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THE THEORY OF SCHUR POLYNOMIALS REVISITED

by Harry TAMVAKIS )

ABSTRACT. We use Young’s raising operators to give short and uniform proofs of
several well-known results about Schur polynomials and symmetric functions, starting
from the Jacobi-Trudi identity.

1. INTRODUCTION

One of the earliest papers to study the symmetric functions later known

as the Schur polynomials s is that of Jacobi [J], where the following two

formulas are found. The first is Cauchy’s definition of s as a quotient of

determinants :

(1) s (x1 xn) det(x i n j
i )i j det(x

n j
i )i j

where ( 1 n) is an integer partition with at most n non-zero parts.

The second is the Jacobi-Trudi identity

(2) s det(h
i j i)1 i j n

which expresses s as a polynomial in the complete symmetric functions hr ,

r 0. Nearly a century later, Littlewood [L] obtained the positive combina-

torial expansion

(3) s (x)

T

xc(T)

where the sum is over all semistandard Young tableaux T of shape , and c(T)

denotes the content vector of T .

) The author was supported in part by NSF Grant DMS-0901341.
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The traditional approach to the theory of Schur polynomials begins with

the classical definition (1) ; see for example [FH, M, Ma]. Since equation (1)

is a special case of the Weyl character formula, this method is particularly

suitable for applications to representation theory. The more combinatorial

treatments [Sa, Sta] use (3) as the definition of s (x) , and proceed from

there. It is not hard to relate formulas (1) and (3) to each other directly; see

e.g. [Pr, Ste].

In this article, we take the Jacobi-Trudi formula (2) as the starting point,

where the hr represent algebraically independent variables. We avoid the use

of the x variables or ‘alphabets’ and try to prove as much as we can without

them. For this purpose, it turns out to be very useful to express (2) in the

alternative form

(4) s

i j

(1 Rij) h

where the Rij are Young’s raising operators [Y] and h h
1
h

2
h

n
.

The equivalence of (2) and (4) follows immediately from the Vandermonde

identity.

The motivation for this approach to the subject comes from Schubert cal-

culus. It is well known that the algebra of Schur polynomials agrees with

that of the Schubert classes in the cohomology ring of the complex Grass-

mannian G(k r) , when k and r are sufficiently large. Giambelli [G] showed

that the Schubert classes on G(k r) satisfy the determinantal formula (2) ; the

closely related Pieri rule [P] had been obtained geometrically a few years

earlier. Recently, with Buch and Kresch [BKT1, BKT2], we proved analogues

of the Pieri and Giambelli formulas for the isotropic Grassmannians which are

quotients of the symplectic and orthogonal groups. Our Giambelli formulas

for the Schubert classes on these spaces are not determinantal, but rather

are stated in terms of raising operators. In [T], we used raising operators to

obtain a tableau formula for the corresponding theta polynomials, which is

an analogue of Littlewood’s equation (3) in this context. Moreover, the same

methods were applied loc. cit. to provide new proofs of similar facts about

the Hall-Littlewood functions.

Our aim here is to give a self-contained treatment of those aspects of the

theory of Schur polynomials and symmetric functions which follow naturally

from the above raising operator approach. Using (4) as the definition of Schur

polynomials, we give short proofs of the Pieri and Littlewood-Richardson

rules, and follow this with a discussion — in this setting — of the duality
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involution, Cauchy identities, and skew Schur polynomials. We next introduce

the variables x (x1 x2 ) and study the ring R of symmetric functions in x

from scratch. In particular, we derive the bialternant and tableau formulas (1)

and (3) for s (x) . See [La] for an approach to these topics which begins

with (2) but is based on alphabets and properties of determinants such as the

Binet-Cauchy formula, and [vL, Ste] for a different treatment which employs

alternating sums stemming from (1).

Most of the proofs in this article are streamlined versions of more involved

arguments contained in [BKT2], [M], and [T]. The proof we give of the

Littlewood-Richardson rule from the Pieri rule is essentially that of Remmel-

Shimozono [RS] and Gasharov [G], but expressed in the concise form adapted

by Stembridge [Ste]. Each of these proofs employs the same sign reversing

involution on a certain set of Young tableaux, which originates in the work of

Berenstein-Zelevinsky [BZ]. The version given here does not use formulas (1)

and (3) at all, but relies on the alternating property of the determinant (2),

which serves the same purpose.

The reduction formula (22) for the number of variables in s (x1 xn)

is classically known as a ‘branching rule’ for the characters of the general

linear group [Pr, W]. Our terminology differs because there are similar results

in situations where the connection with representation theory is not available

(see [T]). We use the reduction formula to derive (3) from (4); a different

cancellation argument relating formulas (2) and (3) to each other is due to

Gessel-Viennot [GV, Sa].

We find that the short arguments in this article are quite uniform, especially

when compared to other treatments of the same material. On the other hand,

much of the theory of Schur polynomials does not readily fit into the present

framework. Missing from the discussion are the Hall inner product, the Hopf

algebra structure on R , the basis of power sums, the character theory of the

symmetric and general linear groups, Young tableau algorithms such as jeu de

taquin, the plactic algebra, and noncommutative symmetric functions. These

topics and many more can be added following standard references such as

[F, La, M, Ma, Sa, Sta, Z], but are not as natural from the point of view

adopted here, which stems from Grassmannian Schubert calculus. A similar

approach may be used to study the theory of Schur Q -polynomials and more

generally of Hall-Littlewood functions; some of this story may be found

in [T].

The author is indebted to his collaborators Anders Buch and Andrew

Kresch for their efforts on the related projects [BKT1, BKT2].



150 H. TAMVAKIS

2. THE ALGEBRA OF SCHUR POLYNOMIALS

2.1 PRELIMINARIES

An integer sequence or integer vector is a sequence of integers

( 1 2 ) with only finitely i non-zero. The length of , denoted ( ) ,

is largest integer 0 such that 0 . We identify an integer sequence of

length with the vector consisting of its first terms. We let i and

write if i i for each i . An integer sequence is a composition

if i 0 for all i and a partition if i i 1 0 for all i .

Consider the polynomial ring A Z[u1 u2 ] where the ui are countably

infinite commuting independent variables. We regard A as a graded ring with

each ui having graded degree i , and adopt the convention here and throughout

the paper that u0 1 while ur 0 for r 0. For each integer vector ,

set u i u i
; then A has a free Z -basis consisting of the monomials u

for all partitions .

For two integer sequences , such that , we say that

dominates and write if 1 i 1 i for each i .

Given any integer sequence ( 1 2 ) and i j , we define

Rij( ) ( 1 i 1 j 1 )

A raising operator R is any monomial in these Rij ’s. Note that we

have R for all integer sequences . For any raising operator R ,

define R u uR . Here the operator R acts on the index , and not on

the monomial u itself. Thus, if the components of are a permutation of

the components of , then u u as elements of A , but it may happen

that R u R u . Formal manipulations using these raising operators are

justified carefully in the following section. Note that if 0 for ( ) ,

then R u 0 in A for any raising operator R .

2.2 SCHUR POLYNOMIALS

For any integer vector , define the Schur polynomial U by the formula

(5) U :

i j

(1 Rij) u

Although the product in (5) is infinite, if we expand it into a formal series we

find that only finitely many of the summands are nonzero; hence, U is well
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defined. We will show that equation (5) may be written in the determinantal

form

(6) U det(u
i j i)1 i j

S

( 1) u ( )

where denotes the length of and ( 1 2 1 0) .

Algebraic expressions and identities involving raising operators like the

above can be justified by viewing them as the image of a Z -linear

map Z[Z ] A , where Z[Z ] denotes the group algebra of (Z ) .

We let x1 x be independent variables and identify Z[Z ] with

Z[x1 x
1

1 x x 1] . For any integer vector ( 1 ) and raising

operator R , set x x 1

1 x and R x xR . Then if : Z[Z ] A is the

Z -linear map determined by (x ) u for each , we have R u (xR ) .

It follows from the Vandermonde identity

1 i j

(xj xi) det(x j 1
i )1 i j

that

1 i j

(1 Rij) x

1 i j

(1 xix
1

j ) x det(x i j i
i )1 i j

Now apply the map to both ends of the above equation to obtain (6).

EXAMPLE 1. We have

U(5 4 2) (1 R12)(1 R13)(1 R23) u(5 4 2)

(1 R12 R13 R23 R12R13 R12R23 R13R23 R12R13R23) u(5 4 2)

u(5 4 2) u(6 3 2) u(6 4 1) u(5 5 1) u(7 3 1) u(6 4 1) u(6 5 0) u(7 4 0)

u5u4u2 u6u3u2 u25u1 u7u3u1 u6u5 u7u4

u5 u6 u7

u3 u4 u5
1 u1 u2

If ( 1 ) and ( 1 m) are two integer vectors and r ,

s Z , we let ( r s ) denote the integer vector ( 1 r s 1 m) .

The next lemma is known as a ‘straightening law’ for the U .

LEMMA 1.

(a) Let and be integer vectors. Then for any r s Z we have

U( r s ) U( s 1 r 1 )
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(b) Let ( 1 ) be any integer vector. Then U 0 unless

( ) for a (unique) permutation S and partition . In the

latter case, we have U ( 1) U .

Proof. Both parts follow immediately from (6) and the alternating property

of the determinant. .

If is any partition, clearly (5) implies that U u a u

where a Z and the sum is over partitions which strictly dominate .

We deduce that the U for a partition form another Z -basis of A .

2.3 MIRROR IDENTITIES

We will represent a partition by its Young diagram of boxes, arranged in

left-justified rows, with i boxes in row i . We write instead of

for the containment relation between two Young diagrams; in this case the

set-theoretic difference is the skew diagram . A skew diagram is

a horizontal (resp. vertical) strip if it does not contain two boxes in the same

column (resp. row). We write
p

if is a horizontal strip with p

boxes.

LEMMA 2. Let be a partition and p 0 be an integer. Then we have

(7)

0 p

U
p

U and

0 p

U
p

U

where the sums are over compositions 0 with p and partitions

(respectively ) such that
p

(respectively,
p

). Moreover, for

every n ( ) , the identities (7) remain true if the sums are taken over

and of length at most n.

Proof. The proofs of the two identities are very similar, so we will only

discuss the second. Let us rewrite the sum 0U as U , where

the latter sum is over integer sequences such that i i for each i

and p . Call any such sequence bad if there exists a j 1

such that j j 1 , and let X be the set of all bad sequences. Define

an involution : X X as follows : for X , choose j minimal such

that j j 1 , and set

( ) ( 1 j 1 j 1 1 j 1 j 2 )

Lemma 1(a) implies that U U ( ) 0 for every X . Therefore all bad

indices may be omitted from the sum U , and this completes the proof.
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Moreover, to evaluate U in the situation where j 0 for all j n ,

notice that if the minimal j such that j j 1 is j n , then n 0 and

therefore U 0. .

2.4 THE PIERI RULE

For any d 1 define the operator Rd by

Rd

1 i j d

(1 Rij)

For p 0 and any partition of length , we compute

up U up R u R u( p) R 1

i 1

(1 Ri 1)
1 u( p)

R 1

i 1

(1 Ri 1 R2i 1 ) u( p)

0

U

where the sum is over all compositions such that p and j 0

for j 1. Applying Lemma 2, we arrive at the Pieri rule

(8) up U
p

U

Conversely, suppose that we are given a family X of elements of A ,

one for each partition , such that Xp up for every integer p 0 and

the X satisfy the Pieri rule Xp X p X . We claim then that

X U

i j

(1 Rij) u

for every partition . To see this, note that the Pieri rule implies that

(9) U a U u
1

u X a X

for some constants a Z . The claim now follows by induction on .

EXAMPLE 2. We have

u2 U(3 3 1) U(5 3 1) U(4 3 2) U(4 3 1 1) U(3 3 3) U(3 3 2 1)
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2.5 KOSTKA NUMBERS

A (semistandard) tableau T on the skew shape is a filling of the

boxes of with positive integers, so that the entries are weakly increasing

along each row from left to right and strictly increasing down each column.

We can identify such a tableau T with a sequence of partitions

0 c1 1 c2 cr r

such that for 1 i r the horizontal strip i i 1 consists of the ci boxes

in T with entry i . The composition c(T) (c1 cr) is called the content

of T .

Let be a partition and any integer vector. The equation

u U K U

summed over partitions such that defines the Kostka numbers K .

If is not a composition such that then we have K 0.

Otherwise, iteration of the Pieri rule shows that K equals the number

of tableaux T of shape and content vector c(T) . We deduce from

equation (9) that the Kostka matrix K K , whose rows and columns

are indexed by partitions, is lower unitriangular with respect to the dominance

order.

2.6 THE LITTLEWOOD-RICHARDSON RULE

Define the Littlewood-Richardson coefficients to be the structure con-

stants c in the equation

(10) U U c U

If ( ) , we compute that

U U

S

( 1) u ( ) U

S

( 1) K ( ) U

from which we deduce that

(11) c

( T)

( 1)

where the sum is over all pairs ( T) such that S and T is a tableau

on with c(T) ( ) . Observe that c(T) is a partition if and
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only if c(T) is a strict partition, in which case c(T) ( )

implies that 1 .

For any tableau T , let T r denote the subtableau of T formed by the entries

in columns r and higher, and define T r and T r similarly. We say that a pair

( T) is bad if c(T r) is not a partition for some r . Let Y denote the set of bad

pairs indexing the sum (11), and define a sign reversing involution : Y Y

as follows. Given ( T) Y , choose r maximal such that c(T r) is not a

partition, and let j be minimal such that cj(T r) cj 1(T r) . Call an entry j

(resp. j 1) in T free if there is no j 1 (resp. j ) in its column. Let T denote

the filling of obtained from T by replacing all free j ’s (resp. ( j 1)’s)

that lie in T r with ( j 1)’s (resp. j ’s), and then arranging the entries of

each row in weakly increasing order. Since c(T r) is a partition, we deduce

that T contains a single entry j 1 in column r , and no j in column r ,

while cj(T r) 1 cj 1(T r) . It follows easily from this that T is a tableau.

We define ( T) ( j T ) , where j denotes the transposition ( j j 1) .

Since jc(T r) c(T r) and j(c(T r) ) c(T r) , while T r coincides

with T r , it follows that j(c(T) ) c(T ) and ( T) Y . We

conclude that the bad pairs can be cancelled from the sum (11).

The above argument proves that c is equal to the number of tableaux T

of shape and content such that T r is a partition for each r . This is

one among many equivalent forms of the Littlewood-Richardson rule.

2.7 DUALITY INVOLUTION

Let r U(1r) for r 1, 0 1, and r 0 for r 0. By expanding

the determinant U(1r) det(u1 j i)1 i j r along the first row, we obtain the

identity

(12) r u1 r 1 u2 r 2 ( 1)rur 0

Define a ring homomorphism : A A by setting (ur) r for every

integer r . For any integer sequence , let i i
, and for any partition ,

set

V (U )

i j

(1 Rij)

We deduce from (8) that the V satisfy the Pieri rule

(13) p V
p

V
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On the other hand, the Littlewood-Richardson rule easily implies that

(14) U(1p) U U

summed over all partitions such that is a vertical p-strip. It follows

from (13), (14), and induction on that V U for each . Here

denotes the partition which is conjugate to , i.e. such that i # j j i

for all i . In particular, the equality (U ) U proves that is an involution

of A , a fact that can also be deduced from (12).

2.8 CAUCHY IDENTITIES AND SKEW SCHUR POLYNOMIALS

Define a new Z -basis t of A by the transition equations

(15) U K t

In other words, the transition matrix M(U t) between the bases U and t

of A is defined to be the lower unitriangular Kostka matrix K . Then

A : M(t U) K 1 and B : M(u U) Kt . We have

t u A B U U

At B U U U U

in A Z A , where the above sums are either formal or restricted to run over

partitions of a fixed integer n . We deduce the Cauchy identity

(16) U U t u

and, by applying the automorphism 1 to (16), the dual Cauchy identity

(17) U V t

For any skew diagram , define the skew Schur polynomial U by

generalizing equation (15) :

U : K t
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We have the following computation in the ring A Z A Z A :

U U U U U t U u U t K U

U U U

By comparing the coefficient of U U U on either end of the previous

equation, we obtain

(18) U c U

where the coefficients c are the same as the ones in (10). Since (U ) U

implies the identity c c , we deduce from (18) that

(19) (U ) U

3. SYMMETRIC FUNCTIONS

3.1 INITIAL DEFINITIONS

Let x (x1 x2 ) be an infinite sequence of commuting variables. For

any composition we set x i x
i

i . Given k 0, let Rk denote the

abelian group of all formal power series k c x Z[[x1 x2 ]] which

are invariant under any permutation of the variables xi . The elements of R
k

are called homogeneous symmetric functions of degree k , and the graded

ring R k 0 R
k is the ring of symmetric functions.

For each partition of k , we obtain an element m Rk by sym-

metrizing the monomial x . In other words, m (x) x where the

sum is over all distinct permutations ( 1 2 ) of ( 1 2 ) .

We call m a monomial symmetric function. The definition implies that

if f c x Rk , then f c m . It follows that the m for

all partitions of k (respectively, for all partitions ) form a Z -basis of Rk

(respectively, of R ).

Let hr hr(x) denote the r -th complete symmetric function, defined by

hr(x)

: r

m (x)

i1 ir

xi1 xir
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We have the generating function equation

(20) H(t)

r 0

hr(x)t
r

i 1

(1 xit)
1

Let h i h i
for any integer sequence .

There is a unique ring homomorphism : A R defined by set-

ting (ur) hr for every r 0. For any integer sequence , the Schur

function s is defined by s (U ) . We have

s

i j

(1 Rij) h det(h
i j i)i j

3.2 REDUCTION AND TABLEAU FORMULAS

Let y (y1 y2 ) be a second sequence of variables, choose n 1,

and set x(n) (x1 xn) . It follows easily from equation (20) that for any

integer p ,

hp(x
(n) y)

p

i 0

hi(xn) hp i(x
(n 1) y)

Therefore, for any integer vector , we have

h (x(n) y)

0

h (xn) h (x(n 1) y)

0

xn h (x(n 1) y)

summed over all compositions . If R denotes any raising operator and is

any partition, we obtain

(21) R h (x(n) y)

0

xn hR (x(n 1) y)

0

xn R h (x(n 1) y)

Since s i j(1 Rij) h , we deduce from (21) that

s (x(n) y)

0

xn s (x(n 1) y)

p 0

x pn
p

s (x(n 1) y)

Applying Lemma 2, we obtain the reduction formula

(22) s (x(n) y)

p 0

x pn
p

s (x(n 1) y)

Repeated application of the reduction equation (22) results in

(23) s (x(n) y) s (y)

T on

xc(T)
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where the first sum is over partitions and the second over all tableau T

of shape with entries at most n . As n is arbitrary, equation (23) holds

with x (x1 x2 ) in place of x(n) . It follows that

s (x y) s (y)

T on

xc(T)

where the second sum is over all tableau T of shape . Substituting y 0

proves Littlewood’s tableau formula

(24) s (x)

T on

xc(T) K m (x)

From (24) we deduce immediately that the s for a partition form a Z -basis

of R , and comparing with (15) shows that (t ) m . It follows that the

functions h for a partition also form a Z -basis of R .

3.3 DUALITY AND CAUCHY IDENTITIES

Let er er(x) denote the r -th elementary symmetric function in the

variables x , so that

er(x) m(1r)(x)

i1 ir

xi1 xir

The generating function E(t) for the er satisfies

E(t)

r 0

er(x)t
r

i 1

(1 xit)

Since E(t)H( t) 1 , we obtain

(25) er h1er 1 h2er 2 ( 1)rhr 0

for each r 1. For any integer sequence , we set e i e i
.

By comparing equations (12) and (25), we deduce that ( r) er for

each r , and hence ( ) e and (V ) s . The duality involution on A

transfers to an automorphism : R R which sends h to e and s

to s , for each partition . We deduce that the e form another Z -basis

of R . Moreover, by applying to (16) and (17), we obtain the usual form

of the Cauchy identities

s (x)s (y) m (x)h (y)

i j

1

1 xiyj

and

s (x)s (y) m (x)e (y)

i j

(1 xiyj)

where the sums are taken over all partitions .
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3.4 SKEW SCHUR FUNCTIONS

Define the skew Schur functions s by

s (x) (U ) K m (x)

T on

xc(T)

Equation (23) then implies that

(26) s (x y) s (x)s (y) s (x)s (y)

Applying the operator i j(1 Rij) to both sides of the equation

h (x y)

0

h (x)h (y)

gives

(27) s (x y)

0

h (x)s (y)

Since h K s , comparing (26) with (27) proves that

(28) s

0

K s

Observe that (28) is a generalization of the second identity in Lemma 2.

Using Lemma 1(b) in (27), we obtain that

(29) s (x y) s (y)

S

( 1) h ( )(x)

where the first sum is over all partitions and ( ) . Equating the

coefficients of s (y) in (26) and (29) proves the following generalization of

the Jacobi-Trudi identity (2) :

(30) s

S

( 1) h ( ) det(h
i j j i)i j

By applying the involution to (30) and using (19), we derive the dual

equation

s det(e
i j j i)i j
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3.5 THE CLASSICAL DEFINITION OF SCHUR POLYNOMIALS

In this section we fix n , the number of variables, and work with integer

vectors and partitions in Z
n . Let x (x1 xn) and set n

(n 1 1 0) . For each Z
n , define

A

Sn

( 1) x ( ) det(x j

i )1 i j n

and set s̃ (x) A A . Consider the Z -linear map A Z[x1 xn]

sending U to A for any partition with ( ) n , and to zero,

if ( ) n . It follows from Lemma 1(b) that this map sends U to A

for any composition Z
n . Lemma 2 therefore implies that for any

partition Z
n and integer r 0, we have

(31)

0

A
r

A

where the sums are over compositions 0 with r and ( ) n and

partitions with
r

and ( ) n . Furthermore, we have

A hr(x)

Sn

( 1)

0 : r

x ( )

Sn

( 1)

0 : r

x ( ) ( )

0 : r

A
r

A

by (31). Now divide by A to deduce that

(32) s̃ (x) hr(x)
r

s̃ (x)

Applying (32) with 0 gives s̃r(x) hr(x) , for every r 1. Since

the s̃ (x) satisfy the Pieri rule, it follows by induction on as in §2.4 that

s̃ (x)

i j

(1 Rij) h (x) s (x)

for each partition of length at most n . We have thus proved equation (1).
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