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CIRCLE-VALUED MOMENTUM MAPS

FOR SYMPLECTIC PERIODIC FLOWS

by Álvaro PELAYO ) and Tudor S. RATIU )

ABSTRACT. We give a detailed proof of the well-known classical fact that every
symplectic circle action on a compact manifold admits a circle-valued momentum map
relative to some symplectic form. This momentum map is Morse-Bott-Novikov and
each connected component of the fixed point set has even index. These proofs do not
seem to have appeared elsewhere.

1. INTRODUCTION

A smooth circle action on a symplectic manifold (M ) is Hamiltonian if

it is symplectic (in other words, the diffeomorphism associated to every group

element preserves the symplectic form) and the contraction i1M : (1M )

of with the infinitesimal generator 1M of the action is an exact one-form,

i.e., it is of the form d for some smooth function : M R . The map

is called a momentum map of the action. Any two momentum maps differ by

a constant on each connected component of M .

While there are many examples of interesting Hamiltonian circle actions

— see for example Karshon’s classification [9] in dimension 4 — there

are also numerous situations in geometry and dynamical systems when one

has a symplectic circle action (equivalently, a symplectic periodic flow) on a

manifold but the one-form i
M

is not exact, e.g., consider any action without

fixed points such as a free action. Duistermaat-Pelayo [3, Remark 7.6 and
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Theorem 9.6] and Pelayo [19, Examples 8.1.1, 8.1.2, and Theorem 8.2.1]

give infinitely many examples of compact connected symplectic manifolds in

any dimension equipped with symplectic free torus actions that are hence not

Hamiltonian. A particularly famous example among these manifolds is the

Kodaira variety in [10, Theorem 19, case 3], also known as the Kodaira-

Thurston manifold [13, Example 3.8 on page 88], which was pointed out by

Thurston [21] to be a non-Kähler symplectic manifold.

The simplest example of a Hamiltonian S1 -action is the rotation of the

sphere S2 about the polar axis. The flow lines of the infinitesimal generator

defining this action are the latitude circles. Frankel’s seminal results [5,

Lemmas 1 and 2] and their proofs imply that the momentum map for a

circle action on a compact Kähler manifold is Morse-Bott and the index of

each connected component of the fixed point set of the action is even.

The goal of this expository note is to give a proof of two classical facts :

(a) Every symplectic circle action admits a circle-valued momentum map

relative to some (possibly different) invariant symplectic form.

Concretely, (a) means the following. Consider a symplectic S1 -action

on a compact connected symplectic manifold M , with generating vector

field 1M . We are identifying the circle S1 with the quotient R Z having

coordinate t and length form dt . Then i1M is a closed one-form and so

it represents a cohomology class in H1(M; R) . If this class is in the image

of H1(M; Z) H1(M; R) , then the action has a circle-valued momentum

map : M S1 with the property that i1M (dt) . If not, then there is

a (nearby) S1 -invariant symplectic form such that k[i1M ] H1(M; Z) for

some k R . There is always a corresponding momentum 1 ) map : M S1

for any such form k . This important observation was first made in an

influential paper by Dusa McDuff [12, Lemma 1], which prompted much later

research.

(b) The map : M S1 is Morse-Bott-Novikov and each connected

component of the fixed point set has even index.

Statement (b) extends Frankel’s result to circle-valued momentum maps.

Strictly speaking, in order to state this latter fact precisely we need to first

introduce the notions of Morse-Bott-Novikov, non-degeneracy, and index of a

critical point for smooth circle-valued maps. The definitions of these notions

parallel those for real-valued maps. Formally, one replaces the smooth S1 -

valued function by its logarithmic exterior differential which is in agreement

1 ) If t is the coordinate on R and : M R is the standard momentum map
then d (dt) ; formally, this information is found in formula (2) in Section 2.
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with the fact that non-degeneracy of a critical point is a local notion. Once

we have introduced these concepts, we can state the main result of this note,

Theorem 3 in Section 2, stating McDuff’s important observation and the

extension of Frankel’s theorem.

To our knowledge, no detailed proofs of these classical facts are available

in the literature. We have received many questions over the years about them.

This has prompted us to write the present note, with the goal of providing

elementary and complete proofs. We follow, to a certain extent, McDuff’s

outline in the proof of the existence of the circle-valued momentum map and

extend Frankel’s argument from real to circle-valued maps. The proofs in this

note are self-contained.

ACKNOWLEDGEMENTS. We thank an anonymous referee for many helpful

suggestions. We are also thankful to Allen Hatcher, Dan Burghelea, Dan

Halpern, Stefan Papadima, and Susan Tolman for valuable discussions. We

are very grateful to Dusa McDuff who gave us detailed comments on several

preliminary versions of this paper, resulting in an improved exposition.

2. CIRCLE-VALUED MAPS AND THE MAIN THEOREM

In this section we explain in which sense a circle-valued momentum map

is Morse-Bott-Novikov, what non-degeneracy means for a critical point of such

a map, and what is the natural notion of index of a critical point. To be as

self-contained as possible, we start by recalling some basic notions.

MORSE THEORY FOR CIRCLE-VALUED MOMENTUM MAPS

Throughout this subsection M is any smooth manifold (not necessarily

connected, or compact, or symplectic, etc.).

CONVENTIONS CONCERNING S1 . Our conventions and notations concerning

the circle S1 are the following. We identify throughout this paper the circle S1

with R Z and denote by : R t [t] R Z the canonical projection, a

surjective submersive Lie group homomorphism. Thus T0 : R T[0](R Z)

is an isomorphism and so we identify R with the Lie algebra of R Z ,

i.e., r R is identified with T0 (r) . If Lt and L[t] denote left (equivalently,

right) translation on R and R Z , respectively, then Lt L[t] and hence

T[t](R Z) Tt (r) r R T[0]L[t] T0 (0 r) Tt (t r) t r R
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The length form 11(R Z) is defined by ([t]) (Tt (r)) : r . So, in

the local coordinate t I ( I R is an open interval of length strictly less

than one), dt since Tt (r) r
t
. Therefore,

R Z

1

0
dt 1 and

is left (equivalently, right) invariant.

LOGARITHMIC EXTERIOR DIFFERENTIAL. For any smooth map f : M R Z ,

the classical logarithmic exterior differential f 11(M) of f is defined by

(1) f (m)( m) : Tf (m)L f (m) (Tm f ( m)) R

where m M , m TmM . It is easy to see that if : M R Z is

another smooth map, then ( f ) f . As usual, for X (M) , we

define f X C (M) by f X (m) : f (m)(X(m)) for any m M .

The following formula for any f : M R Z is easy to check and will be

used later on :

(2) f f

The logarithmic exterior differential is related to the usual exterior differ-

ential of the canonical lift in the following manner. Let

M : (m t) M R f (m) [t]

be the pull back bundle by f of the principal Z -bundle : R R Z .

Thus, : M (m t) m M is also a principal Z -bundle and hence a

covering space. Note that

(3) T(m t)M m (t f (m)( m)) f (m) [t]

Define the canonical lift of f by f̃ : M (m t) t R . Since f̃ f ,

formula (3) implies that

(4) f (m)( m) df̃ (m t) ( m (t f (m)( m)))

for all m M , m TmM , t R such that f (m) [t] . In particular, m M

is a critical point of f (i.e., Tm f 0 or, equivalently, f (m) 0) if and only

if all (m t) 1(m) M are critical points of the real-valued function f̃ .

Denote by Crit( f ) : m M f (m) 0 the set of critical points of f .

HESSIAN OF A CIRCLE-VALUED SMOOTH MAP. The definition of the Hessian

(Hess f )(m0) : Tm0M Tm0M R at the critical point m0 M of f : M R Z

parallels that for real-valued functions (see, e.g., [14, page 4]) :

(5) (Hess f )(m0)(u ) : u f (m0) d f (m0) u
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for all u Tm0M , where u are arbitrary local smooth vector fields in a

neighborhood of m0 such that u(m0) u , (m0) . From (4) and (5) it

follows that if m0 Crit( f ) , then

(6) (Hess f )(m0)(u ) (Hess f̃ )(m0 t0) (u (t0 0)) ( (t0 0))

for any t0 R satisfying f (m0) [t0] and u Tm0M , where the right hand

side is the usual Hessian of the real-valued function f̃ . To see this, note first

that since m0 Crit( f ) and t0
1(m0) , formula (3) yields

T(m0 t0)M m0 (t0 0 f (m0) [t0]

Thus, if Tm0M and is an arbitrary local smooth vector field defined in

a neighborhood of m0 and satisfying (m0) , then ( f ) is a smooth

local vector field on M defined in a neighborhood of (m0 t0) M whose

value at (m0 t0) is ( (t0 0)) T(m0 t0)M . Thus, if m( ) M with m(0) m0
and m (0) u , we get

(Hess f̃ )(m0 t0) (u (t0 0)) ( (t0 0)) d df̃ ( f ) (m0 t0) (u (t0 0))

d

d 0

df̃ ( f ) (m( ) t0)
(4) d

d 0

f (m( ))

d f (m0) u
(5)
(Hess f )(m0)(u )

Formula (6) shows that (Hess f )(m0) : Tm0M Tm0M R is a symmetric

bilinear form and that its definition does not depend on the extensions u

and but only on their point values u Tm0M . As for real-valued

functions, the critical point m0 is said to be non-degenerate if (Hess f )(m0)

is a non-degenerate bilinear form. Thus, formula (6) implies that m0 is a

non-degenerate critical point of f if and only if all (m0 t0)
1(m0) M

are non-degenerate critical points of f̃ . In addition, the Morse Lemma for f̃

and the fact that : M M is a covering space, imply that non-degenerate

critical points of f : M R Z are isolated. In particular, if M is compact,

then there are only finitely many non-degenerate critical points of f .

MORSE-BOTT-NOVIKOV MAPS. Recall that a smooth map f : M R is

Morse if all its critical points are non-degenerate. The smooth map f is

Morse-Bott if the critical set Crit( f ) of f is a disjoint union of connected

submanifolds Ci of M such that ker(Hess f )(m) TmCi , for each i

and m Ci . The index of m is the number of negative eigenvalues

of (Hess f )(m) . For circle-valued maps we proceed in the same manner.

A smooth map f : M R Z is Morse-Bott-Novikov if the critical

set Crit( f ) : m M f (m) 0 of f is a disjoint union of
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connected submanifolds Ci of M such that ker(Hess f )(m) TmCi , for

each i and m Ci . The index of m is the number of negative eigenvalues

of (Hess f )(m) . Since Crit( f ) is closed, if M is compact, then it has only a

finite number of connected components.

Formula (4) implies that Crit f̃ 1 (Crit f ) . Thus, from (6) we conclude

that f : M R Z is Morse-Bott-Novikov if and only if f̃ : M R is

Morse-Bott.

THE CIRCLE-VALUED MOMENTUM MAP

Let (M ) be a symplectic manifold, i.e., M is a smooth manifold and

is a non-degenerate closed smooth 2-form on M .

Let \ : R Z M M be a smooth action by symplectomorphisms

(i.e., each diffeomorphism \[t] : M M preserves the symplectic form ).

Let rM (M) be the infinitesimal generator of the action determined

by r R whose value at an arbitrary point x M is given by

rM(x) :
d

d 0

\[r ](x)

The circle action on (M ) is said to be Hamiltonian if there exists a smooth

map : M R , called the momentum map, such that i1M (1M ) d .

The existence of such a map is equivalent to the exactness of the one-

form i1M . It follows that the obstruction to the action being Hamiltonian lies

in the first cohomology group of M ; thus, if H1(M;R) is the trivial group

then every symplectic R Z -action on M is Hamiltonian.

DEFINITION 1. A circle-valued momentum map : M R Z is defined

by the condition i1M , where 11(R Z) is the standard length

form.

REMARK 2. Definition 1 is equivalent to that of group-valued momen-

tum maps ([1, 7, 8], [17, Definition 5.4.1]) in the case of R Z because

of formula (2). There is a close relationship between the cylinder-valued

momentum map ([2], [17, §5.2]) and the group-valued momentum map for

Abelian Lie groups. Any cylinder-valued momentum map associated to an

Abelian Lie algebra action whose associated holonomy group is closed can be

understood as a Lie group-valued momentum map ([17, Proposition 5.4.4]).

Conversely, connected Abelian Lie groups have closed holonomy groups. The

precise technical conditions when Lie group and cylinder-valued momentum
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maps are equivalent for connected Abelian Lie groups are spelled out in [17,

Theorem 5.4.6].

STATEMENT OF THE MAIN THEOREM. With this background, we can now

give a precise statement of the result announced in the introduction.

THEOREM 3. Let the circle R Z act symplectically on the compact

symplectic manifold (M ) . Denote by MR Z the fixed point set of the

R Z -action. Then either the action admits a standard momentum map or,

if not, there exists a R Z -invariant symplectic form on M that admits a

circle-valued momentum map : M R Z . Moreover, is a Morse-Bott-

Novikov function and each connected component of MR Z Crit( ) has even

index.

REMARK 4. As we shall see in the proof, if is integral, then .

REMARK 5. An analogue of Theorem 3 also holds for actions of higher

dimensional tori.

REMARK 6. If : M R is a standard momentum map for a circle action

on a 2n -dimensional compact symplectic manifold (M ) , it is well known

that it has at least n 1 critical points or, equivalently, the circle action has at

least n 1 fixed points. Let us briefly recall the argument. Since is Morse-

Bott (Theorem 3), the connected components of Crit( ) are submanifolds

of M . If at least one is not zero-dimensional, then there are infinitely many

critical points of and the result is obvious. If all connected components are

zero-dimensional, then is a Morse function and so it must be perfect (i.e.,

the Morse inequalities are equalities) because of the following classical result :

If f is a Morse function on a compact manifold whose critical points have only

even indices, then it is a perfect Morse function (see e.g., [15, Corollary 2.19 on

page 52]). Thus, if mk( ) denotes the number of critical points of of index k ,

the total number of critical points of equals
2n

k 0mk( )
2n

k 0 bk(M) ,

where bk(M) : dim Hk(M R) is the k th Betti number of M . However,

since is a symplectic form, the cohomology classes [ k] are nontrivial

elements of H2k(M R) for k 0 n , and hence b2k(M) 1 , which then

implies that the total number of critical points of is at least n 1.

It is tempting to use Theorem 3 to deduce a similar result for circle-

valued momentum maps by replacing the Morse inequalities by the Novikov

inequalities (see [18, Chapter 11, Proposition 2.4], [4, Theorem 2.4]), if all
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critical points of are non-degenerate. In this case, the number of critical

points of the circle-valued momentum map is
2n

k 0 mk( ) . This integer is

estimated from below by

2n

k 0

b̂k(M) q̂k(M) q̂k 1(M)

where b̂k(M) is the rank of the Z((t)) -module Hk(M Z) Z[t t 1]Z((t)) , q̂k(M)

is the torsion number of this module, and M is the pull back by : M R Z

of the principal Z -bundle t R [t] R Z . Unfortunately, this lower bound

can be zero, in stark contrast to the Hamiltonian case. For example, the circle

action on the two-torus by rotation on the first factor is free and hence has no

fixed points. See [4, §7.3] for further information. However, it is known that if

this lower bound is strictly positive, then it must be at least two. In addition,

if dim(M) 8 , then if the lower bound is strictly positive, it must be at

least three. These results were proved in [20, Corollary 6] using localization

in equivariant cohomology. To our knowledge, no universal lower bound for

non-Hamiltonian symplectic circle actions with at least one fixed point is

available. It was proved in [20, Theorem 1] that this lower bound is at least

n 1 provided that the so-called Chern class map is somewhere injective.

The rest of the paper is devoted to the proof of Theorem 3.

3. PROOF OF THE FIRST PART OF THEOREM 3 : EXISTENCE OF

The goal of this section is to prove the existence of the circle-valued

momentum map.

NOTATION AND BASIC FACTS

In order to be as explicit and self-contained as possible we give a proof

of the following basic observation.

LEMMA 7. Let \ : (R Z) M M be a smooth action and let : R Z N

be a smooth map. Define : (R Z) (R Z) N by

([s] [t]) : \[t] ( ([s]))

Then, if 12(M) is an R Z -invariant form we have

(7)
(R Z) (R Z) R Z

(i 1M )
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Proof. Let 12((R Z) (R Z)) . Denote by [s] the elements of

the first circle and by [t] those of the second. Let t (R Z) be

the left (equivalently, right) invariant vector field whose value at [0] is 1.

Let dt 11(R Z) be the one-form dual to t , i.e., dt t 1.

A direct verification shows that i
t

dt If is invariant under the

translations R[u] of the second factor in (R Z) (R Z) (the t -direction), i.e.,

if R[u]([s] [t]) : ([s] [t u]) , then R[u] for all [u] R Z , it follows

that i
t

is also invariant under such translations. Thus i
t

depends only

on [s] and hence

(8)
(R Z) (R Z) R Z

1 i
t

where 1 : (R Z) [s] ([s] [0]) (R Z) (R Z) is the standard

embedding of the first circle into the 2-torus.

Now notice that 12((R Z) (R Z)) is invariant under the

translations on the second factor. Indeed, since

T([s] [t]) a
s
b
t

T ([s])\[t] aT[s]
s

b1M( ([s]))

T([s] [t])R[u] a
s
b
t

a
s
b
t
([s] [t u])

(R Z) -invariance of 12(M) implies that R[u] . Thus,

formula (8) is applicable for . In addition,

1 i
t

([s]) a
s

i
t

([s] [0]) a
s
0

( )([s] [0]) 0
t

a
s
0

( ([s] [0])) T([s] [0]) 0
t

T([s] [0]) a
s
0

( ([s])) 1M( ([s])) aT[s]
s

i1M ( ([s])) T[s] a
s

i1M ([s]) a
s

i.e., 1 i
t

i1M which, together with (8), implies formula (7).
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EXISTENCE OF

If the R Z -action does not admit a standard momentum map, the action

is necessarily not trivial, because the trivial action admits the constant map

everywhere equal to zero as a momentum map. Thus, assuming that the action

is not Hamiltonian, it follows that the one-form i1M is not exact. In this case

we shall prove that there exists a R Z -invariant symplectic form on M

that admits a circle-valued momentum map : M R Z .

The following steps cover three cases. Before we proceed, we recall that

for a compact manifold X , a rational cohomology class in Hk(X;R) is a real

cohomology class which lies in the image of Hk(X;Q) Hk(X;R) . Similarly,

when Q is replaced by Z for integral cohomology class.

STEP 1. Existence of the circle-valued momentum map when [ ] H2(M;Z).

Identity (7) shows that i1M H1(M;Z) ; we note that this statement may

also be deduced as a property of the flux homomorphism, cf. [13, Lemma 10.7].

Pick a point m0 M , let m be an arbitrary smooth path connecting m0 to m

in M , and define the map : M R Z by

(m) :
m

i1M(9)

The map is well defined. Indeed, if m is another path connecting m0 to m ,

let m ( m) be the closed loop formed by starting at m0 , following m and

then returning from m to m0 on m . Since i1M H1(M;Z) , all its periods

are integral and hence
m ( m)

i1M : k Z . Thus

m

i1M
m

i1M k

which shows that
m
i1M m

i1M The map is clearly smooth.

Finally, since for any m TmM , we have Tm ( m) T
m
i1M

i1M (m)( m) ,

it follows that

( )(m)( m) ( (m)) (Tm ( m)) i1M (m)( m)

i.e., the symplectic form admits the circle-valued momentum map defined

in (9) on M .

STEP 2. Existence of the circle-valued momentum map when [ ] H2(M;Q).

Identity (7) shows that i1M H1(M;Q) . Thus there is a k N such

that i1M (k ) k i1M H1(M;Z) . Since the R Z -action clearly pre-

serves k , by Step 1, the symplectic form k on M admits a circle-valued

momentum map on M .
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STEP 3. Existence of the circle-valued momentum map when [ ] H2(M;R)

is irrational. We will use the de Rham theorem for G -invariant forms : let G

be a connected compact Lie group acting smoothly on a compact manifold X .

Let 1 (X)G denote the set of G-invariant forms. Then the inclusion map

i : 1 (X)G 1 (X) induces an isomorphism H (X;R)G H (X;R) in real

cohomology.

Therefore, in our case, for the group R Z , we conclude that

H2(M;R)R Z H2(M;R)

by the compactness of M ; let m : dimR H2(M;R) dimQ H2(M;Q) be

the second Betti number. Choose a Q -basis of H2(M;Q) ; then it is also

an R -basis of H2(M;R) H2(M;Q) Q R and hence H2(M;Q) Qm

as Q -vector spaces, and H2(M;R) Rm as R -vector spaces. Endow-

ing H2(M;R) with the topology induced by this linear isomorphism,

this implies that H2(M;Q) is dense in H2(M;R) H2(M;R)R Z . Since

0 [ ] H2(M;R)R Z because is a symplectic form, we can

complete to a basis [ ] [ 1] [ m 1] of H2(M;R)R Z . In particular,

1 m 1 12closed(M)
R Z are linearly independent and hence

V : spanR 1 m 1

is an m -dimensional vector subspace of 12
closed(M)

R Z isomorphic to

H2(M;R)R Z, the isomorphism being given by its values on the basis :

[ ] , k [ k] , for k 1 m 1. Embed by this isomorphism

the Q -vector space H2(M;Q) in V ; its image U is a dense Q -vector sub-

space of V . Because non-degeneracy is an open condition, it follows that

the set of R Z -invariant symplectic forms in V is open and also non-empty

since V . Because U is dense in V , it follows that we can find a

form U , hence necessarily closed and R Z -invariant, so close to V

that it is symplectic. The problem has now been reduced to the situation

studied in Step 2 with replaced by .

This concludes the proof of existence of the circle-valued momentum map.

4. PROOF OF THE SECOND PART OF THEOREM 3 :

IS MORSE-BOTT-NOVIKOV

The goal of this section is to prove that the circle-valued momentum

map : M R Z is Morse-Bott-Novikov. As discussed in Section 2, this
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is equivalent to showing that the standard lift : M R is Morse-Bott,

where M (m t) M R (m) [t] .

Let be the R Z -invariant symplectic form on M constructed in

Section 3. Since : M (m t) m M is a covering space it follows

that 12 M is a symplectic form on M . In addition, R Z naturally

acts on M by ^[s](m t) : (\[s](m) t) . This is well-defined since the

momentum map is (R Z) -invariant. To see this, note that it suffices to prove

that Tm (1M(m)) 0 , which follows from the following computation :

T (m)L (m)Tm (1M(m))
(1)

(m)(1M(m))
(2)
( )(m)(1M(m))

i1M (m)(1M(m)) (m) (1M(m) 1M(m)) 0

The identity ^[s] \[s] and R Z -invariance of implies that the

R Z -action ^ on M is symplectic. Let us show that : M (m t) t R is

a momentum map of this action. Indeed, since 1M(m t) (1M(m) (t 0)) , so 1M
and 1M are -related, for any m M , t R such that f (m) [t] , m TmM ,

and r : f (m) m R , we have

i1M ( )(m t)( m (t r)) i1M (m)( m) ( )(m)( m)

(2)
(m)( m)

(4)
d (m t)( m (t r))

Finally, note that ^[s] . Thus, the problem is reduced to showing that

the standard invariant momentum map of a circle action is Morse-Bott, which

is a well-known classical result.

In the interest of completeness, we recall the proof. So, let (M ) be a

compact symplectic manifold, \ : (R Z) M M an action preserving the

symplectic form and admitting an invariant momentum map J : M R . We

shall show that J is a Morse-Bott map.

First, we note that the submanifold MR Z , consisting of fixed points of

the action, coincides with Crit(J) . Indeed, since R Z is connected, so it is

generated by a neighborhood of the identity element, it follows that m MR Z

if and only if 1M(m) 0 . By non-degeneracy of and the defining

identity (m)(1M(m) m) dJ(m)( m) , for any m TmM , of the momentum

map J , it follows that 1M(m) 0 if and only if dJ(m) 0 .

Second, we show that each connected component F of MR Z Crit(J)

has even index. Let m0 F Crit(J) , u Tm0M , and take vector fields u
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such that u(m0) u , (m0) . Thus,

Hess(J)(m0) u dJ (m0) u ( (1M )) (m0)

( u )(m0) (1M(m0) ) (m0) u 1M (m0) (m0) 1M(m0) u (m0)

(m0) 1M u (m0) (m0)
d

dt t 0

T\[ t] u \[t] (m0)

(m0)
d

dt t 0

Tm0\[ t](u)

However, Tm0\[t] : Tm0M Tm0M is the flow of the linearized vector

field 1M(m0) : Tm0M Tm0M and hence

(10) (Hess J)(m0)(u ) (m0) 1M(m0)(u) (m0) 1M(m0)(u)

At this point we recall that the symplectic representation

Tm0\[t] : (Tm0M (m0)) (Tm0M (m0))

of R Z admits an invariant momentum map L : Tm0M R whose expres-

sion is

L( )
1

2
(m0) 1M(m0)( )

for any Tm0M (see, e.g., [11, formula (12.4.6)]) and hence

(Hess J)(m0)(u u) 2L(u)

for all u Tm0M . Obviously, if u Tm0F , both the Hessian and L vanish.

So we need to compute the Hessian on a subspace transversal to Tm0F in

order to determine the index of F . Since Tm0F Tm0 MR Z Tm0M
R Z

is a symplectic vector subspace of (Tm0M (m0)) (e.g, [16, (2.4.5) and

Proposition 4.2.7]), its (m0) -orthogonal complement W is also a symplectic

subspace of (Tm0M (m0)) and we have Tm0M Tm0M
R Z

W . Thus, we

shall compute (Hess J)(m0) W W . The only fixed point of the R Z -symplectic

representation on W is the origin. We recall the following well-known linear

algebra result (see e.g., [6, paragraphs 1 and 2, Section 32, p. 249, 250]).

LEMMA 8. The 2k-dimensional R Z -symplectic representation space W

splits as a (m0) -orthogonal sum of irreducible representations : W k
j 1Wj ,

where dimWj 2 .

For any irreducible symplectic representation of R Z on a two-dimensional

symplectic vector space (U dq dp) , the associated momentum map has the

expression U (q p) a
2
(q2 p2) R , where a R is the weight of the

representation.
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Therefore, for any 1 k
k

j 1Wj , formula (10) implies that

(11) (Hess J)(m0)( 1 k 1 k)

k

j 1

(Hess J)(m0)( j j)

k

j 1

2L( j j)

k

j 1

aj q
2
j p2j

where aj R are the weights of the irreducible R Z -representations

and (qj pj) are the symplectic coordinates of j Wj , j 1 k . From

Lemma 8 and (11) it follows that J is Morse-Bott and that the index of the

connected component F Crit J equals twice the number of the negative

weights aj R . Thus the index of F is even.
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