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ALMOST-PERIODIC ACTIONS ON THE REAL LINE

by Bertrand DEROIN

ABSTRACT. A homeomorphism of the real line is almost-periodic if the set of its
conjugates by the translations is relatively compact in the compact open topology. Our
main result states that an action of a finitely generated group on the real line without
global fixed points is conjugated to an action by almost-periodic homeomorphisms
without almost fixed points. This is equivalent to saying that the real line together
with the translation flow can be compactified as an orbit of a free action of R on
a compact space, together with an action of the group by homeomorphisms without
global fixed points. As an application we give an alternative proof of Witte’s theorem :
an amenable left orderable group is locally indicable.

1. INTRODUCTION

A group G is left-orderable if there exists a total order on G which

is invariant by left translations. Many groups are left-orderable : free groups,

surface groups, braid groups, conjecturally every lattice in SO(1, 3) is virtually

left-orderable, etc. See e.g. [8] for interesting references. On the other hand,

no group with Kazhdan property (T) is known to be left-orderable, and lattices

in semi-simple Lie groups of rank ≥ 2 are believed not to be, see Witte’s

work [10] where this is proved if the Q-rank of the lattice is ≥ 2, and [5,

Problem 7.3, p. 389], where this problem is explicitly stated.

The reason for such a belief, at least in the case of lattices, comes

from a conjecture by Zimmer, stating that a lattice of a semi-simple Lie

group of rank ≥ 2 does not act faithfully on a 1-dimensional manifold by

homeomorphisms. Since a countable group is left-orderable if and only if it

has a faithful action by orientation preserving homeomorphisms on the real

line, see [5, Theorem 6.8, p. 374], Zimmer’s conjecture predicts that a lattice

in a semi-simple Lie group of rank ≥ 2 is not left-orderable.
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Ghys proved in [4] the following very interesting statement : if a lattice of

a semi-simple Lie group of rank ≥ 2 acts on the circle by homeomorphisms,

then it has a finite orbit. From this he was able to deduce Zimmer’s conjecture

in the case where the action is of class C1 . However, if the action is only

continuous, the conjecture is still open.

Hence, it is tempting to ask the following question : is it true that a

finitely generated left-orderable group acts on the circle by homeomorphisms

without a finite orbit ? A positive answer would imply that a lattice in a

semi-simple Lie group of rank ≥ 2 is not left-orderable. This would also

solve the following conjecture by Linnell : a finitely generated left-orderable

group either contains a free group on two generators, or it has a non trivial

morphism to the integers. Indeed, if a group acts on the circle without a

finite orbit, then either it is semi-conjugated to an action by rotations (and

in this case we easily find a non trivial morphism to the integers), or it has

no invariant measure, and a result of Margulis ensures that it contains a free

group on two generators, see [7].

The goal of this note is to give an “almost” positive answer to the question

asked above. Namely, we prove the following :

THEOREM 1.1. Let G be a finitely generated left-orderable group. Then

there is a compact space X , a free action of R on X , and an action of G

on X without global fixed points, which preserves the R-orbits and acts on

them by orientation preserving homeomorphisms.

We think of this action of G on X as being an almost action of the

group G on the circle. Indeed X can be approximated by circles in the

following way : consider a long segment contained in an R-orbit, with close

extremities in X , and glue them together to obtain a circle (such a segment

exists by compactness). The action of G on X does not provide an action

of G on this circle, but almost ! Observe moreover that G does not have any

finite orbit on X .

We believe that this construction can serve for the resolution of the above

mentioned problems. To motivate its interest, we give an alternative proof of a

theorem by Witte, which is a partial version of Linnell’s conjecture, see [11] :

if a finitely generated left-orderable group is amenable then it has a non trivial

morphism to the integers. The interested reader can go directly to Section 6

to find the proof of Witte’s theorem assuming Theorem 1.1.

For the construction of the space X , we introduce the following notion of

almost-periodicity for homeomorphisms of the real line : a homeomorphism is
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called almost-periodic if the set of its conjugates by the translations τ s(t) = t+s

is relatively compact in Homeo+(R) for the compact open topology, see

Section 2 for more details. We prove that every action of a finitely generated

group G on the real line without fixed points is conjugated to an action by

almost-periodic homeomorphisms, without almost fixed points, that is

inf
t∈R
max
g∈S

|g(t)− t| > 0 ,

where S is a finite generating set of G , see Theorem 4.1. This easily permits

us to construct our space X , together with the flow and the G-action, see

Lemma 2.2.

An important device used to construct almost-periodic actions, is to

conjugate a given action by homeomorphisms on the real line to an action

by bi-Lipschitz homeomorphisms. This is interesting on its own, and is the

content of Section 3.
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2. ALMOST-PERIODIC REPRESENTATIONS

The group of homeomorphisms of the real line preserving the orientation,

Homeo+(R) , is equipped with the compact open topology, which turns it into

a topological group. A homeomorphism h : R→ R is called almost-periodic

if the set

{τ−1s ◦ h ◦ τs | s ∈ R}

is relatively compact in Homeo+(R) , where τs(t) = s+ t . The set of almost-

periodic and orientation preserving homeomorphisms is denoted APH +(R) .

PROPOSITION 2.1. APH+(R) is a subgroup of Homeo+(R) .

Proof. This is a consequence of the continuity of composition and inverse

operations on Homeo+(R) considered with the compact open topology. .
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An action of a group on the line whose image is contained in APH +(R)

will be called almost-periodic. There are various ways to construct a faithful

almost-periodic action of a left-orderable and countable group G on the line.

The simplest is to begin with a faithful action by homeomorphisms on the

interval, and to extend it to the line by conjugating by the powers of the

translation t &→ t+ 1. Hence, APH+(R) contains a copy of any left-orderable

and countable group.

We will now provide the construction of a compact foliated space together

with a G-action on it preserving the leaves, beginning with an almost-periodic

action of G on the real line.

LEMMA 2.2. Let G be a finitely generated group and let ρ 0 :

G → Homeo+(R) be an action of G on the real line by orientation pre-

serving homeomorphisms. Then ρ0 is almost-periodic if and only if there

exists a flow \ = {\s}s∈R acting freely on a compact space X , an action

of G on X by homeomorphisms preserving every \-orbit together with their

orientation, and a point x0 ∈ X , such that for every g ∈ G and every t ∈ R
we have

(2.1) g · \t(x0) = \ρ0(g)(t)(x0) .

Moreover, we can suppose that the \-orbit of ρ0 is dense in X .

Proof. First, let us prove that if there exists a compact space X together

with a flow \ and a G-action verifying (2.1), then the representation ρ 0 is

almost-periodic. For every x ∈ X , we can lift the action of G on X to an

action ρx : G→ Homeo+(R) verifying

g · \t(x) = \ρx(g)(t)(x) ,

which is well-defined since the R-action \ is free. Moreover, since the

G-action on X is continuous, for every g ∈ G , the map x ∈ X &→ ρ x(g) ∈
Homeo+(R) is continuous. Hence, the set of elements ρx(g) , for x ∈ X , is

compact. Now, for every s, t ∈ R and every x ∈ X , we have

g ·\t(\s(x)) = g · \t+s(x) = \ρx(g)(t+s)(x) = \ρx(g)(t+s)−s(\s(x)) ,

so that we get the formula

ρ\s(x)(g) = τ−1s ◦ ρx(g) ◦ τs .
Hence, for every g ∈ G , the conjugates of ρ x(g) by the translations τs stay

in a compact set, which proves that ρx is almost-periodic for every x ∈ X ,

and in particular for x = x0 we deduce that ρ0 = ρx0 is almost-periodic.
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Before proving the reciprocal statement, let us make explicit an almost-

periodic homeomorphism : the homeomorphism σ defined by

(2.2) σ(t) = t +
1

3

(

sin(t)+ sin(
√
2t)

)

.

Indeed, the diffeomorphism of the 2-torus R 2/2πZ2 defined by the formula

σ(u, v) =
(

u+
1

3

(

sin(u)+ sin(v)
)

, v +

√
2

3

(

sin(u)+ sin(v)
)

)

preserves the orbits of the irrational linear flow defined by

^t = exp
(

t( ∂
∂u

+
√
2 ∂
∂v
)
)

,

and we have σ(^t(x0)) = ^σ(t)(x0) for every t ∈ R , with x0 = (0, 0). This

gives an example of an almost-periodic homeomorphism. It is interesting

to note that σ does not commute with any translation, as the reader can

easily check, hence giving a non trivial example of an almost-periodic

homeomorphism.

Let us now provide the existence of the compact space X , together with

the actions of R and G on X verifying (2.1), starting with an almost-periodic

action ρ0 . Introduce the set APA
+(G) of almost-periodic actions of G on the

real line. It can be seen as a closed subset of APH+(R)S , where S is a finite

generating set of G . Define the translation flow {\s}s∈R acting on APA+(G)

by conjugation by the translations, namely

(2.3) \s(ρ)(g) := τ−s ◦ ρ(g) ◦ τs
for every ρ ∈ APA+(G) and g ∈ G . This is a topological flow acting on

APA+(G) . Denote by X the closure of the \-orbit of ρ 0 . This is a compact

\-invariant subset of APA+(G) , since ρ0 is almost-periodic.

A priori, this action of the flow \ on X has no reason to be free. However,

it is possible to make it free by the following procedure. Observe that if ρ σ is

the action of Z on R mapping 1 to the homeomorphism σ defined in (2.2),

then the closure of the \-orbit of ρσ in APA+(Z) is homeomorphic to the

2-torus R2/2πZ2 , and the action of \ on this torus is the linear irrational

flow described above. Hence, upon replacing G by the free product G∗Z and

extending ρ0 so that the free generator is mapped to the homeomorphism σ

defined in (2.2), we may assume that X admits a \-equivariant continuous

map to the 2-torus, and in particular acts freely on X .

We claim that the formula

(2.4) g · ρ := τ−ρ(g)(0) ◦ ρ ◦ τρ(g)(0)
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defines an action of G on APA+(G) . One can verify this by a tedious

computation, but here is an elegant argument due to the referee. Consider the

actions of R and G on the product APA+(G)× R given by

s · (ρ, t) := (\s(ρ), t − s) and g · (ρ, t) =
(

ρ, ρ(g)(t)
)

.

An element of APA+(G)×R can be thought of as an action of G on the real

line together with a marker. The action by the reals is given by translating

the marker, while conjugating the representation by the same translation, and

the G-action is given by acting on the marker using the action given by the

first coordinate, while letting the representation unchanged. These two actions

commute, by an easy computation. Hence there is a natural action of G on

the quotient of APA+(G)×R by R , which naturally identifies with APA+(G)

via the embedding ρ ∈ APA+(G) &→ (ρ, 0) ∈ R× APA+(G) . The action of G

on APA+(G) induced by this identification is given by the formula (2.4).

By construction, the action of G on APA+(G) preserves each \-orbit,

and is conjugated to ρ on it. More precisely, we have :

g · \s(ρ) = \ρ(g)(s)(ρ) ,

for every s ∈ R , ρ ∈ APA+(G) , and g ∈ G . Hence, G preserves the set X ,

and the lemma is proved. .

3. A BI-LIPSCHITZ CONJUGATION THEOREM

We denote by Bilip+(R) the group of orientation preserving bi-Lipschitz

homeomorphisms of the real line. For every h ∈ Bilip+(R) , we denote by K(h)
the minimum of the numbers K ≥ 1 such that

(3.1) ∀x, y ∈ R K−1 · |y− x| ≤ |h(y)− h(x)| ≤ K · |y− x| .
We equip Bilip+(R) with the topology of uniform convergence on compact

subsets of R .

THEOREM 3.1. A finitely generated group of homeomorphisms of the real

line is conjugated to a group acting by Lipschitz homeomorphisms.

Proof. Our proof is inspired by a discussion with Marie-Claude Arnaud.

In [3], we give a more conceptual (but more elaborate) proof based on

probabilistic arguments. Equivalent results were proved for transverse pseudo-

group of foliations, or groups acting on the circle, see [1, Proposition 2.5]

and [2, Théorème D].
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Let λ = f (t)dt be a probability measure on R with a smooth and positive

density f such that for |t| large enough, we have f (t) = 1/t 2 . The following

observation will be central in what follows : if, for some constant L ≥ 1, a

homeomorphism h from the real line to itself satisfies

(3.2) h∗λ ≤ Lλ and (h−1)∗λ ≤ Lλ ,

then h is Lipschitz. To prove this fact, first observe that λ([t,+∞)) = 1
t
,

for t a large positive number (and similarly λ((−∞, t]) = 1
|t| if t is a large

negative number). Thus, the left part of (3.2) shows that for |t| large enough,
|h(t)| ≤ L|t| . The density of (h−1)∗λ being given by h′(t)f (h(t)) , the right

part of (3.2) gives the bound h ′(t) ≤ L f (t)

f (h(t))
for almost every t . Thus, up to

sets of Lebesgue measure 0, h′ is bounded on every compact interval, and

for |t| large enough we have h ′(t) ≤ L3 ; this proves that h′ is bounded, and

hence h is Lipschitz.

Denote by G a finitely generated subgroup of Homeo+(R) , and let S

be a finite system of generators for G . Let ϕ ∈ L1(G) be a function with

positive values such that, for every element h ∈ G , there is a constant L h

such that ϕ(hg) ≤ Lhϕ(g) ; for instance one can take ϕ(g) = α‖g‖ with α

a small enough positive number, where ‖g‖ is the minimum length of a

word in the elements of S which equals g . Normalize the function ϕ so that
∑

g∈G ϕ(g) = 1, and introduce the probability measure on R defined by

ν :=
∑

g∈G

ϕ(g) · g∗λ .

Observe that for every h ∈ G , we have

h∗ν =

∑

g∈G

ϕ(g) · (hg)∗λ ≤ Lν ,

where L = Lh−1 .

The measure ν has full support and no atoms. Thus, there exists a

homeomorphism φ from the real line to itself which maps ν to λ . Denote

h\ = \ ◦ h ◦\−1 . We have

h\∗λ = \∗h∗ν ≤ L\∗ν = Lλ .

From the discussion above, we deduce that G\ is contained in Bilip+(R) . .

4. ACTIONS WITHOUT ALMOST-FIXED POINTS

Let G be a finitely generated group with finite generating set S and

ρ ∈ APA+(G) an almost-periodic action of G on R . We say that ρ has an



190 B. DEROIN

almost fixed point if

inf
t∈R
sup
g∈S

|ρ(g)(t)− t| = 0 .

This property is equivalent to the following : the action of G on the compact

space constructed in Lemma 2.2 has a global fixed point in the closure of the

orbit \R(ρ0) . It is not immediate to construct almost-periodic actions without

almost fixed points. The main new device of this note is to provide such a

construction, if the group is finitely generated and left-orderable :

THEOREM 4.1. An orientation preserving action of a finitely generated

group on the real line is topologically conjugated to an almost-periodic action.

Moreover, if the original action has no fixed point, then it is possible to find

a conjugacy to an almost-periodic action without almost fixed points.

This section is devoted to the proof of Theorem 4.1. Let S be a finite

symmetric system of generators of G and let K > 1 and 0 < C < D

some constants. We denote by R = R(G, S,K,C,D) the set of representations

ρ : G → Bilip+(R) such that for every g ∈ S , K(ρ(g)) ≤ K and for every

t ∈ R :

(4.1) t − D ≤ min
g∈S

ρ(g)(t) ≤ t − C ≤ t + C ≤ max
g∈S

ρ(g)(t) ≤ t + D .

LEMMA 4.2. Let ρ0 : G→ Bilip+(R) be an action of a finitely generated

group G without global fixed points. There are constants K > 1 and C,D > 0

and a finite symmetric generating set S of G such that the set R contains a

representation conjugated to ρ0 . Moreover, R is a compact set.

Proof. It is sufficient to prove the statement in the case where G is a

finitely generated subgroup of Bilip+(R) and ρ0 = id . Let S be a finite

symmetric generating set of G and K be a constant such that for every

g ∈ S , K(g) ≤ K . The condition (4.1) might not be satisfied, e.g. when

the action is affine. So we will need to modify our action and build a new

one. To do so, we define a sequence of points tn ∈ R for every n ∈ Z by

t0 = 0 and tn+1 = maxg∈S g(tn) , or equivalently tn−1 = ming∈S g(tn) since S

is symmetric. Since G has no fixed point on the real line, we have

lim
n→±∞

tn = ±∞ .

We let ϕ be the homeomorphism from the real line to itself which sends t n

to n , and is affine on the intervals [tn, tn+1] . We claim that the action of G
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on the real line defined by ρ(g) = ϕ ◦ g ◦ϕ−1 belongs to R(G, S,K6, 1, 4) for

the generating set S = S ∪ S2 .

To prove this, we remark that the distortion of the sequence t n is uniformly

bounded; more precisely for every integer n ∈ Z , setting δ n = tn+1 − tn , we

have

(4.2) K−1 · δn+1 ≤ δn ≤ K · δn+1 .

To see this, write tn+1 = gn(tn) , where gn ∈ S . By definition gn(tn+1) ≤ tn+2 ,

and because gn is a K -bi-Lipschitz map, we get

tn+2 − tn+1 ≥ gn(tn+1)− gn(tn) ≥ K−1 · (tn+1 − tn) ,

hence the second inequality in (4.2). The first one is obtained by analogous

considerations. This implies that ϕ is close to being affine on [tn−1, tn+2] ;

more precisely, for every pair of points w, z ∈ [tn−1, tn+2] , we have

|z− w|
K · δn

≤ |ϕ(z)− ϕ(w)| ≤ K · |z− w|
δn

.

We are now able to prove that for every g ∈ S , the map ρ(g) is Lipschitz

and K(ρ(g)) ≤ K3 . It suffices to prove that ρ(g) is Lipschitz on every interval

of the form [n, n + 1] with Lipschitz constant K 3 . Consider two points

x, y ∈ [n, n+ 1] and define w = ϕ−1(x) , z = ϕ−1(y) : we have

|ρ(g)(y)− ρ(g)(x)| ≤ |ϕ(g(z))− ϕ(g(w))|

≤ K · |g(z)− g(w)|
δn

≤ K2 · |z− w|
δn

≤ K3|y− x| .

By construction, for every element g ∈ S ,

x− 2 ≤ ρ(g)(x)− x ≤ x+ 2 ,

because the nearest integer points after and before x are moved a distance less

than 1 by ρ(g) . Moreover, for every n ∈ Z , we have ρ(g n+1gn)(n) = n+ 2.

Hence, for every x ∈ R we have ρ(gn+1gn)(x) ≥ x + 1, n being the integer

part of x . Hence, we have proved that ρ belongs to R(G, S,K 6, 1, 4). .

Let us finish this section by giving the proof of Theorem 4.1. Let ρ 0
denote an orientation preserving action of a finitely generated group G on

the real line. Upon replacing G by G ∗ Z and extending ρ 0 so that the

free generator is mapped to a non trivial translation, we can assume that the

group has no fixed point. Hence it is only necessary to prove the second
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part of Theorem 4.1. By Theorem 3.1, this action is conjugated to an action

by bi-Lipschitz homeomorphisms, and by Lemma 4.2, there exist constants

C,D,K > 0 and a finite symmetric set S of G such that the set R contains

an element ρ1 which is conjugated to ρ0 . This set can be seen as a closed

subset of Bilip+(R)S , and as such is equipped with the product topology; the

relations (3.1) and (4.1) imply that R is a compact set, by the Arzel à-Ascoli

theorem. Moreover, the same relations show that the translation flow \ defined

by (2.3) preserves R . Hence, every element of R is an almost-periodic action

of G , and condition (4.1) shows that this action has no almost fixed points.

Hence, ρ1 is an almost-periodic action of G on R without almost fixed points

which is conjugated to ρ0 , and Theorem 4.1 is proved.

5. PROOF OF THEOREM 1.1

Let us provide the proof of Theorem 1.1. Let G be a finitely generated

left-orderable group. It is a classical fact that G has a faithful action

on the real line by orientation preserving homeomorphisms, and without

global fixed points. We recall the idea of the construction, and refer to [5,

Theorem 6.8, p. 374] for details. Let n ∈ N &→ g n ∈ G be a bijection.

We consider a sequence of distinct real numbers an defined inductively as

follows. Set a0 = 0, and suppose a1, . . . , an have been defined. If gn+1
is bigger (resp. smaller) than gk for all k ≤ n , set an+1 = supk≤n ak + 1

(resp. an+1 = infk≤n ak−1). If not, find an ordering of the integers from 0 to n

such that gi0 < gi1 < . . . < gin and let k ≤ n be such that gik < gn+1 < gik+1
.

In this case, define an+1 =
aik+aik+1

2
. The sequence (an) constructed in this

way has the same order as the sequence (gn) . The action of G on itself by left

translation preserves the order, hence the action of G on the subset {a n} ⊂ R
via the isomorphism G ≃ N ≃ {an} also preserves the natural order of R . We
leave to the reader to check that this action can be extended to a faithful action

of G by orientation preserving homeomorphisms on the real line without any

global fixed point.

By Theorem 4.1, this action is conjugated to an almost-periodic action ρ 0
on the real line, without almost fixed points. Consider the space X constructed

in Lemma 2.2, together with the free action of R and the G-action. Since ρ 0
has no almost fixed point and since \R(ρ0) is dense in X , G has no fixed

point in X . Moreover, G preserves every \-orbit. Thus, Theorem 1.1 is

proved. .



ALMOST-PERIODIC ACTIONS 193

6. AN ALTERNATIVE PROOF OF WITTE’S THEOREM

Let G be a finitely generated left-orderable group, and X a compact

space equipped with a free action of R and an action of G on it, as

described by Theorem 1.1. Suppose that G is amenable. Then there exists a

probability measure m on X which is invariant by G . Consider the conditional

measures of m along the orbits of the translation flow. These are Radon

measures on m-almost every \-orbit, well-defined up to multiplication by a

positive constant. We denote by m l this Radon measure on a \-orbit l . More

precisely, in a flow box [0, 1]×R where the flow \ is given by the formula

\s(t, l) = (t + s, l) , we desintegrate the measure m as

m(dt, dl) = ml(dt) m(dl)

where m is the image of m under the projection [0, 1] × R → R and the

measures ml are measures on the unit interval, see [9, Section 3]. The measures

ml depend on the flow box; however, they are well defined up to a positive

constant on almost every orbit.

Because G preserves m , and is countable, for m-almost every \-orbit l

of X and every element g of G , the measure g∗ml is a positive constant

times ml :

g∗ml = cl(g)ml , where cl(g) > 0 .

If ml is not preserved
1) by G , the map g &→ log cl is a non trivial morphism

from G to R , and hence we deduce the existence of a non trivial morphism

to Z . If not, ml is preserved by G , and either m l is atomic or not. In the

first case, ml has an atom whose orbit is discrete, and the group acts as a

translation on it, giving rise to a non trivial morphism to the integers. In the

second case, the action is semi-conjugated to an action by translations, which

defines a non trivial morphism to the real numbers, and hence to the integers.

In all cases, there is a non trivial morphism from G to Z .
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