Z(K) X (K) X(K) are proper. Hence, the map X(K) Y(K) between

Hausdorff spaces is proper. .

The final topic we address in this section is openness properties for the

map on adelic points induced by a smooth (e.g., étale) map of schemes. This

is inspired by the fact that if X X is a smooth K -morphism between

arbitrary algebraic K -schemes for a field K complete with respect to a

nontrivial absolute value then the induced map X (K) X(K) is open. Let

us first briefly review the reason for such openness on K -points.

By working Zariski-locally, any smooth map factors as an étale map to

an affine space [EGA, IV 4 , 17.11.4]. This reduces us to the case of an étale

map, and by the local structure theorem for such maps [EGA, IV 4 , 18.4.6(ii)]

we may work Zariski-locally to get to the case when X SpecB and X

is Zariski-open in Spec (B[u] (h))h for a monic h B[u] with positive

degree. It therefore suffices to consider the case X Spec (B[u] (h))h . By

expressing B as a quotient of a polynomial ring over K and lifting h to a

monic polynomial over such a polynomial ring, we may suppose that X is an

affine space over K .

The setup is now a consequence of “continuity of (simple) roots” over K .

That is, if cj u
j K[t] is a monic polynomial of degree n 0 and

if u0 K is a simple root of then we claim that for any 0 there

exists 0 such that every degree-n monic polynomial G Cj u
j K[u]

satisfying Cj cj for all j n has a unique root u0 K satisfying

u0 u0 and it is a simple root. This is very classical in the archimedean

case, and in the non-archimedean case it is a key ingredient in the proof of

Krasner’s Lemma; see [BGR, 3.4, p. 146] (with t 1 there) for a proof.

The analogous openness result for adelic points requires additional

hypotheses. For example, the Zariski-open immersion of the multiplicative

group into the affine line over F induces the natural inclusion AF AF

which is not even a topological embedding and does not have open image.

Even if we restrict ourselves to surjective étale maps there are counterexam-

ples : the n th-power map Gm Gm for n 1 not divisible by char(F) is a

finite étale map that induces the n th-power map AF AF whose image is

not open. The defect of these examples is that they have fibers which are either

empty or geometrically disconnected. This is bypassed by the hypotheses in

the next result.
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THEOREM 4.5. Let f : X X be a smooth surjective F -map between

separated F -schemes of finite type. If the fibers are geometrically connected

then the induced map X (AF) X(AF) is open.

This result is stated and proved in [Oes, Ch. I, 3.6] in the affine case (and

our proof is simply a more general version of the argument to avoid affineness

hypotheses).

Proof. By Theorem 3.4(2) we may and do choose a finite set S of places

of F so that f is the map on generic fibers induced by a smooth surjective

F S -map fS : XS XS with geometrically connected fibers, where XS
and XS are separated F S -schemes of finite type. By varying through

finite T S (promptly renamed as S ), it suffices to prove that the induced

map XS(AF S) XS(AF S) is open. This is a map of product spaces, and more

specifically is the product of the induced maps X (F ) X (F ) for S

and XS ( ) XS ( ) for S . These latter maps on -points are

induced by the corresponding maps on F -points, so (by definition of the

topology on a product space) we are reduced to checking two facts :

(i) the smooth F -map f : X X induces an open map on F -points for

all ,

(ii) for all but finitely many S , the map XS ( ) XS ( ) is surjective.

The openness of the map on F -points for all is a special case of

the more general fact, explained in the discussion immediately preceding

Theorem 4.5, that if K is any field complete with respect to a nontrivial

absolute value and f : X X is a smooth map between K -schemes locally

of finite type then the induced map X (K) X(K) is open.

Returning to our setup over F S , it remains to show that fS induces

a surjective map on -points for all but finitely many S . Letting k

denote the finite residue field at , it suffices to prove surjectivity of the

map on k -points for all but finitely many such . Indeed, granting such

surjectivity for a particular S , if x : Spec XS is a section then the

pullback of the smooth -map fS along x is a smooth -scheme that (by

hypothesis) has a rational point in its special fiber. Since is henselian, such

a rational point in the special fiber lifts to an -point [EGA, IV4 , 18.5.17],

and this lies in XS ( ) over x as desired. The surjectivity on k -points for

all but finitely many S is an assertion in algebraic geometry for separated

schemes of finite type over F S and has nothing to do with adelic points.

To prove it we may pass to connected components of X and increase S by a

finite amount so that the smooth and geometrically connected (and non-empty)
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fibers of fS have a common dimension d .

We now appeal to the following relative version of the Lang-Weil estimate

for smooth geometrically connected varieties over a finite field, allowing for

families over finite fields with varying characteristics :

LEMMA 4.6. Let f : Y B be a smooth separated surjective map between

finite type Z -schemes such that the fibers are geometrically connected of

dimension d . There is a constant C 0 such that for all closed points b B,

(4.1) #Yb(k(b)) qdb Cq
d 1 2

b

where qb #k(b) .

Proof. This is [Del1, Cor. 3.3.3] applied to the constant sheaf Q on Y

(which is pure of weight 0), but for the convenience of the reader we say

a bit about what underlies the proof. By stratifying B , we can assume it is

a Z[1 ]-scheme for a prime . Consider each -adic sheaf Rif!(Q ) on B .

It is constructible, vanishes for i 2d , and has fiber at a geometric point b

over a point b B naturally identified with Hi
c(Yb Q ) . Also, for i 2d this

sheaf is Q ( d) since f is smooth with geometrically connected non-empty

fibers of dimension d .

The Grothendieck-Lefschetz trace formula implies

#Yb(k(b))

2d

i 0

( 1)iTr( b H
i
c(Yb Q ))

for each closed point b B , where b is the geometric Frobenius element

in Gal(k(b) k(b)) . The contribution for i 2d is qdb , and by Deligne’s

generalization of the Riemann Hypothesis [Del1, Thm. 3.3.1], the eigenvalues

of b on H
i
c(Yb Q ) are qb -Weil numbers of weight at most i (i.e., algebraic

numbers whose complex embeddings all have a common absolute value q
2

b

for some i ). In particular, the i th trace term in the above formula is an

algebraic number all of whose complex embeddings have absolute value at

most niq
i 2

b , where ni is an upper bound on the fibral ranks of the constructible

sheaf Rif!(Q ) . Allowing i to vary from 0 to 2d 1, we obtain (4.1). .

We apply the lemma to fS to conclude that for any closed point

x XS with associated residue field k(x) of size qx there is an estimate

#f 1
S (x)(k(x)) qdx Cq

d 1 2
x for a constant C 0 that is independent

of x . Hence, if qx is sufficiently large then the fiber f
1

S (x) must have a

k(x) -rational point. This applies in particular to any k -point of XS when #k

is sufficiently large, and so applies to all but finitely many S . .
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5. ALGEBRAIC SPACES

We now show how Weil’s topological method works for adelic points

of separated algebraic spaces of finite type over a global field F (and we

also consider the non-separated case over local fields). In this section, we

assume the reader is familiar with the basic properties of algebraic spaces,

as developed in [Kn]. We will work with quasi-separated algebraic spaces (as

is the case throughout [Kn]), which is weaker than the separatedness that we

shall need to obtain the main topological results in the adelic setting.

The first step is to verify that Theorem 3.4 is valid with finitely presented

algebraic spaces in place of finitely presented schemes. This is proved by an

étale descent argument to upgrade from schemes to algebraic spaces, and is

explained in (the proof of) [Ols, Prop. 2.2] apart from the property of having

fibers non-empty and geometrically connected of pure dimension d . So now

we address this latter fibral property.

By using étale scheme covers, the condition that fibers are non-empty of

pure dimension d can be reduced to the settled scheme case. For the property

of geometric connectedness of fibers, we need to do more work. Exactly as

in approximation arguments for schemes, it suffices to prove :

LEMMA 5.1. If X0 Spec(B0) is a finitely presented algebraic space

over a ring B0 and n Z is an integer then the locus in Spec(B0) where

the geometric fiber has n connected components is constructible.

Proof. By applying the descent of finitely presented algebraic spaces

through the limit process (using an expression for B0 as a direct limit of

noetherian subrings), it suffices to treat the case when B0 is noetherian.

Noetherian induction reduces the problem to showing that if B0 is a domain

then the number of connected components of the geometric generic fiber

coincides with the number of connected components on the geometric fibers

over some dense open in the base.

Since we have “spreading out” for algebraic spaces as well as the other

properties in Theorem 3.4(2) (especially the properties of being a closed

immersion or open immersion), we can conclude by arguing exactly as

in the case of schemes [EGA, IV 3 , 9.7.7] (using dense open schemes in

quasi-compact quasi-separated algebraic spaces, and reducing certain steps in

the argument back to the scheme case by using étale scheme covers ; e.g.,

reducedness can be verified using an étale scheme cover, and to carry over

[EGA, IV3 , 9.5.3] to algebraic spaces we use that an open subset of a scheme
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of finite type over a field is dense if and only if the same holds after pullback

to an étale cover). .

We also require the analogue of Theorem 3.6 for algebraic spaces, but we

first focus on the set-theoretic aspect :

PROPOSITION 5.2. Let XS be a separated algebraic space of finite type

over F S . The map (3 2) is bijective.

Proof. The proof of injectivity goes exactly as in the scheme case, due

to the separatedness hypothesis (to circumvent the fact that the diagonal of a

general algebraic space does not factor as a closed immersion followed by an

open immersion). For surjectivity, we can focus on the factor ring S

of AF S away from S .

Choose a collection of points x XS( ) for all S . We seek to

construct x XS( S ) recovering x for all S ; there is at most one

such x , and to prove that such an x exists we will use the settled scheme

case and étale descent.

Let : US XS be an étale cover by an affine scheme, so this map

is separated (as US is separated). Its pullback along x is an étale cover

of Spec , and the special fibers of these maps have degree bounded

independently of since the fibers of have bounded degree (as for any

quasi-compact étale map to a quasi-separated quasi-compact algebraic space).

Let N be a uniform upper bound on such fiber degrees, and for each S

let be an unramified extension of degree d N! . Thus, the

restriction x XS( ) of x lifts to some u US( ) . Since US is affine,

there is a unique u US( ) recovering u for every S .

Let R S and R S , so R R is a finite étale cover

of degree d (express each in the form [t] ( f ) for a monic polyno-

mial f [t] with degree d and irreducible reduction, so R R[t] ( f ) for

f ( f ) R[t] [t] ). Moreover, this is a Z (d) -torsor by choosing an

identification of Z (d) with the cyclic Galois groups for the factors rings. We

have constructed a point x : u XS(R ) which recovers the -point x

for each S , and it suffices to descend x to an R -point of XS (since

such a descent necessarily recovers x for each S , due to the injectivity

of XS( ) XS( ) ). Since the functor XS is an étale sheaf, it suffices to

show that x is Z (d) -invariant. By the settled injectivity, it suffices to check

such invariance on the separate factors. Since x descends to x for all S

by construction, we are done. .
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To bring in topologies, we need to address the local case. The role of

completeness will be clarified by working with henselian valued fields : a

valued field is a field k equipped with a nontrivial absolute value, and it is

henselian if this absolute value uniquely extends to every algebraic extension.

A characterization of the henselian property is that k is separably algebraically

closed in k . (The complete case is all we will actually need, so the reader

may skip ahead to Proposition 5.4 and restrict attention to complete ground

fields.) By [Ber, 2.4.3], in the non-archimedean case k is henselian if and

only if its valuation ring is henselian in the sense of commutative algebra.

In general if k k is a finite separable extension field of a valued field k

then the nonzero finite reduced k -algebra k k k is the direct product of the

completions of k at the finitely many valuations extending the one on k .

Thus, if k is henselian then k k k is a field of degree [k : k] over k ,

so the archimedean henselian fields are precisely the algebraically closed

subfields of C and the real closed subfields of R (equipped with the induced

valuation) . If k is henselian then the functor k k k k is an equivalence

between the category of finite étale k -algebras and the category of finite étale

k -algebras : this is obvious in the archimedean case, and is [Ber, 2.4.1] in the

non-archimedean case.

LEMMA 5.3. Let k be a henselian valued field. For any étale map Y Y

between locally finite type k-schemes, the natural map Y (k) Y(k) is a local

homeomorphism.

Proof. We may work Zariski-locally on both Y and Y . By the Zariski-

local structure theorem for étale morphisms [EGA, IV4 , 18.4.6(ii)], we may

assume Y SpecB is affine and Y Spec (B[x] (h))h for a monic h B[x]

with positive degree, say degree n . Compatibility with base change allows

us to reduce to the universal case when Y is affine n -space over k and h

is the universal monic polynomial of degree n . The assertion now takes on

a concrete form : it is exactly “continuity of simple roots” as discussed just

after the proof of Proposition 4.4, except that we are relaxing completeness

to the henselian condition.

Since Y (k) Y(k) is a local homeomorphism (by the known complete

case) and the inclusions Y (k) Y (k) and Y(k) Y(k) are topological

embeddings, it suffices to prove that under the map Y (k) Y(k) , the fiber

over any y Y(k) consists entirely of k -rational points. This problem concerns

the k -scheme Yy Spec (k[x] (h))h for monic h k[x] with degree n 0 :

we claim that all simple zeros of h in k lie in k . Equivalently, we claim
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that all k -points of a finite étale k -algebra E are k -points. This says that the

natural map

Homk(E k) Homk(E k) Hom
k
(k k E k)

is bijective, which is a special case of the functorial equivalence between finite

étale k -algebras and finite étale k -algebras for henselian valued fields k . .

PROPOSITION 5.4. Let k be a henselian valued field, and X a (quasi-

separated ) algebraic space locally of finite type over k . There is a unique

way to topologize X(k) so that the following properties hold : it is functorial,

compatible with fiber products and the case of schemes, open (resp. closed )

immersions in X are carried to open (resp. closed ) embeddings in X(k) , and

étale maps are carried to local homeomorphisms.

If X is separated then the topology on X(k) is Hausdorff, and it is

totally disconnected (resp. locally compact ) when k is non-archimedean (resp.

locally compact ) .

If k is complete and X is smooth then X(k) admits a unique functorial

k -analytic manifold structure which agrees with the scheme case and carries

étale maps to k-analytic local isomorphisms.

I am grateful to A. J. deJong and L. Moret-Bailly for independently

suggesting the method of proof below; it is much simpler than my original

method (which required completeness and separatedness throughout, and more

importantly rested on the main theorem from [CT], entailing a long detour

through Berkovich spaces).

Proof. The uniqueness holds due to the requirement on étale maps and the

fact that for every x X(k) there exists an étale map U X from a scheme U

admitting a point u U(k) such that u x [Kn, II, Thm. 6.4]. (This ensures,

using a large disjoint union, that there is an étale scheme cover U X such

that U(k) X(k) is surjective.) For separated X the Hausdorff property of X(k)

is a formal consequence of the desired compatibility with closed immersions

and fiber products, and the assertions concerning local compactness and total

disconnectedness are also easy to verify via the scheme case when X is

separated (using that X(k) is Hausdorff to establish the totally disconnected

property).

To prove existence with the asserted properties, consider the étale

maps f : U X from finite type k -schemes U . As we vary through such

maps, the images f (U(k)) X(k) cover X(k) . We claim that the strongest
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topology on X(k) making the maps U(k) X(k) continuous (i.e., a subset

of X(k) is open when its preimage in each such U(k) is open) does the

job.

If f : U X and f : U X are two such étale maps, consider

the induced maps : U(k) X(k) and : U (k) X(k) . For an open

set V U (k) , 1( (V)) p1(p
1

2 (V )) where pi is the i th projection

on (U X U )(k) U(k) X(k) U (k) . Equip (U X U )(k) with its natural

topology using that U X U is a scheme. Then the pi are local homeo-

morphisms, due to Lemma 5.3 and the projections U X U U U being

étale maps of schemes, so 1( (V )) is open in U(k) . Thus, if a subset

of X(k) is the image of an open set in some U (k) (such as being contained

in (U (k)) with open preimage in U (k) ) then it has open preimage in any

other U(k) . In particular, any open set in U(k) has image in X(k) whose

preimage in U(k) is open (by taking U U ).

It follows that if we declare a subset of X(k) to be open when it has open

preimage in every U(k) (i.e., we consider the strongest topology making all

maps U(k) X(k) continuous) then in fact all maps U(k) X(k) arising from

schemes U étale over X are continuous and open. In particular, since there

is always an étale map U X from a scheme U such that the continuous

open map U(k) X(k) is surjective, it follows that the topology on X(k) is

functorial in X .

To prove that the topology is compatible with fiber products, consider a

pair of k -maps X X X and compatible k -maps U U U among

schemes étale over these algebraic spaces. Then U U U X X X is an

étale map from a scheme, and the composite map

(U U U )(k) U (k) U(k) U (k)
h
X (k) X(k) X (k) (X X X )(k)

as well as the middle map h are continuous and open. Thus, since the

left map is a homeomorphism, it follows that the right equality is continu-

ous and open on the image of h when we use the fiber product topology

on X (k) X(k) X (k) . Varying these étale schemes, it follows that the identifi-

cation X (k) X(k) X (k) (X X X )(k) is a continuous open bijection, hence

a homeomorphism.

To complete the proof of existence, it remains to verify that if f : X X is

an open immersion (resp. closed immersion, resp. étale) then X (k) X(k) is

an open embedding (resp. closed embedding, resp. local homeomorphism). As-

sume f is an open (resp. closed) immersion, and let U X be an étale scheme

cover such that U(k) X(k) is surjective. The pullback U : U X X is an

open (resp. closed) subscheme in U and U (k) U(k) X(k)X (k) topologically
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due to the established compatibility with fiber products. Since U U is

an open (resp. closed) immersion, U (k) U(k) is an open embedding

(resp. closed embedding). Thus, for any subset T X (k) that is open (resp.

closed), its image in X(k) has pullback in U(k) that is equal to the image

under U (k) U(k) of the preimage of T in U (k) . This implies that f (T)

is open (resp. closed) in X(k) since U(k) X(k) is topologically a quotient

mapping.

Now consider the local homeomorphism property for X (k) X(k)

when f : X X is étale. Choose a separated étale scheme cover U X

such that U(k) X(k) is surjective, and a separated étale scheme

cover U X XU such that U (k) (X XU)(k) is surjective. Using such

covers, by Lemma 5.3 the local homeomorphism property for X (k) X(k)

is reduced to the special case of U(k) X(k) for an étale map U X

from a separated scheme. Since the diagonal U U X U is an open and

closed immersion of schemes (as U is separated and U X is étale),

likewise the natural map U(k) (U X U)(k) U(k) X(k) U(k) is an open

and closed embedding (when using the fiber product topology on the tar-

get). Thus, for every u U(k) there is an open neighborhood in U(k) on

which U(k) X(k) is injective, so the continuous open map U(k) X(k) is

a local homeomorphism.

Finally, we address the k -analytic manifold structure when X is smooth

and k is complete. We wish to use the structure on each U(k) transported

via the local homeomorphism U(k) X(k) for étale maps U X from

schemes U . To verify that this defines a k -analytic structure, we have

to check the k -analyticity of the transition maps, which amounts to the

observation that for any two étale maps U U X from schemes, the maps

p1 p2 : (U X U )(k) U(k) X(k) U (k) U(k) U (k) are local k -analytic

isomorphisms (by the known scheme case, ultimately resting on the k -analytic

inverse function theorem and the Zariski-local description of étale maps). This

k -analytic structure is easily proved to be functorial and to carry étale maps

of algebraic spaces over to local k -analytic isomorphisms. .

EXAMPLE 5.5. Let G be a unipotent algebraic group over a henselian

valued field k of characteristic 0 (such as a p-adic field ; i.e., a finite extension

of Qp ) and V a reduced k -scheme of finite type equipped with a G -action

(e.g., the coadjoint representation Lie(G) , as in the orbit method). For d 0

let Vd V denote the reduced locally closed subscheme of points whose

G -orbit has dimension d . (This is locally closed due to applying semicontinuity

of fiber dimension to the action map G V V .)
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The universal action map G Vd Vd Vd defined by ( ) ( )

is flat over the diagonal (since the closed subscheme of the V -group G V

defined by the condition is the V -scheme exp(G V) V (kerB) for

the differentiated vector bundle map B : V TanV k over V , and kerB

is a subbundle over Vd due to B having constant rank over Vd ). Thus,

by [Del2, Prop. 3.11] there is a finitely presented algebraic space X over

k and a faithfully flat map Vd X that identifies X with the fppf sheaf

quotient of Vd by its G -action, so we denote X as Vd G . Generally Vd G

is highly non-separated. The topological space (Vd G)(k) is locally Hausdorff

and locally compact (and locally totally disconnected). For p -adic k and the

coadjoint representation V Lie(G) there is interest in using sheaf theory

on (Vd G)(k) to study the smooth representation theory of G(k) over C .

COROLLARY 5.6. Let f : X Y be a proper map between (quasi-

separated ) algebraic spaces locally of finite type over a local field k (possibly

archimedean ) . The map X(k) Y(k) is topologically proper.

Proof. We can choose an étale scheme cover Y Y such that the local

homeomorphism Y (k) Y(k) is surjective. It suffices to prove properness of

X(k) Y(k) Y (k) Y (k) , so we can applying base change along Y Y to

reduce to the case that Y is a scheme. By using Chow’s Lemma for algebraic

spaces [Kn, IV, 3.1], the method of proof of Proposition 4.4 reduces the

problem to the easy case when X is a projective space over Y . .

COROLLARY 5.7. Let X be a (quasi-separated ) algebraic space locally of

finite type over the valuation ring R of a field k equipped with a nontrivial non-

archimedean absolute value, and assume that R is henselian. The subset X(R)

in X(k) is open and closed, and if k is locally compact and X is of finite

type over R then X(R) is quasi-compact.

Proof. By construction, the topology on X(k) is obtained from that on the

spaces U(k) for schemes U étale over Xk . In particular, for any scheme U

étale over X the open set U(R) in Uk(k) has open image in X(k) . Since R

is henselian, any R -point of X is in the image of U(R) for some étale

map U X (by taking U such that there is a rational point in the fiber

of U X over the closed point of the chosen R -point of X , and using that R

is henselian). This proves that X(R) is open in X(k) . Using a huge disjoint

union, we can construct an étale scheme cover U X such that U(R) X(R)

and U(k) X(k) are surjective. The full preimage of X(k) X(R) in U(k)

is U(k) U(R) , which is open in U(k) , so since U(k) X(k) is a continuous
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surjective open map it follows that X(k) X(R) is open in X(k) . Thus, X(R)

is also closed in X(k) .

Now assume that k is locally compact and X is of finite type over R .

To build the étale scheme U X such that U(R) X(R) is surjective, we

just have to lift the rational points in the special fiber of X SpecR . But

the residue field is a finite field and X is of finite type, so by using a finite

stratification of X by schemes we see that there are only finitely many rational

points in the special fiber. Thus, U can be constructed as finite type over R ,

so U(R) is quasi-compact and therefore X(R) is quasi-compact. .

As an application of Corollary 5.7, we can carry over verbatim the proof

of Theorem 3.6 to show that for a separated algebraic space XS of finite

type over F S , the product topology on XS(AF S) via Proposition 5.2 and

Proposition 5.4 is locally compact Hausdorff and induces an open embedding

XS (AF S ) XS (AF S )

where XS and XS are as in Theorem 3.6.

Since Theorem 3.4 is valid for algebraic spaces, the natural map

limXS(AF S ) XS(AF)

is bijective for any separated algebraic space XS of finite type over F S

(where S varies through the finite sets of places containing S ). Thus, exactly

as in the scheme case, we can functorially topologize X(AF) for any separated

algebraic space X of finite type over F (recovering our earlier topological

constructions when X is a separated F -scheme of finite type). Exactly as in the

scheme case, this is locally compact, Hausdorff, has a countable base of opens,

and is compatible with fiber products and closed immersions. Proposition 4.4

carries over with the same proofs (using Corollary 5.6). For general interest,

we record the latter :

PROPOSITION 5.8. Let f : X Y be a proper map between sepa-

rated algebraic spaces locally of finite type over a global field F . The

map X(AF) Y(AF) is topologically proper.

The openness result for a smooth surjective F -morphism (as in Theo-

rem 4.5) lies somewhat deeper :
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THEOREM 5.9. Let f : X X be a smooth surjective map between

separated algebraic spaces of finite type over a global field F . Assume that

the fibers of f are geometrically connected. Then the map X (AF) X(AF)

is open.

Proof. The argument for the scheme case carries over except for the step

of checking surjectivity at the level of rational points over the finite residue

fields at all but finitely many places. For this we just need Lemma 4.6 to be

valid for algebraic spaces of finite presentation over Z . The basic formalism

of étale cohomology works for noetherian algebraic spaces with essentially

the same proofs because of : the finite stratification in locally closed schemes

for noetherian algebraic spaces, formal GAGA for noetherian algebraic spaces

[Kn, V, §6], Nagata’s compactification theorem for algebraic spaces (recently

proved, e.g. in [CLO]), and the fact that separated algebraic space curves over

a field are schemes [Kn, V, 4.9ff].

The Grothendieck-Lefschetz trace formula also carries over, since excision

for cohomology with proper supports allows us to use a stratification in schemes

to reduce to the known case of schemes. Thus, we just need that Deligne’s

Riemann Hypothesis [Del1, Thm. 3.3.1] holds for separated algebraic spaces

of finite type over a finite field. Once again we can use the excision sequence

and a stratification in schemes to reduce to the known scheme case. .

Finally, we address how the topology on X(k) for an algebraic space X

over a field k as in Proposition 5.4 interacts with Weil restriction through

finite extensions k k , and then deduce a corresponding global result for adelic

points. We first record how Weil restriction behaves for algebraic spaces :

LEMMA 5.10. Let R R be a finite locally free ring extension,

and X a (quasi-separated ) algebraic space of finite type over R . The

Weil restriction X : ResR R(X ) as a functor on R-schemes is a (quasi-

separated ) algebraic space of finite type over R. If X is separated (resp. of

finite presentation ) over R then the same holds for X over R.

See [Ols, Thm. 1.5] for more general results on Weil restriction for algebraic

spaces.

Proof. Let U X be an étale cover by an affine scheme, so ResR R(U )

is an affine scheme of finite type over R (and of finite presentation when X

is of finite presentation over R ). Since any finite algebra over a strictly

henselian local ring is a finite product of such rings [EGA, IV 4 , 18.8.10],
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the induced étale map ResR R(U ) ResR R(X ) of étale sheaves on the

category of R -schemes is surjective. Moreover, the fiber square of this map

is the functor ResR R(U X U ) . The fiber product U X U is quasi-

compact, separated, and étale over U under either projection because the

same holds for the étale map U X (since U is separated and X

is quasi-separated). But any quasi-compact étale map is quasi-finite, so by

Zariski’s Main Theorem [EGA, IV3 , 8.12.6] such maps U X U U

are quasi-affine when separated. (See [EGA, II, 5.1.9] for the equivalence

of the two natural meanings of “quasi-affine” for finite type schemes over a

ring.) Hence, the finite type R -scheme U X U is quasi-affine, so it is also

quasi-projective over R . It follows that ResR R(U X U ) is represented by

an R -scheme of finite type (even quasi-projective, by [CGP, A.5.8]).

The projections ResR R(U X U ) ResR R(U ) are étale since the

maps U X U U are étale, and the diagonal

: ResR R(U X U ) ResR R(U ) Spec(R)ResR R(U ) ResR R(U Spec(R )U )

is the Weil restriction of U X U U Spec(R ) U , so is a closed

immersion when X is separated.

We conclude that ResR R(X ) is an étale sheaf quotient of an affine scheme

equipped with a representable étale equivalence relation having a quasi-compact

diagonal that is a closed immersion when X is separated. The category of

(quasi-separated) algebraic spaces is stable under the formation of quotients by

étale equivalence relations having quasi-compact diagonal [LMB, Prop. 1.3],

so ResR R(X ) is an algebraic space and it is separated when X is separated.

It is finitely presented over R when X is finitely presented over R since in

such cases by construction ResR R(X ) admits a finitely presented étale cover

by an affine scheme of finite presentation over R . .

PROPOSITION 5.11. Let k k be an extension of henselian valued fields,

and X a (quasi-separated ) algebraic space locally of finite type over k .

(1) If [k : k] is finite then for any (quasi-separated ) algebraic space Y of

finite type over k , the identification of sets Resk k(Y )(k) Y (k ) is a

homeomorphism.

(2) The natural map X(k) X(k) X
k
(k) is a topological embedding.

(3) Assume X is covered by separated Zariski-open subsets. The natural

map X(k) X(k ) Xk (k ) is a topological embedding, and it is a

closed embedding when k is closed in k .

We will not use (3) (whose proof rests on [CT] when [k : k] is infinite).
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Proof. First consider (1). For y Y (k ) , choose an étale map U Y

from an affine scheme U such that there exists u U (k ) over y .

Then U : Resk k(U ) is an affine scheme of finite type over k and the

induced map U Y is étale (by the functorial criterion, or the construction

of Y ). Moreover, this latter map carries the point u U(k) U (k )

corresponding to u over to the point y Y(k) Y (k ) corresponding to y .

In the commutative square

U(k) U (k )

Y(k) Y (k )

the vertical maps are local homeomorphisms onto their images, and the top

horizontal map is a homeomorphism due to the known case of affine schemes

of finite type. Thus, the bijective bottom horizontal map is a homeomorphism

between open neighborhoods of y and y . Since y was arbitrary, we are done

with (1).

For (2), let f : U X be an étale cover by a separated scheme such

that U(k) X(k) is surjective. In the commutative diagram

U(k)

f

U(k)

f

X(k) X(k)

the vertical maps are local homeomorphisms (with the left side a quotient

map), the top map is a topological embedding (since U is a scheme), and

the bottom map is injective. It follows that the bottom map is continuous.

To prove that it is a topological embedding, let V U(k) be an open

set which is the preimage of its image in X(k) . We can choose an open

set V U(k) which meets U(k) in exactly V . The image f (V ) X(k) is

an open set, and obviously f (V) X(k) f (V ) . But the reverse inclusion

also holds. Indeed, if x X(k) has the form f ( ) for some V U(k)

then necessarily U(k) since the étale k -scheme Ux has all k -points

necessarily k -rational (as k is henselian). This forces V U(k) V ,

so x f (V) as required and (2) is proved.

It follows from (2) that in general the property of X(k) X(k )

being a topological embedding is reduced to the analogous assertion using

the completions of k and k . If k is closed in k then the resulting
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equality k k k in k forces X(k) X(k ) X(k) inside X(k ) , so in such

cases X(k) is closed in X(k ) when X(k) is closed in X(k ) . Thus, to prove (3)

we may and do now work with complete ground fields. (If [k : k]

then [k : k] [k : k] .) We also may and do assume X is separated,

since the problem is Zariski-local on X .

First we consider the finite-degree case of (3) (with complete fields), as

this admits a simpler proof than the general case. By working Zariski-locally

on X we may assume it is of finite type over k , so Resk k(Xk ) is an algebraic

space over k . Consider the diagram

X(k) X(k ) Xk (k ) Resk k(Xk )(k)

in which the first bijection defines the topology on X(k ) and the second

bijection is a homeomorphism (by (1)). The composite map is induced on k -

points by the canonical map of k -schemes j : X Resk k(Xk ) , so to settle the

case when [k : k] is finite it suffices to prove that j is a closed immersion. It

is equivalent to say that the base change jk : Xk Resk k(Xk )k is a closed

immersion. This is a section to an instance of the canonical k -map

: Resk k(Y )k Y

defined by Y (k k A ) Y (A ) for k -algebras A and (quasi-separated)

algebraic spaces Y of finite type over k , so it suffices to note that is

separated when Y is separated. (If 6Y k is a quasi-compact immersion, so the

same holds for 6Resk k(Y ) k
Resk k(6Y k ) , then any section to is quasi-

compact. Hence, even without completeness, X(k) X(k ) is a topological

embedding whenever [k : k] is finite and 6X k is a quasi-compact immersion.)

To handle the cases when [k : k] is not assumed to be finite (so we may

and do assume k is non-archimedean, as otherwise we are in the settled finite-

degree case), we will appeal to a more difficult (but ultimately equivalent)

construction of the topology in the non-archimedean complete case, resting

on the main theorem in [CT]. That theorem provides a functorial theory

of analytification Xan (in the sense of rigid-analytic spaces) for separated

algebraic spaces X locally of finite type over k , compatible with fiber products,

open and closed immersions, étale maps, the scheme case, and extension of the

ground field. Moreover, by [CT, Ex. 2.3.2] it satisfies the expected functorial

property X(k) Xan(k) as sets. Thus, by using an admissible affinoid open

covering of Xan , this provides another way to topologize X(k) compatibly with

all of the properties required for the uniqueness in Proposition 5.4 (since rigid-

analytic étale maps are local isomorphisms near rational points). Hence, we

recover the topology in Proposition 5.4. Since the formation of Xan respects
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extension of the ground field, the injection X(k) X(k ) is topologically

identified with the natural injection Xan(k) (Xan)k (k ) that is seen to be a

closed embedding by working with the constituents of an admissible affinoid

open covering of Xan . .

COROLLARY 5.12. Let f : X Y be a finite map between separated

algebraic spaces locally of finite type over a henselian valued field k . If k is

algebraically closed in k then X(k) Y(k) is topologically proper.

The hypothesis that the henselian k is algebraically closed in k holds

if char(k) 0 or k is non-archimedean with an excellent valuation ring.

Proof. Consider the commutative diagram

X(k) X(k)

Y(k) Y(k)

in which the horizontal maps are topological embeddings (Proposition 5.11(2)).

It follows that the diagram is topologically cartesian since it is set-theoretically

cartesian (due to the hypothesis that k is algebraically closed in k ). Hence,

it suffices to consider the case when k is complete. We may also work

locally on Y(k) , and for any y Y(k) there is an étale map U Y from a

scheme U containing u U(k) mapping to y . Then U(k) Y(k) is a local

homeomorphism near u , so we may pass to X Y U U in place of X Y

to reduce to the case when Y is a scheme.

By working Zariski-locally on Y we can then assume that Y Spec(A) is

affine and the Y -finite X is a closed subscheme of Spec A[t1 tn] (h1 hn)

for some monic hj A[tj] with positive degree. This reduces the problem

to the special case X Spec A[t] (h) for a monic h A[t] with positive

degree. Since a topologically closed map between Hausdorff spaces is proper

when its fibers are finite, it suffices to prove closedness of the map on k -points.

Such closedness follows from the version of “continuity of roots” over k k

(without simplicity requirements) given in [BGR, 3.4.1/2]. .

EXAMPLE 5.13. We now show if the hypothesis on X in Proposi-

tion 5.11(3) (which is always satisfied in the scheme case) is weakened

to the condition that the quasi-compact 6X k is an immersion, then the closed

embedding property for X(k) X(k ) can fail even when k is complete with
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respect to a nontrivial discrete valuation and k k is finite separable. As the

proof of Proposition 5.11 suggests, the place to look for such X is among those

algebraic spaces which fail to admit an analytification in the sense of [CT].

Let k k be a separable quadratic extension of fields, and assume k is com-

plete with respect to a nontrivial non-archimedean absolute value. Let X be the

algebraic space obtained from the affine line L over k by “replacing” the origin

with Spec(k ) . In concrete terms, this is the quotient of the affine k -line L

by the free action of the affine étale L -group G obtained from (Z 2Z)L by

deleting the non-identity point over the origin of L . The smooth irreducible

algebraic space X L G is a lower-dimensional version of the 2-dimensional

non-analytifiable example in [CT, Ex. 3.1.1], and as in that example the diag-

onal 6X k is easily checked to be a quasi-compact immersion (even affine).

By construction there is a natural étale map X L that is an isomorphism

over L 0 and has fiber Spec k over 0. Thus, X(k) L(k) k misses 0

and hence is a homeomorphism onto k . The construction of X makes sense

using any quadratic étale algebra (i.e., we allow k k, and uniquely identify its

k-automorphism group with Z 2Z ). In that sense, the formation of X commutes

with any extension of the ground field. Thus, Xk is the affine k -line with a

doubled origin, so X(k ) Xk (k ) is the non-Hausdorff space built from k

by doubling the origin. The map X(k) X(k ) is identified with the inclusion

of k into the k -line with doubled origin. This has non-closed image.

Here is the analogue of Example 4.2 for algebraic spaces :

PROPOSITION 5.14. Let F F be a finite extension of global fields,

and X a separated algebraic space of finite type over F . For the separated

algebraic space X ResF F(X ) of finite type over F , the bijection of

sets X(AF) X (AF ) is a homeomorphism.

Proof. By carrying over the same argument as in the scheme case,

we reduce the problem to the case of local fields. This case is settled by

Proposition 5.11(1). .
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