
L’Enseignement Mathématique (2) 58 (2012), 125–130

THE SURJECTIVITY OF THE COMBINATORIAL LAPLACIAN

ON INFINITE GRAPHS

by Tullio CECCHERINI-SILBERSTEIN, Michel COORNAERT

and Józef DODZIUK

ABSTRACT. Given a connected locally finite simplicial graph G with vertex set V ,
the combinatorial Laplacian 6G : R

V
R
V is defined on the space of all real-valued

functions on V . We prove that 6G is surjective if G is infinite.

1. INTRODUCTION

Let G be a connected locally finite graph with vertex set V . To simplify

the exposition, we shall always assume that G is simplicial, that is, without

loops and multiple edges. Two vertices V are called adjacent, and one

then writes , if is an edge of G .

The combinatorial Laplacian on G is the linear map 6G : R
V

R
V ,

where RV is the vector space consisting of all real-valued functions on V ,

defined by

6G( f )( ) f ( )
1

deg( )
f ( )

for all f R
V and V . Here deg( ) denotes the degree of the vertex ,

i.e. the number of vertices in G which are adjacent to .

Note that 6G is never injective since all constant functions are in its kernel.

As a consequence, when the graph G is finite, 6G is not surjective since, in

this case, RV is finite-dimensional. More precisely, when G is finite, 6G is

selfadjoint for the inner product on RV defined by

f

V

deg( ) f ( ) ( )

its kernel coincides with the space of constant functions, and its image is the

orthogonal complement of this kernel, that is, the hyperplane consisting of

all f R
V such that V deg( ) f ( ) 0 .
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In the present paper, we shall establish the following result.

THEOREM 1.1. Let G be an infinite, connected, locally finite simplicial

graph with vertex set V . Then the combinatorial Laplacian 6G : R
V

R
V is

surjective.

In the particular case when G is the Cayley graph of an infinite finitely

generated group, this result was obtained in [3] by taking two steps. The

first consisted in showing that the image of the Laplacian is closed in the

prodiscrete topology (see below). The second distinguished two cases according

to whether the group is amenable or not. The proof we present here for general

graphs is simpler in the sense that we also first establish the closed image

property of the Laplacian (Section 2) but do not need to introduce amenability

considerations. Instead, we apply the maximum principle to finitely-supported

functions on vertices in order to prove that the image of the Laplacian is also

dense in the prodiscrete topology (Section 3). The image, being both closed

and dense, must be equal to the whole space RV .

2. THE CLOSED IMAGE PROPERTY

Let G be a connected locally finite simplicial graph with vertex set V .

The prodiscrete topology on RV is the product topology obtained by taking

the discrete topology on each factor R of RV . This topology is metrizable.

Indeed, if (1n)n N is a non-decreasing sequence of finite subsets of V whose

union is V , then the metric on RV defined by

( f )

n N

1

2n 1 n( f ) for all f R
V

where n( f ) 0 if f and coincide on 1n and n( f ) 1 otherwise,

induces the prodiscrete topology on RV . Note that a base of neighborhoods

of f R
V in the prodiscrete topology is provided by the sets

Wn( f ) R
V : f 1n 1n

The goal of this section is to prove that the image of 6G is closed in RV

in the prodiscrete topology (Lemma 2.3). The proof is analogous to the proof

of the closed image property for linear cellular automata over groups whose

alphabets are finite-dimensional vector spaces (see [6], [4], and [5]).
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For completeness, let us first recall some elementary facts about projective

sequences and the Mittag-Leffler condition (cf. [1], [2], and [5]).

A projective sequence of sets consists of a sequence (Xn)n N of sets

together with maps unm : Xm Xn defined for all n m satisfying the

following conditions :

(PS-1) unn is the identity map on Xn for all n N ;

(PS-2) unk unm umk for all n m k N such that n m k .

Such a projective sequence will be denoted by (Xn unm) or simply (Xn) .

The projective limit limXn of the projective sequence (Xn unm) is the subset

of n N
Xn consisting of all the sequences (xn)n N which satisfy xn unm(xm)

for all n m N with n m .

Observe that if (Xn unm) is a projective sequence of sets then it fol-

lows from (PS-2) that, for n N fixed, the sequence (unm(Xm))m n

is a non-increasing sequence of subsets of Xn . We say that the pro-

jective sequence (Xn unm) satisfies the Mittag-Leffler condition if, for

each n N , the sequence (unm(Xm))m n stabilizes, that is, there exists an

integer m0 m0(n) n such that unm(Xm) unm0(Xm0 ) for all m m0 .

LEMMA 2.1 (Mittag-Leffler). If (Xn unm) is a projective system of

nonempty sets which satisfies the Mittag-Leffler condition, then its projective

limit limXn is not empty.

Proof. Let (Xn unm) be an arbitrary projective sequence of sets. The

set Xn m n unm(Xm) is called the set of universal elements in Xn (cf. [7]).

It is clear that the map unm induces by restriction a map unm : Xm Xn
for all n m and that (Xn unm) is a projective sequence having the same

projective limit as the projective sequence (Xn unm) .

Suppose now that all the sets Xn are nonempty and that the projective

sequence (Xn unm) satisfies the Mittag-Leffler condition. Then, for each n N ,

there is an integer m0 m0(n) n such that unm(Xm) unm0(Xm0 ) for

all m m0 . It follows that Xn unm0(Xm0 ) so that, in particular, the set

Xn is not empty. We claim that the map un n 1 : Xn 1 Xn is surjective

for every n N . Indeed, let us fix n N and suppose that xn Xn .

By the Mittag-Leffler condition, we can find an integer p n 1 such

that unk(Xk) unp(Xp) and un 1 k(Xk) un 1 p(Xp) for all k p . It follows

that Xn unp(Xp) and Xn 1 un 1 p(Xp) . Consequently, we can find xp Xp

such that xn unp(xp) . Setting xn 1 un 1 p(xp) , we have xn 1 Xn 1 and

un n 1(xn 1) un n 1(xn 1) un n 1 un 1 p(xp) unp(xp) xn
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This proves that un n 1 is onto. Now, as the sets Xn are nonempty, we can

construct by induction a sequence (xn)n N such that xn un n 1(xn 1) for

all n N . This sequence is in the projective limit limXn limXn . This

shows that limXn is not empty. .

REMARK 2.2. In fact, the preceding proof shows that if (Xn unm) is a

projective system of nonempty sets satisfying the Mittag-Leffler condition

and X limXn denotes its projective limit, then the natural projection

map n : X Xn is surjective for every n (cf. [1, chapitre III, §7, no. 4,

Proposition 5] and [2, chapitre II, §3, no. 5, Théorème 1 and Corollaire 1]).

LEMMA 2.3. Let G be a connected locally finite simplicial graph with

vertex set V . Then the image of the combinatorial Laplacian 6G : R
V

R
V

is closed in RV in the prodiscrete topology.

Proof. Let us fix a vertex 0 V . For each n N , let Bn V :

dG( 0 ) n denote the closed ball of radius n centered at 0 with respect to

the graph metric dG on V . Observe that 6G induces by restriction a linear map

(2.1) 6
(n)
G : R

Bn 1 R
Bn

for every n N .

Suppose that R
V is in the closure of 6G(R

V ) in the prodiscrete

topology. Then, for each n N , there exists fn R
V such that and 6G( fn)

coincide on Bn . Consider, for each n N , the affine subspace Xn R
Bn 1

defined by

Xn (6
(n)
G )

1( Bn )

Observe that Xn since fn Bn 1
Xn . Now, for all n m , the restriction

map RBm 1 R
Bn 1 induces an affine map unm : Xm Xn . Conditions (PS-1)

and (PS-2) are trivially satisfied so that (Xn unm) is a projective sequence.

We claim that this projective sequence satisfies the Mittag-Leffler condition.

Indeed, for n fixed, as the sequence unm(Xm) , where m n n 1 ,

is a non-increasing sequence of affine subspaces of the finite-dimensional

vector space RBn 1 , it must stabilize. It follows from Lemma 2.1 that the

projective limit limXn is nonempty. Choose an element (xn)n N limXn . We

have xn R
Bn 1 . Moreover, xn 1 coincides with xn on Bn 1 for all n N .

As V n NBn 1 , there exists a (unique) f R
V such that f Bn 1

xn
for all n . We have (6G( f )) Bn 6

(n)
G (xn) Bn for all n since xn Xn .

Since V n NBn , it follows that 6G( f ) . This shows that 6(RV ) is

closed in RV in the prodiscrete topology. .
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3. SURJECTIVITY

We now prove Theorem 1.1.

Suppose that G is an infinite, locally finite, connected simplicial graph.

We keep the notation introduced in the proof of Lemma 2.3. Let Fn denote

the vector subspace of RV consisting of all functions f R
V whose support

is contained in Bn . Consider the linear map un : Fn Fn defined by

un( f )( )
6G( f )( ) if Bn

0 otherwise

for all f Fn and V .

By the maximum principle, un is injective. Indeed, if f Fn satis-

fies un( f ) 0 , then we have

f ( )
1

deg( )
f ( )

1

deg( )
f ( )

for all Bn . This implies that if Bn satisfies f ( ) M ,

where M max f , then f ( ) M for all V with . There-

fore f is constant on Bn 1 . As G is infinite, there are points in Bn 1 that

are not in Bn . Consequently, f is identically zero.

Now the injectivity of un implies its surjectivity since Fn is finite-

dimensional. It follows that for all R
V and n N , we can find f Fn

such that 6G( f ) coincides with on Bn . This shows that 6G(R
V ) is dense

in RV in the prodiscrete topology. As 6G(R
V ) is also closed by Lemma 2.3,

we conclude that 6G(R
V ) R

V . This completes the proof of Theorem 1.1.

REMARK 3.1. More generally, the same proof yields, mutatis mutandis,

the surjectivity of L 6G Id : RV R
V for every infinite, locally finite,

connected simplicial graph G and any function : V [0 ) defined on

the vertex set V of G (here Id is the identity map on RV ). Indeed, L is

linear and, for f R
V and V , from L( f )( ) 0 we deduce that

f ( )
1

(1 ( )) deg( )
f ( )

1

(1 ( )) deg( )
f ( )

1

deg( )
f ( )

so that the maximum principle is also satisfied by L .
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