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GENERATING THE TORELLI GROUP

by Allen HATCHER and Dan MARGALIT )

ABSTRACT. We give a new proof of the theorem of Birman–Powell that the Torelli
subgroup of the mapping class group of a closed orientable surface of genus at least 3
is generated by simple homeomorphisms known as bounding pair maps. The key
ingredient is a proof that the subcomplex of the curve complex of the surface spanned
by curves within a fixed homology class is connected.

1. INTRODUCTION

The mapping class group of a closed connected orientable surface S

is M(S) 0(Diff (S)) , the group of isotopy classes of orientation-preserving

diffeomorphisms of S . Perhaps the simplest type of isotopically nontrivial

diffeomorphism of S is a Dehn twist along an embedded closed curve. This

is a diffeomorphism supported on an annular neighborhood of the curve, the

effect of the diffeomorphism on arcs crossing the annulus being to twist these

arcs around the annulus as shown in the following figure.

In the 1920s Dehn proved that M(S) is generated by these twists, although

this result was only published a decade later in [3, §10]; an English translation

can be found in [4, Paper 8].

The group M(S) has a natural action on H1(S) H1(S;Z) , and the kernel

of this action is known as the Torelli group, for which we use the notation T(S) .

In this paper we will be interested in the analogue of Dehn’s theorem for the

Torelli group.

) The second author gratefully acknowledges support from the National Science Foundation
and the Sloan Foundation.
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Certain Dehn twists belong to the Torelli group, namely the twists along

curves that separate S . This can be seen by observing that for each separating

curve c , a basis for H1(S) can be chosen consisting of curves disjoint from c .

Conversely, it is easy to see that if c is nonseparating, a twist along c acts

nontrivially on the homology class of a curve that crosses c exactly once.

The next-simplest element of T(S) after a separating twist is a bounding

pair map, which is the composition of a twist along a nonseparating curve c

and an inverse twist along another nonseparating curve d disjoint from c but

representing the same homology class as c , so c d separates S into two

subsurfaces having c d as their common boundary.

c d
c

A bounding pair map, like a separating twist, can be realized by a motion

of an embedding of S in R3 in which a subsurface is rotated through 360

degrees, a subsurface bounded by c in the case of a separating twist and

by c and d in the case of a bounding pair map. One can see that a bounding

pair map acts trivially on homology by noting that a basis for H1(S) can be

chosen to consist of curves disjoint from c and d except for one curve that

crosses each of c and d exactly once, and it is easy to see that this curve is

taken to a homologous curve.

THEOREM 1 (Birman–Powell). The Torelli group T(S) is generated by

separating twists and bounding pair maps.

Nontrivial separating twists exist only when the genus of S is at

least 2 , and nontrivial bounding pair maps exist only when 3. Thus

when 1 the Torelli group is trivial, a fact known long before the Birman–

Powell theorem, and when 2 the theorem says that T(S) is generated by

separating twists. When 3, separating twists do not generate all of T(S)

but only a subgroup of infinite index known as the Johnson kernel [7]. On

the other hand, it is easy to express separating twists as products of bounding

pair maps when 3, as we recall in Proposition 11, so bounding pair maps

alone generate T(S) when 3. It is also easy to express all bounding pair

maps in terms of those where the two curves that specify the map cut off a

genus 1 subsurface of S ; see Proposition 12.
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In this paper we give a proof of the Birman–Powell theorem that is

in line with the standard proofs of Dehn’s theorem on M(S) (see, e.g., [5,

Theorem 4.1]). Dehn in fact found a finite set of twist maps that generate M(S) ,

and the standard proofs of Dehn’s theorem usually prove this as well. Finding

a finite set of bounding pair maps that generate T(S) when 3 is more

difficult, and was first done by Johnson [9]. We do not attempt to reprove the

finite generation here. Recently Putman [17] has greatly improved Johnson’s

finite generation result by showing that the number of generators can be

reduced from Johnson’s exponential function of to a cubic function of .

The genus 2 case of the Birman–Powell theorem was not stated explicitly

in their original papers, but can easily be deduced from their methods. The

genus 2 case is exceptional not only in the types of generators that are needed,

but also in the fact that T(S) is not finitely generated in this case, a result

due originally to McCullough and Miller [12] and subsequently improved by

Mess [13] who showed that T(S) is a free group on a countably infinite set

of twist generators. Another more recent proof of this can be found in [1]

and we give a version of this proof at the end of Section 5.

Before sketching the idea for the new proof of the Birman–Powell theorem,

let us say a few words about the two prior proofs in the literature.

First proof : Birman and Powell 1970s. This starts with a fact from group

theory. Suppose we have a short exact sequence of groups

1 A B C 1

Let b1 bn be a finite set of generators for B , and suppose we have a

presentation for C in terms of the generating set (bi) . The relators for

the presentation of C are words in the (bi) , and to each such relator , the

corresponding product of the bi gives an element of A if we identify A

with the kernel of . It is then a basic fact that the collection of all such ,

together with their conjugates in B , forms a generating set for A (see the

proof of [11, Theorem 2.1]).

In 1961 Klingen [10] gave an algorithm for finding a presentation

of Sp(2 Z) and ten years later Birman [2, Theorem 1] used this algorithm

to give an explicit finite presentation for Sp(2 Z) . Birman’s presentation

therefore gave a generating set for T(S) as above, but it was not immediately

clear how to interpret the generators geometrically. In 1978, Powell recognized

Birman’s generators as Dehn twists about separating curves and bounding pair

maps, or products of these [14, Theorem 2]. Neither the Birman paper nor

the Powell paper contain complete details, as in both cases the required

calculations are lengthy and technical.
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Second proof : Putman 2007. Here the starting point is the fact that if

a group G acts on a simply-connected simplicial complex X in such a way

that the quotient of X by G is simply connected, then G is generated by

stabilizers of simplices.

Putman [15] applied this strategy to the action of T(S) on the curve

complex (S) . This is the simplicial complex whose vertices are the isotopy

classes of nontrivial simple closed curves in S , with simplices corresponding to

collections of disjoint curves. Harer had shown that (S) is (2 3)-connected,

hence simply connected when 2. Putman then showed that (S) T(S) is

simply connected when 2.

By the fact about group actions stated above, this reduces the problem to

understanding stabilizers of simplices of (S) . Just as in the proof that M(S)

is generated by Dehn twists, this step can be accomplished by induction on

using the Birman exact sequence.

A new proof. This also proceeds by induction on genus, but is based

on a different fact about group actions on complexes that only requires the

complexes to be connected. The complex we use is the subcomplex x(S)

of (S) spanned by curves that can be oriented so as to represent some fixed

primitive class x H1(S) . The key fact is therefore :

THEOREM 2 (Putman). For 3 , the complex x(S) is connected.

Putman’s proof of this in [16, Theorem 1.9] uses Johnson’s explicit finite

generating set for T(S) , which in turn depends on the Birman–Powell theorem.

The idea of the new approach is to reverse these dependencies to give a proof

of Theorem 2 from scratch and deduce the Birman–Powell theorem from this.

The induction for the new proof of the Birman–Powell theorem starts with

the case 2. The complex x(S) has dimension 0 in this case and is not

connected, so instead we use a larger complex x(S) that appears in the proof

of Theorem 2. It was shown in [1] that x(S) is contractible for all , and

we reprove this here. For 3 we only need that x(S) is connected, but

when 2 the complex x(S) is 1-dimensional and we need that it is a tree

so that we can use basic facts about groups acting on trees.

Our goal is to give a self-contained proof of the Birman–Powell theorem,

and so this paper contains a number of proofs of known results, even when

our proofs are not essentially different from the existing proofs.
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OUTLINE OF THE PAPER. In Section 2 we recall from [1] the construction of

a complex x(S) x(S) whose points are isotopy classes of oriented, weighted

multicurves (collections of finitely many disjoint curves) in S representing the

homology class x , and we show that x(S) is contractible. In Section 3 we

prove Theorem 2 by showing that the map 0 x(S) 0 x(S) is injective.

This is where most of the novelty of the paper occurs. The inductive step

in the proof of the Birman–Powell theorem is given in Section 4. Finally, in

Section 5 we complete the proof, using x(S) directly to handle the base case

of the induction, genus 2.

ACKNOWLEDGEMENTS. We would like to thank Tara Brendle, Leah

Childers, Thomas Church, John Etnyre, Chris Leininger, Andy Putman, and

Saul Schleimer for helpful discussions.

2. REPRESENTING HOMOLOGY CLASSES BY MULTICURVES

In this section we reformulate some constructions from [1] involving the

representations of elements of H1(S) by linear combinations of disjoint oriented

curves in S .

By a multicurve in S we mean a collection, possibly empty, of finitely

many disjoint simple closed curves in S , none of which bounds a disk in S

and no two of which bound an annulus. Usually we will not distinguish

between a multicurve and its isotopy class. If orientations are specified for

each curve ci in a multicurve c c1 cn , then a linear combination i kici

with coefficients ki Z determines a class [ i kici] in H1(S) . If we allow

coefficients ki R , then i kici gives a class in H1(S;R) . By reorienting

the curves ci if necessary we can assume ki 0 for each i . The linear

combinations i kici then correspond to points in the first orthant [0 )n

in Rn . For each oriented multicurve c we have a corresponding orthant O(c) ,

and we can form a space (S) by starting with the disjoint union of all

such orthants O(c) , one for each isotopy class of oriented multicurves c , and

then identifying the faces obtained by setting some coefficients ki equal to 0

with the orthants corresponding to the multicurves obtained by deleting the

corresponding curves ci . (When c is empty, the orthant O(c) reduces to just

the origin in R0 , so the origins of all the orthants O(c) are identified.)

The natural map h : (S) H1(S;R) sending a weighted oriented

multicurve i kici to its homology class is linear on each orthant O(c) . For a

nonzero class x H1(S;R) we define x(S) h 1(x) . This is a cell complex
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whose cells are the intersections of orthants O(c) [0 )n with affine planes

in Rn . These ‘cells’ E(c) O(c) h 1(x) can be noncompact, so Ax(S) will

not be a cell complex in the usual sense, but something more general. To

guarantee that the cells E(c) are compact we need to impose a further condition

on the oriented multicurves c , namely that if we translate the affine plane that

determines E(c) until this plane passes through the origin, which amounts to

taking O(c) h 1(0) , then O(c) h 1(0) 0 . In other words, no nontrivial

linear combination i kici with each ki 0 represents 0 in H1(S;R) . Taking

only orthants O(c) for c satisfying this extra condition yields a subspace (S)

of (S) . The corresponding subspace x(S) of x(S) has the structure of a cell

complex in the usual sense, with cells E(c) that are compact convex polyhedra.

There is another way to characterize the compact cells E(c) directly in

terms of c :

PROPOSITION 3. A cell E(c) is compact if and only if no submulticurve of c

with the induced orientation from c is a boundary, representing 0 in H1(S) .

We call an oriented multicurve satisfying this property reduced. As we

will see in the proof, an equivalent condition is that no submulticurve with its

induced orientation is the oriented boundary of an oriented subsurface of S .

Proof. As noted earlier, E(c) is compact if and only if no nontrivial linear

combination i kici with each ki 0 is trivial in H1(S) . This obviously

implies that no submulticurve is a boundary, either in the homological sense

or the geometric sense of bounding an oriented subsurface of S .

For the converse, suppose that some nontrivial sum i kici , with

each ki [0 ) , is a boundary, say i kici j ljRj where the Rj ’s

are the closures of the components of S c , oriented via a fixed orientation

of S . Since j Rj 0, we can add a large constant l to each lj to

guarantee that lj 0 for all j . Let R be the union of the Rj ’s with maxi-

mal lj . Since i kici is nontrivial, the surface R is a proper subsurface of S .

Then the equation i kici j ljRj implies that R is a nonzero linear

combination of the oriented curves ci with each coefficient equal to 0 or 1.

Thus c has a null-homologous submulticurve, in fact a submulticurve that

bounds a subsurface of S . .

A multicurve c has a dual graph G(c) whose vertices correspond to compo-

nents of S c and whose edges correspond to components of c . If c is an ori-

ented multicurve, then G(c) becomes an oriented graph by fixing an orientation
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of S and a rule for passing from an orientation of c to a transverse orientation.

The condition for c to be reduced can be translated into a condition on G(c) :

PROPOSITION 4. An oriented multicurve c is reduced if and only if its dual

graph G(c) is recurrent : Every edge of G(c) lies in a loop consisting of a

finite sequence of edges traversed in the directions given by their orientations

in G(c) . Such loops can be assumed to be embedded.

This recurrence condition can be restated in terms of c as saying that

through every point of c there passes a closed oriented loop in S transverse

to c whose algebraic and geometric intersection numbers with c are equal,

so the loop always crosses c in the same direction.

Proof. If c contains a bounding submulticurve c , then any closed loop

in S intersecting c transversely must cross c in both directions, so G(c)

is not recurrent. Conversely, suppose G(c) is not recurrent. Let G be the

quotient graph of G(c) obtained by collapsing to a point each component of

the subgraph consisting of edges that lie in closed loops of oriented edges.

Then G contains no such edges. Hence G must contain at least one “sink”

vertex whose abutting edges are all oriented toward the vertex. These edges

correspond to a bounding submulticurve of c . .

PROPOSITION 5. The cell E(c) of x(S) corresponding to an oriented

multicurve c has dimension equal to one less than the number of connected

components of S c.

Proof. Consider cellular homology with coefficients in R for a cell

structure on S containing c as a subcomplex. With notation as in the proof

of Proposition 3, the regions Rj generate a subgroup Rj of the 2-chains

and the curves ci generate a subgroup ci of the 1-chains. The boundary

map : Rj ci has 1-dimensional kernel H2(S;R) so its image has

dimension one less than the number of Rj ’s. Cosets of this image are the

planes h 1(x) , and intersecting one of these with the orthant O(c) gives the

cell E(c) , with the stated dimension. .

Up until this point the class x was any nonzero element of H1(S;R) , but

from now on we restrict attention to classes in H1(S) H1(S;Z) .

PROPOSITION 6. For a nonzero class x H1(S) , the coefficients of a

vertex i kici of x(S) are integers.
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Proof. By Proposition 5 the multicurve c ici has connected com-

plement, so for each cj there is a transverse curve dj intersecting cj once

and disjoint from the other ci ’s. The algebraic intersection number of dj

with i kici is then kj , so if i kici represents an integral homology

class, kj must be an integer. .

PROPOSITION 7. Let 1 , and let x H1(S) be any nonzero element.

Then the complexes x(S) and x(S) are contractible.

Proof. We follow the plan of the second proof in [1]. First consider x(S) .

To prove that x(S) is contractible we will construct a canonical “linear” path

in x(S) joining any two given points and , assuming that the multicurves

underlying and have first been isotoped to intersect transversely with

the minimum number of points of intersection. With this minimality condition

the configuration formed by the union of the two multicurves is unique up

to isotopy of S , which will ensure that the construction is well defined on

isotopy classes (the minimality assumption is actually superfluous).

To a weighted multicurve i kici representing a point in x(S) we

associate a map f : S S1 in the following way. First, choose disjoint product

neighborhoods ci [0 ki] of the curves ci in S . (We can assume each ki 0

by deleting any ci with ki 0.) From these product neighborhoods we obtain

a quotient map q from S to the graph G(c) by projecting each ci [0 ki]

to [0 ki] and then to the corresponding edge of G(c) , with the complementary

components of the thickened c in S mapping to the corresponding vertices

of G(c) . The weights ki determine lengths for the edges of G(c) making it

into a metric graph, with edges oriented via the orientation of c . There is

then a natural map : G(c) S1 R Z defined up to rotations of S1 by

the condition that it is an orientation-preserving local isometry on each edge

of G(c) . Namely, choose a vertex of G(c) and send it to an arbitrary point

in R . This determines a map on adjacent edges sending them isometrically

to R preserving orientations, and we then continue inductively for edges

adjacent to the previous edges. Loops in G(c) have signed length equal to the

algebraic intersection number of lifted loops in S with x , and these intersection

numbers are integers since x is an integral homology class, so when we pass

to the quotient R Z we have a well-defined map : G(c) S1 . Changing the

initial vertex or its image in R has the effect of composing with a rotation

of S1 . The composition q is then a map f : S S1 . This corresponds to

the class in H1(S;Z) Poincaré dual to x . We can arrange that f is a smooth

map by parametrizing the annuli ci [0 ki] suitably.
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For a second point in x(S) we choose annular neighborhoods of its

curves that intersect the neighborhood of in rectangles around the points

where and intersect, and then we construct the associated function f

by the same procedure as for f . We would like to define a one-parameter

family of functions S S1 by the formula (1 t) f t f for 0 t 1.

This does not quite make sense as it stands since scalar multiplication is

not defined for maps to S1 , but we can give it meaning by considering the

covering space S of S corresponding to the kernel of the map 1(S) 1(S
1)

induced by f and f , which are homotopic since and both represent x .

Then f and f lift to maps f and f from S to R , and we can form the

linear combination (1 t) f t f . This is equivariant with respect to the

action of Z as deck transformations in S and R , so it passes to a well-defined

map ft (1 t) f t f from S to S1 .

The critical points of ft are the closures of the components of the

complement of the union of the annular neighborhoods of and . In the

interiors of the rectangles where these neighborhoods intersect there are no

critical points since the gradient vectors of ft are the vectors (1 t) f t f

which are nonzero. Since there are finitely many complementary components

of , the function ft has finitely many critical values, each of which varies

linearly with t . For fixed t the complement of the critical values consists

of finitely many open intervals in S1 , and the preimages of these intervals

consist of finitely many open annuli in S , thickenings of disjoint curves which

are oriented transversely by ft , with weights given by the lengths of the

corresponding intervals in S1 . These curves determine a weighted oriented

multicurve representing a point t in x(S) by discarding any trivial curves

and replacing isotopic curves by a single curve, weighted by the appropriate

signed sum of the weights of the isotopic curves. For t 0 we have 0

and for t 1 we have 1 . The point t x(S) varies continuously

with t since the functions ft vary smoothly and the intervals of noncritical

values vary continuously, shrinking to length zero when critical values coalesce.

This happens only finitely often for the path t since the finitely many critical

values are varying linearly with t . By similar reasoning the path t varies

continuously with the weights on the original multicurve . Thus by fixing

and letting vary over all of x(S) we obtain a contraction of x(S) .

Now we show that x(S) deformation retracts onto x(S) , which implies

that x(S) is also contractible. The procedure here will be the same “draining”

process as in [1]. If a point i kici in x(S) is not reduced, let Rj be the

collection of oriented compact subsurfaces of S whose oriented boundary is a

subset of the ci ’s, respecting their given orientations. We deform i kici by
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subtracting t j Rj for increasing t 0 until one or more ci ’s becomes 0.

Deleting these ci ’s and the Rj ’s whose boundaries include these ci ’s, we then

iterate the process until we obtain a reduced weighted multicurve in x(S) .

It is clear this process depends continuously on the initial point i kici and

so defines a deformation retraction of x(S) into x(S) . .

CANONICAL TRIANGULATIONS OF x(S) AND x(S) . Although we will not

need this in the rest of the paper, there is a canonical subdivision of the cell

complex x(S) as a simplicial complex whose vertices are the integer points

of x(S) , the linear combinations i kici with positive integer coefficients ki .

This subdivision can be obtained as follows. In the preceding proof we

associated to i kici a map f : S S1 . This factors through the oriented

metric graph G(c) associated to i kici , with an induced map : G(c) S1 .

Recall that the dimension of the cell E(c) is 1 less than the number of

complementary regions of c , which is the number of vertices of G(c) . This

cell is subdivided by the various hyperplanes where two vertices of G(c)

have the same image under , hyperplanes defined by linear equations in

the variables ki with integer coefficients and integer constant terms. These

hyperplanes subdivide E(c) into simplices whose barycentric coordinates are

the lengths of the segments of S1 R Z between adjacent images of vertices

of G(c) . The vertices of the subdivision of E(c) are thus the points i kici

where all vertices of G(c) have the same image under , which is equivalent

to saying that all the coefficients ki are integers.

The same procedure works more generally for x(S) , where the noncom-

pact cells are subdivided into infinitely many simplices.

3. THE COMPLEX OF HOMOLOGOUS CURVES

In this section we prove Theorem 2, that x(S) is connected when 3

and x is any nonzero primitive class in H1(S) . Recall the basic fact

(see, e.g., [5, Proposition 6.2]) that primitive classes x are exactly those

represented by oriented simple closed curves with coefficient 1 . Thus when x

is primitive, x(S) is the subcomplex of x(S) consisting of the cells that are

simplices corresponding to cycles i kici where the ci ’s are disjoint oriented

curves each representing the homology class x and i ki 1. To prove

that x(S) is connected it will suffice to show that the map 0 x(S) 0 x(S)

is injective when 3 since we already know that x(S) is connected. We
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will show in fact that each edge path in x(S) with endpoints in x(S) is

homotopic, fixing endpoints, to an edge path in x(S) .

Deforming the edge path into x(S) will be done by a sequence of

local deformations, gradually decreasing the maximum value along of the

“weight function” W : x(S) (0 ) defined by

W i kici i ki

In terms of dual graphs, W measures the total length of all the edges. The

function W is linear on cells of x(S) and takes integer values on vertices.

It follows that the image of W is contained in [1 ) . As x is assumed to

be primitive, we have x(S) W 1(1) since W takes the value 1 on vertices

of x(S) , hence on simplices of x(S) , and if W 1 on all vertices of a cell

of x(S) then these vertices lie in x(S) and span a simplex of x(S) .

Thus it will suffice to deform to decrease the maximum value of W

along its vertices to 1. There will be two main steps. First, when the maximum

occurs at two successive vertices of we will deform this edge of across

a 2-cell in x(S) having smaller values of W on all the other vertices of the

cell. Then by a more complicated procedure we will deform on the two

edges surrounding a vertex where W is maximal to decrease the maximum

along this part of .

Proof of Theorem 2. Let 0 1 be an edge of x(S) joining vertices 0

and 1 . Associated to the points t along this edge, 0 t 1, are dual

graphs Gt . These are oriented metric graphs having two vertices a and b

for 0 t 1, so they have the form shown in the figure below. Since Gt is

recurrent, there is at least one edge from a to b and at least one edge from b

to a , but the number of edge-loops at a or b can be zero.

a b

As t varies from 0 to 1, the lengths of the edges joining a and b vary, with

all edges from a to b increasing in length at the same rate that all edges

from b to a shrink, or vice versa. This corresponds to varying the weights

in the weighted oriented multicurve t by adding a multiple of the boundary

of the subsurface of S corresponding to a or b . If there are edge-loops at a

or b , their lengths do not change. When t reaches 0 or 1, at least one edge

joining a and b shrinks to length 0 and the vertices a and b coalesce.
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Suppose that Gt has at least two edges entering at vertex a . We can

pinch equal-length segments of two of these edges together at a to produce

a new metric graph Gt with three vertices. Assuming that the subsurface

of S corresponding to a is not simply a pair of pants, we can realize Gt as

the dual graph for a point in a 2-cell of x(S) where the subsurface of S

corresponding to the new vertex is a pair of pants, two of whose boundary

curves correspond to the two edges of Gt being pinched together, with the third

boundary curve corresponding to the new edge of Gt . Note that pinching Gt

to Gt preserves the recurrence property so we do indeed have a 2-cell

of x(S) . In similar fashion we could realize the graph Gt obtained by pinching

segments of two edges of Gt exiting a , or two edges entering or exiting b .

Let us apply this construction when 0 1 is an edge of with

W( 0) W( 1) and this is the maximum value of W along . The

condition W( 0) W( 1) means that at both a and b there will be the

same number of entering edges as exiting edges since varying t does not

change the total length of all the edges of Gt . If the number of entering

and exiting edges is equal to 1 at both a and b then Gt is just a circle

and W( 0) W( 1) 1 since the class x is primitive. We may thus assume

the number of entering and exiting edges at a , say, is greater than 1. We can

then perform the pinching operation at a and this decreases the total length

of Gt , so we obtain a 2-cell with the function W taking on its maximum value

only along the edge 0 1 of this 2-cell, since the 2-cell is a convex polygon

and W is a nonconstant linear function on this polygon. If we modify by

pushing the edge 0 1 across this 2-cell to the complementary edges in

the boundary of the cell, we have then improved the situation so that W has

strictly smaller values between 0 and 1 . After repeating this step finitely

many times we can arrange that the maximum value of W along occurs

only at isolated vertices.

Now let 0 1 be an edge of with W( 0) an isolated maximum of W

along . A special case is when one of the vertices a or b of the graph Gt

for points in the interior of this edge has valence 3 and the corresponding

subsurface of S is a pair of pants. In this case we call 0 1 a P-edge. We

wish to reduce to the case that all edges 0 1 of adjacent to vertices 0

with maximal W value are P-edges, so suppose on the contrary that 0 1 is

not a P-edge. Since W( 1) W( 0) , the number of edges in Gt from a to b

will be different from the number of edges from b to a . For whichever type

of edge there are more of, we can pinch two of the edges of this type together

at either a or b , and this gives rise to a deformation of 0 1 across a 2-cell

of x(S) as in the preceding paragraph since we assume 0 1 is not a
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P-edge. Then for the new path the new edge at 0 is a P-edge. Iterating

this step, we can arrange that all edges of at vertices with W maximum

are P-edges.

Let 0 be a vertex of with W maximal and greater than 1. If we cut S

along the multicurve given by 0 we obtain a cobordism R between two

copies of this multicurve, which we label R and R . A P-edge from 0

then corresponds to a pair of pants in R with two boundary curves in R

or two boundary curves in R . If the genus of S is at least 3 , such a pair

of pants is uniquely determined by its third boundary curve, which gives a

vertex in the curve complex (R) . Such vertices span a subcomplex (R)

of (R) . We will prove below that (R) is connected when the genus of S is

at least 3 . Assuming this, we finish the proof of the theorem as follows. By

the preceding paragraph, we can assume the edges in on both sides of 0

are P-edges. Since (R) is connected, we can interpolate between these two

P-edges a sequence of P-edges, each corresponding to a pair of pants disjoint

from the next one. Each pair of successive P-edges then forms two adjacent

edges of a 2-cell of x(S) (either a triangle or a square). We then deform

by pushing across each of these 2-cells, thereby replacing the two edges of

adjacent to 0 by a sequence of edges along which W has values smaller

than W( 0) since W is linear on each of the 2-cells.

After finitely many iterations of these steps we eventually deform ,

staying fixed on its endpoints, to a path in W 1(1) x(S) . .

LEMMA 8. The complex (R) is connected when 3 .

Proof. Instead of regarding vertices of (R) as isotopy classes of pairs

of pants in R we can regard them as isotopy classes of arcs in R joining two

curves of R or two curves of R , where the pair of pants corresponding

to such an arc is a thickening of the union of the arc and the two curves

at its endpoints. When we say “arc” in what follows, we will mean an arc

giving a vertex of (R) in this way. A simplex of (R) corresponds to a

collection of disjoint arcs joining disjoint pairs of curves of R . Let us fix

a standard arc a0 joining two curves in R . An arbitrary arc a can be

connected to an arc joining the same two curves of R as a0 by a sequence

of at most two edges of (R) , first by choosing an arc a disjoint from a

joining curves of R if a does not already do this, then by choosing an arc

disjoint from a joining the two curves of a0 . Thus it suffices to connect an

arbitrary arc a joining the two curves of R containing a0 to the arc a0

by a sequence of edges in (R) .
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First we do this for three special types of arcs. For the first two cases we

fix a genus 0 subsurface R of R a0 containing R and having just one

more boundary curve, which lies in the interior of R .

R

R

R

R

R

R

a0

a

a R

R

R

R

R

R

a0

a
a

(i) An arc a that is disjoint from R as in the first figure above. In this case

there is an edge joining a to an arc a in R and then an edge joining a

to a0 .

(ii) An arc a that intersects R in a single subsegment that separates R

into two components, one of which contains only one curve of R and the

other of which contains at least two curves of R , assuming that R has at

least three curves in total. This case is illustrated in the second figure above.

In this case we can choose an arc a in R disjoint from a and proceed as

in (i).

(iii) An arc a as in the figure below, in the case that R contains just two

curves, hence R has genus at least 1 since 3. Then there are edges

joining a to a and then to a0 .

R

R

R

R

a0

a

a

Now we reduce the general case to these special cases. Let us regard the

curve of R at one end of a0 as a puncture p rather than a boundary

component. If we allow this puncture to move around anywhere in the

surface R obtained from R by filling in this puncture (or equivalently,

collapsing the boundary component of R to a point), then any other arc a

with the same endpoints as a0 can be isotoped to a0 . This implies that a0
can be transformed to a (or an arc isotopic to a ) by a diffeomorphism h

of R obtained by dragging p around a loop in R based at p . Such

diffeomorphisms form a subgroup of M(R p) , the image of the boundary
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map d : 1(R p) 0Diff (R p) in the long exact sequence of homotopy

groups associated to the fibration Diff (R p) Diff (R ) R obtained by

evaluating diffeomorphisms of R at p , with fiber the subgroup Diff (R p)

of Diff (R ) consisting of diffeomorphisms that fix p . The map d associates

to a loop at p the diffeomorphism obtained by dragging p around this loop.

(The long exact sequence in fact reduces to a short exact sequence, the Birman

exact sequence.)

Since d is a homomorphism, it follows that the diffeomorphism h is iso-

topic to a composition h1 hn of diffeomorphisms hi obtained by dragging p

around a suitable sequence of loops that generate 1(R p) . For such generators

we can choose loops in R R , producing arcs a hi(a0) as in (i), or loops

that wind once around a single curve of R , producing arcs a hi(a0) as in

(ii) or (iii). By the special cases (i–iii) there is an edge path in (R) joining a0

to hi(a0) , for each i . By applying the product h1 hi 1 to this edge path

we obtain an edge path joining h1 hi 1(a0) to h1 hi(a0) . Stringing these

edge paths together, we obtain an edge path from a0 to the arc h(a0) a . .

4. THE INDUCTIVE STEP

We will prove Theorem 1 by induction on genus. In this section we give

the inductive step, deferring the base case of genus 2 until the next section

since it requires methods that are special to that case.
The inductive step will use the following basic fact about group actions :

Suppose a group G acts on a connected cell complex X . Let A G be a
subset with the property that, for any two vertices of X connected by an edge,
there is an element of A taking one vertex to the other. Then G is generated
by the union of A and the set of vertex stabilizers.

Since x(S) is connected when 3, we may apply this fact to the case of

the T(S) action on x(S) . For A we choose the set of bounding pair maps

and twists about separating curves in T(S) . The condition on edges is verified

in the next lemma. Here and in what follows we use the notation Ta for the

twist along the curve a .

LEMMA 9. If and are vertices of x(S) that are connected by an

edge, then there is a bounding pair map TaT
1

b in T(S) with TaT
1

b ( ) .

It is worth pointing out that this lemma together with the connectedness

of x(S) immediately implies the non-obvious fact, known to Johnson [8,
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page 253, line 6], that when 3, any two oriented curves in S in the same

homology class are equivalent under the action of the Torelli group. This also

holds when 2, as we will see in the next section.

Proof. We can view S as a torus with handles attached, with and

as longitudes on the torus. Then if we choose a and b as meridians on the

torus as shown in the figure below, it is clear that TaT
1

b takes to . .

a

b

To finish the inductive step it remains to show that for each vertex

of x(S) , the stabilizer of in T(S) is contained in the subgroup of T(S)

generated by bounding pair maps and twists about separating curves. If is

represented by an oriented curve a in the homology class x , the stabilizer of

in T(S) is the subgroup T(S a) represented by diffeomorphisms leaving a

invariant. More generally, let M(S a) denote the stabilizer of a in M(S) . There

is a natural homomorphism : M(S a) M(S P) where S is the closed

surface of genus 1 obtained from S by cutting along a and collapsing the

resulting two boundary curves to a pair P p q of distinguished points, and

M(S P) is the mapping class group of S fixing each of these two points. The

kernel of is the infinite cyclic group generated by Ta [5, Proposition 3.20].

Since H1(S P) H1(S a) H1(S) [a] , and since Tka T(S) for k 0, it

follows that restricts to an isomorphism :

: T(S a) T(S P)

where the latter group is the kernel of the natural homomorphism

M(S P) Aut(H1(S P))

If Td is a twist about a separating curve d in S P , then 1(Td) is

either a bounding pair map TdT
1

a or a twist about a separating curve Td ,

depending on whether or not d separates the two points of P in S . If TcT
1

d

is a bounding pair map in T(S P) , then c d does not separate the two points

of P , otherwise TcT
1

d would not preserve the homology class of an arc that

intersects c once and is disjoint from d . It follows that 1(TcT
1

d ) is a
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bounding pair map in T(S a) . Thus in order to show that T(S a) is generated

by twists about separating curves and bounding pair maps it suffices to show

that T(S P) has this property.

We will prove this by considering two short exact sequences :

1 K1 T(S p) T(S ) 1

1 K2 T(S P) T(S p) 1

These are analogs for the Torelli group of Birman exact sequences for the

full mapping class group; the first was considered by Johnson [9, Lemma 3]

and the second by van den Berg [18, Proposition 2.4.1] and Putman [15,

Theorem 4.1].

Consider first the first sequence. Here T(S p) is the subgroup of M(S p)

acting trivially on H1(S p) H1(S ) . The map T(S p) T(S ) for-

gets the point p . Elements of T(S ) represented by separating twists and

bounding pair maps clearly lift to such elements of T(S p) . We claim

the kernel K1 is generated by bounding pair maps. As in the proof of

Lemma 8, the kernel of M(S p) M(S ) consists of elements obtained

by dragging p around a loop in S . This is the image of the homomor-

phism d : 1(S p) 0Diff (S p) defined there. Generators for this kernel

are obtained by dragging p around generators for 1(S p) , and we can

choose embedded nonseparating curves for these generators, from the stan-

dard presentation of 1(S p) . Such drag maps are bounding pair maps, so the

kernel of M(S p) M(S ) is in fact contained in T(S p) and so coincides

with K1 . Thus K1 is generated by bounding pair maps, as claimed. It follows

that T(S p) is generated by separating twists and bounding pair maps if this

is true for T(S ) .

Now we proceed to the second short exact sequence. Separating twists

and bounding pair maps in T(S p) lift to such maps in T(S P) by

choosing the point q to be sufficiently close to p . Next we show that

the kernel K2 is generated by products of separating twists in T(S P) .

The kernel of M(S P) M(S p) is formed by maps d d( ) resulting

from dragging q around loops in S p , where now d is the boundary

map 1(S p q) 0Diff (S P) . To see how d acts on H1(S P) , consider

the short exact sequence

0 H1(S ) H1(S P) H0(P) 0

which is invariant under M(S P) . Clearly d acts trivially on the image

of H1(S ) in H1(S P) since d is trivial in M(S ) . Also d acts trivially

on H0(P) since it fixes P . The action of d on H1(S P) will then be trivial if
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and only if it acts trivially on an element of H1(S P) that maps to a generator

of H0(P) . We can represent such an element by an arc joining p to q .

It follows from the fact that the diffeomorphisms d act trivially on H1(S )

and H0(P) that there is a homomorphism : 1(S p q) H1(S ) H1(S P)

such that d [ ] [ ] ( ) for all . We claim that ( ) [ ] , so that

is the abelianization map 1(S p q) H1(S p) H1(S ) . Since is a

homomorphism it suffices to check that d [ ] [ ] [ ] for ranging over

a set of generators for 1(S p q) . As generators we can choose embedded

loops disjoint from , and for such loops the formula d [ ] [ ] [ ]

obviously holds.

From the formula d [ ] [ ] [ ] we see that d acts trivially on H1(S P)

if and only if lies in the commutator subgroup of 1(S p) . It is a general

fact that the commutator subgroup of a group is normally generated by commu-

tators of generators of the group. For 1(S p) we choose generators coming

from representing S p as a punctured 4( 1)-gon with opposite edges identi-

fied (this is not the standard identification !). These generators are nonseparating

curves, any two of which intersect transversely in one point, so their commuta-

tor is represented by a curve bounding a genus 1 subsurface of S p . The

map d is then the composition of a twist along a parallel copy of and an

inverse twist along another parallel copy of . This shows that K2 is generated

by products of separating twists. All such separating twists lie in T(S P) since

for a twist along a separating curve that does not separate p and q a basis

for H1(S P) can be chosen disjoint from , while if does separate p and q

then composing the twist along with d or d 1 converts the twist along

to a twist along a that does not separate p and q , and d T(S P) .

In summary, we have shown the inductive step :

PROPOSITION 10. If T(S ) is generated by separating twists and bounding

pair maps, then so are T(S p) , T(S P) , and T(S) in turn, in the last case

assuming that the genus of S is at least 3 .

The next two propositions, due to Johnson [6], justify two supplementary

statements made earlier.

PROPOSITION 11. Every Dehn twist about a separating curve in a surface

of genus at least 3 is isotopic to a product of bounding pair maps.

Proof. First consider the case that S has genus 3. A nontrivial separating

curve c in S then splits S into a punctured torus and a punctured genus 2
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surface, and the latter surface can be further decomposed as the union of a

4-punctured sphere and a pair of pants, as in the figure below.

a

b

c d

x

y z

The lantern relation ([3, p. 187],

[6, §IV], [5, §5.1]) gives

TxTyTz TaTbTcTd

Since each of Ta , Tb , Tc , and Td

commutes with all seven Dehn twists

in the relation, we can rewrite this

relation as follows :

(TxT
1

a )(TyT
1

b )(TzT
1

d ) Tc

In other words the Dehn twist about the separating curve c is the product of

three bounding pair maps. This takes care of the genus 3 case. The general

case is obtained from this by attaching the appropriate number of handles to

the punctured torus and the pair of pants. .

PROPOSITION 12. Every bounding pair map of a surface S is isotopic

to a product of bounding pair maps associated to pairs of curves bounding

genus 1 subsurfaces of S .

Proof. A bounding pair map is obtained by twisting a subsurface bounded

by two curves through 360 degrees. If this subsurface has genus n , it can

be decomposed into n subsurfaces of genus 1, each bounded by two curves,

as indicated in the figure below, and the twist of the genus n subsurface is

isotopic to the composition of n twists of the genus 1 subsurfaces. .

5. STARTING THE INDUCTION : GENUS 2

Now we restrict to the case that S has genus 2, where we want to show

that T(S) is generated by separating twists. The complex x(S) is 0-dimensional

in this case, so is of little help. Instead we use x(S) , which is 1-dimensional

and contractible, hence a tree. From the elementary theory of groups acting
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on trees, it will suffice to show that the quotient x(S) T(S) is also a tree,

and that the stabilizers of vertices in x(S) are generated by separating twists.

It will be helpful to know exactly what an edge of x(S) looks like. Such

an edge corresponds to a multicurve separating S into two components, so

these components must be pairs of pants, with the multicurve consisting of

three nonseparating curves a b c as in the figure below.

a bc

d

Since the multicurve is reduced, two of the three curves, say a and b , will

be oriented consistently with an orientation of either of the pairs of pants, and

the third curve c will be oppositely oriented. As we move across the edge we

transfer weights from a and b to c , or vice versa. Transferring weights from a

and b to c decreases the value of W . At the end of the edge with larger

W -value the weighted multicurve is pa qb , with p q say, and then at the

other end the weighted multicurve is (p q)a qc , so we subtract q from the

weights on a and b and add q to the weight on c . The value of W decreases

from p q to p . (Thus for a sequence of edges along which W decreases,

the pairs of weights are changing according to the Euclidean algorithm of

repeatedly subtracting the smaller of two numbers from the larger.)

We claim that from a given vertex pa qb with W 1 (so both p and q

are greater than 0) all the edges of x(S) leading to vertices with smaller

W -value are equivalent under the action of the stabilizer of the vertex in T(S) .

This implies that each component of x(S) T(S) is a tree since there is a

well-defined flow on it decreasing the values of W monotonically until they

reach the value 1 at a vertex represented by a single curve. Since x(S) is

connected, so is its quotient x(S) T(S) , so the quotient must then be a tree,

with a single vertex where W 1. In particular, this shows that T(S) acts

transitively on oriented curves in a given homology class, just as in higher

genus as we noted in the remarks following Lemma 9.

To verify the claim, consider two edges of x(S) leading downward from

this vertex. These two edges correspond to two different choices for the c

curve, in the notation above. Both choices lie in the complement of the a

and b curves, a 4-punctured sphere. Isotopy classes of nontrivial curves in

a 4-punctured sphere are classified by their slope, an element of Q .

Let us choose coordinates on the 4-punctured sphere so that one choice

of c has slope 0 1 and a separating curve d as in the preceding figure has
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slope 1 0. The mapping class group of a 4-punctured sphere fixing each of

the punctures can be identified with the subgroup G of PSL(2 Z) represented

by matrices congruent to the identity mod 2. The action of G on slopes

has three orbits, the slopes whose numerators and denominators are congruent

to those of 0 1, 1 0, or 1 1 mod 2. Topologically, these three classes are

distinguished by how the corresponding curves separate the 4 punctures into

pairs. In particular, the slopes congruent to 1 0 correspond to separating

curves on S , such as the curve d . Whether the value of W decreases or

increases for a particular choice for c depends only on how c separates the 4

punctures. For c of slope 0 1 as in the figure the value of W decreases,

so the slopes congruent to 0 1 correspond to the curves c for which W

decreases. These slopes form the vertices of a tree T that can be visualized

by superimposing it on the Farey diagram, as in the figure below.

Two vertices of T are joined by a sequence of edges of T , and the curves

corresponding to vertices along this path are related each to the next by Dehn

twists along curves of slope congruent to 1 0 mod 2. For example, a twist

along a curve of slope 1 0 takes slope 0 1 to slope 2 1. Slopes congruent

to 1 0 mod 2 give separating curves in S , so the path in T gives a product

of separating twists on S taking the first choice of c to the second choice,

verifying the claim.

Next we check that the stabilizer of a vertex of x(S) corresponding to

a vertex pa qb with p q 0 is generated by separating twists. We have

just seen that products of separating twists in the stabilizer act transitively

on vertices of T , so, modulo such products, we can assume the element
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of the stabilizer fixes the slope 0 1 curve c . But the stabilizer of the

multicurve a b c in T(S) is trivial, since an element in this stabilizer

would have to be a product of twists along a , b , and c , and it is easy to

see that such a product acts nontrivially on homology unless it is the trivial

product. (Consider the action on curves that intersect two of a b c transversely

in one point and are disjoint from the third.) Thus the stabilizer of pa qb

in T(S) is generated by separating twists when both p and q are positive.

There remains the stabilizer of a vertex corresponding to a single curve a .

This situation was analyzed in the previous section for arbitrary genus, where

we showed that the stabilizer of a curve in genus is generated by twists

and bounding pair maps if this is true for the full Torelli group in one lower

genus. In the present situation the Torelli group for genus 1 is trivial, so the

stabilizer of a curve in genus 2 is generated by separating twists since there

are no bounding pair maps until genus 3.

This finishes the proof that T(S) is generated by separating twists in

genus 2, and hence also the proof of the Birman–Powell theorem.

THE STRUCTURE OF THE TORELLI GROUP IN GENUS 2. It is not hard to

extend the preceding arguments to see that T(S) is a nonfinitely generated

free group in genus 2. For the action of T(S) on the tree x(S) the edge

stabilizers are trivial as we observed above, and the quotient x(S) T(S) is

a tree, so T(S) is a free product of vertex stabilizers, with one factor for

each vertex of x(S) T(S) . For a vertex pa qb of x(S) with p q 0 the

stabilizer acts freely on the tree T since we saw that no vertices can be fixed

points, and no edge can be inverted since elements of the group G cannot

interchange slopes congruent to 1 0 and 1 1 mod 2. The stabilizer group

acts transitively on vertices of T , so the stabilizer is the fundamental group

of the orbit space of the action, an infinite wedge of circles since vertices

of T have infinite valence. Thus the stabilizer of pa qb is a free group on

an infinite number of generators.

The other case is the stabilizer of a vertex that is a single curve. From

the discussion in the preceding section this is isomorphic to the kernel K2

of the map T(S P) T(S p) . This is a subgroup of the kernel of the

map M(S P) M(S p) which is 1(S p) from the long exact sequence of

homotopy groups for the fibration Diff (M p) M p obtained by evaluating

diffeomorphisms at q , with fiber Diff (M P) . The group 1(M p) is free

so the subgroup K2 is free as well. It is in fact the commutator subgroup, as

our analysis showed, so it is nonfinitely generated.

Since x(S) T(S) is an infinite tree, we see that T(S) is a free product
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of infinitely many stabilizers, each of which is a nonfinitely generated free

group, so T(S) is a nonfinitely generated free group itself. Mess [13] gives

the following more precise description of the infinite generating set. Each

nontrivial separating curve in S induces a splitting of H1(S) into two sym-

plectic subspaces, namely, the subspaces consisting of the elements represented

by 1-cycles supported entirely on one side of the separating curve or the other.

Mess proved that T(S) has a free generating set where there is one generator for

each such symplectic splitting of H1(S) (this description can in fact be deduced

by sharpening the argument given above, as in [1, Section 7]). It is not true,

however, that if we make an arbitrary choice of Dehn twist for each symplectic

splitting, then we obtain a generating set. As such, it is still an open problem

to turn Mess’s description of the generating set into an explicit generating set.

FINAL REMARK. It is tempting to try to prove the Birman–Powell theorem

in genus 2 using the same inductive step we used in higher genus. Indeed, the

genus one Torelli group is trivial, so by the Birman exact sequence it would

suffice to show that x(S) , or some variant, is connected in genus 2.

We have already mentioned that x(S) has no edges in genus 2. In particular,

the complex is not connected. One might try to repair this by enlarging Cx(S)

to a complex with edges joining pairs of vertices corresponding to curves that

are not disjoint but intersect in the minimum number of points, namely 4,

such as the curves c and Td(c) where c and d are the curves shown in

the figure at the beginning of this section. This does not work, however.

The curves c and Td(c) are joined by an edge path in x(S) of length 2

with a b as the intermediate vertex, so the values of W along this edge path

lie between 1 and 2. But there are pairs of vertices of x(S) for which the

values of W along the path in x(S) joining the two vertices must exceed any

preassigned number n , since one can start with a vertex of x(S) where W

has a value larger than n and then follow two different paths from this vertex

along which W decreases monotonically until one reaches a pair of vertices

in x(S) with W 1. Since x(S) is a tree, these two vertices cannot be

joined by any other path along which W has the maximum value 2, so

these two vertices cannot be in the same path component of the proposed

enlargement of x(S) . This argument shows moreover that x(S) cannot be

made connected by adding only a finite number of types of edges.

REFERENCES

[1] BESTVINA, M., K.-U. BUX and D. MARGALIT. The dimension of the Torelli
group. J. Amer. Math. Soc. 23 (2010), 61–105.



188 A. HATCHER AND D. MARGALIT

[2] BIRMAN, J. S. On Siegel’s modular group. Math. Ann. 191 (1971), 59–68.

[3] DEHN, M. Die Gruppe der Abbildungsklassen. Das arithmetische Feld auf
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