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SOME BOUNDS ON THE COEFFICIENTS

OF COVERING CURVES

by Tom FISHER

ABSTRACT. We compute bounds on the coefficients of the equations defining ev-
erywhere locally soluble n -coverings of elliptic curves over the rationals for n 2 3 4.
Our proofs use recent work of the author with Cremona and Stoll on the minimisation of
genus one curves, together with standard results from the geometry of numbers. We use
the same methods to give a criterion (satisfied by only a finite number of “small” elliptic
curves) for ruling out the existence of elements of order 3 in the Tate-Shafarevich group.

1. INTRODUCTION

Let E Q be an elliptic curve and n 2 an integer. The Selmer

group S(n)(E Q) parametrises the everywhere locally soluble n -coverings

: C E . By global class field theory the curve C admits a Q -rational

divisor of degree n and hence can be written as either a double cover of P1

(case n 2) or a genus one normal curve C Pn 1 (case n 3). The

aim of a descent calculation is to compute the Selmer group S(n)(E Q) as

an abelian group and to represent its elements by equations for the covering

curves C . In view of the short exact sequence

(1.1) 0 E(Q) nE(Q) S(n)(E Q) (E Q)[n] 0

this gives information about both the Mordell-Weil group E(Q) and the Tate-

Shafarevich group (E Q) . Indeed the covering curves can be used either to

help search for points of infinite order in E(Q) or to exhibit explicit elements

of (E Q) .

There are two different approaches to explicit 2-descent on an elliptic curve.

The number field method computes S(2)(E Q) as a subgroup of L (L )2

where L is a product of number fields. The Selmer group elements are then

converted to binary quartics using a method that relies on an explicit version of
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the Hasse principle for conics. In contrast the invariant theory method bounds

the coefficients of the required binary quartics, and then uses these bounds to

make an exhaustive search. The invariant theory method was used by Birch and

Swinnerton-Dyer in their pioneering computer calculations [BSD] and subse-

quently developed by Cremona in his program . The development of

computer algebra packages able to compute the class group and units of number

fields has since made the number field method equally suitable for computation.

The number field method has been generalised to p -descent (see [DSS],

[SS], [CFO]) and is practical for p 3 (and p 5 in small examples).

The method relies on an explicit version of the local-to-global principle for

the p -torsion of the Brauer group of Q . The number field method also extends

to 4-descent and 8-descent, as described in [MSS], [Wo], [S]. The invariant

theory method in the case n 3 was investigated in [DS], but does not appear

to generalise in any practical way to n 2.

The equations defining an n -covering C of E depend on a choice of co-

ordinates on Pn 1 . It is obviously desirable to make a change of co-ordinates

so that the equations have small integer coefficients. In practice this is achieved

by the combination of two techniques, termed minimisation and reduction. In

the minimisation stage spurious prime factors are removed from a suitably

defined discriminant. In the reduction stage an integer unimodular change of

co-ordinates is made to further reduce the size of the coefficients (without

changing the discriminant). Minimisation and reduction are important for both

the number field and invariant theory methods. In the number field method

the equations computed typically have very large coefficients, and we need to

minimise and reduce to get sensible answers. In the invariant theory method

minimisation and reduction are used at the outset to obtain the bounds upon

which the method relies.

In joint work with Cremona and Stoll [CFS] the author has described

efficient algorithms for minimising and reducing n -coverings for n 2 3 4.

(The work on minimisation applies over an arbitrary local field.) It has been

found in numerical examples that elements of the Tate-Shafarevich group

typically have quite small coefficients and that the size of the coefficients

tends to decrease with n . In this paper we give some theoretical support for

these observations. In fact we give bounds on the coefficients depending only

on the naive height of E . In principle this generalises the invariant theory

method to n 3 4 although the result is certainly not a practical algorithm.

In view of this we concentrate on giving a single bound for all the coefficients

and do not keep track of certain implied constants. Thus our treatment in the

cases n 2 3 differs from that in [BSD], [DS].
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In the cases n 2 3 4 we represent Selmer group elements by equations

of the following form.

DEFINITION 1.1. A genus one model of degree n 2 3 4 is

(i) if n 2, a binary quartic, i.e. a homogeneous polynomial of degree 4

in 2 variables,

(ii) if n 3, a ternary cubic, i.e. a homogeneous polynomial of degree 3 in

3 variables,

(iii) if n 4, a quadric intersection, i.e. a pair of homogeneous polynomials

of degree 2 in 4 variables.

Although in [F3] we also defined genus one models of degree 5, it will

be understood in this paper that all genus one models are of degrees 2, 3

or 4. Since the theory in [F3] relies on the space of all genus one models

being an affine space, it is far from clear what the appropriate definition of

genus one model would be for curves of degree n 5.

We recall that the minimal discriminant of an elliptic curve E Q is

6E (c34 c26) 1728

where c4 and c6 are the usual quantities associated to a globally minimal

Weierstrass equation for E . In Theorem 1.2 below we instead work with the

naive height of E which we define as

HE max( c4
1 4 c6

1 6)

We write \ for the maximum of the absolute values of the coefficients

of a genus one model \ . The notation f should be understood to mean

that f c for some absolute constant c 0.

THEOREM 1.2. Let E Q be an elliptic curve and let n 2 3 4 .

(a) Each S(n)(E Q) can be represented by a genus one model \ with

integer coefficients and

\ H6E

(b) If is non-zero in S(n)(E Q) then this bound may be improved to

\ H4E

(c) If the image of in (E Q) has exact order n then

\ H6 n
E
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We remark that Theorem 1.2(a) gives a proof that S(n)(E Q) is finite, and

hence by (1.1) a proof of the weak Mordell-Weil theorem for n 2 3 4.

This proof differs from the usual proofs in that we work entirely over the

rationals, i.e. we do not need to make any field extensions.

The formulae in Lemmas 3.11 and 3.12 of [CFS] suggest that the exponents

of HE in Theorem 1.2(a) and (b) might be best possible. We suspect that the

exponent of HE in Theorem 1.2(c) is also best possible in view of the models

n 2 y2 0x
4 x2z2 1z

4

n 3 0x
3
0 1x

3
1 2x

3
2 x0x1x2 0

n 4
0x
2
0 x1x3 2x

2
2 0

1x
2
1 x0x2 3x

2
3 0

that arise in the context of descent by cyclic isogeny (see [F1, §1.2] for the

cases n 3 4).

We expect that Theorem 1.2 generalises to the case n 5. (See [F3] for

the definition of a genus one model of degree 5.)

In favourable circumstances, the geometry of numbers can be used to

construct a rational point on a smooth plane cubic. We turn this into a criterion

for ruling out the existence of elements of order 3 in the Tate-Shafarevich

group.

THEOREM 1.3. Let E be an elliptic curve over Q with j-invariant j and

minimal discriminant 6E . Let

B min x : x C a root of (X 33)(X 35)3 jX3 0

If 6E
1
64
B3 then (E Q)[3] 0 .

Since B is bounded as a function of j this theorem applies to only finitely

many elliptic curves. In fact B 34(2 3 3) and so every elliptic curve

satisfying the condition of the theorem has conductor less than 1000. Searching

in Cremona’s tables [C] we find there are exactly 92 such curves. Their ranks

are distributed as follows

rank 0 1 2

# curves 49 41 2

There is no difficulty in verifying by 3-descent (see [SS]) that each of these

curves has (E Q)[3] 0. The interest of Theorem 1.3 instead lies in its

method of proof, and in the hope that similar criteria might be found for

ruling out elements of order n in (E Q) for other integers n .
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EXAMPLE 1.4. Let E be the elliptic curve

y2 y x3 x2 2x

Then 6E 389, j 21273 389 and 1
64
B3 528 57930586 . Theorem 1.3

shows that (E Q)[3] 0. In fact E(Q) Z2 and the (inverse pairs of)

non-trivial elements of S(3)(E Q) (Z 3Z)2 are represented by the ternary

cubics

F1(x y z) x2z xy2 2xyz xz2 y2z yz2

F2(x y z) x2z xy2 2xyz yz2 z3

F3(x y z) x2y xy2 xz2 y2z 2yz2

F4(x y z) x2y xy2 2xyz xz2 y2z yz2

2. BACKGROUND AND OVERVIEW

2.1 INVARIANTS OF GENUS ONE MODELS

We work over a field K of characteristic zero and write K for its algebraic

closure. The space of genus one models of degree n 2 3 4 is acted on by

the group n defined as follows

2 Gm GL2 [ N] : F 2(F N)

3 Gm GL3 [ N] : F (F N)

4 GL2 GL4 [M N] : (Q1 Q2)
T M(Q1 N Q2 N)T

Let det : n Gm be the character defined by [ N] detN , respectively

[M N] detM detN . An invariant of weight k is a polynomial I in the

coefficients of a genus one model satisfying

(2.1) I( \) det( )kI(\)

for all n . The action of the centre of n shows that I is homogeneous

of degree kn (6 n) . In each of the cases n 2 3 4 the ring of invariants is

generated by invariants c4 and c6 of weights 4 and 6. See [F3, §7], [CFS]

for explicit formulae. We put 6 (c34 c26) 1728. It is shown in [AKM],

[F3] that \ is non-singular (i.e. defines a smooth curve of genus one) if and

only if 6(\) 0 , and that the Jacobian elliptic curve is

(2.2) y2 x3 27c4(\)x 54c6(\)
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DEFINITION 2.1. Genus one models \1 and \2 are K -equivalent if they

are in the same orbit for the action of n(K) . They are properly K -equivalent

if \2 \1 for some n(K) with det 1 .

LEMMA 2.2. Non-singular genus one models \1 and \2 are properly

K -equivalent if and only if they have the same invariants, i.e. c4(\1) c4(\2)

and c6(\1) c6(\2) .

Proof. The first implication is clear by (2.1). For the converse, we see

by Propositions 4.6 and 4.7 in [F3] that every non-singular model is properly

K -equivalent to a model of the form

n 2 y2 x3z Axz3 Bz4

n 3 y2z x3 Axz2 Bz3

n 4 x2 zt y2 xt Axz Bz2 0

It then suffices to note that these “Weierstrass models” are uniquely determined

by their invariants. In fact c4 48A and c6 864B . .

A non-singular genus one model \ defines both a smooth curve of genus

one C and a regular 1-form on C . Writing Fi for the partial derivative

of F with respect to xi we have

n 2 y2 F(x0 x1) x20d(x1 x0) 2y

n 3 F(x0 x1 x2) 0 x20d(x1 x0) F2

n 4 F G 0 x20d(x1 x0) (F2G3 F3G2)

It is shown in [F3, Proposition 5.19] that if \2 \1 and : C2 C1 is

the morphism determined by then

(2.3) 1 (det ) 2

2.2 GALOIS COHOMOLOGY

We consider pairs (C S ) where C S is a morphism from a smooth

curve of genus one C to a Brauer-Severi variety S , and is a regular 1-form

on C . An isomorphism between (C1 S1 1) and (C2 S2 2) is a pair

of isomorphisms : C1 C2 and : S1 S2 such that 2 1 and the

following diagram commutes

C1 S1

C2 S2
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Let n 2 be an integer. Let E K be an elliptic curve with invariant

differential E . We map E Pn 1 via the complete linear system n 0E ,

i.e. we map P ( f0(P) : : fn 1(P)) where f0 fn 1 are a basis for the

Riemann-Roch space

(n 0E) f K(E) div( f ) n 0E 0 0

We recall that objects defined over K are called twists if they are isomorphic

over K .

LEMMA 2.3. The twists of (E Pn 1
E) , up to K -isomorphism, are

parametrised by H1(K E[n]) .

Proof. This is [F2, Lemma 2.3]. .

The obstruction map, defined in [O], [CFO], is

Ob: H1(K E[n]) Br(K)

(C S ) [S]

In general this map is not a group homomorphism. Nonetheless we

write ker(Ob) for the inverse image of the identity.

LEMMA 2.4. Let E K be an elliptic curve and let n 2 3 4 . Then

the genus one models of degree n with the same invariants as a fixed

Weierstrass equation for E , up to proper K -equivalence, are parametrised by

ker(Ob) H1(K E[n]) .

Proof. A non-singular genus one model \ defines a smooth curve of

genus one C Pn 1 and a regular 1-form on C . Conversely, every

twist (C S ) of (E Pn 1
E) with S Pn 1 arises in this way.

Let \E be a genus one model defining (E Pn 1
E) . By (2.2) it has the

same invariants as some Weierstrass equation for E . We see by (2.3) that \1

and \2 are properly equivalent if and only if they determine isomorphic

pairs (C1 Pn 1
1) and (C2 Pn 1

2) . Thus ker(Ob) parametrises the

genus one models properly K -equivalent to \E , up to proper K -equivalence.

By Lemma 2.2 the genus one models properly K -equivalent to \E are those

with the same invariants as \E . .

REMARK 2.5. The subset ker(Ob) H1(K E[n]) contains the identity

and is closed under taking inverses. A binary quartic represents the identity
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if and only if it has a K -rational root. A ternary cubic, respectively quadric

intersection, represents the identity if and only if it has a K -rational point of

inflection, respectively hyperosculating point.

Taking Galois cohomology of the short exact sequence 0 E[2]

E[4] E[2] 0 gives an exact sequence

E(K)[2] H1(K E[2]) H1(K E[4])
[2]

H1(K E[2])

LEMMA 2.6. The maps and [2] have the following interpretations.

(i) The binary quartic F(x z) ax4 bx3z cx2z2 dxz3 ez4 is mapped

by to the quadric intersection

(2.4) x0x2 x21 x23 ax20 bx0x1 cx21 dx1x2 ex22 0

(ii) The quadric intersection (Q1 Q2) where Qi(x) xTAix for i 1 2 is

mapped by [2] to the binary quartic

F(x z) det(A1x A2z)

Proof. (i) Let C2 be the curve defined by y2 F(x z) and C4 P3 the

curve defined by (2.4). Note that C4 is the image of C2 under the embedding

(2.5) (x : y : z) (x2 : xz : z2 : y)

If C2 is a double cover of P1 and C4 a quadric intersection, and these

are related in the same way as C2 and C4 , then each isomorphism

(C2 P1) (C2 P1) induces an isomorphism (C4 P3) (C4 P3)

compatible with the embeddings (2.5). Hence twisting (C2 P1) by

H1(K E[2]) has the effect of twisting (C4 P3) by H1(K E[4]) .

(ii) Let C4 be the curve Q1 Q2 0 and C2 the curve y2 F(x z) .

Weil [We, Chapter II, Appendix III] constructs a morphism : C4 C4 C2

with the property that

(P Q) (P Q ) P Q P Q

where denotes linear equivalence of divisors. For fixed P C4 the

map Q (P Q) induces a map on Jacobians that is independent of the

choice of P . This map is an isomorphism and we use it to identify the

Jacobians of C4 and C2 . Then P (P P) is a morphism that induces

multiplication-by-2 on the Jacobians. Explicit formulae for this covering map

are given in [AKM], [MSS]. If C4 and C2 are related in the same way
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as C4 and C2 then each isomorphism (C4 P3) (C4 P3) induces an

isomorphism (C2 P1) (C2 P1) compatible with the covering maps.

Hence twisting (C4 P3) by H1(K E[4]) has the effect of twisting

(C2 P1) by [2] H1(K E[2]) . .

2.3 MINIMISATION AND REDUCTION

We quote the following result on minimisation.

PROPOSITION 2.7. Let n 2 3 4 . Let C be an everywhere locally

soluble n-covering of an elliptic curve E Q . Let c4 and c6 be the invariants

of a minimal Weierstrass equation for E . Then C can be defined by an integer

coefficient genus one model with invariants c4 and c6 , except in the case n 2

where it may only be possible to find a model with invariants 24c4 and 2
6c6 .

Proof. This is [CFS, Theorem 1.1]. In [CFS] we gave a more general

definition of genus one model of degree 2. The models considered here are

obtained by completing the square. This has the effect of multiplying the

invariants c4 and c6 by 2
4 and 26 . .

Our treatment of reduction differs from that in [CFS]. In that paper our

goal was to find a practical algorithm for reducing, whereas here we are

interested in bounding coefficients. We recall that a genus one model \ is

non-singular if it defines a smooth curve of genus one, equivalently 6(\) 0 .

We say that \ is real if it has real coefficients. In Section 3 we prove

PROPOSITION 2.8. Let n 2 3 4 . Let \ be a non-singular real

genus one model of degree n with invariants c4 and c6 . Then \ is

properly R -equivalent to a genus one model \ with \ H(6 n) n

where H max( c4
1 4 c6

1 6) .

Since c4 and c6 are polynomials of degrees 4n (6 n) and 6n (6 n)

the exponent of H in Proposition 2.8 is best possible. Combining the last two

propositions we immediately deduce

THEOREM 2.9. Let n 2 3 4 . Let C be an everywhere locally soluble

n-covering of an elliptic curve E Q . Then C can be defined by an integer

coefficient genus one model that is properly R -equivalent to a genus one

model \ with \ H
(6 n) n
E .
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We write x ( x2i )
1 2 for the usual Euclidean norm. In Section 4 we

use the geometry of numbers to deduce Theorem 1.2 from Theorem 2.9. The

key fact here is

LEMMA 2.10 (Minkowski). Let R Rn be a rank n lattice with

covolume 1 . Then there are linearly independent vectors 1 n R

with
n

i 1 i
n 2
n where n

n is Hermite’s constant.

Proof. See for example [PZ, p. 197]. In fact for n 4 we can

take 1 n a basis for R . .

The exact value of Hermite’s constant is known for n 8.

n 1 2 3 4 5 6 7 8
n
n 1 4 3 2 4 8 64 3 64 256

We use Lemma 2.10 to give upper bounds on all of the i . For this we

need lower bounds on some of the i . The hypotheses in parts (a), (b)

and (c) of Theorem 1.2 are used to give successively better lower bounds,

and hence successively better upper bounds.

3. NORMAL FORMS FOR GENUS ONE MODELS OVER THE REALS

In this section we prove Proposition 2.8.

LEMMA 3.1. Let E R be an elliptic curve and n 2 an integer.

(i) If n is odd or 6E 0 then H1(R E[n]) 0 .

(ii) If n is even and 6E 0 then H1(R E[n]) (Z 2Z)2 and the obstruction

map H1(R E[n]) Br(R) has kernel of size 3 .

Proof. We recall that E[n] (Z nZ)2 has a basis S T with S E(R)

and

(T)
T if 6E 0

S T if 6E 0

where denotes complex conjugation. It is easy to compute H1(R E[n])

using the rule

H1(R A)
a A : a (a) 0

b (b) : b A
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Now suppose n is even and 6E 0. Then E(R) Z 2Z R Z and the

exact sequence

0 E(R) nE(R) H1(R E[n]) H1(R E)[n] 0

shows that ker(Ob) has size at least 2 . Let ( ) be the Tate pairing

H1(R E[n]) H1(R E[n]) Br(R)

defined by the Weil pairing and cup product. It is shown in [O], [Z] that

( ) Ob( ) Ob( ) Ob( )

for all H1(R E[n]) . Since the Tate pairing is non-degenerate, the

obstruction map is not linear, and hence ker(Ob) has size 3. .

Let E R be an elliptic curve and let c4 and c6 be the invariants of a fixed

Weierstrass equation. Lemma 2.4 identifies the proper R -equivalence classes

of genus one models with invariants c4 and c6 with ker(Ob) H1(R E[n]) .

Our strategy for proving Proposition 2.8 is therefore the following. According

as we are in case (i) or (ii) of Lemma 3.1 we exhibit either 1 or 3 real genus

one models with the given invariants. In case (ii) we then check that these

models are not equivalent over the reals.

3.1 BINARY QUARTICS

As suggested in Lemma 3.1 we split into cases according to the sign of

the discriminant.

LEMMA 3.2. Let E R be an elliptic curve with positive discriminant. We

fix a Weierstrass equation

(3.1) y2 (x e1)(x e2)(x e3)

where e1 e2 e3 R . Then every real binary quartic with the same invariants

as (3.1) is properly R -equivalent to exactly one of F1 , F2 , F3 where

Fi(x z) ai(x
4 z4) 2bix

2z2

and for i j k a cyclic permutation of 1 2 3 we put

ai (ei ej) 4 bi (ei ej 2ek) 4
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Proof. A direct calculation shows that the quartics Fi(x z) have the same

invariants as (3.1). Let r s t be the permutation of 1 2 3 with er es et .

Since

4Fi(x z) (ei ej)(x
2 z2)2 4(ei ek)x

2z2

it is clear that Fr(x z) 0 and Ft(x z) 0 for all (x : z) P1(R) ,

whereas Fs(x z) 0 has 4 roots in P1(R) . Hence the Fi(x z) are not equivalent

over the reals. .

The analogous result for negative discriminants is the following.

LEMMA 3.3. Let E R be an elliptic curve with negative discriminant. We

fix a Weierstrass equation

(3.2) y2 (x e1)(x e2)(x e3)

where e1 e2 C are complex conjugates and e3 R . Then every real binary

quartic with the same invariants as (3.2) is properly R -equivalent to

F(x z) a(x4 z4) 2bx2z2

where

a (e1 e2) 4i b (e1 e2 2e3) 4

Proof. A direct calculation shows that the quartic F(x z) has the same

invariants as (3.2). .

The proof of Proposition 2.8 in the case n 2 is completed by the

following trivial lemma.

LEMMA 3.4. Let e1 e2 e3 be the roots of f (x) x3 27c4x 54c6 . Then

max( e1 e2 e3 ) H2 where H max( c4
1 4 c6

1 6) .

Proof. Since f (ei) 0 we have ei
3 max( c4ei c6 ) . The result is

immediate. .

3.2 RECALL OF ANALYTIC FORMULAE

Before proceeding with the proof of Proposition 2.8 in the cases n 3 4

we recall some standard analytic formulae. For z C : Im(z) 0

and Q we write q e2 i . The Dedekind -function

(3.3) ( ) q1 24

n 1

(1 qn)
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satisfies the functional equation

(3.4) ( 1 )
i
( )

A useful formula in this context is the Jacobi triple product identity

(3.5)

n 1

(1 q2n)(1 q2n 1z)(1 q2n 1z 1)

n Z

( 1)nqn
2

zn

The spaces of modular forms of level 1 and weight k 4 6 are spanned

by the Eisenstein series

E4( ) 1 240

n 1

3(n)q
n E6( ) 1 504

n 1

5(n)q
n

where m(n) d n d
m . The discriminant modular form is

6( ) ( )24 (E4( )
3 E6( )

2) 1728

The Eisenstein series E4 and E6 are related to the invariants c4 and c6 as

described in the following well-known lemma (see, for example, [C, p.45]).

LEMMA 3.5. Let E be an elliptic curve over C with Weierstrass equation

(3.6) y2 a1xy a3y x3 a2x
2 a4x a6

Let R be the period lattice obtained by integrating dx (2y a1x a3) . If we

choose a basis 1 , 2 for R so that 2 1 then the invariants c4
and c6 of the Weierstrass equation (3.6) are given by ck ( 2

1
)kEk( ) .

Proof. The Weierstrass -function

(z)
1

z2
0 R

1

(z )2
1
2

satisfies the equation

(3.7) (z)2 4 (z)3 2 (z) 3

where 2 60G4(R) , 3 140G6(R) . Moreover for k 4 we have

Gk(R)

0 R

1
k

2 (k)
k
1

Ek( )

Hence 2
1
12
( 2

1
)4E4( ) and 3

1
216
( 2

1
)6E6( ) . The uniformisation map

with (dx (2y a1x a3)) dz is given by

: C R E(C)

z (z) 1
12
b2

1
2
(z) a1( (z)

1
12
b2) a3

where b2 a21 4a2 . A calculation comparing (3.6) and (3.7) now shows

that c4 12 2 and c6 216 3 . .
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3.3 TERNARY CUBICS

Differentiating the Jacobi triple product identity (3.5) with respect to z

and putting z q we obtain

(3.8) ( )3

n Z

( 1)nnq(2n 1)2 8 q1 8

n 1

(1 qn)3

LEMMA 3.6. For k 4 6 we have

Ek( ) fk( ( 3 )
3 27 (3 )3) ( )k

where

f4(a b) a4 4

3
a3b 2a2b2 4

3
ab3 b4

f6(a b) a6 2 3a5b 5a4b2 5a2b4 2 3ab5 b6

Proof. Let Fk( ) fk( ( 3 )
3 27 (3 )3) ( )k . It is easily seen that the

q -expansions of F4( ) and F6( ) each have leading term 1.

Let n e2 i n . By (3.8) we have

(
3
)3 1

24 ( 1
3
)3 (1 3)

n 1 mod 3

( 1)nnq(2n 1)2 24

(1 3)

n Z

( 1)3n 1(3n 1)q3(2n 1)2 8

3( 3 1) (3 )3

Hence

(3.9)
( 1
3
)3

( 1)

(
3
)3

( )
27i 2

3

(3 )3

( )

It is readily verified that

fk(a i 2
3b 3b) fk(a b)

Hence Fk( 1) Fk( ) . A straightforward calculation using the func-

tional equation (3.4) shows that Fk( 1 ) kFk( ) . Since the space of

modular forms of level 1 and weight k 4 6 is 1-dimensional it follows

that Ek Fk . .

LEMMA 3.7. Let E R be an elliptic curve with Weierstrass equation

(3.10) y2 a1xy a3y x3 a2x
2 a4x a6

Let R Z 1 Z 2 be the period lattice obtained by integrating

dx (2y a1x a3) . We may assume that 1 R 0 and 2 1
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with Re( ) 0 3 2 . Then every real ternary cubic with the same invariants

as (3.10) is properly R -equivalent to

F(x y z) a(x3 y3 z3) 3(a 3b)xyz

where

a
1

27

2

1

( 3)3

( )
b

2

1

(3 )3

( )

Proof. Since Re( ) 0 3 2 it is clear that q1 3 is real, and hence a

and b are real. For k 4 6 we compute

ck(F) 33k 2fk(a b) ( 2
1
)kfk (

3
)3 27 (3 )3 ( )k ( 2

1
)kEk( )

It follows by Lemma 3.5 that F has the same invariants as (3.10). .

The proof of Proposition 2.8 in the case n 3 is completed by

LEMMA 3.8. For with Re( ) 0 3 2 we have

(3.11) max
( 3)3

( )

(3 )3

( )
max( E4( )

1 4 E6( )
1 6)

Proof. The functional equation (3.4) shows we are free to replace

by 1 . Likewise (3.9) shows we may replace by 1. So if the bound

holds on some subset of , then it will hold on any SL2(Z) -translate of that

subset (possibly with a different implied constant).

We only need to establish the bound for Im( ) large and Im( ) small, since

the result will then follow by a compactness argument. (Note that E4 and E6
have no common zeros in .) As Im( ) we have q 0 and the result

is clear. By the action of SL2(Z) this implies the result for Im( ) small. .

3.4 QUADRIC INTERSECTIONS

Putting z q 1 in the Jacobi triple product identity (3.5) we obtain

functions

(3.12)

2( )

n Z

q(2n 1)2 4 2q1 4

n 1

(1 q2n)(1 q2n)2

3( )

n Z

qn
2

n 1

(1 q2n)(1 q2n 1)2

4( )

n Z

( 1)nqn
2

n 1

(1 q2n)(1 q2n 1)2
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LEMMA 3.9. For k 4 6 we have

Ek( ) fk( 2( ) 3( )) ( 1
2i
)kfk( 3( 4 ) 4( 4 ))

where

f4(a b) a8 14a4b4 b8

f6(a b) a12 33a8b4 33a4b8 b12

Proof. Let Fk( ) fk( 2( ) 3( )) . It is clear that F4( ) and F6( ) are

power series in q with constant term 1. So to prove the first equality it

suffices to show that Fk( 1 ) kFk( ) for k 4 6.

The expressions for the j( ) as products allow us to rewrite them in terms

of the Dedekind -function :

2( ) 2
(4 )2

(2 )
3( )

(2 )5

( )2 (4 )2
4( )

( )2

(2 )

By the functional equation (3.4) and the expressions for the j( ) as sums,

we deduce

(3.13)
2( 1 )

2i 4( 4 ) 2i
( 2( ) 3( ))

3( 1 )
2i 3( 4 ) 2i

( 2( ) 3( ))

It is readily verified that

fk( a b a b) (2i)kfk(a b)

Hence

Fk( 1 ) fk( 2( 1 ) 3( 1 ))

(
2i
)kfk( 2( ) 3( ) 2( ) 3( ))

kFk( )

Since the space of modular forms of level 1 and weight k 4 6

is 1-dimensional it follows that Ek Fk . The second expression for Ek
is obtained by replacing by 1 and using (3.13). .

As suggested in Lemma 3.1 we split into cases according to the sign of

the discriminant.

LEMMA 3.10. Let E R be an elliptic curve with positive discriminant

and with Weierstrass equation

(3.14) y2 a1xy a3y x3 a2x
2 a4x a6
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Let R Z 1 Z 2 be the period lattice obtained by integrating

dx (2y a1x a3) . We may assume that 1 R 0 and 2 1

with Re( ) 0 . Then every real quadric intersection with the same invari-

ants as (3.14) is properly R -equivalent to exactly one of (Q1 Q2) , (Q1 Q2) ,

(Q1 Q2 ) where

Q1 a(x20 x22) 2bx1x3 Q1 a(x20 x22) 2bx1x3

Q2 a(x21 x23) 2bx0x2 Q2 a(x21 x23) 2bx0x2

Q1 b(x20 x22) 2ax1x3

Q2 b(x21 x23) 2ax0x2

and

a 1
2

1
4( 4) b 1

2
1
3( 4)

Proof. In the notation of Lemma 3.9 all three quadric intersections have

invariants 28f4(a b) and 212f6(a b) . For k 4 6 we compute

(4i)kfk(a b) ( i
1
)kfk( 4( 4 ) 3( 4 )) ( 2

1
)kEk( )

It follows by Lemma 3.5 that these quadric intersections have the same

invariants as (3.14). It remains to show that they are pairwise inequivalent

over the reals.

Since Re( ) 0 we have q 0 and hence b a 0. We put c
4
b4 a4 .

Then Q1 Q2 0 has real point (in fact a hyperosculating point)

(x0 : x1 : x2 : x3) ( b2 c2 : ab : b2 c2 : ab)

Rather more obviously Q1 Q2 0 has real point

(x0 : x1 : x2 : x3) ( 2b a : 1 : 0 : 1)

On the other hand, since the quadratic form

Q1 Q2
b a
2

(x0 x2)
2 (x1 x3)

2 a b
2

(x0 x2)
2 (x1 x3)

2

is positive definite, there are no real solutions to Q1 Q2 0.
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Finally we claim that (Q1 Q2) and (Q1 Q2) are not equivalent over the

reals. Let A1 A2 be the matrices of second partial derivatives of Q1 Q2 and

likewise for Q1 , Q2 . We compute

det(xA1 zA2) 24(a2x2 b2z2)(b2x2 a2z2)

det(xA1 zA2) 24(a2x2 b2z2)(b2x2 a2z2)

The first of these quartics has four real roots, whereas the second has no real

roots. This proves our claim .

The analogous result for negative discriminants is the following.

LEMMA 3.11. Let E R be an elliptic curve with negative discriminant

and with Weierstrass equation

(3.15) y2 a1xy a3y x3 a2x
2 a4x a6

Let R Z 1 Z 2 be the period lattice obtained by integrating

dx (2y a1x a3) . We may assume that 1 R 0 and 2 1

with Re( ) 1 2 . Then every real quadric intersection with the same invari-

ants as (3.15) is properly R -equivalent to (Q1 Q2) where

Q1 a(x20 x22) 2bx1x3

Q2 a(x21 x23) b(x20 x2)

and

a 1
2

2

1

1
8 2( ) b 1

2

2

1
3( )

Proof. Since Re( ) 1 2 it is clear from (3.12) that a and b are

real. In the notation of Lemma 3.9 the quadric intersection (Q1 Q2) has

invariants 28f4( 8a b) and 212f6( 8a b) . We compute

4kfk( 8a b) ( 2
1
)kfk( 2( ) 3( )) ( 2

1
)kEk( )

It follows by Lemma 3.5 that (Q1 Q2) has the same invariants as (3.15). .

The proof of Proposition 2.8 in the case n 4 is completed by

LEMMA 3.12. For with Re( ) 0 1 2 we have

(3.16) max( 2( ) 3( ) ) max( E4( )
1 8 E6( )

1 12)

and

(3.17) max( 3( 4 ) 4( 4 ) ) max( E4( )
1 8 E6( )

1 12)
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Proof. The first two equalities in (3.13) show that (3.16) is equivalent

to (3.17) with replaced by 1 . The second two equalities in (3.13) show

that (3.16) and (3.17) are equivalent. It is clear from the definitions of 2

and 3 that we may replace by 1. So if either bound holds on some

subset of then both bounds hold on any SL2(Z) -translate of that subset

(possibly with different implied constants).

We only need to establish the bounds for Im( ) large and Im( ) small,

since the result will then follow by a compactness argument. (Note that E4

and E6 have no common zeros in .) As Im( ) we have q 0 and the

result is clear. By the action of SL2(Z) this implies the result for Im( )

small. .

4. GENUS ONE MODELS AND THE GEOMETRY OF NUMBERS

In this section we use the geometry of numbers to deduce Theorem 1.2

from Theorem 2.9.

4.1 BINARY QUARTICS

By Theorem 2.9 and Lemma 2.10 we have

LEMMA 4.1. Let C be an everywhere locally soluble 2 -covering of an

elliptic curve E Q . Then C can be defined by an integer coefficient binary

quartic whose coefficient of x4 jz j is bounded in absolute value by A
4 j
1

j
2

where A H2E and 1 2 1 .

The binary quartic representing C is non-singular, i.e. it has no repeated

roots in P1(Q) . Under the hypothesis of Theorem 1.2(b) it has no Q -rational

root (see Remark 2.5). Since n 2 the bound claimed in Theorem 1.2(c)

is the same as that in Theorem 1.2(b). The proof of Theorem 1.2 in the

case n 2 is completed by

LEMMA 4.2. Let \ be an integer coefficient binary quartic. Suppose that

the coefficient of x4 jz j is bounded in absolute value by A
4 j
1

j
2 .

(i) If \ has no repeated root in P1(Q) then \ A3( 1 2)
6

(ii) If \ has no root in P1(Q) then \ A2( 1 2)
4
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Proof. Without loss of generality 1 2 .

(i) If A 3
1 2 1 then \ has no x4 or x3z terms and therefore a repeated

root at (1 : 0) . By hypothesis this does not happen. Therefore A 3
1 2 1 and

\ A 4
2 A3( 1 2)

6

(ii) If A 4
1 1 then \ has no x4 term and therefore a root at (1 : 0) .

By hypothesis this does not happen. Therefore A 4
1 1 and

\ A 4
2 A2( 1 2)

4

4.2 TERNARY CUBICS

By Theorem 2.9 and Lemma 2.10 we have

LEMMA 4.3. Let C be an everywhere locally soluble 3 -covering of

an elliptic curve E Q . Then C can be defined by an integer coefficient

ternary whose coefficient of xiy jzk is bounded in absolute value by A i
1

j
2

k
3

where A HE and 1 2 3 1 .

The hypotheses of parts (b) and (c) of Theorem 1.2 are that C has no

Q -rational point of inflection, respectively that C has no Q -rational point.

The proof of Theorem 1.2 in the case n 3 is completed by

LEMMA 4.4. Let \ be an integer coefficient ternary cubic defining a

plane cubic curve C P2 . Suppose that the coefficient of xiy jzk is bounded

in absolute value by A i
1

j
2

k
3 .

(i) If C is non-singular then \ A6( 1 2 3)
6

(ii) If C is non-singular and has no Q -rational point of inflection then

\ A4( 1 2 3)
4

(iii) If C has no Q -rational points then \ A3( 1 2 3)
3

Proof. Without loss of generality 1 2 3 .

(i) If A 2
1 3 1 then \ has no x3 , x2y or x2z terms and therefore C is

singular at (1 : 0 : 0) . If A 3
2 1 then \ has no x3 , x2y , xy2 , or y3 terms.

This would imply that C contains the line z 0 and is therefore singular.

Accordingly we have A 2
1 3 1 and A 3

2 1. It follows by the identity

A 3
3(A

2
1 3)

3(A 3
2)
2 A6( 1 2 3)

6

that \ A 3
3 A6( 1 2 3)

6 .
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(ii) If A 1
2
2 1 then \ has no x3 , x2y or xy2 terms and therefore C

meets the line z 0 with multiplicity at least 3 . This would imply that

either C is singular or that (1 : 0 : 0) is a point of inflection. Accordingly

we have A 1
2
2 1. Exactly as in the proof of (i) we have A 2

1 3 1. It

follows by the identity

A 3
3(A 1

2
2)
2A 2

1 3 A4( 1 2 3)
4

that \ A 3
3 A4( 1 2 3)

4 .

(iii) If A 3
1 1 then (1 : 0 : 0) is a Q -rational point on C .

Therefore A 3
1 1 and \ A 3

3 A3( 1 2 3)
3 . .

4.3 QUADRIC INTERSECTIONS

By Theorem 2.9 and Lemma 2.10 we have

LEMMA 4.5. Let C be an everywhere locally soluble 4 -covering of an

elliptic curve E Q . Then C can be defined by an integer coefficient quadric

intersection (Q1 Q2) whose coefficient of xjxk in Qi is bounded in absolute

value by A i j k , where A H
1 2
E , 1 2 1 and 1 2 3 4 1 .

Suppose that rank(xQ1 zQ2) 4 for some (x : z) P1(Q) . Then by

Remark 2.5 and Lemma 2.6(ii) the element 4 H1(Q E[4]) corresponding

to C satisfies [2] 4 0. Hence 4 ( 2) for some 2 H1(Q E[2]) .

Since C is everywhere locally soluble 2 has trivial obstruction, i.e. it is

represented by a binary quartic. We can therefore represent C by a quadric

intersection of the form specified in Lemma 2.6(i). In this case Theorem 1.2(b)

follows from the result for n 2. Since 2 and 4 have the same images

in (E Q) the hypothesis of Theorem 1.2(c) is not satisfied.

The proof of Theorem 1.2 in the case n 4 is completed by

LEMMA 4.6. Let \ (Q1 Q2) be an integer coefficient quadric intersec-

tion defining a degree 4 curve C P3 . Suppose that the coefficient of xjxk

in Qi is bounded in absolute value by A i j k .

(i) If C is non-singular then \ A12( 1 2)
6( 1 2 3 4)

6

(ii) If C is non-singular and there are no Q -rational singular quadrics in

the pencil spanned by Q1 and Q2 then

\ A8( 1 2)
4( 1 2 3 4)

4
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(iii) If C has no Q -rational points and there are no Q -rational singular

quadrics in the pencil spanned by Q1 and Q2 then

\ A4( 1 2)
2( 1 2 3 4)

2

Proof. Without loss of generality 1 2 and 1 2 3 4 .

(i) We make the following observations :

! If A 2 1 3 1 then (1 : 0 : 0 : 0) is a singular point on C .

! If A 2
2
2 1 then C contains the line x3 x4 0 .

! If A 1
2
3 1 then Q1 has rank at most 2.

! If A 1 2 4 1 then Q1 has rank at most 2.

We are given that C is non-singular, and so none of the above inequalities

can hold. We further note that if both A 2
2
1 1 and A 1 1 4 1

then (1 : 0 : 0 : 0) is a singular point on C . We therefore split into the

cases A 2
2
1 1 and A 1 1 4 1. In the first case it follows by the identity

(A 2
2
1)
2(A 2

2
2)(A 1

2
3)
2(A 1 2 4)

2(A 2
2
4) A8( 1 2)

4( 1 2 3 4)
4

that \ A 2
2
4 A8( 1 2)

4( 1 2 3 4)
4 . In the second case it follows

by the identity

(A 2 1 3)
2(A 2

2
2)
3(A 1

2
3)
2(A 1 1 4)

4(A 2
2
4) A12( 1 2)

6( 1 2 3 4)
6

that \ A 2
2
4 A12( 1 2)

6( 1 2 3 4)
6 .

(ii) We replace the third and fourth observations in (i) by

! If A 1 2 3 1 then Q1 has rank at most 3.

! If A 1 1 4 1 then Q1 has rank at most 3.

It follows by the identity

(A 2 1 3)
2(A 2

2
2)(A 1 2 3)

2(A 1 1 4)
2(A 2

2
4) A8( 1 2)

4( 1 2 3 4)
4

that \ A 2
2
4 A8( 1 2)

4( 1 2 3 4)
4 .

(iii) If A 2
2
1 1 then (1 : 0 : 0 : 0) is a Q -rational point on C .

Therefore A 2
2
1 1. We have already seen in (ii) that A 1 2 3 1. It

follows by the identity

(A 2
2
1)(A 1 2 3)

2(A 2
2
4) A4( 1 2)

2( 1 2 3 4)
2

that \ A 2
2
4 A4( 1 2)

2( 1 2 3 4)
2 . .
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5. A CRITERION FOR (E Q)[3] 0

In this section we prove Theorem 1.3. We will need the following lemma

whose proof is just an exercise in calculus.

LEMMA 5.1. Let a b R and put c (a2 3ab b2)1 2 . Let

F(x y z) a(x3 y3 z3) 3(a 3b)xyz

Then F(x) max( a b c ) x
3
for all x (x y z) R3 .

Proof. Let (x y z) be a local maximum of F on the sphere x2 y2 z2 1.

Then we have

rank
Fx Fy Fz
x y z

1

We compute

yFx xFy 3(x y)(axy (a 3b)(x y)z)

If x y z are distinct then a 3b a or a 2. In the first case we

have b 0 and xy yz zx 0. But then x y z 1 and F(x y z) a .

In the second case we have xy yz zx , and this contradicts that x y z are

distinct.

If x y z then F(x y z) b . So without loss of generality x y z .

Then

axy (a 3b)(x y)y 0

If y 0 we get F(x y z) a . Otherwise

x (a 3b)

y (2a 3b)

for some R . We compute

x2 y2 z2 9 2(a2 10
9

3ab b2)

F(x y z) 27 3(a2 3ab b2)(a2 10
9

3ab b2)

Eliminating gives

F(x y z)
a2 3ab b2

(a2 10
9

3ab b2)1 2

If ab 0 then F(x y z) c . Otherwise if a b we have

(a2 3ab b2)2 a2(a2 10
9

3ab b2) ( 2
3
a b)3b 0

and hence F(x y z) a . The case b a is similar. .
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Proof of Theorem 1.3. Let E Q be an elliptic curve. We aim to show

that (under suitable hypotheses) (E Q)[3] 0. By (1.1) it is equivalent to

show that every S(3)(E Q) maps to zero in (E Q) .

Let S(3)(E Q) . Then corresponds to an everywhere locally soluble

3-covering : C E . Our aim is to show that C(Q) . By Proposition 2.7

we know that C can be defined by an integer coefficient ternary cubic f with

the same invariants as a minimal Weierstrass equation for E . We fix a minimal

Weierstrass equation for E and let 2 1 be as in Lemma 3.7.

Then f F for some SL3(R) where

F(x y z) a(x3 y3 z3) 3(a 3b)xyz

and

a
1

27

2

1

( 3)3

( )
b

2

1

(3 )3

( )

Let a i 2
3b and c (a2 3ab b2)1 2 . The lattice R (Z3) R3

has covolume 1. Hence by Lemma 2.10 there exists 0 x R

with x
3

2. If max( a b c ) 1 2 then by Lemma 5.1 we have

F(x) max( a b c ) x
3

1

Since F(x) f (u ) for some u Z it follows that F(x) 0 .

Hence C(Q) and maps to zero in (E Q) .

It remains to show that the condition max( a b c ) 1 2 is equivalent

to the hypothesis of the theorem. By (3.9) we have

1

27

2

1

( 1
3
)3

( 1)

1

27

2

1

( 1
3
)3

( 1)

We now put

1( ) (
3
)12 3( ) ( 1

3
)12

2( ) 36 (3 )12 4( ) ( 1
3
)12

and claim that

(5.1)

4

i 1

(X i( )) (X 33 ( )12)(X 3 ( )12)3 E4( )
3 ( )12X

It is routine to check using (3.3) and (3.4) that

1( 1) 3( ) 1( 1 ) 6
2( )

2( 1) 2( ) 2( 1 ) 6
1( )

3( 1) 4( ) 3( 1 ) 6
4( )

4( 1) 1( ) 4( 1 ) 6
3( )
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Hence the square of each coefficient of the left hand side of (5.1) is a

modular form of level 1 . The claim is then proved by comparing the first few

coefficients of the q -expansions. By Lemma 3.5 we have 6E ( 2
1
)126( )

and j E4( )
3 6( ) . Finally we compute

max( a b c ) 1

2

1

27
( 2

1
) max (

3
) 3 27 (3 ) 3 ( 1

3
) 3 1

2
( )

26 6E max x 3 : x a root of (5.1) 318 ( ) 36

26 6E max x 3 : x a root of (X 33)(X 3)3 jX 0 318

26 6E min x 3 : x a root of (X 33)(X 35)3 jX3 0

This final condition is the hypothesis of the theorem. .
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to Legendre. Birkhäuser Boston, Inc., Boston, MA, 1984.

[Wo] WOMACK, T. O. Explicit descent on elliptic curves. Ph.D. thesis, University
of Nottingham, 2003.

[Z] ZARHIN, JU. G. Noncommutative cohomology and Mumford groups. Mat.
Zametki 15 (1974), 415–419; English translation : Math. Notes 15
(1974), 241–244.
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