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THE DISTRIBUTION OF CLOSED GEODESICS

ON THE MODULAR SURFACE, AND DUKE’S THEOREM
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ABSTRACT. We give an ergodic theoretic proof of a theorem of Duke about
equidistribution of closed geodesics on the modular surface. The proof is closely
related to the work of Yu. Linnik and B. Skubenko, who in particular proved this
equidistribution under an additional congruence assumption on the discriminant. We
give a more conceptual treatment using entropy theory, and show how to use positivity
of the discriminant as a substitute for Linnik’s congruence condition.
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1. INTRODUCTION

A non-zero integer d is called a discriminant if it can be represented in

the form

d = b2 − 4ac , a, b, c ∈ Z ,

or equivalently if d is the discriminant of the binary quadratic form with

integral entries

(1.1) q(x, y) = ax2
+ bxy + cy2.

It is easy to see that d is a discriminant if and only if d ≡ 0, 1 (mod 4). A

discriminant d is fundamental if d is either square-free (in which case d is

congruent to 1 modulo 4) or d/4 is a square-free integer congruent to 2, 3

(mod 4). Equivalently : d is fundamental if it is the discriminant of the ring

of integers of a quadratic field.

The study of integral binary quadratic forms goes back at least to

the Greeks. Significant breakthroughs were accomplished by Gauss. In his

Disquisitiones Arithmeticae he studied the set of GL2(Z) -orbits of such forms,

where GL2(Z) acts via the linear change of variables :

(1.2) γ . q(x, y) =
1

det(γ)
q((x, y)γ) =

1

det(γ)
q(ux + wy, vx + zy) ,

for γ =

(
u v

w z

)
∈ GL2(Z) . This action preserves the discriminant and Gauss

proved that the set of GL2(Z) -orbits of integral binary quadratic forms of a

given discriminant is finite, see [7, p. 128] for an accessible and more general

treatment. Let

Rdisc(d) = {q(x, y)=ax2
+bxy+cy2 : a, b, c ∈ Z, disc(q)=d, gcd(a, b, c) = 1}

≃ {(a, b, c) ∈ Z3 : disc(a, b, c) = b2 − 4ac = d, gcd(a, b, c)=1}

denote the set of forms of discriminant d with coprime coefficients, and let

[Rdisc(d)] = GL2(Z)\Rdisc(d)

be the set of orbits; its cardinality is the class number and is noted h(d) . Gauss

also showed that the set [Rdisc(d)] could be given an additional structure of

an abelian group (the law of composition of quadratic forms), leading to the

notion of class group of quadratic forms of discriminant d . Nowadays these

venerable and beautiful results are usually interpreted in terms of the theory of

quadratic fields and ideal class groups. We will recall this connection below.
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1.1 LINNIK AND SKUBENKO EQUIDISTRIBUTION THEOREMS

In the late 50’s, Linnik studied more refined properties of the set of

representations Rdisc(d) , in particular their distribution properties.

Let

Vdisc,±1(R) = {(a, b, c) ∈ R3 : b2 − 4ac = ±1};

this is a one-sheeted hyperboloid in the +1 case and a two-sheeted hyperboloid

in the −1 case, and is identified with the set of real binary quadratic form

with discriminant ±1. In both cases Vdisc,±1(R) is invariant under the natural

action of GL2(R) extending (1.2) and has one orbit.

The set of representation Rdisc(d) projects on Vdisc,±1(R) (with ±1 =

sign(d) ) by a homothety

|d|−1/2Rdisc(d) ⊂ Vdisc,±1(R) ,

and Linnik studied how this set is distributed when d → ∞ . These

hyperboloids carry a natural GL2(R) -invariant measure µdisc,±1 defined, for

any open set Ω ⊂ Vdisc,±1(R) , as the Lebesgue measure in R3 of the solid

cone emanating from the origin and ending at Ω , i.e.

µdisc,±1(Ω) = µR3 (C(Ω)) ,

where

C(Ω) = {r.x : x ∈ Ω , r ∈ [0, 1]}.

Using an original argument of ergodic theoretic flavor, Linnik [19, Chap. V]

established the following equidistribution statement for negative discriminants.

THEOREM 1.1 (Linnik). Let p > 2 be a fixed prime. As d → −∞ amongst

the negative discriminants such that

(
d

p

)
= 1 , the set

|d|−1/2Rdisc(d) ⊂ Vdisc,−1(R) ,

becomes equidistributed with respect to µdisc,−1 , in the following sense : for

any two continuous compactly supported functions ϕ1, ϕ2 on Vdisc,−1(R) such

that the integral µdisc,−1(ϕ2) �= 0 we have

∑
x∈Rdisc(d) ϕ1(|d|−1/2x)

∑
x∈Rdisc(d) ϕ2(|d|−1/2x)

→ µdisc,−1(ϕ1)

µdisc,−1(ϕ2)
as d → −∞ .

In particular,
∑

x∈Rdisc(d) ϕ2(|d|−1/2x) �= 0 if d as above is large enough.
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Building on Linnik’s ergodic method Skubenko [24] (see also [19,

Chap. VI.]) proved the analogous statement for positive discriminants :

THEOREM 1.2 (Skubenko). Let p > 2 be a fixed prime. As d → +∞
amongst the positive discriminants such that

(
d

p

)
= 1 , the set

|d|−1/2Rdisc(d) ⊂ Vdisc,+1(R) ,

becomes equidistributed with respect to µdisc,+1 , in the following sense : for

any two continuous compactly supported functions ϕ1, ϕ2 on Vdisc,+1(R) such

that the integral µdisc,+1(ϕ2) �= 0 we have
∑

x∈Rdisc(d) ϕ1(|d|−1/2x)
∑

x∈Rdisc(d) ϕ2(|d|−1/2x)
→ µdisc,+1(ϕ1)

µdisc,+1(ϕ2)
as d → +∞ .

In particular,
∑

x∈Rdisc(d) ϕ2(|d|−1/2x) �= 0 if d as above is large enough.

We refer to Figure 1 for an illustration of the case d = 377.

FIGURE 1

The distribution of 377−1/2Rdisc(377) viewed on the one-sheeted hyperboloid : h(377) = 1

The condition

(
d

p

)
= 1 for some fixed prime p is equivalent to the

condition that

the fixed prime p splits in the quadratic field Q(
√

d) .
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This condition (which we shall refer to as Linnik’s condition) was an essential

input for Linnik’s ergodic method but, as was pointed out by Linnik himself,

it should not be necessary for the equidistribution theorem to hold. It was

only thirty years later that this condition was removed in the beautiful work

of Duke [9].

1.2 DUKE’S THEOREM

A key point of Duke’s approach is to reformulate the prior theorems

in a dual form : in terms of equidistribution of “Heegner points” (for

negative d ) or of closed geodesics (for positive d ) on the modular surface

Y0(1) := SL2(Z)\H .

Assuming that d > 0 is not a square, one associates to any (a, b, c) ∈ Rdisc(d)

the geodesic corresponding to the geodesic semi-circle in the upper half-plane

whose end points are

(1.3) xa,b,c,± =
−b±

√
d

2a
.

We lift this geodesic in the obvious way to the unit tangent bundle of H

and then project it to a geodesic orbit on the unit tangent bundle T1(Y0(1)) .

This geodesic orbit, which we denote by γ[a,b,c] , is compact and depends only

on the SL2(Z) -orbit of (a, b, c) . We obtain in this way a collection of h(d)

closed geodesics

Gd =

⋃

[a,b,c]

γ[a,b,c] ⊂ T1(Y0(1)) ,

see Figure 2 for the case d = 377. This collection of compact orbits

of the geodesic flow then carries a natural probability measure invariant

under the geodesic flow which we denote by µd . Let µL be the Liouville

(Haar) probability measure on T1(Y0(1)) , then Duke’s theorem (as extended

by Chelluri [8] to the unit tangent bundle) gives the following :

THEOREM 1.3 (Duke). As d → +∞ amongst the positive fundamental

discriminants, the set Gd becomes equidistributed on the unit tangent bundle

T1(Y0(1)) with respect to the measure µL : for any continuous compactly

supported function ϕ on T1(Y0(1)) ,
∫

Gd

ϕ(t)dµd(t)→
∫

T1(Y0(1))

ϕ(u)dµL(u) .

The equivalence of the equidistribution statements in Theorem 1.2 and

Theorem 1.3 will be explained in §2.4.
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FIGURE 2

The distribution of G377 projected on the fundamental domain of SL2(Z)\H

The restriction to fundamental discriminants is not essential ; indeed all the

proofs extend to the general case, including the one we present here. Duke’s

proof is fundamentally different from Linnik’s; it does not rely on ergodic

theory but on harmonic analysis of the modular surface SL2(Z)\H , that is

on the theory of automorphic forms supplemented by deep arguments from

analytic number theory and in particular a breakthrough of Iwaniec [17].

In this paper we give a new proof of Duke’s theorem in the case of positive

discriminant. Our proof is strongly influenced by Linnik’s ergodic method, and

may be seen as a modern incarnation of Linnik’s original ideas, and we use

the positivity of the discriminant as a substitute to Linnik’s condition that

Skubenko relied on in his work.

There are two main ingredients in the proof :

1. Linnik’s Basic Lemma — An upper bound on the number of nearby pairs

of points in the projection of Rdisc(d) to Vdisc,−1(R) (as this set is infinite,



DISTRIBUTION OF CLOSED GEODESICS 255

the quantity to be bounded needs some additional interpretation), which

eventually reduces to an upper bound on the number of ways a given

binary quadratic form can be represented by a ternary quadratic form.

2. The uniqueness of measure of maximal entropy for the flow corresponding

to the one parameter group at =

(
et

e−t

)
on SL2(Z)\ SL2(R) .

We have made an effort to present both of these main ingredients in a self-

contained way, as each relies on some well-known results that are unfortunately

well known in essentially disjoint circles of mathematicians.

The second of these two ingredients replaces a more explicit but less

conceptual argument of Linnik and Skubenko. The uniqueness of the measure

of maximal entropy for this action is well known (both in the cocompact

and finite volume case) and in the cocompact case dates back to work of

R. Bowen [4]. However the version we give here is new in that it allows us

to control how much weight Gd gives to small neighborhoods of the cusp

in SL2(Z)\H : essentially, we give a finitary version of the uniqueness of

measure of maximal entropy in the noncompact quotient SL2(Z)\ SL2(R) .

This finitary version is the content of Theorem 4.2, and involves a careful

analysis of how much entropy can be carried by at -invariant measures that

give disproportionately high weight to the cusp. A cleaner version of the

relationship between entropy and mass in the cusp (although not directly

applicable for our main purposes) is given in Theorem 5.1. We believe these

results are of independent interest, and will likely have other applications; it

also raises some interesting new questions (see e.g. [11]).

We mention that another modern exposition of Linnik’s method in a similar

context (distribution of integer points on spheres) by J. Ellenberg and two of

us (Ph. M. and A. V.) has appeared already in [14]. In that work Linnik’s Basic

Lemma is again a central ingredient, complemented by a different argument to

convert the upper bounds provided by the Basic Lemma to equidistribution (i.e.

both upper and lower bounds on the number of points in specified regions).

The reader may wish to compare these two complementary approaches.

1.3 NOTATION

We collect here some notation that is used throughout the paper :

The group SL2(R) acts transitively on the upper half-plane model H of

the hyperbolic plane by fractional linear transformations and the stabilizer of

the point i is the compact subgroup SO2(R) . The resulting identification

H ≃ SL2(R)/SO2(R)
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descends to an identification of H with PSL2(R)/ PSO2(R) ; moreover the

action of PSL2(R) on the unit tangent bundle H is simply transitive. If

we let p ∈ T1(H) be the tangent vector pointing up at i , then g 
→ gp

gives an identification PSL2(R) ≃ T1H . Taking the quotient by PSL2(Z) we

obtain an identification with the unit tangent bundle of the modular curve 1 )

PSL2(Z)\ PSL2(R) ≃ T1(PSL2(Z)\H) .

We shall make use of another identification of the quotient

PSL2(Z)\ PSL2(R) ,

namely with the space of lattices in R2 up to homothety. Indeed, the space

of lattices L2(R) is identified with GL2(Z)\GL2(R) via g 
→ Z2.g ; the

same map also identifies the space [L2(R)] of lattices up to homothety with

PGL2(Z)\ PGL2(R) and the set L(1)
2 (R) = X of lattices of covolume one with

SL2(Z)\ SL2(R) = PSL2(Z)\ PSL2(R) . Finally, the sets [L2(R)] and L(1)
2 (R)

are also identified via the map [L] 
→ vol(L)−1/2.L .

Thus the following spaces are identified :

X ≃ PSL2(Z)\ PSL2(R) ≃ T1(PSL2(Z)\H) ≃ [L2(R)] ≃ L(1)
2 (R) .

We take the following fundamental domain

S = {(z, v) ∈ H× S1 : |ℜz| ≤ 1/2 , |z| ≥ 1} ⊂ T1(H) ≃ PSL2(R)

for PSL2(Z) = Γ .

Fix an arbitrary left-invariant Riemannian metric d on PSL2(R) . It descends

to a metric on X , denoted dX or simply d for short. Explicitly we have

(1.4) dX(PSL2(Z)g1, PSL2(Z)g2) = min
γ∈PSL2(Z)

d(g1, γg2) .

The geodesic curves on T1(H) — which in the upper half-plane are circles

and lines intersecting the real axis in a normal angle — correspond to the

orbits of the right A-orbits in PSL2(R) , where A = {at} is the diagonal

subgroup of PSL2(R) . By a slight abuse, we shall use A to refer to the

diagonal subgroup of all three groups : GL2(R), PGL2(R) and SL2(R) .

ACKNOWLEDGEMENTS. The authors would like to thank Peter Sarnak for

encouragement and many helpful conversations. A. V. would also like to thank

Jordan Ellenberg for many discussions on the topic of quadratic forms. The

authors also thank Menny Aka, Asaf Katz, Ilya Khayutin, Lior Rosenzweig

for carefully going over a preliminary version of this paper.

1 ) Actually the modular curve has singularities at the points i and j =
1+

√
−3

2
owing to the

fact that these points have non-trivial stabilizers in PSL2(Z) ; we will ignore this minor point.
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2. REPRESENTATIONS BY THE DISCRIMINANT, ORBITS AND QUADRATIC FIELDS

In this section we explain in greater detail the relationship between

Skubenko’s equidistribution theorem and Duke’s and connect these questions

to the arithmetic of real quadratic fields. Along the way we will find a few

equivalent ways in which to describe compact A-orbits in Gd . Building on that

we prove in §2.4 the equivalence between Skubenko’s and Duke’s formulations.

2.1 OVERVIEW OF THE BIJECTIONS

Recall that we have previously associated to any element of [Rdisc(d)] —

i.e. to any GL2(Z) -orbit in Rdisc(d) — a closed geodesic on SL2(Z)\H . On

the other hand, as discussed in §1.3, a closed geodesic in Gd corresponds to

a closed A-orbit on the space X .

Write Od := Z[ d +
√

d
2

] for the order of discriminant d .

We shall show below that the following sets are in natural bijection to

each other :

(i) [Rdisc(d)] , the set of GL2(Z) -orbits of primitive representations in Rdisc(d) .

(ii) The set of GL2(Z) -conjugacy classes of ring embeddings ι : Od →֒ M2(Z)

which are optimal, i.e. for which the embedding cannot be extended to

an embedding of a strictly bigger order O � Od with image in M2(Z) .

(iii) Cl(Od) = the set of K×-homothety classes of proper Od -ideals, where

K = Q(
√

d) .

In the case of a fundamental discriminant the above objects and their

bijections are a bit easier to explain. In fact, if d is a fundamental discriminant,

then every representation is primitive, every embedding is optimal, and every

Od -ideal is proper. In reading the remainder of the section the reader may

first specialize to this case, or even continue reading with Section 3 and only

refer to the portions of this section as needed for the remainder of the paper.

2.2 DISCRIMINANT AND QUADRATIC FIELDS

We establish the bijections of §2.1.

Before beginning, we note that the sequence of maps

(2.1) ax2
+ bxy + cy2 
→

(
a b/2

b/2 c

)

→

(
b −2a

2c −b

)

defines an isometry between the spaces of (real) binary quadratic forms,

symmetric 2× 2 real matrices and trace zero 2× 2 real matrices, where each
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of those is equipped with a quadratic form :

(Q(R2), disc) ≃ (Sym2(R),−4 det) ≃ (M0
2(R),− det) .

The action of GL2(Z) in (1.2) is the restriction of the following action of

GL2(R) on Q(R2) :

g.q(x, y) =
1

det(g)
q((x, y)g) =

1

det(g)
q(ux + wy, vx + zy) , g =

(
u v

w z

)
,

which intertwines with the actions

g.(ax2
+ bxy + cy2)←→ 1

det(g)
g

(
a b/2

b/2 c

)
tg ←→ g

(
b −2a

2c −b

)
g−1 .

Observe that these actions factor through PGL2(R) . They also induce an

isomorphism between PGL2(Z) and the group of orthogonal transformations

of (Q(R2), disc) preserving the integral quadratic forms.

Let d be a discriminant which is not a perfect square; let (a, b, c) ∈ Rdisc(d)

be a representation, and let

(2.2) m = ma,b,c =

(
b −2a

2c −b

)

be the trace zero matrix associated to it via the map (2.1). Since

m2
= d · Id

this defines an embedding of the quadratic field (d is not a square) K = Q(
√

d)

into M2(Q)

ιm :
K →֒ M2(Q)

u + v
√

d 
→ u Id+v.m

2.2.1 REPRESENTATIONS AND OPTIMAL EMBEDDING. The integrality prop-

erties of this embedding are measured by considering

Om := ι−1
m (M2(Z))

which is an order in K . Let us identify which order : Note that Oλ.m = Om

for any λ ∈ Q× . Hence if b2 − 4ac = d for a, b, c ∈ Z we may write

(a, b, c) = f (a′, b′, c′)

with f ∈ Z and a′, b′, c′ ∈ Z coprime integers satisfying

disc(a′, b′, c′) = d′
= d/f 2 .

This reduces the discussion to the case where (a, b, c) is a primitive

representation of d (a representation with coprime entries).
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Assuming that (a, b, c) is primitive, one sees quickly that

(2.3) Om = Od = Z[ d +
√

d
2

]

is the order of discriminant d . If (2.3) holds, we say that ιm defines an

optimal embedding of Od into M2(Z) . We obtain in that way a bijection

between

the set of GL2(Z) -orbits of primitive representations [Rdisc(d)]

and

the set of GL2(Z) -conjugacy classes of optimal embeddings ι : Od →֒M2(Z) .

2.2.2 EMBEDDINGS AND IDEAL CLASSES. Let us recall that a lattice I ⊂ K

is a proper Od -ideal, iff

OI := {λ ∈ K : λ.I ⊂ I} = Od .

Then there is a bijection between

the set of GL2(Z) -conjugacy classes of optimal embeddings of Od

and the set of proper ideal classes of Od

Cl(Od) = the set of K× -homothety classes of proper Od -ideals.

This bijection goes as follows [18] : Given a proper Od -ideal I ⊂ K , one

may choose a Z-basis I = Z.α+ Z.β which gives an identification

θ :
I → Z2

uα+ vβ 
→ (u, v)

This identification induces the embedding

ι : K →֒ M2(Q)

defined by

ι(λ)(u, v) = θ(λ.(uα+ vβ))

(or in other terms, such that θ(λ.x) = θ(x)ι(λ) ).

Since Od.I ⊂ I , one has ι(Od)Z2 ⊂ Z2 , that is ι(Od) ⊂ M2(Z) and

the fact that I is a proper Od -ideal is equivalent to the fact that ι is an

optimal embedding of Od . If we replace the Z-basis (α, β) by another basis

(α′, β′) then ι is replaced by a GL2(Z) -conjugate. Finally if I is replaced

by an ideal in the same class I′ = λ.I , λ ∈ K× , then the corresponding

GL2(Z) -conjugacy classes coincide : [ιI′ ] = [ιI] .
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The inverse of the map

[I] 
→ [ιI]

is as follows : given an optimal embedding ι : K →֒ M2(Q) of Od , let

e1 = (1, 0) ∈ Z2 be the first vector of the standard basis 2 ) of Z2 , then

the map

θ :
K → Q2

λ 
→ e1.ι(λ)

is an isomorphism of Q -vector spaces; next define the lattice I = θ−1(Z2)

in K which is invariant under multiplication by Od . In other words, I is an

Od -ideal and I being proper is equivalent to ι being optimal.

2.2.3 THE PICARD GROUP OF THE ORDER Od . We now recall the definition

and basic properties of the Picard group for an order Od in a quadratic field.

The product of two Od -ideals I and J gives another Od -ideal

I · J = {λλ′ : λ ∈ I, λ′ ∈ J} ;

and clearly this operation respects the equivalence relation introduced above

on Od -ideals. An Od -ideal I is invertible if there is some Od -ideal J so that

I · J = Od . An Od -ideal I is locally principal if for any prime p ,

Ip := I ⊗Z Zp = λp(Od)p ,

where (Od)p = Od⊗Z Zp and λp is an element of (K⊗Q Qp)× . Both properties

depend only on the ideal class [I] and not on I itself.

For general orders O in number fields and O-ideals I , one has the following

implications :

I is locally principal =⇒ I is invertible =⇒ I is proper .

We shall make use of the following property of orders in quadratic number

fields :

PROPOSITION 2.1. For the orders Od in quadratic number fields the inverse

implication

I is proper =⇒ I is locally principal

holds for Od -ideals I . In particular, the set of proper ideal classes Cl(Od) ,

endowed with the composition law induced by forming the product of two

lattices, has the structure of an abelian group.

2 ) We could have chosen any primitive vector in Z2 .
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This nice special feature of quadratic orders comes from the fact that in

the quadratic case, orders are always monogenic (i.e. of the form O = Z[x] ).

Proof. Recall that Od = Z[x] for x =
d +

√
d

2
. Assume now that I

is a proper Od -ideal and consider the 2-dimensional Fp -vector space

Ip/pIp ≃ I/pI . The natural map

(Od)p/p(Od)p 
→ EndFp
(Ip/pIp)

is injective. To see this, suppose that λ ∈ (Od)p acts trivially on Ip/pIp . Then

λIp ⊂ pIp and λ
p

Ip ⊂ Ip and so λ
p
∈ Op as required. It follows that x the image

of x in EndFp
(Ip/pIp) has a minimal polynomial of degree 2 and that Ip/pIp

is a cyclic Fp[x] -module. So there exist λp ∈ Ip such that Ip = λp(Od)p + pIp

which implies that

Ip = λp(Od)p + p(λp(Od)p + pIp) =

= λp(Od)p + p2Ip = λp(Od)p + p3Ip = . . . = λp(Od)p .

2.3 INTERPRETATION IN TERMS OF LATTICES

Let us verify that the various descriptions of Gd are equivalent :

Given (a, b, c) ∈ Rdisc(d) , put

ha,b,c =

(
b +
√

d b−
√

d
2c 2c

)
and w =

(
0 −1
1 0

)
∈ SL2(Z) .

Then wha,b,c maps {∞, 0} to −b ±
√

d
2a

. Therefore, the geodesic γ[a,b,c] on

PSL2(Z)\H associated to (a, b, c) after Equation (1.3) is :

γ[a,b,c] = wha,b,c.(0,∞) ,

where (0,∞) is the geodesic on H joining 0 and ∞ . Now (0,∞) corresponds,

in the realization T1(H) , to the A-orbit of the identity in SL2(R) ; therefore

γ[a,b,c] corresponds to SL2(Z) ·wha,b,cA = SL2(Z) · ha,b,cA , or equivalently the

lattices of the form Z2 · ha,b,cat ⊂ L(1)
2 (at ∈ A) . Now one calculates

1

det(ha,b,c)
ha,b,c

(
0 1

2
1
2

0

)
tha,b,c =

1√
d

(
a b

2
b
2

c

)
,

which shows that in a particular basis of Z2ha,b,c the quadratic form

q0(x, y) = xy takes the shape as in (2.4) below.

Since A is the stabilizer subgroup of q0 , we have verified that γ[a,b,c]

corresponds to :
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The set of homothety classes of lattices L , such that the restriction of the

quadratic form q0(x, y) = xy to L , expressed in terms of a basis α, β of L ,

takes the form

(2.4) q0(uα+ vβ) = vol(L)
au2

+ buv + cv2

d1/2
.

Note that the particular quadratic form au2
+ buv + cv2

√
d

is not canonically

attached to the lattice L because of the different choices of a basis.

Set m0=

(
1 0
0 −1

)
and ι0 to be the embedding ι0 : K →֒ Diag2(R) ⊂ M2(R)

obtained by mapping
√

d to d1/2m0 and θ0 be the linear embedding

θ0 : K →֒ R2 given by

θ0(λ) = (1, 1)ι0(λ) , i.e. θ0(u + v
√

d) = (u + v|d|1/2, u− v|d|1/2) .

Now let us verify, as asserted in §2.1, that the A-orbit of θ0(I) belongs

to Gd , for any proper Od -ideal I . (We do not verify the more precise

assertion that this is exactly the element of Gd that corresponds to the class

of I under the bijection Cl(Od) ↔ [Rdisc(d)] .) We need to verify (according

to (2.4)) that λ ∈ I 
→ q0(θ0(λ))

vol(θ0(I))

√
d is a quadratic form of discriminant d .

But q0(θ0(λ)) = NK/Q(λ) is the norm; and for any ideal I ⊂ K we have

vol(θ0(I)) = |d|1/2N(I) . Here we have defined the norm N(I) of an ideal

(relative to Od ) by the ratio of indexes

N(I) =
(Od : Od ∩ I)

(I : Od ∩ I)
.

Now, for any ideal I , the map x ∈ I 
→ NK/Q(x)

N(I)
is easily verified to be an

integer quadratic form of discriminant d , as desired.

2.4 A DUALITY PRINCIPLE

Our goal now is to show that the equidistribution statements of Skubenko’s

theorem and of Duke’s theorem are equivalent.

The discussion which follows is valid in great generality ; but we will

consider only G = PGL2(R) , Γ = PGL2(Z) , and the diagonal torus A in G .

Since PGL2(R) is identified with SOdisc(R) , it acts transitively on

Vdisc,+1(R) (by Witt’s theorem) and equals the PGL2(R) -orbit of (say)
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q0(x, y) = xy ; equivalently Vdisc,+1(R) is identified with the PGL2(R) -

conjugacy class of the matrix m0 which has A as its stabilizer subgroup

in G . Hence

Vdisc,+1(R) = PGL2(R).q0 ≃ PGL2(R).m0 ≃ PGL2(R)/A .

2.4.1 DUALITY BETWEEN ORBITS. It follows from the previous discussion

that each representation (a, b, c) ∈ Rdisc(d) is identified with some class

ga,b,cA/A ∈ G/A or what is the same to an orbit ga,b,cA ⊂ G for some

ga,b,c ∈ G such that

ga,b,c.q0 = |d|−1/2(a, b, c) , q0 = (0, 1, 0) .

As we have seen Γ acts on Rdisc(d) and the latter decomposes into a finite

disjoint union of Γ -orbits, setting

[a, b, c] = Γ\Γ(a, b, c) ∈ [Rdisc(d)] ,

for the orbit of (a, b, c) , one has

Rdisc(d) =
⊔

[a,b,c]∈[Rdisc(d)]

Γ.(a, b, c) .

Hence |d|−1/2.Rdisc(d) is identified with the collection of Γ -orbits

⊔

[a,b,c]∈[Rdisc(d)]

Γga,b,cA/A ⊂ G/A ;

thus the problem of the distribution of |d|−1/2.Rdisc(d) inside Vdisc,+1(R) is a

problem about the distribution of a collection of Γ -orbits inside the quotient

space G/A .

There is an almost tautological equivalence between (left) Γ -orbits on G/A

and (right) A-orbits on Γ\G given by

(2.5) ΓgA/A←→ ΓgA←→ Γ\ΓgA .

This duality induces a close relationship between the study of the distribution

of |d|−1/2.Rdisc(d) inside Vdisc,+1(R) and the distribution of the collection of

right A-orbits

Gd =

⋃

[a,b,c]∈[Rdisc(d)]

x[a,b,c]A ⊂ Γ\G

inside the homogeneous space Γ\G , with

(2.6) x[a,b,c] = Γ\Γga,b,c .
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This is the “duality principle” alluded to at the beginning of this section. Let

us make this principle a bit more precise by identifying the orbits in question :

Assuming that (a, b, c) ∈ Rdisc(d) is primitive; one has

x[a,b,c]A = Γ\Γga,b,cA = Γ\ΓAa,b,cga,b,c ,

where

Aa,b,c = ga,b,cHg−1
a,b,c = stab(a,b,c)(G)

is the stabilizer of (a, b, c) in G . That group is the group of real points

of a Q -algebraic group, which we will denote by Ta,b,c , namely the image

in PGL2 of the centralizer Zm of

m = ma,b,c =

(
b 2c

−2a −b

)
.

In terms of the embedding ι = ιma,b,c
: K →֒ M2(Q) , one has

Zm(Q) = ι(K×),

and

T(Q) = ι(K×)/Q× Id , Aa,b,c = Ta,b,c(R) = ι(K ⊗ R)×/R× Id ,

and (since M2(Z) ∩ ι(K) = ι(Od) ),

Γa,b,c := Γ ∩ Aa,b,c = ι(O×
d )/{± Id}.

Alternatively, let ι0 denote the (real) embedding

ι0 :
K →֒ M2(R)

u + v
√

d 
→ u Id+v.d1/2m0

obtained by conjugating ιm with g−1
a,b,c , we have

ι0(K ⊗Q R)×/R× Id = A

and

Γ
′
a,b,c := g−1

a,b,cΓga,b,c ∩ A = ι0(O×
d )/{± Id}

so that we have homeomorphisms

(2.7) x[a,b,c]A = Γ\ga,b,cA ≃ g−1
a,b,cΓga,b,c ∩ A\A = ι0(K ⊗ R)×/R×ι0(O×

d ) .

By Dirichlet’s unit theorem, ι0(K⊗R)×/R×ι0(O×
d ) is compact hence x[a,b,c]A

is compact and since [Rdisc(d)] is finite we obtain :

THEOREM 2.2. The union of A-orbits Gd is compact.
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2.4.2 DUALITY BETWEEN MEASURES. To consider equidistribution prob-

lems, one needs to refine the correspondence (2.5) at the level of measures.

Roughly speaking, the choice of the counting measure µΓ on Γ and of the

left-invariant Haar measure µA on 3 ) A define a measure-theoretic version of

the correspondence (2.5) :

FACT. There exist homeomorphisms between the following spaces of

Radon measures (relative to the weak-* topology) :

(2.8)

left Γ-invariant

Radon measures

λ on G/A

←→
left Γ, right A-invariant

Radon measures

ρ on G

←→
right A-invariant

Radon measures

ν on Γ\G .

These homeomorphisms are characterized by the identities : for any ϕ ∈ Cc(G) ,

one has

λ(ϕA) = ρ(ϕ) = ν(ϕΓ) ,

where

ϕA(g) :=

∫

A

ϕ(gh)dµA(h) , ϕΓ(g) =
∑

γ∈Γ

ϕ(γ.g) .

See for instance [2, §8.1] for a proof of that fact. We work out this

correspondence in specific cases :

− ρ is a Haar measure µG on G , which is G-biinvariant as G is unimodular.

The correspondence (2.8) yield the quotient measures ν = µΓ\G on Γ\G ,

and λ = µG/A ∝ µdisc,±1 on G/A . The former measure ν is finite (i.e. Γ

is a lattice in G) and we may adjust µG so that µΓ\G is a probability

measure.

− The sum λd of Dirac measures on G/A given by

λd =

∑

(a,b,c)∈Rdisc(d)

δga,b,cA/A =

∑

[a,b,c]

∑

g∈Γ.ga,b,c

δgA/A

=

∑

[a,b,c]

∑

γ∈Γ/Γa,b,c

δγga,b,cA/A .

PROPOSITION. The measure νd on Γ\G corresponding to λd under (2.8)

is the sum of the push forwards of the Haar measure µA over the set of

A-orbits x[a,b,c]A, [a, b, c] ∈ [Rdisc(d)] .

3 ) Note that A is unimodular.
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Indeed, set λ[a,b,c] =
∑

γ∈Γ/Γa,b,c
δγga,b,cA/A . Then if S denotes a funda-

mental domain in A for Γ
′
a,b,c

λ[a,b,c](ϕA) =
∑

γ∈Γ/Γa,b,c

∫

A

ϕ(γga,b,ch)dh =

∑

γ∈Γ

∫

S

ϕ(γga,b,ch)dh

=

∫

Γ
′
a,b,c

\A

ϕΓ(ga,b,ch)dh =

∫

x[a,b,c]A

ϕΓ(h)dh ,

hence the measure on Γ\G corresponding to λ[a,b,c] is given by the push

forward of the Haar measure µA to the periodic A-orbit x[a,b,c]A , and the

proposition follows.

Let

vol(Gd) := νd(Gd) =
∑

[a,b,c]

vol(x[a,b,c]A)

denote the total volume of this (finite) collection of (compact) A-orbits.

From (2.7) we see that the various orbits associated to primitive representations

of d have the same volume, namely with the correct normalization of the

Haar measure of A

vol(x[a,b,c]A) = vol(R×ι0(O×
d )\A) = Reg(Od) ,

where Reg(Od) is the regulator of Od . Therefore,

vol(Gd) = | Pic(Od)| Reg(Od) .

If d = disc(OK) is a fundamental discriminant, the Dirichlet class number

formula gives

vol(Gd) = | Pic(Od)| Reg(Od) = λ|d|1/2L
((d

·
)
, 1
)
,

where λ is some absolute constant, ( d
· ) is the Kronecker symbol and L(( d

· ), s)

its associated L -function. Then by Siegel’s theorem L(( d
· ), 1) = |d|o(1) as

d →∞ so that

(2.9) vol(Gd) = |d|1/2+o(1) .

If d = d′f 2 with d′ a fundamental discriminant

| Pic(Od)| Reg(Od)

| Pic(Od′)| Reg(Od′)
= f

∏

p| f

(
1− p−1

(
d′

p

))

which shows again that | Pic(Od)|Reg(Od) = |d|1/2+o(1) and hence (2.9) holds

in general (cf. e.g. [10, Sect. 9.6]). We let

µd :=
1

vol(Gd)
νd .
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This is an A-invariant probability measure on Γ\G and the above discussion

shows that Skubenko’s Theorem 1.2 follows from the following :

THEOREM 2.3. As d → ∞ amongst the non-square discriminants, the

sequence of measures µd weak-* converge to the probability measure µΓ\G ,

i.e. for any ϕΓ ∈ Cc(Γ\G) , one has

µd(ϕΓ) =
1

vol(Gd)

∑

[a,b,c]

∫

x[a,b,c]A

ϕΓ(h)dh→ µΓ\G(ϕΓ) .

Indeed any continuous compactly supported function on G/A is of the

form ϕA for ϕ ∈ Cc(G) , hence by Theorem 2.3

λd(ϕA) = νd(ϕΓ) = vol(Gd)µd(ϕΓ)

= vol(Gd)(µΓ\G(ϕΓ) + o(1)) = vol(Gd)(µG/A(ϕA) + o(1)) .

3. SPACING PROPERTIES OF TORUS ORBITS

In this section, we show that the various distinct orbits x[a,b,c]A ⊂ Gd are in

a suitable sense well spaced from each other ; the main result is Proposition 3.6.

Recall that

Gd =

⊔

[a,b,c]∈[Rdisc(d)]

x[a,b,c]A ,

where x[a,b,c] is defined in (2.6).

3.1 IDEAL CLASSES ARE CONTROLLING THE TIME SPENT NEAR THE CUSP

The space X is not compact and this is measured through a height function

(normalized to be invariant under scaling) given, for L = Z2.g ⊂ R2 a lattice,

by

ht(L) =
(minx∈L−{0} ‖x‖

vol(L)1/2

)−1

=

(minx∈Z2−{0} ‖xg‖
| det(g)|1/2

)−1

,

where ‖.‖ denote the Euclidean norm. This continuous function is proper.

Indeed, if x ∈ X and (z, v) ∈ S any representative, then the height ht(x) and

the imaginary part ℑ(z) satisfy ℑ(z) = ht(x)2 . For any H > 1 let X≥H denote

the set of all x ∈ X with ht(x) ≥ H .

In this section we evaluate explicitly how big the height of a lattice in Gd

could be.
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PROPOSITION 3.1. Suppose the proper integral ideal J ⊂ Od corresponds

to [a, b, c] ∈ Rdisc(d) under the bijection of §2.1. Then x[a,b,c]A ∩ X≥H

is nonempty if and only if J−1 is equivalent to an ideal I ⊂ Od of

norm ≤ 1
2
H−2d1/2 . Moreover, this defines a bijection between connected

components of Gd∩X≥H and proper Od -ideals I ⊂ Od of norm ≤ 1
2
H−2d1/2 .

Even though the above does not control escape of mass for µd as d→∞
it does give an upper bound for µd(X≥H) , see Proposition 3.3, which we will

use in our proof of Duke’s theorem. Note that Proposition 2.1 guarantees that

there is an inverse J−1 to the proper ideal J .

REMARK 3.2. Applying this result to H = d1/4 we see that Gd ∩ X≥d1/4

is empty (as there are no ideals of norm < 1). This implies that Gd is

pre-compact.

Proof. Note that, if we identify x ∈ X with a lattice L of covolume 1,

then xA ∩ X≥H is nonempty if and only if there is some nonzero vector

(u, v) ∈ L with |uv| ≤ 1
2
H−2 .

Therefore (using the explicit bijection of §2.1) the A-orbit defined by J

intersects X≥H , if and only if J contains an element λ with

|N(λ)| ≤ 1

2
H−2N(J)d

1
2 .

Recall that N(J−1) = N(J)−1 by standard properties of the norm. It follows

that the A-orbit defined by J intersects X≥H if and only if N(λJ−1) ≤ 1
2
H−2d

1
2

for some λ ∈ J (so that λJ−1 ⊂ Od ).

Finally, notice that for H > 1 there is, in a lattice L′ ∈ X≥H , up to

sign, only one primitive nonzero vector of length ≤ H−1 vol(L′)1/2 (which is

a simple volume computation). Therefore, fixing J , in the above argument,

a connected component of θ0(J).A ∩ X≥H corresponds to a unique primitive

element λ ∈ J with |N(λ)| ≤ 1
2
H−2N(J)d

1
2 (up to sign) and we can associate to

this connected component the ideal I = λJ−1 ⊂ Od of norm ≤ 1
2
H−2d

1
2 . .

PROPOSITION 3.3. There is “not too much mass high in the cusp” in the

sense that

µd(X≥H)≪ε dεH−2

for all ε > 0 and H ≥ 1 .

Note that to make this estimate useful, we will set later H = dε for

some ε > 0.
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Proof. We note first that in any orbit in Gd the maximal height achieved

is ≤ d
1
4 (see Remark 3.2). This implies that for H > 1 any connected

component of Gd ∩ X≥H has length ≪ log(d) . Indeed such a component

corresponds (in the upper half-plane model) to the segment of some oriented

geodesic circle (i.e. a half-circle centered on the real line) made of those

points which have imaginary part between H and d1/4 : the hyperbolic length

of such a segment is bounded by ≪ log(d
1
4 /H) .

Therefore, by Proposition 3.1

vol(Gd ∩ X≥H)≪ log(d)N≤H(d) ,

where N≤H(d) is the number of proper ideals I ⊂ Od of norm N(I) ≤ 1
2
H−2d

1
2 .

Recall that for any n ∈ N the number of proper ideals in Od of norm equal

to n is bounded by the number of divisors of n and so by ≪ε nε . By

summing over all 1 ≤ n ≤ 1
2
H−2d

1
2 we get that N≤H(d) ≪ε (H−2d

1
2 )1+ε .

Together with (2.9) this proves the proposition. .

3.2 LINNIK’S BASIC LEMMA AND REPRESENTING BINARY QUADRATIC FORMS

BY TERNARY FORMS

Following Linnik we will derive the “Basic Lemma” from representation

numbers of quadratic forms : Let q,Q be two integral non-degenerate quadratic

forms on Zm and Zn respectively. Assuming that m ≤ n , a representation

of q by Q is an isometric embedding of quadratic lattices

ι : (Zm, q) →֒ (Zn,Q)

in other terms a Z-linear map ι : Zm → Zn such that for x ∈ Zm

Q(ι(x)) = q(x) .

For instance a representation x ∈ Zn of an integer d ∈ Z by a quadratic

form Q on Zn may be viewed as the isometric embedding

ιx :
(Z, dx2) →֒ (Zn,Q)

n 
→ nx
.

Let RQ(q) be the set of such representations : the group Γ = SOQ(Z) acts

on RQ(q) (for γ ∈ Γ , γ.ι = γ ◦ ι) and the quotient Γ\RQ(q) is finite.

We are interested here in evaluating |Γ\RQ(q)| in the codimension one

case (i.e. when n−m = 1). More precisely, we will need to show that, in this

case, |Γ\RQ(q)| is rather small. The simplest evidence comes from the case

m = 1, n = 2 : the representations of an integer by a binary quadratic form.
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For instance it is well known that for d �= 0 the number of integral solutions

to xy = d (i.e. the number of divisors of d ) is bounded by Oε(dε) . Similarly

the number of representations of an integer as a sum of two squares satisfies

the same bound; indeed, for any binary integral quadratic form Q one has

|Γ\RQ(d)| ≪q |d|ε for any ε > 0. The following is a version of this claim

for m = 2, n = 3, where in the case of non-fundamental discriminants the

estimate is not as strong.

PROPOSITION 3.4. Let Q be an integral ternary quadratic form, and let

q(x, y) = ax2
+ bxy + cy2

an integral binary quadratic form, both supposed non-degenerate. Assume

that f 2| gcd(a, b, c) is the greatest common square divisor of a, b, c. Then

the number N of embeddings of (Z2, q) into (Z3,Q) , modulo the action

of SOQ(Z) , is ≪Q,ε f max(|a|, |b|, |c|)ε .

When Q = x2
+ y2

+ z2 is the “sum of three squares” quadratic form

such a bound is a consequence of an explicit formula on the number of

representations due to Venkov [25] (assuming a square-free). This bound was

later generalized by Pall [21, Thm. 5]. We provide a self-contained treatment

in Appendix A. Let

〈(a, b, c), (a′, b′, c′)〉disc =disc(a + a′, b + b′, c + c′)−disc(a, b, c)−disc(a′, b′, c′)

= 2bb′ − 4ac′ − 4a′c

be the polarization inner product associated with the quadratic form disc. We

will apply Proposition 3.4 to the pair

Q = disc , q(x, y) = dx2
+ ℓxy + dy2 ,

and note that q(x, y) is non-degenerate if and only if ℓ �= ±2d . Hence we

obtain :

COROLLARY 3.5. Let Γ = SOdisc(Z) . Then for any two integers d, ℓ with

ℓ �= ±2d , the number of Γ -orbits on pairs

{
((a, b, c), (a′, b′, c′)) ∈ Z3 × Z3 :

disc(a, b, c) = disc(a′, b′, c′) = d, 〈(a, b, c), (a′, b′, c′)〉disc = ℓ
}

is ≪ε f (max(|d|, |ℓ|))ε , where f 2 is the largest square factor of gcd(d, ℓ) .
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We now translate the information obtained about quadratic forms above

to Linnik’s Basic Lemma, which we phrase in the geometric context. This

falls short from equidistribution but will suffice as the arithmetic input to the

ergodic arguments later.

PROPOSITION 3.6 (Basic Lemma). We have

µd × µd{(x, y) ∈ X2
≤H : dX(x, y) ≤ δ} ≪ε H4δ3dε

whenever d− 1
4 ≤ δ ≤ 1

3
H−2 and ε > 0 .

Note that the exponent 3 of δ3 is optimal, and suggests that µd is

3-dimensional in the appropriate scale. The trivial exponent is 1 , which

follows from A-invariance of µd .

Proof. We start by indicating the relationship between δ -close tu-

ples in (Gd ∩ X≤H)2 and the representation of the binary quadratic form

q(x, y) = dx2
+ ℓxy + dy2 by the discriminant ternary quadratic form disc.

From (1.4), g1, g2 ∈ PSL2(R) are such that xi = Γgi ∈ Gd ∩ X≤H for

i = 1, 2 and dX(x1, x2) < δ , then we may assume

(3.1) g1 ∈ S , g2 ∈ S
′ , Γg1 ∈ X≤H and d(g1, g2) < δ ,

where S′ is some slightly bigger set containing the fundamental domain S in

its interior. For concreteness we take

S′ = {(z, v) ∈ H× S1 : |ℜz| ≤ 1, ℑz ≥ 1/2}.

This clearly shows that the matrix entries of both gi are controlled, i.e.

‖gi‖ ≪ H where

‖g‖ = tr(gtg)1/2 .

Moreover, we may associate to gi the primitive integral quadratic form,

qi(x, y)=
√

d[gi.q0](x, y)=aix
2
+bixy+ciy

2, b2
i −4aici=d, gcd(ai, bi, ci)=1 .

We have to consider two different possible cases. Either q1 = q2 (i.e.

g2 ∈ g1A) or q1 �= q2 .

The total mass for the first case is easy to estimate by ≪ǫ d1/2+ǫδ before

normalization by the total volume, which gives after the normalization that

µd × µd{(Γg1,Γg1h) ∈ X2
≤H : h ∈ A, d(Id, h) ≤ δ} ≪ε δd−1/2dε ≤ δ3dε

since d−1/4 ≤ δ .
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Henceforth we assume q1 �= q2 . Since ‖gi‖ ≪ H , we have

(3.2) max(|ai|, |bi|, |ci|)≪ d1/2H2 .

Also by assumption g2 = g1h with d(h, Id) < δ . This shows that q2 =√
dg1.(h.q0) where ‖h.q0 − q0‖ ≪ δ . Therefore,

(3.3) max(|a1 − a2|, |b1 − b2|, |c1 − c2|)≪ d1/2H2δ .

We now define

q(u, v) = disc
(
u(a1, b1, c1) + v(a2, b2, c2)

)
= du2

+ ℓuv + dv2 .

From the bound (3.3) on the difference of the vectors we know

|q(1,−1)| = |2d − ℓ| ≪ dH4δ2 .

In order to apply Corollary 3.5 on q , we need to check that q is not

degenerate, i.e. that ℓ �= ±2d . Indeed, if ℓ = ±2d then

d(a2∓a1)2
= q(a2,−a1) = disc

(
a2(a1, b1, c1)−a1(a2, b2, c2)

)
= (a2b1−a1b2)2 ,

which contradicts the assumption that d is not a perfect square. Therefore

ℓ �= ±2d . In this case we may apply Corollary 3.5 to obtain the bound

Nℓ,d =

∣∣SOdisc(Z)\{(Z2, dx2
+ ℓxy + dy2) →֒ (Z3, disc)}

∣∣≪ f max(|d|, |ℓ|)ε

on the number Nℓ,d of inequivalent ways in which the quadratic form

dx2
+ ℓxy + dy2 can be represented, where f 2| gcd(d, ℓ) is the greatest square

divisor. Note that the group SOdisc is rationally equivalent to PGL2 , and so up

to isogeny rationally equivalent to SL2 . Therefore, SOdisc(Z) is commensurable

to the image of Γ = SL2(Z) and we may also use Γ instead of SOdisc(Z) in

the above estimate.

Let

Γ(q
(1)
1 , q

(1)
2 ), . . . ,Γ(q

(k)
1 , q

(k)
2 )

be a complete list of diagonal Γ -orbits of pairs of quadratic forms which can

be written as

q( j)
i (x, y) =

√
dg( j)

i .q0(x, y)

with g( j)
1 , g( j)

2 satisfying (3.1)

The number k of these diagonal Γ -orbits of quadratic forms is bounded by

k ≤
2d+L∑

ℓ=2d−L

Nℓ,d =

∑

f 2|d

∑′

|2d−ℓ|≤L

f 2|ℓ, ℓ �=±2d

Nℓ,d

≪ε

∑

f 2|d

∑′

|2d−ℓ|≤L

f 2|ℓ, ℓ �=±2d

f dǫ ≪ǫ

∑

f 2|d

f
d1+ǫH4δ2

f 2
≪ε d1+2εδ2H4 ,



DISTRIBUTION OF CLOSED GEODESICS 273

where L≪ dH4δ2 and
∑′

denotes a sum over ℓ for which
(d, ℓ)

f 2
is square-

free.

We claim that for q
( j)
1 �= q

( j)
2 we have

(3.4) d(g( j)
1 at, g

( j)
2 A)≫ d−1 .

Indeed suppose d(g( j)
1 at, g

( j)
2 at′) ≤ cd−1 (for some constant c determined in a

moment). Then we may find some γ ∈ Γ with γg( j)
1 at ∈ S , which also implies

γg( j)
2 at′ ∈ S′ . By Remark 3.2 we have Gd ⊂ X≤H′ for H′

= d1/4 . Hence by

choosing c appropriately the upper bound in (3.3) (applied for H′
= d1/4

and δ = cd−1 ) is less than one, which gives a contradiction.

Writing g2 = g1 exp v for some v = v−+v++vA ∈ sl2(R) , with v−, v+, vA

eigenvectors of Adat
with eigenvalues e−t, et, 1 respectively, the estimate (3.4)

implies that both ‖v−‖, ‖v+‖ ≫ d−1 . It follows that for any j the inequality

(3.5) d(g( j)
1 at, g

( j)
2 A) < 1

can hold only for t in some interval Ij of length ≪ log d .

CLAIM. For each pair (g( j)
1 , g( j)

2 ) there is an interval Ij ⊂ R of

length ≪ε dε with the following property :

If (x1, x2) ∈ (Gd ∩ X≤H)2 with d(x1, x2) < δ have representatives (g1, g2)

satisfying (3.1) for which the associated forms qi =
√

dgi.q0 are different,

then x1 = Γg( j)
1 at for some j and some t ∈ Ij .

Indeed, (γ.q1, γ.q2) = (q
( j)
1 , q

( j)
2 ) for some γ ∈ Γ and some j ∈ [1, k] and

so g1 = γ−1g( j)
i at resp. g2 ∈ γ−1g( j)

2 A . By assumption on g1, g2 we have

d(g( j)
1 at, g

( j)
2 A) < δ .

Using the claim and a fixed Haar measure of A (i.e. before normalization)

we get that the measure of the collection of points (x1, x2) ∈ (Gd ∩ X≤H)2 ,

which can be represented as xi = Γgi with gi as in (3.1) and for which the

associated quadratic forms are different, is

≪
k∑

j=1

|Ij|δ ≪ǫ dεδk ≪ε d1+2εH4δ3 .

Therefore, by dividing the above by the total volume of (Gd)2 , the claim

(together with the analysis of the case q1 = q2 ) implies the proposition.
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4. AN ERGODIC THEORETIC PROOF OF DUKE’S THEOREM

4.1 ENTROPY AND THE UNIQUE MEASURE OF MAXIMAL ENTROPY

A basic underlying concept in our proof is that of entropy. We recall that

if P is a finite partition of the probability space (X, ν) , the entropy of P is

defined as

Hν (P) :=
∑

S∈P

−ν(S) logν(S) .

It is clear that Hν (P) = Hν(T−1P) if T : X → X preserves ν — below we

will use this fact without explicit reference. We note for future reference that

entropy is controlled by an L2 -norm

(4.1) Hν(P) ≥ − log

(
∑

S∈P

ν(S)2

)

as one easily sees from convexity of the logarithm map. Moreover, entropy

has the following basic subadditivity property : if P1,P2 are two partitions,

then

(4.2) Hν (P1 ∨ P2) ≤ Hν(P1) + Hν(P2) ,

where ∨ denotes common refinement.

If T is a measure-preserving transformation of (X, ν) , then the measure

theoretic entropy of T is defined as :

(4.3) hν(T) = sup
P

lim
n→∞

Hν(P ∨ T−1P ∨ · · · ∨ T−(n−1)P)

n
,

where the supremum is taken over all finite partitions of X . We also note

that the limit in the definition exists and is equal to the infimum because the

sequence

an = Hν(P ∨ T−1P ∨ · · · ∨ T−(n−1)P)

is subadditive (i.e. an+m ≤ an + am ).

A key role in our argument is played by the fact that the uniform measure

on Γ\ SL2(R) for any lattice Γ can be distinguished using entropy, as it is

the unique measure of maximal entropy :

THEOREM 4.1. Let X = Γ\ SL2(R) be a quotient by a lattice Γ < SL2(R) ,

and let T denote the time-one-map of the geodesic flow, i.e. right translation

T(x) = x

(
e1/2 0

0 e−1/2

)
.
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Then for any invariant measure ν the entropy satisfies hν(T) ≤ 1 where

equality holds if and only if ν = µX is the SL2(R) -invariant probability

measure on X .

The inequality hν(T) ≤ 1 is not hard and can be proved in many ways.

Identifying the uniform measure as the unique measure where this maximum

is attained is somewhat more delicate. We give a self-contained treatment in

Appendix B.

4.2 PROOF OF DUKE’S THEOREM, AN OUTLINE

Let T : X → X denote the time-one-map of the geodesic flow as in

Theorem 4.1. Recall that

U−
=

{(
1 t

0 1

)
: t ∈ R

}
resp. U+

=

{(
1 0

t 1

)
: t ∈ R

}

are the stable, resp. unstable horocycle subgroups. The orbits of these two

subgroups give the foliation into stable and unstable manifolds in the following

sense. If u = u(t) ∈ U− , then the distance between T n(x) and T n(xu)

converges rapidly to zero :

d(T n(x), T n(xu)) = d

(
x

(
en/2 0

0 e−n/2

)
, xu

(
en/2 0

0 e−n/2

))

≤ d

((
1 0
0 1

)
,

(
e−n/2 0

0 en/2

)
u

(
en/2 0

0 e−n/2

))

= d

((
1 0
0 1

)
,

(
1 e−nt
0 1

))
.

To give an outline of our argument, it is perhaps preferable to simplify the

situation. In our proof, the noncompact nature of our space X is a significant

complication, so instead of considering the quotient SL2(Z)\ SL2(R) for the

purposes of this outline let us consider a compact quotient X̂ = Γ\ SL2(R) on

which we have a sequence of T -invariant probability measures µd satisfying

the following simplified version of the conclusion of Proposition 3.6 :

(4.4) µd × µd{(x, y) ∈ X̂
2

: dX̂(x, y) ≤ δ} ≪ε δ
3dε for δ > d−1/4 .

Let r > 0 be an injectivity radius of X̂ so that for any x ∈ X̂ the map

BG
r (e)→ X̂ sending g to xg is injective (with G = SL2(R) , and BG

r denoting

a ball of radius r in G). Also assume η < 1
e
r is small enough so that BG

η (e)

is an injective image under the exponential map of a neighborhood of 0 in

the Lie algebra.
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Let P be a finite measurable partition all of whose elements have “diameter

smaller than η”, i.e. if x and y = xg with g ∈ BG
r belong to the same element

of P , then g ∈ BG
η . Assume that the same holds as well for T i(x) and T i(y)

for i = −N, . . . , 0, 1, . . . ,N . Then d(T(x), T(y)) < η and d(e, a−1ga) < r so

that a−1ga ∈ BG
η (e) . Repeating, this implies that

g ∈ BN =

N⋂

n=−N

(
e1/2

e−1/2

)−n

BG
η (e)

(
e1/2

e−1/2

)n

.

We define a Bowen N -ball to be the translate xBN for some x ∈ X .

Notice that the set BN is “tube-like” : it has width at most e−Nη along

the stable and unstable directions, but is of length η in the direction A of

the geodesic flow. The above shows that every element of the partition

(4.5) P[−N,N]
=

N∨

n=−N

T−nP

is contained in a single Bowen N -ball. Together we conclude that

⋃

S∈P[−N,N]

S× S ⊂
k⋃

i=1

{(x, yai) : d(x, y) < re−N} ,

where k≪ eN and a1, . . . , ak ∈ BA
r (1) are chosen to be δ -dense — that is to

say, the union of the δ -neighborhoods around ai cover BA
r (1) .

Together with (4.4) this shows that
∑

S∈P[−N,N]

µd(S)2 ≪ε e−2Ndε

whenever δ = ηe−N ≥ d− 1
4 or equivalently N ≤ 1

4
log d + log r . We choose

N = ⌊ 1
5

log d⌋ (the “extra space” will be useful in suppressing a dε ). Using

(4.1) we have

Hµd

(
P[−N,N]

)
≥ (2− 6ε)N

for large enough d .

In this statement we cannot yet let d → ∞ to get a statement about a

weak∗ limit µ , because N is a function of d , and so the size of P[−N,N]

increases with d . Thus let N0 ≥ 1 be any fixed integer : [−N,N] can be

covered by ⌈ N
N0
⌉ many translates of [−N0,N0] . This in turn shows that P[−N,N]

can be obtained as a refinement of the ⌈ N
N0
⌉ partitions

P[−N,−N+2N0],P[−N+2N0,−N+4N0], . . .
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(in the obvious generalization of the notation (4.5)). By subadditivity (4.2)

(and invariance) this implies

Hµd

(
P[−N0,N0]

)
≥ (2− 7ε)N0

for large enough d . By choosing the original partition P such that µ(∂S) = 0

for all S ∈ P and some weak∗ limit µ of the sequence µd we can now take

the limit as d →∞ to obtain

Hµ

(
P[−N0,N0]

)
≥ (2− 7ε)N0 for all ε > 0 and N0 ≥ 1 ,

i.e. that hµ(T) ≥ 1. Theorem 4.1 can now be invoked to show that µ must

be the SL2(R) -invariant measure on X .

We remark that the analysis above works only in the cocompact case; for

e.g. Γ = SL2(Z) , there is no global injectivity radius; and no matter how fine

one takes the partition P , to cover a single atom of the partition P[−N,N] one

typically needs exponentially many Bowen N -balls.

4.3 PROOF OF DUKE’S THEOREM, CONTROLLING THE TIME SPENT

NEAR THE CUSP

Passing from the cocompact to the nonuniform case raises two difficulties :

(i) Why is such a weak∗ limit a probability measure (indeed, why cannot

such a sequence of measures µd converge to the zero measure) ?

(ii) The proof outline presented in §4.2 used heavily the relation between

Bowen N -balls and atoms of the partition P[−N,N] for a finite partition P .

How can we adapt this argument to the nonuniform situation where in general

many Bowen N -balls are needed to cover a partition element S ∈ P[−N,N] ?

It turns out that these two difficulties are not unrelated, and to handle

them one needs to control the time an orbit spends in the neighborhood of

the cusp, so that this problem is related to controlling the escape of mass.

What is needed is the following finitary version of the uniqueness of measure

of maximal entropy :

THEOREM 4.2. Suppose µi is a sequence of A-invariant measures on X ,

and suppose there is a constant r > 0 and a sequence δi → 0 such that for

all sufficiently small ε > 0 the “heights” Hi = δ−ε
i satisfy

(1) µi(X≥Hi
)→ 0 , as i→∞ ;

(2) µi × µi({(x, y) ∈ X≤Hi
× X≤Hi

: d(x, y) < δi} ≪ε δ
3−5ε
i .

Then µi → µX , the SL2(R) -invariant measure on X , as i→∞ .
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Clearly, this, Proposition 3.3, and Proposition 3.6 with δ = d− 1
4 are

sufficient to prove Duke’s theorem. Apart from the ideas already discussed in

the last section, the main additional step is :

PROPOSITION 4.3. Fix a height M ≥ 1 . Let N ≥ 1 and consider a subset

V ⊂ [−N,N] . Then the set

Z(V) =
{

x ∈ TNX<M ∩ T−NX<M : for all n ∈ [−N,N] we have

T n(x) ∈ X≥M ⇔ n ∈ V
}

can be covered by ≪M e2N− 1
2
|V| Bowen N -balls. Moreover, Z(V) is nonempty

for only ≪M e
2 log log M

log M
N

different sets V ⊂ [−N,N] .

In words, Z(V) is the set of points x ∈ X so that the trajectory T−Nx ,

T−N+1x , . . . , TNx between times −N and N begins and ends below height M

and are above height M precisely at the time specified by the set V . So the

content of the proposition is that orbits that spend a lot of time in a neighbor-

hood of the cusp in fact can be covered by relatively few tube-like sets. Later

we will turn this into the statement that those orbits have relatively little mass.

Note that as the size of V grows the number of Bowen N -balls needed to

cover Z(V) decreases, though even if V = [−N−1,N+1] it is still exponential

— indeed ≍ eN , which is essentially the square root of the estimate we get

for V = ∅ .

We defer the proof of Proposition 4.3 to the next section. A purely ergodic

theoretic formulation of this phenomenon is that a lot of mass near the cusp

for an invariant probability measure results in a significantly smaller entropy

for the geodesic flow. We will give such a formulation in Theorem 5.1; it

implies in particular that :

Given a sequence of T -invariant probability measures µi with entropies

hµi
(T) ≥ c, any weak∗ limit µ satisfies µ(X) ≥ 2c− 1 .

We will discuss in Remark 5.2 why c = 1/2 is the critical point for this

phenomenon.

4.4 CONTROLLING ESCAPE OF MASS, AND MAXIMAL ENTROPY

We proceed to the proof of Theorem 4.2, and start by showing that mass

cannot escape, using assumption (2). We will use (1) of that theorem which



DISTRIBUTION OF CLOSED GEODESICS 279

gives a mild control on how fast mass could possibly escape to be able to

apply the covering argument in Proposition 4.3. That (2) can replace entropy

in that argument is not surprising since we have already seen in Section 4.2

a relationship between this assumption and entropy.

LEMMA 4.4. Let µi be a sequence of T -invariant measures as in

Theorem 4.2. Let µ be a weak∗ limit of any subsequence of µi . Then

µ(X<M) ≥ 1− 2 log log M

log M

for every sufficiently large M , and so µ is a probability measure.

Proof. Fix some κ >
2 log log M

log M
. We will show that µ(X<M) ≥ 1− κ .

We set Ni = ⌈− log δi⌉ and Hi = δ−ǫ
i for some ǫ > 0 determined below

(more precisely : before the final displayed equation of this proof) in terms

of κ . Notice that a geodesic trajectory of a point x ∈ X≤Hi
will visit X<M in

less than 2 log Hi − 2 log M ≤ 2ǫNi steps either in the future or in the past.

Hence
⌊2ǫNi⌋⋃

n=−⌊2ǫNi⌋

T−nX<M ⊃ X≤Hi

and so this union contains most of the µi -mass according to the assumption (1)

of Theorem 4.2.

Let N′
i = Ni + ⌊2ǫNi⌋ . Then TN′

i X≤Hi
∩ T−N′

i X≤Hi
is contained in the

union of ≪ (ǫNi)
2 many sets of the form TN′

i +n−X<M ∩ T−N′
i +n+X<M where

|n−|, |n+| ≤ 2ǫNi . We apply this to the set

Xκ =

{
x ∈ TN′

i X≤Hi
∩ T−N′

i X≤Hi
:

1

2N′
i + 1

N′
i∑

n=−N′
i

1X≥M
(T nx) > κ

}

consisting of points that spend an unexpected high portion of [−N′
i ,N′

i ]

above M .

We wish to estimate µi(Xκ) .The set Xκ is also a union of sets of the form

Z′
= Xκ ∩ TN′

i +n−X<M ∩ T−N′
i +n+X<M

with n−, n+ as before. It suffices to estimate µi(Z
′) for some fixed n−, n+ .

Replacing Z′ by an appropriate shift Z := TkZ′ we may consider instead

Z ⊂ TNX<M ∩ T−NX<M where N ∈ [Ni,Ni + 4ǫNi] . Adjusting the condition

on the “average time spent above M ” appropriately,

Z ⊆
{

x ∈ TNX<M ∩ T−NX<M :
1

2N + 1

N∑

n=−N

1X≥M
(T nx) > κ− O(ǫ)

}
.
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To the right-hand set we apply Proposition 4.3; which shows that Z is covered

by

ℓ≪M e
2 log log M

log M
N

e2N−(κ−O(ǫ))N ≤ e
2Ni+

2 log log M

log M
Ni−κNi+O(ǫ)Ni

many Bowen N -balls. Because N ≥ Ni , we may also cover Z by ℓ many

Bowen Ni -balls S1, . . . , Sℓ .

Since Bowen Ni -balls have thickness ≤ e−Ni ≤ δi along stable and unstable

horocycle directions and thickness ≪ 1 along A , we get that

ℓ⋃

j=1

Sj × Sj ⊂
k⋃

j=1

{(x, yaj) : d(x, y) < δi} ,

where k ≪ eNi and aj ∈ BA
1 are δi -dense. This remains true if we make the

sets Sj disjoint by replacing S2 by S′
2 = S2�S1 , S3 by S′

3 = S3�(S1∪S2) , . . . .

By our assumption (2) we now get

ℓ∑

j=1

µi(S
′
j)

2 ≪ǫ δ
3−5ǫ
i k≪ e−2Ni+5ǫNi .

Therefore, by Cauchy-Schwarz

µi(Z) ≤
ℓ∑

j=1

µi(S
′
j) ≤

( ℓ∑

j=1

µ(S′
j)

2

)1/2

ℓ1/2 ≪ǫ,M e
log log M

log M
Ni−

1
2
κNi+O(ǫ)Ni .

Going through all possibilities for n−, n+ (of which there are ≪ eǫNi many)

this implies

µi(Xκ)≪ǫ,M e

(
log log M

log M
− 1

2
κ+O(ǫ)

)
Ni .

Given that we assume κ > 2 log log M

log M
we can choose ǫ > 0 small enough

such that the exponent in the above expression is negative so that the measure

goes to zero for i→∞ (since Ni →∞). By definition of Xκ we have

µi(X≥M) =

∫
1X≥M

dµi =

∫
1

2N′
i + 1

N′
i∑

n=−N′
i

1X≥M
dµi ≤ κ+µi(Xκ)+2µi(X≥Hi

) ,

which when i → ∞ implies that µ(X<M) ≥ 1 − κ for any κ > 2 log log M

log M
.

This gives the lemma. .

We indicated in Section 4.2 how the elements of the refinement∨N

n=−N T−nP are related to Bowen N -balls; but that analysis fails in the

noncompact case, when trajectories visit the cusp. We now discuss the general

case.
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LEMMA 4.5. For every M > 1 there exists a finite partition P of X

such that for every κ ∈ (0, 1) and every N , “most elements of the refinement∨N

n=−N T−nP are controlled by Bowen N -balls” in the following sense : there

exists a set X′ ⊂ X so that

– X′ is a union of S1, . . . , Sℓ ∈
∨N

n=−N T−nP ;

– each such Sj is contained in a union of at most 3κ(2N+1) many Bowen

N -balls;

– µ(X′) ≥ 1−2µ(X≥M)κ−1 for every invariant probability measure µ .

For a given µ the choice of P can be made such that the boundaries of all

sets of P have zero measure.

Proof. We define P = {Q,P1, . . . ,Pk} where Q = X≥M and {P1, . . . ,Pk}
is a measurable partition of X<M whose elements have diameter less than η ,

where η is small enough in comparison to the injectivity radius of X<M (in

the same sense as in the discussion in Section 4.2).

Note that the boundary of Q is a null set for every probability measure µ

that is invariant under the geodesic flow. This is because every trajectory hits

the boundary of Q in a countable set. Also, given µ we can find for every

point x ∈ X<M an ǫ < η/2 so that the boundary has measure zero. Applying

compactness we construct P1, . . . ,Pk from the algebra generated by finitely

many such balls.

We claim that S ∈ PN =
∨N

n=−N T−nP has the property that any two

points x, y ∈ S satisfy

T nx ∈ X<M ⇔ T ny ∈ X<M for n ∈ [−N,N] and

d(T nx, T ny) < η whenever T nx, T ny ∈ X<M and n ∈ [−N,N] .

Therefore, the average f (x) = 1
2N+1

∑N

n=−N 1X≥M(T nx) is constant on sets of PN .

We define

X′
= {x ∈ T−NX<M : f (x) ≤ κ} .

If µ is an invariant probability measure, invariance implies
∫

f (x) dµ =

µ(X≥M) and so µ({x : f (x) > κ}) ≤ µ(X≥M)κ−1 . Therefore, X′ has measure

µ(X′) ≥ 1− µ(X≥M)− µ(X≥M)κ−1 .

Consider now an element S ∈ PN with S ⊂ X′ . After taking the image

of S under TN we have for any x, y ∈ S′
= TNS that

(4.6)
x ∈ X<M ,

1

2N + 1

2N∑

n=0

1X≥M
(T nx) ≤ κ and

d(T nx, T ny) < η whenever T nx, T ny ∈ X<M and n ∈ [0, 2N] .



282 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL AND A. VENKATESH

Let V = {n ∈ [0, 2N] : T nS′ ⊂ X≥M} . We can now show inductively that for

every n ∈ [0, 2N] the set S′ is contained in a union of 3|[0,n−1]∩V| many sets

of the form

xBU+

2ηe−n BU−A
2η , where x ∈ S′.

We will refer to these sets as forward Bowen n-balls and to x as its

center. For n = 0 there is nothing to show (for notice that we allowed

a bigger radius in the subgroups U+ and U−A). Suppose the claim holds

for some n and let x ∈ S′ be a center of one of the forward Bowen n -balls.

If Tn+1x ∈ X<M then Tn+1S′ ⊂ Pi for i ≥ 1 and it follows easily that any

point y = xu+g ∈ S′ with u+ ∈ BU+

2ηe−n and g ∈ BU−A
2η satisfies u+ ∈ BU+

2ηe−(n+1)

(assuming again that η is small enough in comparison with the injectivity

radius). If Tn+1x ∈ X≥M then we can cover the forward Bowen n -ball by 3

forward Bowen (n + 1)-balls.

Recall that for S ⊂ X′ we have |V| ≤ κN and so by taking the preimages

of S′
= TNS and the forward Bowen 2N -balls obtained the lemma follows. .

To prove Theorem 4.2 it remains to establish the following lemma and

combine it with Lemma 4.4 and Theorem 4.1.

LEMMA 4.6. A weak∗ limit µ of a subsequence of the invariant probability

measures µi as in Theorem 4.2 has maximal entropy hµ(T) = 1 .

Proof. Let P be as in Lemma 4.5. Set Ni = ⌈− log δi⌉ and define

PNi
=

Ni∨

n=−Ni

T−nP .

We wish to show that Hµi
(PNi

) is large by using Lemma 4.5 and assump-

tion (2). Let κ = µ(X≥M)1/2 for some weak∗ limit µ and define Xi as in

Lemma 4.5 using N = Ni .

For any S ∈ PNi
with S ⊂ Xi there exists a cover of S consisting

of ≤ 3κ(2Ni+1) many Bowen Ni -balls; so there is a partition R(S) of S

into ≤ 3κ(2Ni+1) sets, each a subset of a Bowen Ni -ball. We define the

partition Qi as the partition consisting of all S ∈ PNi
with S ⊂ X � Xi and

all elements of R(S) for any S ⊂ Xi . It follows that

(4.7) Hµi
(Qi|PNi

) =
∑

S∈PNi , S⊂Xi

µi(S)Hµi|S (Qi) ≤ κ(2Ni + 1) log 3 .
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Also since Qi is a finer partition than PNi
we have

(4.8) Hµi
(Qi) = Hµi

(Qi ∨ PNi
) = Hµi

(PNi
) + Hµi

(Qi|PNi
) ,

which together with (4.7) indicates that we wish to show that Hµi
(Qi) is large.

Here we will use the assumption (2) from Theorem 4.2; but the elements

of Qi that lie outside Xi can be irregularly shaped, requiring a further estimate :

(4.9) Hµi
(Qi) ≥ Hµi

(Qi|{Xi,X � Xi}) ≥ µi(Xi)Hµi|Xi
(Qi) .

Using (4.1) for the restriction µi|Xi
we see that

(4.10) Hµi|Xi
(Qi) ≥ − log

∑

S∈Qi, S⊂Xi

(
µ(S)

µ(Xi)

)2

.

By construction of Qi every S ∈ Qi with S ⊂ Xi is a subset of a Bowen

Ni -ball. Proceeding as in Section 4.2 it follows that

⋃

S∈Qi, S⊂Xi

S× S ⊂
k⋃

i=1

{(x, yai) : d(x, y) < δi} ,

where k ≪ eNi and a1, . . . , ak ∈ BA
r (1) are chosen to be δi -dense. Together

with assumption (2) of Theorem 4.2 this shows
∑

S∈Qi, S⊂Xi

µi(S)2 ≪ε δ
3−5ε
i eNi ≪ e(−2+5ε)Ni .

Let Cǫ be the implicit constant here, that is to say,
∑

S∈Qi, S⊂Xi

µi(S)2 ≤ Cǫe
−(2+5ε)Ni .

Then, taking into account (4.9)–(4.10),

Hµi
(Qi) ≥ 2µi(Xi) logµi(Xi)− µi(Xi) log Cǫ + µi(Xi)(2− 5ǫ)Ni .

Here the first two terms are bounded, so for large enough i

Hµi
(Qi) ≥ µi(Xi)(2− 6ǫ)Ni

≥ (1− 2κ−1µi(X≥M))(2− 6ǫ)Ni ,

where we also used the estimate for Xi in Lemma 4.5. Combining this with

(4.8) and (4.7) we get

Hµi

( Ni∨

n=−Ni

T−n
P

)
≥

(
1− 2κ−1µi(X≥M)

)
(2− 6ǫ)Ni − O(κNi) .
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Now fix some integer N0 ≥ 1. Using subadditivity of entropy we have for

any large enough i that

Hµi

( N0∨

n=−N0

T−n
P

)
≥

(
1− 2κ−1µi(X≥M)

)
(2− 6ǫ)N0 − O(κN0)− ǫN0 .

This is now a statement involving only finitely many test functions, namely

the characteristic functions of all elements of
∨N0

n=−N0
T−nP and of X≥M .

Since there is no escape of mass by Lemma 4.4 and since we can assume

without loss of generality that all boundaries have zero measure for the weak∗

limit µ by Lemma 4.5, we get the same estimate for µ . Dividing by 2N0

and letting N0 now go to infinity we arrive at

hµ(T) ≥
(
1− 2µ(X≥M)1/2

)
(1− 3ǫ)− O(µ(X≥M)1/2)− ǫ

for any M ≥ 1 and ǫ > 0.

Since µ(X≥M) can be made arbitrarily small, it follows that hµ(T) ≥ 1,

i.e. T has maximal entropy. .

5. TRAJECTORIES SPENDING TIME HIGH IN THE CUSP,

AND A PROOF OF PROPOSITION 4.3

Apart from the characterization of the Haar measure as the unique measure

of maximal entropy in Theorem 4.1, the main technical estimate needed to

prove Theorem 4.2 is Proposition 4.3. We recall that this proposition states

that the set

Z(V) =
{

x ∈ TNX<M ∩ T−NX<M : for all n ∈ [−N,N] we have

T n(x) ∈ X≥M ⇔ n ∈ V
}

can be covered by ≪M e2N− 1
2
|V| Bowen N -balls.

In addition to proving this, we shall also prove here the promised purely

ergodic formulation of “high entropy inhibits escape of mass”, namely :

THEOREM 5.1. Let T be the time-one-map for the geodesic flow. There

exists some M0 with the property that

hµ(T) ≤ 1 +
log log M

log M
− µ(X≥M)

2
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for any probability measure µ on X = SL(2,Z)\ SL(2,R) invariant under the

geodesic flow and any M ≥ M0 . In particular, for a sequence of T -invariant

probability measures µi with entropies hµi
(T) ≥ c, any weak∗ limit µ satisfies

µ(X) ≥ 2c− 1 .

REMARK 5.2. Roughly speaking 1/2 is the critical point for Theorem 5.1

because the “upward” and “downward” parts of a trajectory, that goes high in

the cusp, are strongly related to each other. In fact, in the case of a p -adic

flow this phenomenon is easy to explain.

We consider another dynamical system of similar flavor : here the space

will be 4 )

Y = PGL2(Z[1/p])\ PGL2(R)× PGL2(Qp)

and the action will be by multiplication on the right of the PGL2(Qp) -

component by ap =

(
p

1

)
. Let M < PGL2(R)× PGL2(Qp) be the product

of PO2(R) and the group of diagonal matrices in PGL2(Zp) . There is a natural

right M -invariant projection π : Y → PSL2(Z)\H , and on this latter space we

have the Hecke correspondence which attaches to a point ż ∈ PSL2(Z)\H a

set Tp(ż) of p + 1 new points, namely if z ∈ H is a representative of ż then

(5.1) Tp(ż) = PSL2(Z)\ {pz, z/p, (z + 1)/p, . . . , (z + p− 1)/p} .
The space Y/M can be identified with the set of bi-infinite sequences

. . . , y−1, y0, y1, . . . with yi ∈ Tp(yi−1) � {yi−2} , and under this identification

multiplication by ap in the p -direction becomes simply the shift action. This in

particular shows that multiplication by ap on Y/M (or, with a bit more effort

on Y ) has entropy ≤ log p , and just like in our case this maximum is attained

for the Haar measure on Y . From (5.1) it is clear that if y ∈ PSL(2,Z)\H
is high up in the cusp, precisely 1 of its Tp -points will be higher in the

cusp, and p of these points would be lower than y in the cusp. Therefore

if . . . y−1, y0, y1, . . . is a sequence of points of PSL(2,Z)\H as above and if

yk are high up in the cusp for some contiguous range of k ’s, say n ≤ k ≤ m ,

then in this range given the value of yk there is only one possible way of

choosing yk+1 so that it is higher than yk . Since by assumption yk+2 �= yk

once yk+1 is lower than yk , the point yk+2 must be lower than yk+1 . Hence

if yk+1 is lower than yk for some k in the above range, then yk′+1 must be

lower then yk′ for all k′ in the range k ≤ k′ ≤ m . From the above discussion

it follows that while the trajectory is high up in the cusp, we have a choice of

which subsequent point to choose only half of the time, whence the factor 1
2

.

4 ) For technical reasons, it is preferable to use PGL2 here rather than SL2 .
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5.1 PROOF OF PROPOSITION 4.3 : THE NUMBER OF POSSIBLE SETS V

The easiest part of Proposition 4.3 is the final assertion, i.e. if we write

QM,N =

N∨

n=−N

T−n{X≥M,X<M},

then the above partition QM,N has ≪M e
2 log log M

log M
N

many elements.

We make use of the fundamental domain S ⊂ PSL2(R) from §1.3; the

geodesic flow X corresponds to following the geodesic determined by (z, v)

until the boundary of the fundamental region is reached, at which point one

applies either

(
1 ±1

1

)
to shift the geodesic horizontally or

(
−1

1

)
to

reflect on the bottom boundary of the fundamental region.

The basic point in the proof is that if x ∈ X satisfies ht(x) ≥ M , then

ht(T nx) ≥ 1 so long as n < ⌊2 log M⌋ , i.e. one needs at least ⌊2 log M⌋ steps

to reach points of height less than 1.

Therefore, in a time interval of length 2⌊2 log M⌋ there can be only

one stretch of times for which the points on the orbit are of height at

least M . In other words, the possible starting and end points of that time

interval completely determine an element of QM,⌊2 log M⌋ which therefore has at

most ≪ log2 M , say ≤ c0 log2 M , many elements. To obtain the final assertion

of Proposition 4.3, we note that QM,N can be obtained by taking refinements

of ⌊ 2N + 1

2⌊2 log M⌋+ 1
⌋ ≤ 2N + 1

4 log M − 1
many images and pre-images of QM,⌊2 log M⌋

and at most 2⌊2 log M⌋ many of {X≥M,X<M} . We get that QM,N has

size ≪M (c0 log2 M)
2N

4 log M−1 , which is at most e
2 log log M

log M
N

once M is large enough.

5.2 PROOF OF PROPOSITION 4.3 : COVERING Z(V) BY BOWEN BALLS

Write a =

(
e

1
2 0

0 e−
1
2

)
, so that T(x) = xa . Since X<M has compact

closure, it suffices to restrict ourselves to a neighborhood O of a point

x0 ∈ X<M . By taking the image under TN it also suffices to study the forward

orbit as follows. We will show that for the set V ⊂ [0,N− 1] picked, the set

Z+

O =

{
x ∈ O ∩ T−NX<M :

for all n ∈ [0,N − 1] we have T n(x) ∈ X≥M ⇔ n ∈ V
}
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can be covered by ≪M 2N− 1
2
|V| forward Bowen N -balls xB+

N , where

B+

N =

N−1⋂

n=0

a−nBG
ηan .

We may assume that the neighborhood we will consider is of the form

O = x0BU+

η/2BU−A
η/2 ,

where BH
r denotes the r -ball of the identity in a subgroup H < SL2(R) ,

A denotes the diagonal subgroup, and U+ resp. U− denote the unstable and

stable horocyclic subgroups as in Section 4.2.

Notice that by applying T n to O we get a neighborhood of T n(x0) for

which the U+ -part is en times as big while the second part is still contained

in BU−A
η/2

. By breaking the U+ -part into ⌈en⌉ sets of the form u+
i BU+

η/2
for

various u+
i ∈ U+ we can write Tn

2 (O) as a union of ⌈en⌉ sets of the form

T n(x0)u+

i BU+

η/2a−nBU−A
η/2 an ,

i.e. we obtain neighborhoods of similar shape. If we take the preimage

under T n of this set, we obtain a set contained in the forward Bowen n -ball

T−n(T n(x0)u+
i )B+

n . We will be iterating this procedure, but by using the

information that the orbit has to stay above height M for a long time we will

be able to cut down on the number of u+
i ∈ U+ needed to cover Z+

O .

In the proof of the claim we will use a partition of [0,N] into subintervals

of two types according to the set V . Notice that as in the proof of §5.1, we

can assume that V itself consists of intervals that are separated by 2⌊2 log M⌋ .
For otherwise the set Z+

O is empty since no orbit under T can leave X≥M and

return to it in a shorter amount of time. We enlarge every such subinterval

of V by ⌊2 log M⌋ on both sides to obtain the first type of disjoint intervals

I1, . . . , Ik . At the end points 0 and N we have required that x, TN(x) ∈ X<M

for all x ∈ Z+

O . For this reason we can assume without loss of generality that

all of these intervals are contained in [0,N] . (If this is not the case, we can

enlarge the interval [0,N] accordingly and absorb the change of the desired

upper estimate in the multiplicative constant that depends on M alone.) The

remainder of [0,N] we collect into the intervals J1, . . . ,Jℓ .

We will go through the time intervals Ii and Jj in their respective order

inside [0,N] . At each stage we will divide any of the sets obtained earlier

into ⌈e|Ii|⌉ — or ⌈e|Jj|⌉ — many sets, and in the case of Ii show that we

do not have to keep all of them. More precisely, we assume inductively that

for some K ≤ N we have [0,K] = I1 ∪ . . . ∪ Ii ∪ J1 ∪ . . . ∪ Jj and that all
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points in Z+

O can be covered by

≤ 2e|J1|+···+|Jj|+i⌊2 log2 M⌋+ 1
2

(|I1|+···+|Ii|)

many preimages under TK of sets of the form

(5.2) TK
2 (x0)u+BU+

η/2a−KBU−A
η/2 aK .

Note that for K = N this gives the lemma since by construction |I1|+ · · ·+
|Ik| = 2k⌊2 log M⌋+ |V| .

For the inductive step it will be useful to assume a slightly stronger

inductive assumption, namely that the multiplicative factor 2 is only allowed

if [0,K] ends with the interval Jj . Therefore, notice that if the next interval

is Jj+1 (i.e. [0,K] ends with Ii ) then there is not much to show. In that case

we keep all of the ⌈e|Jj+1|⌉ ≤ 2e|Jj+1| -many Bowen balls constructed above

and obtain the claim.

So assume now that the next time interval is Ii+1 = [K + 1,K + S] . Here

we will make use of the geometry of geodesics that visit X≥M during that

subinterval. Pick one of the sets (5.2) obtained in the earlier step and denote

it by Y . By definition of Z+

O we are only interested in points y ∈ Y which

satisfy

T n(y) ∈ X≥M ⇔ K + n ∈ V ,

or equivalently

ht(y), ht
(
T(y)

)
, . . . , ht

(
T⌊2 log M⌋(y)

)
< M ,

ht
(
T⌊2 log M⌋+1(y)

)
, . . . , ht

(
TS−⌊2 log M⌋(y)

)
≥ M ,

ht
(
TS−⌊2 log M⌋+1(y)

)
, . . . , ht

(
TS(y)

)
< M .

If there is no such point in Y there is nothing to show. So suppose y, y′ ∈ Y

are such points. We will use the above restrictions on the heights to show

that if

(5.3) y = TK
2 (x0)u+u+(t)v and y′ = TK

2 (x0)u+u+(t′)v′

for u+(t), u+(t′) ∈ BU+

η/2
and v, v′ in the conjugate of BU−A

η/2
, then

|t − t′| ≪ 2−S/2 . We can draw the geodesic orbits defined by y and y′

in the upper half model of the hyperbolic plane and relate the conditions

on y, y′ to geometric information about these geodesics. We choose the lift-

ing of the paths in such a way that the time interval for which the height

is above M becomes the part of the geodesic where the imaginary part is

above M2 .
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For the translation of the properties we will use the following observation :

For two points z1, z2 ∈ H on a geodesic line that are either both on the

upwards part or both on the downwards part of the corresponding semi-circle

their hyperbolic distance satisfies

(5.4) | log Im(z1)− log Im(z2)| ≤ d(z1, z2) ≤ | log Im(z1)− log Im(z2)|+ 1 .

The lower bound actually gives the shortest distance between points with

imaginary part Im(z1) and points with imaginary part Im(z2) . The upper

bound gives the length of a path that first connects the point lower down,

say z1 , to the point z′ immediately above with imaginary part Im(z2) and

then moves horizontally to a point that is Im(z2) far to the left or right of z′

towards z2 . For two points z1, z2 on the upwards or downwards part of a

semi-circle this path actually goes through z2 .

Applying the lower bound in (5.4) to the points corresponding to

y and T
⌊2 log M⌋+1

2 (y)

whose hyperbolic distance is ⌊2 log M⌋+ 1 we see that Im(y)≫ 1 (where in

a slight abuse of notation we identify y with the lifted point in H ). Similarly,

we get from the upper bound for y and T
⌊2 log M⌋
2 (y) that Im(y)≪ 1. Similar

estimates hold for TS
2 (y), y′ and TS

2 (y′) .

We assume that the points y, y′ are lifted in such a way that ℜ(y) ∈
[−1/2, 1/2] and such that y′ is close to y . Denote by α−, α+ ∈ R the

backwards and forwards limit points of the geodesic defined by y on the

boundary of H and similarly by α′
−, α

′
+ the endpoints of the geodesic for y′ .

Then |α−| < 2 +
1
2

since the lifting of the point y was chosen such that the

times of height ≥ M in X correspond to imaginary part ≥ M2 . For y′ this

implies for small enough η that |α′
−| < 3.

Let R =
1
2
|α+ − α−| be the radius of the half-circle defined by y and

define R′ similarly for y′ . Then the above shows R ≪ |α+| ≪ R once M

and so R are large enough to make α− negligible in comparison to α+ .

Similarly R′ ≪ |α′
+| ≪ R′ .

Applying (5.4) twice, once for y and the point z on the same geodesic

with imaginary part R , and once for z and TS
2 (y) we get

(5.5) |S − 2 log R| ≪ 1 and similarly |S − 2 log R′| ≪ 1 .

Therefore, R≪ R′ ≪ R and so |α+| ≪ |α′
+| ≪ |α+| .

Suppose g =

(
a b

c d

)
∈ SL(2,R) defines y = TK

2 (x0)u+u+(t)v in the

sense that the natural action of g maps the upwards vector at i to the vector
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associated to y for the lifting considered above. Then α+ = g(∞) = a
c

and

α− = g(0) = b
d

. Similarly, suppose g′ defines y′ = TK
2 (x0)u+u+(t′)v′ such

that α′
+ = g′(∞) . Using this notation we summarize what we already know

about these matrices

max(|a|, |b|, |c|, |d|)≪ 1 ,

R≪ |α+| = |
a

c
| ≪ R ,

R≪ |α′
+| ≪ R , and

|α−| = |
b

d
| ≪ 1 .

(5.6)

Here the first estimate follows since we know roughly the position of the

lift corresponding to y which means that g belongs to a compact subset

of SL(2,R) . We claim the above implies that

(5.7) 1≪ |d| , 1≪ |a| , and |c| ≪ |a|R−1 ≪ R−1 .

The first estimate follows since |b| ≪ |d| by the last estimate in (5.6) and

since g ∈ SL(2,R) belongs to a compact subset so that not both b and d are

small. The second claim follows similarly from the second estimate in (5.6).

To simplify the following calculation we would like to remove the

elements v, v′ (as in (5.3)) from our consideration — but to do this we need

to see how this affects the above statements. Recall first that v, v′ ∈ BU−A
η

and so v(∞) = v′(∞) =∞ . Therefore, the first three estimates above remain

unaffected when changing g resp. g′ on the right by v−1, (v′)−1 . Moreover,

we have |v−1(0)| ≪ η and so for small enough η that 1≪ |d| ≪ |cv−1(0)+d|
which implies |gv−1(0)| ≪ 1. In other words, none of the estimates in (5.6)

are affected (apart from possibly the values of the implicit constants) by

the proposed transition from g to gv−1 resp. g′ to g′(v′)−1 and we can

assume v = v′ = e .

Comparing the definitions of y and y′ we get g′ = gu+(t)−1u+(t′) .

Therefore,

α′
+ = g′(∞) =

(
gu+(t′ − t)

)
(∞) =

a
t′−t

+ b
c

t′−t
+ d

=
a + b(t′ − t)

c + d(t′ − t)
.

Since 1≪ |a| , u+(t), u+(t′) ∈ BU+

η/2
, and so |t′ − t| ≪ η we can simplify the

numerator and obtain together with the third estimate in (5.6) that for small

enough η > 0

R≪
∣∣ a

c + d(t′ − t)

∣∣≪ R ,
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or equivalently

R−1 ≪ |c + d(t′ − t)| ≪ R−1 .

Since |c| ≪ R−1 and 1≪ |d| by (5.7) this implies the estimate |t′−t| ≪ R−1 .

Now recall from (5.5) that eS/2 ≪ R , so that we get the desired |t′−t| ≪ e−S/2 .

Recall next that in the current time interval Ii+1 we divide BU+

η/2
into ⌈eS⌉

balls of the form BU+

e−Sη/2
. Since all points y′ that belong to Y∩TK(Z+

O ) satisfy

the estimate |t′− t| ≪ e−S/2 we see that only ≪ eSe−S/2
= eS/2 of these balls

can (after the correct thickening along AU− ) contain an element of Y∩TK (Z+

O ) .

This implies the inductive claim if we assume M sufficiently large that the

upper bound we got is strictly bounded from above by 1
2
e⌊2 log M⌋+S/2 .

This concludes the proof of Proposition 4.3. .

5.3 ENTROPY AND COVERS ; PROOF OF THEOREM 5.1

For the proof of Theorem 5.1 we need to relate entropy and covers via

Bowen balls. For this we need the following (well-known) result, which is

proved in Appendix B below (for cocompact Γ it follows from Brin and

A. Katok [5]).

LEMMA 5.3. Let µ be an A-invariant measure on X = Γ\ SL(2,R) . For

any N ≥ 1 and ǫ > 0 let BC(N, ǫ) be the minimal number of Bowen N -balls

needed to cover any subset of X of measure bigger than 1− ǫ . Then

hµ(T) ≤ lim
ǫ→0

lim inf
N→∞

log BC(N, ǫ)

2N
,

where T is the time-one-map of the geodesic flow.

Proof of Theorem 5.1. Note first that it suffices to consider ergodic

measures. For if µ is not ergodic, we can write µ as an integral of its ergodic

components µ =
∫
µt dτ (t) for some probability space (T, τ ) . Therefore,

µ(X≥M) =
∫
µt(X≥M) dτ (t) but also hµ(T) =

∫
hµt

(T) dτ (t) by [26, Thm. 8.4],

so that the desired estimate follows from the ergodic case.

Suppose µ is ergodic. To apply Lemma 5.3 we need to show that most

of X can be covered by not too many Bowen N -balls. Once M > 3 we have

that every T -orbit visits X<M , and so µ(X<M) > 0. By the ergodic theorem

there exists for every ǫ > 0 some K ≥ 1 such that

Y =

K−1⋃

k=0

T−kX<M satisfies µ(Y) > 1− ǫ .
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Moreover, also by the ergodic theorem

1

2N + 1

N∑

n=−N

1X≥M
(T n(x))→ µ(X≥M)

as N → ∞ for a.e. x ∈ X . So for large enough N the average on the left

will be bigger than κ = µ(X≥M)− ǫ for any x ∈ X1 and some subset X1 ⊂ X

of measure µ(X1) > 1− ǫ . Clearly for any N the set

Z = X1 ∩ TNY ∩ T−NY

has measure bigger than 1−3ǫ . Recall that we are interested in the asymptotics

of the minimal number of Bowen N -balls needed to cover Z . Here N →∞
while ǫ , and so also K , remains fixed. Since we can decompose Z into K2

many sets of the form

Z′
= X1 ∩ TN−k1 X<M ∩ T−N−k2 X<M ,

it suffices to cover these, and for simplicity of notation we assume k1 = k2 = 0.

Next we split Z′ into the sets Z(V) as in Proposition 4.3 for the various subsets

V ⊂ [−N,N] . §5.1 shows that we need at most ≪M e
2 log log M

log M
N

many of these.

Moreover, by our assumption on X1 we only need to look at sets V ⊂ [−N,N]

with |V| ≥ κ(2N + 1) . Therefore, Proposition 4.3 gives that each of those

sets Z(V) can be covered by ≪M e(1−κ
2

)2N many Bowen N -balls. Together

we see that Z can be covered by ≪M,K e
2 log log M

log M
N+(1−κ

2
)2N

Bowen N -balls.

Applying Lemma 5.3 we arrive at

hµ(T) ≤ 1 +
log log M

log M
− µ(X≥M)− ǫ

2

for any ǫ > 0, which proves the theorem. .

A. REPRESENTATIONS OF BINARY QUADRATIC FORMS BY TERNARY FORMS

In this section we establish Proposition 3.4 :

PROPOSITION. Let Q be an non-degenerate, integral 5) ternary quadratic

form on Z3 , and let

q(x, y) = a1x2
+ a2xy + a3y2

5 ) I.e. Q(Z3) ⊂ Z
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be a non-degenerate binary quadratic form on Z2 . Let f 2 be the greatest

square dividing gcd(a1, a2, a3) . Then the number N(q) of embeddings of (Z2, q)

into (Z3,Q) , modulo the action of SOQ(Z) , is ≪Q,ǫ f max(|a1|, |a2|, |a3|)ǫ .

We recall that an embedding of (Z2, q) into (Z3,Q) is a linear map

ι : Z2 → Z3 with the property that Q(ι(x)) = q(x) . Such a proposition was

established for the first time by Venkov for Q = x2
+ y2

+ z2 and extended

by Pall to other quadratic forms [25, 21]. The proposition can be deduced

from Siegel’s mass formula ; here we present a direct and elementary argument

inspired by the adelic proof of Siegel’s mass formula as outlined by Tamagawa

(cf. Weil’s paper [27]).

REMARK A.1.

– One may wonder what the dependency on Q in the above bound looks

like; this is for instance important to obtain equidistribution results when Q

is allowed to vary (see for instance [14, Thm. 1.8]). In the case where Q is

a multiple of the norm form on a lattice in the space of trace zero elements

of a quaternion algebra whose associated order is an Eichler order, it can be

shown that the dependency is of the shape ≪ε | disc(Q)|1/2+ε . . . . It seem

plausible that this holds in general

– The argument provides, in fact, an upper bound for the sum over a set

of representatives Qi, i = 1, . . . , g of the genus classes of Q , of the number

of embeddings of (Z2, q) into (Z3,Qi) modulo SOQi
(Z) .

– Finally it is easy to see that this argument carries over without significant

changes to quadratic forms defined over a general number field.

A.1 REDUCTION TO LOCAL COUNTING PROBLEMS

Fix an embedding ι : (Z2, q) →֒ (Z3,Q) and let

L := ι(Z2)

be its image (if no such embedding exists, we are obviously done). Then

any other embedding ι′ is (by Witt’s theorem ; see [22, IV.1.5, Theorem 3])

of the form g ◦ ι , with g ∈ SOQ(Q) . The stabilizer of ι inside SOQ(Q) is

trivial, for any isometry fixing L pointwise would need to map L⊥ to itself

and so must be multiplication by ±1 on L⊥ ; the condition of determinant 1

forces it to be the identity. The number of embeddings N(L) (up to the action

of SOQ(Z) ) is therefore precisely the number of cosets ġ ∈ SOQ(Z)\ SOQ(Q)

so that gL ⊂ Z3 .



294 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL AND A. VENKATESH

Given a rational lattice Λ ⊂ Q3 , for any prime p we denote by

Λp = Λ⊗Z Zp

its closure inside Q3
p . Let us recall that the map

Λ 
→ (Λp)p

is a bijection between the set of lattices in Q3 and the set of sequences of

lattices indexed by the primes (Λp)p , Λp ⊂ Q3
p such that Λp = Z3

p for a.e. p .

Write Kp = SOQ(Zp) for the stabilizer of Z3
p inside SOQ(Qp) and let

SOQ(Af ) = {gf = (gp)p : gp ∈ SOQ(Qp) , gp ∈ SOQ(Zp) for a.e. p} ;

the above bijection induces an action of SOQ(Af ) on the set of rational

lattices :

gf .Λ↔ gf .(Λp)p := (gpΛp)p .

REMARK A.2. The group SOQ(Af ) is the group of finite adèles of SOQ .

The SOQ(Af ) -orbit of a lattice Λ ∈ Q3 under this action is called the Q-genus

of Λ . We will not need much of this terminology or discuss further properties

of adelic groups here.

The group SOQ(Q) embeds diagonally into SOQ(Af ) . Now the stabilizer

of Z3 in SOQ(Af ) is Kf =
∏

p SOQ(Zp) and since Kf ∩ SOQ(Q) = SOQ(Z) ,

SOQ(Z)\ SOQ(Q) injects into Kf \ SOQ(Af ) .

Consequently, letting Lp = L ⊗Z Zp be the closure of L inside Z3
p , we

have

N(L) ≤ |{gf ∈ Kf \ SOQ(Af ) : gf .L ⊂ Z3}|
≤

∏

p

|{gp ∈ SOQ(Zp)\ SOQ(Qp) : gp.Lp ⊂ Z3
p}|

=

∏

p

|{gp ∈ SOQ(Qp)/ SOQ(Zp) : Lp ⊂ gpZ3
p}| =

∏

p

N(Lp) ,

with

N(Lp) = |{gp ∈ SOQ(Qp)/Kp : Lp ⊂ gpZ3
p}| = |{Λ ∈ SOQ(Qp).Z3

p : Lp ⊂ Λ}|

being the number of lattices in Q3
p , within the Q-isometry class of Z3

p that

contain Lp . We have proven that

N(L) ≤
∏

p

N(Lp) ,
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and thus have reduced our counting problem to a collection of local counting

problems (as we will see below N(Lp) = 1 for a.e. p ) ; a more careful analysis

of what we have said so far is very closely related to the proof of the mass

formula. In the present paper, however, we need only upper bounds.

A.2 THE ANISOTROPIC CASE AND A REDUCTION STEP

We first introduce some notations. We denote by

〈x, x′〉 = Q(x + x′)− Q(x)− Q(x′)

the bilinear form associated with Q ; so 〈x, x〉 = 2Q(x) . The discriminant

of Q is set to be

disc(Q) = det(〈xi, xj〉)i, j≤3

for {x1, x2, x3} any basis of Z3 . Since Q is integral 〈Z3,Z3〉 ⊂ Z , so disc(Q)

is a non-zero integer.

We notice first that if Q does not represent 0 nontrivially over Qp (i.e.

is anisotropic over Qp ), then SOQ(Qp) is compact and

(A.1) N(Lp) ≤ [SOQ(Qp) : SOQ(Zp)]≪Q 1 .

This (favorable) situation can occur only if p divides disc(Q) .

We suppose now that Q is isotropic over Qp for some prime p | 2 disc(Q) ,

we will reduce the problem of bounding N(Lp) to the case where the integral

quadratic form is given by Q(x, y, z) = xy+z2 . We note that disc(xy+z2) = 2.

This reduction comes with the cost that we also have to replace q by a

different quadratic form q′
= upmpq with u ∈ Z∗

p and mp ≥ 0. However, we

only have to make this change for p | 2 disc(Q) and mp will only depend

on Q . Using these facts we will see in Subsection A.7 that the bound for

the number of representations of q′ by xy + z2 will suffice for the proof of

Proposition 3.4.

We claim that there exists a basis of Q3
p over Qp so that the quadratic

form Q with respect to the coordinates of this basis has the form up−ℓ(xy+z2)

for some u ∈ Z∗
p and ℓ ∈ {0, 1} . Indeed as Q is isotropic, there exists a

hyperbolic plane in Q3
p . Complementing the basis of the hyperbolic plane with

a vector of the orthogonal complement we arrive at a basis so that Q has the

form xy + up−ℓz2 with u ∈ Z∗
p and ℓ ∈ Z . If necessary we may replace the

last basis vector by a multiple and can ensure that ℓ ∈ {0, 1} . Similarly we

may divide the first basis vector by up−ℓ and arrive at the claim.

Let Λ be the Zp -lattice in Q3
p spanned by the above basis. There exists

some k (depending only on Λ) so that pkZ3
p ⊂ Λ . Let ι : (Z2

p, q) → (Z3
p,Q)
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be an embedding of q . Then pkι : (Z2
p, p2kq)→ (Λ,Q) and finally

pkι : (Z2
p, u−1p2k+ℓq)→ (Λ, u−1pℓQ) ≃ (Z3

p, xy + z2)

are also embeddings of quadratic lattices. We set mp = 2k + ℓ and q′
=

u−1pmpq and obtain that there is an injection from the set of embeddings

ι : (Z2
p, q)→ (Z3

p,Q) to the embeddings ι′ : (Z2
p, q′)→ (Z3

p, xy + z2) .

A.3 THE CASE OF AN UNRAMIFIED LATTICE

The previous section reduces the proof of Proposition 3.4 to the problem

of finding an upper bound for N(Lp) where we may assume that either

p ∤ 2 disc(Q) or that Q(x, y, z) = xy + z2 . This will be done in the following

two local counting lemmas which depend on whether p = 2 or p > 2 :

Recall that for p > 2 any quadratic form q on some rank two Zp -lattice L

taking value in Zp may be written, in a suitable basis, in the form

(A.2) q(xe1 + ye2) = upax2
+ vpby2, u, v ∈ Z×

p , 0 ≤ a ≤ b ∈ Z≥0 .

To see this take an element e1 ∈ L such that the valuation of q(e1) is minimal

and then take the orthogonal complement of e1 , cf. [7, Sect. 8.3]. We shall call

the integers a ≤ b the invariants of the quadratic form (e.g. the invariants of

x2
+5y2 over Z5 are (0, 1)). This is a kind of p -adic analogue of the notion of

successive minima. The invariants determine the quadratic form over Zp — up

to isometry — up to O(1) possibilities. We will prove the following lemma.

LEMMA A.3. Let p > 2 , let Q be an isotropic quadratic form over Q3
p

so that p ∤ disc(Q) . Let L ⊂ Λ be a rank two sublattice such that Q|L has

invariants (a, b) , then

N(L; Λ) := |{Λ′ ∈ SOQ(Qp).Λ : L ⊂ Λ
′}| ≪ (b + 1)2p⌊a/2⌋ ,

where the implied constant is absolute. Moreover, if (a, b) = (0, 0) ,

N(L; Λ) = 1 .

In the 2-adic case, any quadratic form q on some rank two Z2 -lattice L

taking value in Z2 may be written, in a suitable basis either (cf. [16, Lemma

2.1] and [7, Sect. 8.4]) in the form

(A.3) q(xe1 + ye2) = u2ax2
+ v2by2, u, v ∈ Z×

2 , 0 ≤ a ≤ b ∈ Z≥0 ,

or in the form

(A.4) q(xe1+ye2)=u2bx2
+w2axy+v2by2, u, v, w ∈ Z×

2 , 0≤a≤b∈Z≥0 .
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In both cases we will refer to a ≤ b once more as the invariants of q . We

have the following lemma.

LEMMA A.4. Consider Q(x, y, z) = xy+ z2 as a quadratic form over Q3
2 ,

let Λ ⊂ Q3
2 be a lattice satisfying Q(Λ) ⊂ Z2 and which is maximal for

this property. Let L ⊂ Λ be a rank 2 -sublattice such that Q|L has invariants

(a, b) , then

N(L; Λ)≪ (b + 1)22⌊a/2⌋ ,

where the implied constant is absolute.

The proof of these two lemmas will use a geometric interpretation of the

quotient SOQ(Q3
p)/ SOQ(Λ) .

A.4 THE BRUHAT-TITS TREE

Let Q be an isotropic quadratic form such that p ∤ disc(Q) or Q(x, y, z) =

xy+ z2 . Note that Λ0 = Z3
p has the property that Q(Λ0) ⊂ Zp and that Λ0 is

maximal for this property. We set

TQ = SOQ(Q3
p)Λ0 ≃ SOQ(Q3

p)/Kp .

Even though this will not be used here, let us also mention that TQ is the set

of all lattices Λ in Q3
p such that

Q(Λ) ⊂ Zp

and which are maximal for this property (see [15, Cor. 4.17]).

We will need that TQ has the structure of a (p+1)-regular tree (see [6]) in

which Λ,Λ
′ are adjacent if and only if Λ∩Λ

′ has index p in Λ (or equivalently

in Λ
′ ). More generally, the distance d(Λ,Λ

′) between two vertices Λ,Λ
′

satisfies

pd(Λ,Λ′)
= [Λ : Λ ∩ Λ

′] = [Λ′ : Λ ∩ Λ
′] ,

and the geodesic between Λ and Λ
′ consists of all Λ

′′ ∈ TQ satisfying

Λ ∩ Λ
′ ⊂ Λ

′′ .

Let us describe the adjacency structure on TQ more explicitly using the

quadratic structure. Given any lattice Λ ∈ TQ , and any primitive v ∈ Λ (i.e.

v /∈ pΛ) for which v = v+ pΛ ∈ Λ/(pΛ) is isotropic over Fp (i.e. p | Q(v) )

we can define a lattice Λv ∈ TQ , which only depends on the line through v ,

as follows. Since

(A.5) Q(av + z) = a2Q(v) + Q(z) + a〈z, v〉 ∈ Zp
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and since the linear form 〈·, v〉 is not zero (even for p = 2), we may modify v

by some element pz0 ∈ pΛ to ensure that p2 | Q(v+pz0) . Here the element z0

is uniquely determined by v up to {z ∈ Λ : 〈z, v〉 ≡ 0 mod p} . Therefore,

the lattice

Λv :=
1

p
Zp(v + pz0) + {z ∈ Λ : 〈z, v〉 ≡ 0 mod p}

depends only on v , indeed only on the line through v . Using (A.5) we see

quickly that Q(Λv) ⊂ Zp . Below we will always assume that p2 | Q(v) and

set z0 = 0.

Under our assumptions on Q this lattice Λv ∈ TQ is a neighbor of Λ , and

there are exactly p+ 1 = |P1(Fp)| such lines, and thus every neighbor arises.

We will use also the following simple facts :

(1) For an isotropic v we have

Λ ∩ Λv = Zpv + {z ∈ Λ : 〈v, z〉 ≡ 0 mod p}.

(2) For v, v′ generating distinct isotropic lines the intersection

Λv ∩ Λv′ = {z ∈ Λ : 〈v, z〉 ≡ 〈v′, z〉 ≡ 0 mod p} = Zpw + pΛ

is the preimage in Λ of the orthogonal subspace (Fpv + Fpv′)⊥ ⊂ F3
p .

(3) Given three isotropic vectors v, v′, v′′ generating distinct lines and assum-

ing p > 2 we have

Λv ∩ Λv′ ∩ Λv′′ = pΛ .

One establishes also the following generalization :

PROPOSITION A.5. Let Λ lie at the mid-point of the geodesic between Λ
′

and Λ
′′ (i.e. there is n ≥ 1 such that d(Λ,Λ

′) = d(Λ,Λ
′′) = n, d(Λ′,Λ

′′) =

2n). There exists a primitive v ∈ Λ so that Q(v) ≡ 0(pn) and w ∈ Λ with

Q(w) �≡ 0(p) and 〈v,w〉 ≡ 0(pn) so that

Λ ∩ Λ
′
= {z ∈ Λ : 〈z, v〉 ≡ 0(pn)} = Zpv + Zpw + pn

Λ

and

Λ
′ ∩ Λ

′′
= Zpw + pn

Λ

is the preimage of the non-isotropic line defined by w under the projection

Λ 
→ Λ/pn
Λ . Moreover, for m ≤ n, let Λ

′
m be the lattice on the segment

[Λ,Λ
′] at distance m from Λ , then

Λ ∩ Λ
′
m = {z ∈ Λ : 〈z, v〉 ≡ 0(pm)} = Zpv + Zpw + pm

Λ ⊃ Λ ∩ Λ
′.
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A.5 PROOF OF LEMMA A.3

Let p > 2 and Q be as in the lemma. Define

R(L) := {Λ ∈ TQ : L ⊂ Λ} ⊂ TQ , N(L) = |R(L)| .

In the notation of Lemma A.3, N(L) = N(L; Λ) for any Λ ∈ TQ .

We start by remarking that R(L) is connected : if Λ,Λ
′ both contain L ,

then L ⊂ Λ ∩Λ
′ ⊂ Λ

′′ for any Λ
′′ on the geodesic path between Λ and Λ

′ .

Let q be as in (A.2). SupposeR(L) is non-empty and let ι : (Z2
p, q) →֒ (Λ,Q)

be an isometric embedding with image L = ι(Z2
p) and let e1 = ι(1, 0) ,

e2 = ι(0, 1) so

Q(e1) = upa , Q(e2) = vpb , 〈e1, e2〉 = 0 .

A.5.1 THE CASE (a, b) = (0, 0) . We show R(L) = {Λ} . If not, L is

also contained in a neighbor Λv of Λ . However, the induced quadratic form

on the span of ē1, ē2 is nondegenerate, so this span cannot be v⊥ for an

isotropic v ∈ Λ/pΛ . So N(L) = 1.

A.5.2 THE CASE a = 0, b ≥ 1. Suppose that N(L) > 1. Then there is

an isotropic v so that e1 belongs to v⊥ . This shows that e⊥1 is a hyperbolic

plane (first modulo p , and then since p �= 2 also on Q3
p ).

In other words, e⊥1 ∩ Λ is a rank two lattice generated by two isotropic

vectors v, v′ (which are liftings of isotropic vectors generating e1
⊥ ) and then,

there are exactly two neighboring lattices containing e1 , namely Λv and Λv′ ;

that there are at most two follows from Fact (A.4). Pursuing this reasoning,

we see that the only lattices that can contain e1 are the lattices

Λn := Zpp−nv + Zpe1 + Zppnv′, n ∈ Z

(which is a geodesic in the tree determined by e1 ).

Let us now see that for n > b , Λ±2n does not contain e2 , which will

show that N(L) ≤ 4b + 3. Suppose e2 ∈ Λn , then

e2 ∈ Λ ∩ Λ2n = Zpe1 + pn
Λn

write e2 = αe1 + z , α ∈ Zp, z ∈ pn
Λn we obtain

〈e1, e2〉 = 0 ≡ α (mod pn) , Q(e2) = vpb ≡ α2 ≡ 0 (mod pn) .

This is a contradiction for n > b .
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A.5.3 THE CASE a = 1. We show N(L) ≤ 2 : Suppose that L ⊂ Λv for

some v . Since e1 ∈ Λ/pΛ is a non-zero isotropic vector contained in v⊥

it has to be a multiple of v . By symmetry between Λ and Λv , this also

shows that Λ is the only neighbor of Λv which contains L . Since R(L) is

a connected subset of the tree, this shows that N(L) ≤ 2 as claimed.

A.5.4 THE CASE a ≥ 2. Let

L1 := Zpe′1+Zpe2, L2 := Zpe1+Zpe′2, e′i = ei/p, i = 1, 2, L1+L2 =
1

p
L ;

these are rank two lattices containing L , on which Q is Zp -valued with

respective invariants (a − 2, b) , (a, b− 2) and (a − 2, b − 2) . We will show

that either N(L) = 1 or

(A.6) R(L) ⊂ R(L1) ∪R(L2) ∪
⋃

Λ′∈R( 1
p

L)

B(Λ′, 1) ,

where B(Λ′, d) = {Λ′′ ∈ TQ, d(Λ′,Λ
′′) ≤ d} is the ball in the tree of radius d

centered at Λ
′ ; it has cardinality 1 + (p + 1)

pd − 1

p − 1
≤ (1 +

3
p

)pd .

Here is the proof of (A.6). Let Λ ∈ R(L) . If e1 ∈ pΛ or e2 ∈ pΛ , then

Λ ∈ R(L1) ∪ R(L2) . So suppose now e1, e2 ∈ Λ are both primitive vectors.

By assumption, we have for i = 1, 2 (since Q(ei) ≡ 0 (mod p) ) that ei is a

non-zero isotropic vector. Since 〈e1, e2〉 = 0, e1 and e2 have to be co-linear ;

otherwise the induced form on the reduction Λ would be identically zero on

a plane. Now Λe1
contains both L1 and L2 ; so it belongs to R( 1

p
L) . Thus

Λ is at distance at most 1 from R( 1
p
L) .

Let us now see how to conclude the proof of Lemma A.3 : for r, s ∈ N ,

let

Lr,s := Zpp−re1 + Zpp−se2 .

Q takes integral values on Lr,s for r ≤ ⌊a/2⌋ , s ≤ ⌊b/2⌋ . In this notation

(A.6) states

R(L0,0) ⊂ R(L1,0) ∪R(L0,1) ∪
⋃

Λ′∈R(L1,1)

B(Λ′, 1) .

We can now apply (A.6) again to each of the terms on the right. With each

application r or s or both increase by 1. In the latter case we obtain that the

previous lattice Λ
′ ∈ R(Lr,s) (to which (A.6) was applied) is at distance 1

from the new lattice Λ
′′ ∈ R(Lr+1,s+1) . Also note that in the latter case both

a and b are reduced by 2, so that this case can only happen ≤ ⌊a/2⌋ many
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times. Therefore, induction on a + b shows that

R(L) =R(L0,0)⊂
⋃{

B(L⌊a/2⌋,s, ⌊a/2⌋),B(Lr,⌊b/2⌋, ⌊a/2⌋) : 0≤ r, s≤ ⌊b/2⌋
}
.

Each L′
= L⌊a/2⌋,s resp. L′

= Lr,⌊b/2⌋ has invariants (0, b′) or (1, b′) with

b′ ≤ b and by the previous sections N(L′) = O(b+1) in all cases. Consequently

N(L)≪
∑

L′

∑

Λ′∈R(L′)

|B(Λ′, ⌊a/2⌋)| ≪ (b + 1)2p[a/2] .

A.6 PROOF OF LEMMA A.4

Recall that we assume that Q(x, y, z) = xy+ z2 . Note that (1, 0, 0), (0, 1, 0)

and (−1, 1, 1) are three isotropic vectors that are linearly independent

modulo 2, which define the neighbors of Z3
2 . For every pair f1, f2 of these

vectors we can find a third vector f3 ∈ Z3
2 so that Q(x f1+y f2+z f3) = xy+z2 .

Of the four non-zero non-isotropic vectors modulo 2 the vector k = (0, 0, 1) is

special, it is the only element in the kernel of 〈·, ·〉 modulo 2 and also satisfies

k ≡ f3 modulo 2 for any basis ( f1, f2, f3) as above. Below we will always

use the letter k to denote the corresponding element in the lattice Λ/2Λ .

A.6.1 THE DIAGONAL CASE (A.3). Suppose that in a suitable basis q

takes the form (A.3). This situation is similar to the proof of Lemma A.3.

We only discuss the details where the two proofs differ.

A.6.2 THE CASE (a, b) = (0, 0) . We claim that Λ ∈ R(L) has at

most one neighbor in R(L) . If one of e1 or e2 is not equal to k, then

we claim that R(L) contains at most one neighbor of Λ. To see this suppose

e1 �= k and L ⊂ Λv ∩Λv′ . Then by Fact (2), L is contained modulo 2 in the

common kernel of 〈·, v〉 and 〈·, v′〉 , which is one-dimensional and actually

equal to the span of k — a contradiction. Therefore, L ⊂ Λ∩Λv for at most

one neighbor Λv as claimed.

So suppose e1 = e2 = k and w ∈ Λ is such that Q
(
xe1 + y(e1 + 2w)

)
=

ux2
+ vy2 as in (A.3). Since we also have

Q
(
xe1 + y(e1 + 2w)

)
= x2Q(e1) + y2Q(e1 + 2w) + xy(2Q(e1) + 2〈e1, w〉)

and 2 | 〈e1, w〉 , it follows that Q
(
xe1 + y(e1 + 2w)

)
is not as in (A.3). So

we have seen that in all possible cases we have at most one neighbor of Λ

in R(L) . However, this shows N(L) ≤ 2 for (a, b) = (0, 0) .
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A.6.3 THE CASE a = 0 AND b ≥ 1. We claim that the main difference

between the case of p = 2 and p > 2 lies in this case. Here we will see

that R(L) is only contained in the set of elements at distance one to points

on a geodesic. This is caused by the fact that if e1 = k and e2 = 0, then

R(L) contains all neighbors of Λ due to Fact (1) and since k is orthogonal

to all three nonzero isotropic vectors in Λ/2Λ .

On the other hand, we have already seen above (in the case a = 0, b = 0)

that if e1 �= k then only one neighbor of Λ can be in R(L) . To prove that

R(L) consists of points at distance one from a geodesic we only have to

show that if e1 = k , then for at least one neighbor Λ
′ of Λ we have e1 �= k′

where k′ ∈ Λ
′/2Λ

′ is the corresponding special vector for Λ
′ . This follows

if we can find some vector w ∈ Λ
′ with 〈e1, w〉 �= 0.

To see this we simplify the notation and assume without loss of generality

Λ = Z3
2 . Let e1 = (α, β, γ) so that 〈e1, (1, 0, 0)〉 = β , 〈e1, (0, 1, 0)〉 = α ,

and 〈e1, (0, 0, 1)〉 = 2γ . Since e1 �= 0, one quickly sees that one of these

inner products is not divisible by 4. Without loss of generality we may as-

sume 4 ∤ β . Now consider the neighbor Λ
′
=

1
2
Z2 × 2Z2 × Z2 of Λ . Then

w = ( 1
2
, 0, 0) ∈ Λ

′ satisfies 〈e1, w〉 = 1
2
β �≡ 0 (mod 2). Hence as claimed,

e1 �= k′ and so only one neighbor of Λ
′ , namely Λ itself, can belong to R(L) .

It follows that there exists a line segment I ⊂ R(L) in a geodesic in T (Q)

so that R(L) ⊂ ⋃
Λ∈I B(Λ, 1) . Arguing as in Subsection A.5.2 we can bound

the length of I in terms of b and obtain N(L) ≤ 3(4b + 3) .

A.6.4 THE CASE a ≥ 1. The arguments for p > 2 carry over to the

remaining cases.

A.6.5 THE NON-DIAGONAL CASE (A.4). So suppose now q is represented

by the lattice L = Z2e1 + Z2e2 ⊂ Λ with

Q(e1) = u2b, Q(e2) = v2b, 〈e1, e2〉 = w2a, u, v, w ∈ Z×
2 , 0 ≤ a ≤ b .

A.6.6 THE CASE a = 0. If (a, b) = (0, 0) , then e1 and e2 are linearly

independent in Λ/2Λ since otherwise w = 〈e1, e2〉 ≡ 0 (mod 2). Also note

that the plane generated by e1 and e2 does not contain any isotropic vector.

However, this implies that e1, e2 cannot be both contained in any Λv for then

v⊥ would contain e1, e2, v three linearly independent vectors.

If now (a, b) = (0, b ≥ 1) , e1 and e2 are two linearly independent isotropic

vectors and so e1 can only be contained in Λe1
. Similarly, e2 is only contained

in Λe2
. So L cannot be contained in any neighbor of Λ .
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In conclusion for a = 0 we have

N(L) = 1 .

A.6.7 THE CASE a = 1. In that case at least one of the vectors e1 and

e2 must be a non-zero isotropic vector, for otherwise a ≥ 2. Suppose e1 �= 0.

Then e1 ∈ Λv only for e1 = v . Therefore, L can only have one neighbor

in R(L) and so N(L) ≤ 2.

A.6.8 THE CASE a ≥ 2. We consider again the 2 rank two lattices

L1 := Z2e′1 + Z2e2 , L2 := Z2e1 + Z2e′2 , e′i = ei/2

which contain L and on which Q is Z2 -valued :

Q(e′1) = u2b−2 , Q(e′2) = v2b−2 , 〈e′1, e2〉 = 〈e1, e′2〉 = w2a−1 .

We describe now the type and the invariants of L1 — by symmetry L2

behaves the same way.

If a = b we may solve the equation in β ∈ Z
×
2

0 = 〈e2 + βe′1, e′1〉 = w2a−1
+ βu2b−1

and so Q|L1
is of diagonal form (A.3) in the basis {e2+βe′1, e′1} . Furthermore,

since

〈e2 + βe′1, e2 + βe′1〉 = 2Q(e2 + βe′1) = v2b+1
+ βw2a−1

it has invariants (a− 2, b− 2) .

If a < b , take β = 2b−a : in the basis {e2 + βe′1, e′1} , Q|L1
takes the

non-diagonal form (A.4) with (a′, b′) = (a−1, b−2) . Finally Q|L1+L2
= Q|L/2

takes the form (A.4) with (a′′, b′′) = (a− 2, b− 2) .

We then conclude exactly as in Subsection A.5.4 by proving that either

N(L) = 1 or (A.6) holds. This implies once more the desired bound.

A.7 PROOF OF PROPOSITION 3.4

We now show how the previous subsections combine to the proof of

Proposition 3.4.

Recall that we are bounding the number of representations N(L) of the

quadratic form q(x, y) = a1x2
+ a2xy + a3y2 by the ternary quadratic form Q

up to SOQ(Z) . For any p let us write ap and bp for the invariants of q

over Zp as in Section A.3. Let f 2| gcd(a1, a2, a3) be the greatest common

square divisor of the coefficients of q . Then a = vp( f ) .
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By the discussion in Sections A.1-A.2 we know that

N(L)≪
∏

p
Q p -isotropic

N(Lp) .

Also recall from Section A.2 that for bounding N(Lp) for p| disc(Q) we may

replace Q by xy + z2 and q by a fixed multiple q′ of q , where the factor

only depends on Q . From this we see that Lemmas A.3-A.4 also hold for

p| disc(Q) for q and Q , except that the implicit constant depends for those

primes also on Q .

Notice that for any prime p > 2 we have ap + bp = vp(disc(q)) and

ap = vp(gcd(a1, a2, a3)) . For p = 2 we have v2(disc(q)) = a+ b+ 2 in the di-

agonal case and v2(disc(q)) = 2a in the non-diagonal case. Also let c ≥ 1 be

the implied constant in Lemma A.3. Together with Lemmas A.3-A.4 this gives

N(L)≪
∏

p|2 disc(q)

c
(
vp(disc(q)) + 1

)2
pvp( f ) ≪ǫ f max(a1, a2, a3)ǫ ,

as desired. .

B. ENTROPY, BOWEN BALLS AND

UNIQUENESS OF MEASURE OF MAXIMAL ENTROPY

B.1 STATEMENT OF MAIN RESULTS

We recall some notations : we work in the space X = Γ\G with

G = SL2(R) , and let T denote the time-one-map of the geodesic flow, i.e.

the map

T : x 
→ xa with a =

(
e1/2 0

0 e−1/2

)
.

We define a Bowen (N, η) -ball in this space to be any set of the form xBN,η

with x ∈ X and

BN,η =

N⋂

n=−N

a−nBG
η (e)an

(in the sections above η remained fixed and was omitted from the notations,

but here it will be convenient to be able to use Bowen balls of varying η ).

If Γ is cocompact, for all η sufficiently small, the Bowen (N, η) -ball

xBN,η coincides with the set

xBN,η = {y : d(T n(x), T n(y)) < η for all −N ≤ n ≤ N } .
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This is not true any more for noncompact quotients, where in general the

right-hand side can be significantly bigger than the left-hand side which is

the source of some complications.

The following theorem was proved for compact quotients by Bowen in [4].

It is certainly well known also in the finite volume case, and proofs using

leafwise measures can be found e.g. [20, Prop. 9.6] and the more recent

lecture notes [12, Thm. 7.9].

THEOREM B.1. Let X = Γ\ SL2(R) and T : X → X be as above. Then

for any T -invariant probability measure ν the entropy satisfies hν(T) ≤ 1 .

Moreover, equality holds if and only if ν = µX is the SL2(R) -invariant

probability measure on X .

We give here a direct proof not using leafwise measures, based on

Lemma B.2 (which is identical to Lemma 5.3 and was needed for the proofs

in §4), in the spirit of Bowen’s proof (that in turn was inspired by a proof

by Adler and Weiss [1] of the uniqueness of measure of maximal entropy in

irreducible shifts of finite type).

LEMMA B.2. Let µ be an A-invariant measure on X = Γ\ SL(2,R) . Fix

η > 0 and ǫ ∈ (0, 1) . For any N ≥ 1 we let BCη(N, ǫ) be the minimal

number of Bowen (N, η) -balls needed to cover any subset of X of measure

bigger than 1− ǫ . Then

(B.1) hµ(T) ≤ lim
ǫ→0

lim inf
N→∞

log BCη(N, ǫ)

2N
.

It is easy to see that for any η, η′ > 0 a Bowen (N, η) -ball can be covered

by ≪ 1 Bowen (N, η′) -balls. Therefore,

(B.2) lim inf
N→∞

log BCη(N, ǫ)/2N

is independent of η . One can show that if µ is ergodic, equality holds

in (B.1), and moreover that the quantity in (B.2) is independent of ǫ . If µ is

not ergodic, then in general equality in (B.1) fails : in this case hµ(T) is the

average of the entropy of the ergodic components of µ and the right-hand

side of (B.1) gives the essential supremum of the entropies of the ergodic

components of µ . We shall not need either fact (nor will we prove them),

but will use the following related estimates for µ ergodic :
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LEMMA B.3. Assume that µ is in addition ergodic for T . Then for any

sufficiently small η (depending only on X ) and for any ǫ ∈ (0, 1) and any

large enough N (depending on µ, ǫ ), for any ǫ1 ∈ (0, ǫ) , if k is sufficiently

large (depending on ǫ1, ǫ,N, µ, η ) then

log BCη(kN, ǫ1) ≤ k(1− 2ǫ) log BCη(N, ǫ) + 4ǫNk + qk .

Here q is some absolute constant.

For our proof of Theorem B.1 it is crucial that the second error term (qk )

does not depend on N . Roughly speaking the lemma says, if we manage

to cover some set of measure bigger than 1 − ǫ by relatively few Bowen

(N, η) -balls, then a set of size 1 − ǫ′ can also be covered by relatively few

Bowen (Nk, η) -balls.

The reader may wish to look now at the proof of Theorem B.1 in

Subsection B.4 to see how the above two lemmas are used in combination to

imply the uniqueness of the measure of maximal entropy.

B.2 PROOF OF LEMMA B.2

In the proof we will need the notion of relative entropy for partitions :

For two partitions P = {S1, . . . , Sℓ} and Q = {Q1, . . . ,Qm} of a probability

space (X, µ) the relative entropy of P given Q is defined by

Hµ(P|Q) = −
∑

i, j

µ(Si ∩ Qj) log
µ(Si ∩ Qj)

µ(Qj)
,

and it is easy to see that it gives the following additivity of entropy

(B.3) Hµ(P ∨ Q) = Hµ(Q) + Hµ(P|Q) .

We should also use the notation P(x) to denote the elements of the finite or

countable partition P containing x .

Proof. Let P = {Q, S1, . . . , Sℓ} be a finite partition where Q is the only

unbounded set, all boundaries ∂Si are null sets which satisfy additionally

µ((∂Si)B
G
κ) < Cκ

for some constant C > 0 and all κ > 0, and finally hµ(T,P) > hµ(T) − δ .

Here

hµ(T,P) = lim
N→∞

Hµ(P[−N,N])

2N + 1

is the expression over which one needs to takes the supremum to define hµ(T) .

Such a partition exists since (i) by the general theory of entropy hµ(T) can be
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approximated by hµ(T,P) once P is a sufficiently fine partition, and (ii) one

can find for every x ∈ X arbitrary small r > 0 for which µ
(
(∂Br(x))BG

κ

)
< Cκ

for all κ > 0 (since for every x the function r 
→ µ(Br(x)) is monotone

increasing hence differentiable for a.e. r ).

We claim that for most points x ∈ X (we shall quantify this presently) it

holds that

(B.4) P[−N,N](x) ⊃ xBN,2η′ for η′ = ηN−2 ,

hence if y ∈ xBN,η′ , then yBN,η′ ⊂ P[−N,N](x) . To show this, suppose

y = xh /∈ P[−N,N](x) for h ∈ BN,η′ . Then for some n with |n| ≤ N the

elements

xan and xhan

belong to different elements of P . It follows that at least one of the elements

xan belong to (∂P)BG
2η′ for some P ∈ P , |n| ≤ N . Therefore, x belongs to

(B.5)

N⋃

n=−N

T n
⋃

S∈P

(∂S)BG
2η′

which has measure less than 2(2N+1)ℓCηN−2 ≪ N−1 . This proves the above

claim.

Roughly speaking BN,η has length η in the direction of A and ηe−N along

stable and unstable horocycle directions while BN,η′ has ηN−2 and ηN−2e−N

instead. From this one can easily deduce that one needs at most ≪ N6 many

translates of BN,η′ to cover BN,η . Choose f > limǫ→0 lim infN→∞
log BC(N, ǫ)

2N
.

Then for any ǫ > 0, there is some large N ≥ 1 depending on ǫ such that the

measure of the set in (B.5) is less than ǫ , and moreover such that 1− ǫ of

the space can be covered by less than e2Nf many translates of the set BN,η′ .

Say y1BN,η′ , . . . , ykBN,η′ (with k ≤ e2Nf ) cover X1 ⊂ X with µ(X1) ≥ 1−ǫ .

If x ∈ X1 is not in the union in (B.5). Since x ∈ yjBN,η′ for some j , it follows

from (B.4) that yjBN,η′ ⊂ P[−N,N](yj) . In other words, it follows that 1 − 2ǫ

of the space can be covered by e2Nf elements of the partition P[−N,N] .

Let P be the union of these partition elements and let P = {P,X�P} ⊂ σ(P)

be the associated partition. Write µB = (µ(B))−1µ|B for the normalized re-

striction of the measure µ to a Borel set B . It follows now from (B.3)

that

Hµ(P[−N,N]) = Hµ(P) + Hµ(P[−N,N]|P)

= Hµ(P) + µ(P)HµP
(P[−N,N]) + µ(X � P)HµX�P

(P[−N,N])

≤ log 2 + 2Nf + 4ǫNℓ
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since the entropy of a partition with K elements is at most log K . For N →∞
this shows that

hµ(T)− δ < hµ(T,P) ≤ f + 2ǫℓ ,

which implies the lemma since δ and ǫ were arbitrary. (Note that ℓ depends

on δ but not on ǫ .) .

B.3 PROOF OF LEMMA B.3

We shall say a Bowen ball yBN,η is injective if the map g 
→ yg is

injective on BN,η . Let η0 > 0 be such that 2η0 is smaller than the length

of any closed geodesic in X . An easy compactness argument shows that if

η ≤ η0 for any compact F ⊂ X there is a N0 so that if N > N0 and y ∈ F the

Bowen ball yBN,η is injective. In the proof we shall also make use of shifted

(s, t; η) -Bowen balls — sets of the form yBs,t;η where Bs,t;η :=
⋂t

i=s aiBG
ηa−i

and (s, t; η) sub-Bowen balls which are simply sets of the form yB for some

B ⊂ Bs,t;η . A shifted (s, t; η) -Bowen ball yBs,t;η (respectively, a (s, t; η) sub-

Bowen ball yB) is injective if the map g 
→ yg is injective on Bs,t;η (or B).

We note the following important properties of shifted Bowen balls :

(Bowen-1) For any s ≤ t ≤ r , the intersection of an injective (s, t; η) sub-

Bowen ball with an injective (t, r; η) sub-Bowen ball can be covered by

at most q injective (s, r; η) sub-Bowen balls;

(Bowen-2) For any s ≤ t ≤ r , an injective (s, t; η) sub-Bowen ball can be

covered by at most qer−t injective (s, r; η) sub-Bowen balls.

Proof of claims. Both claims can easily be reduced to their special cases

where t = 0 and where we only consider Bowen balls of the form gBs,r;η

in G instead of injective sub-Bowen balls in X .

For the proof of (Bowen-1) notice that there exists some C > 0 so that

(B.6) g1Bs,0;η ⊂ g1BU+

Cη BU−

Cηes B
A
Cη ,

where BH
r denotes the r -ball around the identity in a subgroup H ⊂ SL2(R) .

Similarly,

(B.7) g2B0,r;η ⊂ g2BU+

Ce−rηBU−

Cη BA
Cη .

We can now decompose each of the balls appearing on the right-hand side of

(B.6)–(B.7) into ≪ 1 many balls with certain smaller radius and obtain that

g1Bs,0;η ∩ g2B0,r;η is the union of ≪ 1 many sets of the form

O = (g1u+

1 BU+

η/8u−
1 BU−

ηes/8a1BA
η/8) ∩ (g2u+

2 BU+

ηe−r/8u−
2 BU−

η/8a2BA
η/8) ,
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where u+

1 ∈ BU+

Cη , u+

2 ∈ BU+

Cηe−r , u−
1 ∈ BU−

Cηes , u−
2 ∈ BU−

Cη , a1, a2 ∈ BA
Cη . If

g ∈ O and η0 is sufficiently small so that conjugation by an element of

distance Cη0 does not increase the distance to the identity significantly, it

follows that O ⊂ gB(s,r;η) which proves the first claim.

The second claim follows similarly by splitting the set Bs,0;η as in (B.6)

into ≪ er many sets of the form

O = g1u+

1 BU+

ηe−r/8
u−

1 BU−

ηes/8a1BA
η/8

with u+ ∈ BU+

≪η and u− ∈ BU−

≪ηes , and showing that for g ∈ O we have

O ⊂ gBs,r;η . .

Proof of Lemma B.3. Let η ∈ (0, η0) where η0 is as defined above, and

let M be sufficiently large so that µ(X≤M) > 1−ǫ/2 and similarly choose M1

so that µ(X≤M1
) > 1−ǫ1/2. We require that N be sufficiently large so that any

(N, η) -Bowen ball yBN,η intersecting X≤M is injective, and we choose k1 so

that a similar statement holds for any (k1N, η) -Bowen ball intersecting X≤M1
.

Let Ξ be a collection of (N, η) -Bowen balls of cardinality BCη(N, ǫ)

covering a subset of X with µ-measure at least 1− ǫ . Then

Ξ
′
= {B ∈ Ξ : B ∩ X≤M �= ∅}

has µ
(⋃

B∈Ξ′ B
)
≥ 1 − 3ǫ

2
. Let Y =

⋃
B∈Ξ′ B . By the pointwise ergodic

theorem, there is a k2 ≥ k1 and a subset Y1 ⊂ X≤M1
of µ-measure ≥ 1− 3ǫ1

4

so that points in Y1 spend most of their time in Y in the following sense :

(B.8)
1

2n

n−1∑

s=−n

1Y (T s(y)) > 1− 2ǫ for all n ≥ k2N and y ∈ Y1 .

To complete the proof of Lemma B.3 we will show that for any k ≥ k3

there is a collection Ξ1 of (kN, η) -Bowen balls covering Y1 of cardinality

|Ξ1| ≪ N(2q)kBCη(N, ǫ)k(1−2ǫ)e(4ǫk+4)N .

Let c be the implied multiplicative constant. Then for large enough q′ (depend-

ing only on q and some absolute constants above) we have cN(2q)ke4N ≤ eq′k

for all sufficiently large k (where the bound is allowed to depend on N ).

Therefore, the existence of Ξ1 as above will establish the lemma.

Fix k ≥ k2 and let y ∈ Y1 . We partition the finite orbit

{T−kN(y), . . . , TkN−1(y)}
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into the 2N finite orbits of the form

{T−kN+ℓ(y), T (−k+2)N+ℓ(y), . . . , T (k−2)N+ℓ(y)}

for ℓ ∈ {0, . . . , 2N − 1} . By equation (B.8) there must for any y ∈ Y1 exist

some ℓ(y) ∈ {0, . . . , 2N − 1} so that

1

k

k−1∑

s=0

1Y(T (−k+2s)N+ℓ(y)(y)) ≥ 1− 2ǫ .

Let L = ⌈(1− 2ǫ)k⌉ . It follows that there are 0 ≤ t1 < t2 · · · < tL < k

with T (−k+2ti)N+ℓ(y)(y) ∈ Y . Furthermore, there exist injective (N, η) -Bowen

balls B1, . . . ,BL ∈ Ξ so that

y ∈
L⋂

i=1

T−(−k+2ti)N−ℓ(y)Bi .

Recall that Ξ has BCη(N, ǫ) many elements. We now apply the properties

(Bowen-1) and (Bowen-2), and we conclude that the set of all y ∈ Y1 with a

given value of ℓ(y) and t1, . . . , tL can be covered by

≪ BCη(N, ǫ)k(1−2ǫ)+1e4Nkǫ+2Nqk+1

injective (kN, η) -Bowen balls. Since there are at most 2N2k choices of ℓ(y)

and t1, . . . , tL we are done. .

B.4 PROOF OF THEOREM B.1

We begin with the observation that the SL(2,R) -invariant measure µX on X

achieves the upper bounds stated on the entropy, and moreover is ergodic un-

der T . Let ν �= µX be another T -invariant probability measure and without loss

of generality we may assume that ν is singular with respect to µX (which is

the case e.g. if ν is also ergodic), and let η0 be as in the proof of Lemma B.3.

Let f be a nonnegative, continuous, compactly supported function so that

(B.9)

∫
f dµX <

∫ 1

0

dt

∫
f (xat) dν ,

R some real number strictly between the left-hand side and right-hand side

of (B.9) and set

YT =

{
x :

1

T

∫ T

0

f (xat)dt > R

}
.

By construction YT is compact, and (for ǫ > 0 arbitrary) by the pointwise

ergodic theorem if T is large enough µX(YT ) < ǫ and ν(YT ) > 1− ǫ . In fact,
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if T is large enough, for any sufficiently large N it holds that

(B.10) µX(YTBN,η0
) < 2ǫ .

Fix such a T , and choose N so that (B.10) holds and moreover any (N, η0) -

Bowen ball intersecting YT is injective.

Now choose a maximal collection of disjoint (N, η0/2)-Bowen balls

intersecting YT . Each of these balls has µX -volume ≫η0
e−2N (the implicit

constant is independent of ǫ and N ). In view of (B.10), it follows that the

cardinality of this collection is ≪η0
ǫe2N , and by maximality the corresponding

collection of (N, η0) -Bowen balls covers YT . As ν(YT ) > 1 − ǫ we obtain

BCη0
(N, ǫ, ν)≪η0

ǫe2N (note that since we are simultaneously discussing two

measures we have added ν to the notation BC(·) ).

Roughly speaking the above upper bound should lead to hν(T) < 1 by

using Lemma B.2 : most of the space with respect to ν is covered by relatively

few, namely ≤ Cǫe2N , Bowen (N, η) -balls. However, as (B.1) first takes the

limit as N → ∞ this inequality does not directly imply hν(T) < 1. To

overcome this we introduce an ǫ′ ∈ (0, ǫ) and will use Lemma B.3 to obtain

the bound on the covering number for ǫ′ and kN . Indeed applying Lemma B.3

we conclude that for any ǫ′ ∈ (0, ǫ) if k is sufficiently large

log BCη0
(kN, ǫ′, ν) ≤ k(1− 2ǫ)(2N + log(Cǫ)) + 4ǫkN + qk

≤ k(1− 2ǫ)2N +
1

2
k log(Cǫ) + 4ǫkN + qk = 2Nk +

(
q +

1

2
log(Cǫ)

)
k ,

where we also assumed ǫ < 1/4 and Cǫ < 1. Hence we obtain for any

ǫ′ ∈ (0, ǫ) that

lim inf
k→∞

1

2kN
log BCη0

(kN, ǫ′, ν) ≤ 1 +
2q + log(Cǫ)

4N
.

However, for sufficiently small ǫ the right-hand side is < 1. Hence by

Lemma B.2 we get hν(T) < 1. Therefore, mX is the only probability measure

on X with hmX
(T) ≥ 1.

REFERENCES

[1] ADLER, R. L. and B. WEISS. Entropy, a complete metric invariant for automor-
phisms of the torus. Proc. Nat. Acad. Sci. U. S. A. 57 (1967), 1573–1576.

[2] BENOIST, Y. and H. OH. Equidistribution of rational matrices in their conjugacy
classes. Geom. Funct. Anal. 17 (2007), 1–32.

[3] BOREL, A. Some finiteness properties of adele groups over number fields. Inst.
Hautes Études Sci. Publ. Math. 16 (1963), 5–30.



312 M. EINSIEDLER, E. LINDENSTRAUSS, PH. MICHEL AND A. VENKATESH

[4] BOWEN, R. Maximizing entropy for a hyperbolic flow. Math. Systems Theory
7 (1973), 300–303.

[5] BRIN, M. and A. KATOK. On local entropy. In : Geometric Dynamics (Rio de
Janeiro, 1981), 30–38. Lecture Notes in Mathematics 1007. Springer,
Berlin, 1983.
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