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THE TAMBARA-YAMAGAMI CATEGORIES

AND 3-MANIFOLD INVARIANTS

by Vladimir TURAEV and Leonid VAINERMAN

ABSTRACT. We prove that if two Tambara-Yamagami categories (A )
and (A ) give rise to the same state sum invariants of 3-manifolds and
the order of one of the groups A A is odd, then and there is a group
isomorphism A A carrying to . The proof is based on an explicit computation
of the state sum invariants for the lens spaces of type (k 1) .

INTRODUCTION

One of the fundamental achievements of quantum topology was a discovery

of a non-trivial connection between monoidal categories and state-sum

3-manifold invariants. This connection was first observed by O.Viro and

V. Turaev and later generalized in the papers of J. Barrett, B.Westbury,

A.Ocneanu, S. Gelfand, D.Kazhdan and others. Their results may be summa-

rized by saying that every spherical fusion category over C with dim( ) 0

gives rise to a numerical topological invariant M C of any closed ori-

ented 3-dimensional manifold M . A prototypical example of a spherical fusion

category is the category REP(G) of finite-dimensional complex representations

of a finite group G . This category allows nice operations on objects and

morphisms : direct sums, tensor products, left and right dualization. Moreover,

REP(G) contains a finite family of “simple” objects (= irreducible representa-

tions) such that all objects split as direct sums of the objects of this family.

Certainly, the sets of morphisms in REP(G) are finite-dimensional complex

vector spaces. Axiomatizing these properties, one obtains a notion of a fusion

category, see [4]. The condition of sphericity on a fusion category is more

technical and basically says that all objects of have a well-defined numeri-

cal dimension invariant under isomorphisms in , see [2]. A spherical fusion
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category has a numerical dimension defined as the sum of the squares of

the dimensions of the isomorphism classes of simple objects (for example,

dim(REP(G)) G ). The class of spherical fusion categories includes the

categories of type REP(G) and many other categories some of which will be

mentioned below. The class of spherical fusion categories is believed to be

“big but not too big” so that one may hope for some kind of classification.

The invariant of a 3-manifold M associated with REP(G) is nothing but the

number of homomorphisms from the fundamental group of M to G . In general,

the invariant M associated with a spherical fusion category can not be

defined in terms of the fundamental group. The definition of M proceeds

in terms of state sums on a triangulation of M . The key algebraic ingredients

of these state sums are the so-called 6j -symbols associated with .

The formula (M ) M defines a pairing between homeomorphism

classes of closed oriented 3-manifolds and spherical fusion categories of non-

zero dimension. A study of this pairing leads to natural questions both in

algebra and topology. One usually studies the topological aspects. Is the

pairing (M ) M sufficiently strong to distinguish the 3-sphere from

other 3-manifolds ? (The answer is “yes”.) Is it sufficiently strong to distinguish

arbitrary 3-manifolds up to homeomorphism ? (The answer is “no”, see [5].)

We shall focus on algebraic questions and specifically on the following

reconstruction problem : To what extent can a spherical fusion category be

reconstructed from the associated 3-manifold invariants ? The rational for this

problem is that the number M may be viewed as a generalized dimension

of determined by M . The reconstruction problem is intriguing already for

the categories of type REP(G) . Is it true that for any non-isomorphic finite

groups G1 G2 there is a closed oriented 3-manifold M such that the numbers

of homomorphisms from 1(M) to G1 and G2 are different ? We do not

know the answer.

In this paper, we study the reconstruction problem for a class of spheri-

cal fusion categories introduced by Tambara and Yamagami [13]. The origin

of their work is as follows. On the one hand, studying bimodule categories

in the theory of operator algebras, Yamagami [17] constructed examples of

non-isomorphic semisimple Hopf algebras with equivalent categories of repre-

sentations. On the other hand, Tambara and Yamagami attempted to distinguish

three existing 8-dimensional non-commutative semisimple Hopf algebras by

their categories of representations. These Hopf algebras are the Kac-Paljutkin

algebra [8] and the group algebras of the dihedral group D8 and the quater-

nion group Q8 . It was known that the representation categories of these Hopf

algebras had the same Grothendieck ring, but it was unknown whether or not
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these tensor categories themselves were equivalent. Tambara and Yamagami

completely classified semisimple tensor categories with Grothendieck ring of

the above mentioned type, and deduced that the categories of representations

of the three Hopf algebras in question are not equivalent to each other.

A Tambara-Yamagami category (A ) is determined by a bi-

character on a finite abelian group A and a sign 1. By a bicharacter

on A we mean a non-degenerate symmetric bilinear pairing : A A S1 ; the

non-degeneracy of means that the adjoint homomorphism A Hom(A S1)

is bijective. The pair (A ) is called a bicharacter pair. It is known that the

category (A ) has a canonical structure of a spherical fusion category

and its dimension is non-zero.

Two bicharacter pairs (A ) and (A ) are said to be isomorphic if

there is an isomorphism A A transforming into . It is known

that two Tambara-Yamagami categories, (A ) and (A ) , are

monoidally equivalent if and only if the pairs (A ) and (A ) are isomorphic

and . Moreover, the monoidal equivalence, if it exists, may always be

chosen to preserve the structure of a spherical category.

Each bicharacter pair (A ) splits uniquely as an orthogonal sum

(A )
p

(A(p) (p))

where p runs over all prime natural numbers, A(p) A is the abelian p -group

consisting of the elements of A annihilated by a sufficiently big power of p ,

and (p) : A(p) A(p) S1 is the restriction of to A(p) . In the sequel, the

order of a group A is denoted A .

THEOREM 0.1. Let (A ) and (A ) be

two Tambara-Yamagami categories such that M M for all closed

oriented 3 -manifolds M .

(a) We have A A and if A is not a positive power of 4 , then .

(b) For every odd prime p, the pairs (A(p) (p)) and (A (p) (p)) are

isomorphic.

Combining the claims (a) and (b) we obtain the following corollary.

COROLLARY 0.2. Let (A ) and (A ) be

two Tambara-Yamagami categories such that M M for all closed

oriented 3 -manifolds M . If A is odd, then the bicharacter pairs (A )

and (A ) are isomorphic and .



134 V. TURAEV AND L. VAINERMAN

We conjecture a similar claim in the case where A is even.

The proof of Theorem 0.1 is based on an explicit computation of M

for the lens spaces Lk Lk 1 with k 0 1 2 Recall that Lk is the

closed oriented 3-manifold obtained from the 3-sphere S3 by surgery along

a trivial knot in S3 with framing k . In particular, L0 S1 S2 , L1 S3 ,

and L2 RP3 . The manifolds Lk k are pairwise non-homeomorphic; they

are distinguished by the fundamental group 1(Lk) Z kZ .

To formulate our computation of Lk , we recall the notion of a Gauss

sum. Let A be a finite abelian group and : A A S1 be a symmetric

bilinear form (possibly degenerate). A quadratic map associated with is a

map : A S1 such that for all a b A ,

(a b) (a b) (a) (b)

In other words, the coboundary of is equal to . Such a always exists

(see, for example, [9]) and determines the normalized Gauss sum

( ) A 1 2 A 1 2

a A

(a) C

where

A a A (a b) 1 for all b A

is the annihilator of . (If is a bicharacter, then A 0 .) The

normalization is chosen so that either ( ) 0 or ( ) 1 (see Lemma 2.1

below).

Denote by Q the set of quadratic maps associated with . This set has

precisely A elements ; this follows from the fact that any two quadratic maps

associated with differ by a homomorphism A S1 . Every integer k 0

determines a subgroup Ak a A ka 0 of A and a number

k( ) A 1 2 Ak
1 2

Q

( )k C

For example, A0 A and 0( ) 1 .

THEOREM 0.3. Let (A ) be a Tambara–Yamagami category.

For any odd integer k 1 , we have

(0.1) Lk
Ak

2 A

For any even integer k 0 , we have

(0.2) Lk
Ak

k 2 A 1 2 Ak 2
1 2

k 2( )

2 A
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For k 0, Formula (0.2) gives S1 S2 1 which is known to be true

for all spherical fusion categories .

Our proof of Theorem 0.3 is based on two results. The first is the

equality M ( )(M) recently established in [16]. Here is an arbitrary

spherical fusion category of non-zero dimension, ( ) is the Drinfeld-Joyal-

Street center of , and ( )(M) is the Reshetikhin-Turaev invariant of M .

The second result is the computation of the center of (A ) in [6].

The paper is organized as follows. In Section 1 we recall the Tambara-

Yamagami category and its center and prove Theorem 0.3. In Sections 2 and 3

we prove respectively claims (a) and (b) of Theorem 0.1.
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1. THE TAMBARA-YAMAGAMI CATEGORIES AND THEIR CENTERS

In this section, (A ) is a bicharacter pair, 1 , and n A .

1.1 THE CATEGORY (A )

The simple objects of the Tambara-Yamagami category (A )

are all elements a of A and an additional object m . The unit object of

is the zero element 0 A . All other objects of are finite direct sums of

the simple objects. The tensor product in is determined by the following

fusion rules :

a b a b and a m m a m for all a b A

and m m
a A

a

The category is associative but generally speaking not strictly associative.

For any simple objects U V W of , the associativity isomorphism

U V W : (U V) W U (V W) is given by the following formulas
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(where a b c run over A ) :

a b c ida b c a b m idm m a b idm

a m b (a b)idm a m m
b A

idb m m a
b A

idb

m a m
b A

(a b)idb m m m ( n 1 2 (a b) 1idm)a b

The unit isomorphisms are trivial. The duality in is defined by a a

for all a A and m m . The left duality morphisms in are the identity

maps 0 a a a a 0 for a A , the inclusion 0 m m and n1 2

times the obvious projection m m 0. The right duality morphisms in

are the identity maps 0 a a a a 0 for a A , times the

inclusion 0 m m and n1 2 times the obvious projection m m 0.

The functor X X , where X is an object of (A ) , equals to

the identity functor. There is a pivotal structure j on (A ) defined

by j(a) ida for all a A and j(m) si n( )idm , where si n means the sign

of a real number. This structure is canonical in the sense that the corresponding

pivotal dimensions are equal to the Perron-Frobenius dimensions of objects :

dim(a) 1 for all a A and dim(m) A .

We define a fusion category as a C -linear monoidal category with

compatible left and right dualities such that all objects are direct sums of

simple objects, the number of isomorphism classes of simple objects is finite,

and the unit object is simple. (An object V is simple if End(V) C idV .) The

condition of sphericity says that the left and right dimensions of all objects

are equal. A spherical fusion category has a numerical dimension defined as

the sum of the squares of the dimensions of the (isomorphism classes of)

simple objects. A basic reference on the theory of fusion categories is [4].

It is easy to see that the above mentioned pivotal structure in (A )

is spherical. It turns into a spherical fusion category of dimension 2n .

1.2 THE CENTER

The center ( ) of (A ) was computed in [6], Prop. 4.1. The

category ( ) has three types of simple objects whose description together

with the corresponding quantum dimensions and twists is as follows :

(1) 2n invertible objects X(a ) , where a runs over A and runs over complex

square roots of (a a) 1 . Here dim(X(a )) 1 and (a ) (a a) 1 ;

(2) n(n 1)
2

objects Y(a b) parameterized by unordered pairs (a b) , where

a b A , a b . Here dim(Y(a b)) 2 and (a b) (a b) 1 ;
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(3) 2n objects Z( 6) , where runs over Q and 6 runs over the square

roots of ( ) . Here dim(Z( 6)) n1 2 and ( 6) 6 .

Denote by I the set of the (isomorphism classes of) simple objects of ( ) .

The dimension of ( ) is computed by

dim ( )

i I

(dim(i))2 2n 1
n(n 1)

2
4 2n n 4n2

We will need the following more general computation.

LEMMA 1.1. For an integer k 0 , set k i I
k
i (dim(i))

2 , where i

and dim(i) are the twist and the dimension of i I . If k is odd,

then k 2n Ak . If k is even, then k 2n( Ak
k 2 A 1 2 Ak 2

1 2
k 2( )) .

Proof. A direct computation shows that k 2uk n k , where

uk
a A

(a a) k

(a b) A2 a b

(a b) k

and k ( 6) 6
k . Since is non-degenerate,

uk
a b A

(a b) k

a b A

(a b k) n Ak

If k is odd, then the contributions of the pairs ( 6) and ( 6) to k

cancel so that k 0 and k 2n Ak . For even k ,

k 2( ( ))k 2 2 k 2 A 1 2 Ak 2
1 2

k 2( )

1.3 PROOF OF THEOREM 0.3

Since (A ) is a spherical fusion category of non-zero

dimension, it determines for any closed oriented 3-manifold M a state sum

invariant M C , see [15], [1]. By a theorem of Müger [10], the

category ( ) is modular in the sense of [14]. A modular category endowed

with a square root of its dimension gives rise to the Reshetikhin-Turaev

invariant of any M as above. The RT-invariant of M determined by ( )

and the square root 2n 1 of dim ( ) will be denoted by ( )(M) .

A theorem of Virelizier and Turaev [16] implies that M ( )(M) for

all M . By [14], Chapter II, 2.2, for all k 0,

( )(Lk)
2

i I

k
i (dim(i))

2 4n 2
k

Substituting the expression for k provided by Lemma 1.1, we obtain the

claim of the theorem.
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2. PROOF OF THEOREM 0.1(a)

We start with a well-known lemma. In this lemma we call a quadratic

map : A S1 homogeneous if (na) ( (a))n
2

for all n Z and a A .

LEMMA 2.1. Let A be a finite abelian group and : A S1 be a

quadratic map associated with a symmetric bilinear form : A A S1 .

Set A A A.

– If (A ) 1 , then ( ) 0 .

– If (A ) 1 , then ( ) 1 .

– If (A ) 1 and is homogeneous, then ( ) is an 8 -th complex root

of unity.

Proof. We have

A A ( ) 2

a A

(a) 2

a b A

(a) (b)

a b A

(a) (b) 1

a b A

(a b) (b) 1

a b A

(a b) (a)

When b runs over A , the complex number (a b) runs over a finite subgroup

of S1 . We have b A (a b) 0 unless this subgroup is trivial. The latter

holds if and only if a A and in this case b A (a b) A . Therefore,

A A ( ) 2 A

a A

(a)

The restriction of to A is a group homomorphism A S1 . If (A ) 1 ,

then a A (a) 0 and therefore ( ) 0 . Suppose now that (A ) 1 .

Then a A (a) A and therefore ( ) 1 . The equality (A ) 1

also ensures that is the composition of the projection A A A A with

a quadratic map : A S1 associated with the non-degenerate symmetric

bilinear form A A S1 induced by . It follows from the definitions

that ( ) ( ) . If is homogeneous, then so is . It is known (see, for

instance, [11], Chapter 5, Section 2) that for any homogeneous quadratic map

on a finite abelian group associated with a non-degenerate symmetric bilinear

form, the corresponding invariant is an 8-th root of unity. This implies the

last claim of the lemma.

LEMMA 2.2. Let (A ) be a bicharacter pair. For any integer k 1 ,

either k( ) 0 or k( ) is an 8 -th root of unity. If k 1 or k is divisible

by 8 A , then k( ) 1 .
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Proof. Pick a quadratic map 0 : A S1 associated with . Observe that

for every integer k , the function k
0 : A S1 carrying any c A to ( 0(c))

k

is a quadratic map associated with the symmetric bilinear form k : A A S1

defined by k(a b) ( (a b))k . We claim that for all k Z ,

(2.1) k( ) ( k
0 ) ( ( 0))

k

Indeed, since is non-degenerate, any quadratic map : A S1 associated

with can be expanded in the form (a) (a c) 0(a) for a unique

c c( ) A . Since (a c) 0(a) 0(a c) 0(c)
1 for all a c A , we

have

k( ) A 1 2 Ak
1 2

Q

( A 1 2

a A

(a))k

A 1 2 Ak
1 2

c A

( A 1 2

a A

(a c) 0(a))
k

A 1 2 Ak
1 2

c A

0(c)
k A 1 2

b A

0(b)
k

( k
0 ) ( ( 0))

k

In the last equality we use the obvious fact that A k Ak .

We can always choose 0 : A S1 to be homogeneous. Then k
0

also is homogeneous. Since is non-degenerate, the previous lemma implies

that ( 0) is an 8-th root of unity and ( k
0 ) is either zero or an 8-th root

of unity. This implies the first claim of the lemma.

For k 1, Formula (2.1) gives

1( ) ( 1
0 ) ( 0) ( 0) ( 0) ( 0) ( 0) 1

where the overbar is the complex conjugation.

Observe that 2n
0 1 for n A . Indeed, for any a A ,

1 0(0) 0(2na) ( 0(a))
2n (a a)n(n 1)

( 0(a))
2n (na (n 1)a) ( 0(a))

2n

Therefore for all k 2nZ , we have ( k
0 ) 1 . If k 8Z ,

then ( ( 0))
k 1. Hence, if k 8nZ , then k( ) ( k

0 ) ( ( 0))
k 1.

2.1 PROOF OF THEOREM 0.1(a)

For k 1, Formula (0.1) gives L1 (2 A ) 1 . Thus,

A L1
1 2 L1

1 2 A
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This and Formula (0.1) imply that Ak Ak for all odd k 1.

Set n A A . Suppose that . Assume for concreteness

that 1 and 1. Formula (0.2) with k 2 and Lemma 2.2 show

that

A2 n1 2 2n L2 2n L2 A2 n1 2

Thus, A2 A2 2n1 2 . Therefore, n m2 for an integer m 1. Since n

is not a positive power of 4, either m 1 or m is not a power of 2.

If m 1, then A A 0 and so A2 A2 0 which contradicts the

equality A2 A2 2m .

Suppose that m n1 2 is not a power of 2. Pick an odd divisor 3

of m . Applying Formula (0.2) to k 2 , we obtain

Ak m A 1 2 ( ) Ak m A 1 2 ( )

Note that Ak A2 A and similarly for A . Since is odd, we

have A A . Therefore

A2 A2 m A 1 2( ( ) ( ))

The right-hand side of this equality must be a real number that cannot

exceed 2m A 1 2 by Lemma 2.2. Thus, A2 A2 2m A 1 2 . Since

divides n , we have A 1 so that A 2. This gives A2 A2 2m 2

which contradicts the equality A2 A2 2m . This contradiction shows

that .

2.2 REMARKS

(i) It is easy to extend the above argument to show that the conclusion

of Theorem 0.1(a) also holds for A 4.

(ii) Let in the proof above A A n be a positive power of 2

and 1 1. Formula (0.2) with k 2 , where 3 is odd, shows

that

A2 n1 2 A 1 2 ( ) 2n L2 2n L2 A2 n1 2 A 1 2 ( )

But now A 0 , so A 1, A2 A2 and similarly for A .

This gives A2 A2 n1 2( ( ) ( )) . Comparing with the equal-

ity A2 A2 2n1 2 obtained above, we conclude that ( ) ( ) 2 .

By Lemma 2.2, this is possible if and only if ( ) ( ) 1 for all

odd 3.
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(iii) The number k( ) is closely related to the Frobenius-Schur indica-

tor 2k(m) of the object m of the category (A ) computed by

Shimizu [12]. Indeed, substituting n 2k V m in formula (3) of [12] and

taking into account that dim( ) 2 A , m 6 , dim(m) A 1 2 , we obtain

2k(m)
1

2 A 1 2
6

62k A 1 2

Q

[ ( )]k k Ak
1 2

k( )

(our sign is equal to Shimizu’s s n( ) ). This and Lemma 2.2 give another

proof of the following results of Shimizu (see [12], Theorem 3.5) : the

number Ak
1 2

2k(m) is either 0 or an 8-th complex root of unity for

all k ; this number is 0 if and only if for some (and then for any) Q ,

there is a a Ak such that (a)k 1. The latter claim follows from

Lemma 2.1, Formula (2.1), and the equality A k Ak .

3. PROOF OF THEOREM 0.1(b)

3.1 PRELIMINARIES ON BICHARACTERS

Any finite abelian group A splits uniquely as a direct sum A p A
(p) ,

where p 2 runs over all prime integers and A(p) consists of all elements

of A annihilated by a sufficiently big power of p . The group A(p) is a p -group,

i.e., an abelian group annihilated by a sufficiently big power of p . Given a

bicharacter of A , we have (A(p) A(p )) 1 for any distinct p p . Therefore

the restriction, (p) , of to A(p) is a bicharacter and we have an orthogonal

splitting (A ) p (A
(p) (p)) .

Fix a prime integer p 2 and recall the properties of bicharacters

on p -groups, see, for example, [3] for a survey. Given a bicharacter on a

finite abelian p -group A , there is an orthogonal splitting (A ) s 1(As s) ,

where As is a direct sum of several copies of Z psZ and s : As As S1

is a bicharacter. The rank of As as a Z psZ -module depends only on A and

is denoted rp s(A) .

Assume from now on that p 2. Then the splitting (A ) s 1(As s)

is unique up to isomorphism and each s is an orthogonal sum of bicharacters

on rs(A) copies of the cyclic abelian group Z psZ . Using the canonical

injection Z psZ S1 z e2 iz ps , we can view s as a pairing with values

in the ring Z psZ . This allows us to consider the determinant det s Z psZ

of s . Since s is non-degenerate, det s is coprime with p . Let

p s( )
det s

p
1
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be the corresponding Legendre symbol. Recall that for an integer d coprime

with p , the Legendre symbol d
p

is equal to 1 if d (mod p) is a quadratic

residue and to 1 otherwise, see, for example, [7]. If rp s(A) 0 , then by

definition p s 1. It follows from the definitions that the integers rp s s are

additive and the signs p s s are multiplicative with respect to orthogonal

summation of bicharacter pairs. A theorem due to H. Minkowski, E. Seifert,

and C. T. C. Wall says that these invariants form a complete system : two

bicharacters, 1 and 2 , on p -groups A1 and A2 , respectively, are isomorphic

if and only if rp s(A1) rp s(A2) and p s( 1) p s( 2) for all s 1.

For brevity, when p is specified, we denote rp s(A) and p s( ) by rs(A)

and s( ) , respectively.

3.2 COMPUTATION OF k

Consider the C -valued invariants k k 1 of bicharacters defined in the in-

troduction. It is easy to deduce from the definitions that k( ) k( ) k( )

for any bicharacters and any k . Thus, the formula k( ) defines

a multiplicative function from the semigroup of bicharacter pairs (with the

orthogonal sum as operation) to C .

Fix an odd prime p 3. We now compute k on the bicharacters

on p -groups. For any odd integer a , set a i 1 if a 3 (mod 4)

and a 1 otherwise. For any integers k s 1, we have gcd(k ps) pt

with 0 t s . Set

k s ks s t and k s

k
ps

ps t

h

p

ks s t
k

p

s t

1 i

where h (ps 1) 2 Z and k k pt Z . Note that gcd(h p) 1 so that

the Legendre symbol h
p
is defined. If t s , then gcd(k p) 1 so that the

Legendre symbol k
p

is defined; if t s , then by definition, k
p

s t
1.

LEMMA 3.1. For any k 1 and any bicharacter on a p-group A,

(3.1) k( )

s 1

rs(A)
k s [ s( )]

k s

Proof. The proof is based on the following classical Gauss formula : for

any integer d coprime with p ,

(3.2)

ps 1

j 0

exp
2 i

ps
dj2 p

s
2

ps
d

p

s
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A more general formula holds for any integer d : if gcd(d ps) pt

with 0 t s and d d pt , then

(3.3)

ps 1

j 0

exp
2 i

ps
dj2 pt

ps t 1

j 0

exp
2 i

ps t
d j2 p

s t
2

ps t

d

p

s t

where, by definition, for t s , the expression d
p

s t
is equal to 1.

We now prove (3.1). It is clear that both sides of (3.1) are multiplicative

with respect to orthogonal summation of bicharacters. The results stated in

Section 3.1 allow us to reduce the proof of (3.1) to the case where A Z psZ

for some s 1. We must prove that for any bicharacter : A A S1 ,

(3.4) k( ) k s [ s( )]
k s

Set as above h (ps 1) 2 and k k pt , where gcd(k ps) pt

with 0 t s . The bicharacter is given by (a b) exp( 2 i
ps
6ab)

for all a b A , where 6 is an integer coprime with p . Observe that the

map 0 : A S1 carrying any a A to exp( 2 i
ps
h6a2) is a quadratic map

associated with . Formula (3.2) and the multiplicativity of the Legendre

symbol imply that

( 0) p s 2

ps 1

j 0

exp
2 i

ps
h6j2 ps

h

p

s
6

p

s

ps
h

p

s

[ s( )]
s

Similarly, Formula (3.3) implies that

c A

0(c)
k

ps 1

j 0

exp
2 i

ps
kh6j2

p(s t) 2 1
ps t

h

p

s t
k

p

s t

[ s( )]
s t

Since A ps and Ak gcd(k ps) pt , we have

( k
0 ) A 1 2 Ak

1 2

c A

0(c)
k 1

ps t

h

p

s t
k

p

s t

[ s( )]
s t

These computations and Formula (2.1) imply that

k( ) ( k
0 ) ( ( 0))

k
k
ps

ps t

(
h

p
)ks s t(

k

p
)s t[ s( )]

ks s t

This is equivalent to Formula (3.4).
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Note one special case of Lemma 3.1 : if k is divisible by 2 A ,

then k( ) s 1
rs(A)
k s . Indeed, in this case for all s such that Z psZ

is a direct summand of A , we have gcd(k ps) ps and k s ks 2Z . For

all other s , we have s( ) 1 . Therefore [ s( )] k s 1 for all s .

3.3 PROOF OF THEOREM 0.1(b)

We begin with a few remarks concerning the subgroups (Ak)k of A

defined in the introduction. Using the splitting A p A
(p) , one easily

checks that Akl Ak Al for any relatively prime integers k l . For

any prime p , the integers ( Apm )m 1 depend only on the group A(p) and

determine the isomorphism class of A(p) . Indeed, A(p) s 1(Z psZ)rp s for

rp s rp s(A) 0 . Given m 1,

Apm (A(p))pm
m

s 1

(Z psZ)rp s

s m

(Z pmZ)rp s

Hence,

logp( Apm 1 Apm ) rp m 1 rp m 2

Therefore, the sequence ( Apm )m 1 determines the sequence rp s(A) s 1 and

so determines the isomorphism type of A(p) .

Formula (0.1) and the assumptions of the theorem imply that, for all

odd k 1,

Ak 2n Lk 2n Lk Ak

where n A A . By the previous paragraph, A(p) A (p) for all

prime p 2, and for all s 1,

(3.5) rp s(A
(p)) rp s(A) rp s(A ) rp s(A

(p))

Since n p 2 A
(p) , we also have A(2) A (2) .

Let N 2 be a positive power of 2 annihilating both A(2) and A (2) .

Then AN A(2) and AN A (2) . For any odd integer 1,

AN AN A A(2) A A (2) A AN A AN

Similarly, A2N A2N . Applying (0.2) to k 2N , we obtain

N ( ) N ( ) .

Fix from now on an odd prime p . The identity (3.5) shows that to prove

that the bicharacter pairs (A(p) (p)) and (A (p) (p)) are isomorphic, it is

enough to verify that s(
(p)) s(

(p)) for all s 1. Set

A

A(2) A(p)
q 3 q p

A(q)

q 3 q p

A (q) A

A (2) A (p)
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where q runs over all odd primes distinct from p . Clearly, is an odd

integer. For any N as above, N ( ) N ( ) . Observe that

N ( ) N (
(2))

q 3

N (
(q))

where q runs over all odd primes. Since N is divisible by 2 A(q) for q p ,

the remark at the end of Section 3.2 implies that N (
(q)) N (

(q)) 0

for all q p . Replacing if necessary N by a bigger power of 2, we

can assume that N is divisible by 8 A(2) 8 A (2) . The last claim of

Lemma 2.2 yields N (
(2)) N (

(2)) 1 . Combining these equalities,

we obtain N (
(p)) N (

(p)) . Expanding both sides as in Formula (3.1)

and using Formula (3.5) and the inclusions s(
(p)) s(

(p)) 1 , we

obtain

odd s 1

s(
(p))

odd s 1

s(
(p))

Replacing in this argument by p p2 p3 , we similarly obtain that

for all odd u 1 and even 2,

odd s u

s(
(p))

odd s u

s(
(p))

even s

s(
(p))

even s

s(
(p))

These equalities easily imply that s(
(p)) s(

(p)) for all s .
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