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ON TOPONOGOV’S COMPARISON THEOREM FOR

ALEXANDROV SPACES

by Urs LANG and Viktor SCHROEDER

INTRODUCTION

In this expository note, we present a transparent proof of Toponogov’s
theorem for Alexandrov spaces in the general case, not assuming local
compactness of the underlying metric space. More precisely, we show that
if M is a complete geodesic metric space such that the Alexandrov triangle
comparisons for curvature greater than or equal to κ ∈ R are satisfied locally,
then these comparisons also hold in the large; see Theorem 2.3. The core
of the proof is Proposition 2.2. It states that a hinge H = px ∪ py in M
has the desired comparison property if every hinge H′ = p′x′ ∪ p′y′ with
an endpoint on H and perimeter |p′x′| + |p′y′| + |x′y′| less than some fixed
fraction of the perimeter of H has this property. The argument involves simple
inductive constructions in M and the model space M2

κ of constant curvature,
leading to two monotonic quantities (see (5) and (6)), whose limits agree.
This immediately gives the required inequality.
The history of Toponogov’s theorem starts with the work of Alexandrov [3],

who proved it for convex surfaces. Toponogov [10, 11, 12] established the result
for Riemannian manifolds, in which case the local comparison inequalities are
equivalently expressed as a respective lower bound on the sectional curvature.
A first purely metric local-to-global argument was given in [8] for geodesic
metric spaces with extendable geodesics. In its most general form, without the
assumption of local compactness, the theorem was proved in [6] (in [5] the
result is attributed to Perelman). An independent approach, building on [8],
was then described by Plaut [9]. The proof presented here is a modification
of his argument.
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In fact, the statements in both [6] and [9] differ from what is shown
here in that the metric of M is merely assumed to be intrinsic (that is,
d(p, q) equals the infimum of the lengths of all curves connecting p and q ,
but it is not required that the infimum be attained) ; correspondingly, the
Alexandrov comparisons are formulated without reference to shortest curves
in M . However, assuming M to be geodesic is not a severe restriction. By [9,
Theorem 1.4], for every point p in a complete, intrinsic metric space M of
curvature locally bounded below there is a dense Gδ subset Jp of M such
that for all q ∈ Jp there exists a shortest curve from p to q . A proof of
Toponogov’s theorem for intrinsic spaces via essentially the same construction
as here, which was found independently by Petrunin, is contained in the
preliminary version of the forthcoming book [1]. Nevertheless, we felt that
it would be worthwhile to make the argument in the present sleek form for
geodesic spaces (such as complete Riemannian manifolds) available in the
literature.

1. PRELIMINARIES

In this section we fix the notation and recall some basic definitions and
facts from metric geometry.
Let M be a metric space with metric d . By a segment connecting

two points p, q in M we mean the image of an isometric embedding
[0, d(p, q)] → M that maps 0 to p and d(p, q) to q . We will write pq
for some such segment (assuming there is one), despite the fact that it need
not be uniquely determined by p and q . We will use the symbol |pq| as
a shorthand for d(p, q) , regardless of the existence of a segment pq . By a
hinge H = Hp(x, y) in M we mean a collection of three points p, x, y and two
nondegenerate segments px, py in M ; thus p �∈ {x, y} (but possibly x = y).
We call p the vertex, x, y the endpoints, and px, py the sides of H . The
perimeter of a triple (p, x, y) of points in M is the number

per(p, x, y) := |px|+ |py|+ |xy| .
By the perimeter per(H) of a hinge H = Hp(x, y) we mean the perimeter of
the triple (p, x, y) .
We denote by Mm

κ the m-dimensional, complete and simply connected
model space of constant sectional curvature κ ∈ R . We write

Dκ := diam(Mm
κ) =

{
π/
√
κ if κ > 0 ,

∞ if κ ≤ 0 ,
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FIGURE 1

Proof of Lemma 1.2

for the diameter of Mm
κ . Some trigonometric formulae for the model spaces are

collected in the appendix. The following basic monotonicity property follows
readily from the law of cosines, equation (18).

LEMMA 1.1. Let κ ∈ R , and let a, b ∈ (0,Dκ) be fixed. For γ ∈ [0, π] ,
let Hp(x, y) be a hinge in M2

κ with |px| = b and |py| = a such that the hinge
angle ∠p(x, y) (between px and py) equals γ , and put ca,b(γ) := |xy| . The
function ca,b so defined is continuous and strictly increasing on [0, π] .

The next lemma goes back to Alexandrov [3], compare [5, Lemma 4.3.3].

LEMMA 1.2. Suppose that Hp(q, y) and Hq(x, y) are two hinges in M2
κ

with |py|, |qy|, |pq| + |qx| < Dκ , and Hp(x, y) is a hinge in M2
κ such that

|p x| = |pq|+ |qx| , |p y| = |py| , and |x y| = |xy| . Then ∠q(p, y)+∠q(x, y) ≤ π
if and only if ∠p(q, y) ≥ ∠p(x, y) , whereas ∠q(p, y)+∠q(x, y) ≥ π if and only
if ∠p(q, y) ≤ ∠p(x, y) .

Proof. Extend pq to a segment px′ of length |px′| = |pq| + |qx| ; see
Figure 1. Consider the following obvious identities :

π − ∠q(p, y)− ∠q(x, y) = ∠q(x′, y)− ∠q(x, y) ,(1)

|x′y| − |xy| = |x′y| − |x y| ,(2)

∠p(x′, y)− ∠p(x, y) = ∠p(q, y)− ∠p(x, y) .(3)

By Lemma 1.1, the right side of (1) and the left side of (2) have the same
sign, and also the right side of (2) and the left side of (3) have equal sign.
Hence, the same holds for the left side of (1) and the right side of (3). .
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Let again M be a metric space, and let κ ∈ R . Given p, x, y ∈ M , a
triple (p, x, y) of points in M2

κ is called a comparison triple for (p, x, y) if
|p x| = |px| , |p y| = |py| , and |x y| = |xy| . If κ ≤ 0, such a comparison
triple always exists, and if κ > 0, a comparison triple exists if and only
if per(p, x, y) ≤ 2Dκ . This is obvious if one of the distances a := |py| ,
b := |px| , and c := |xy| is zero or equal to Dκ . Otherwise, when
a, b, c ∈ (0,Dκ) , the assertion follows from Lemma 1.1 : Depending on whether
a + b < Dκ or a + b ≥ Dκ , the function ca,b maps [0, π] bijectively onto
[|a− b|, a+ b] or [|a− b|, 2Dκ − a− b] . In either case, the given number c
is contained in the image of ca,b , so there exists a unique γ ∈ [0, π] such
that ca,b(γ) = c .

Now consider a triple (p, x, y) of points in M such that p �∈ {x, y} . In
case κ > 0, suppose that |px|, |py| < Dκ and per(p, x, y) ≤ 2Dκ . Then any
comparison triple (p, x, y) in M2

κ uniquely determines a hinge Hp(x, y) and
one defines the comparison angle ∠κ

p (x, y) ∈ [0, π] as the hinge angle, thus

∠κ
p (x, y) := ∠p(x, y) .

For an arbitrary hinge Hp(x, y) in M , the (Alexandrov) angle or upper angle
of Hp(x, y) is then defined by

∠p(x, y) := lim sup
u∈px, v∈py
u,v→p

∠κ
p (u, v) .

The number ∠p(x, y) is clearly independent of κ ∈ R . Furthermore, if px, py, pz
are three nondegenerate segments, the triangle inequality

(4) ∠p(x, y)+ ∠p(y, z) ≥ ∠p(x, z)

holds, see [2] or [4, Part I, Proposition 1.14].

Let again H = Hp(x, y) be a hinge in M , and suppose that per(H) < 2Dκ .
Let (p, x, y) be a comparison triple in M2

κ for (p, x, y) , and let Hp̂(x̂, ŷ) be
a comparison hinge in M2

κ for H , that is, |p̂x̂| = |px| , |p̂ŷ| = |py| , and
∠p̂(x̂, ŷ) = ∠p(x, y) . We are interested in the following comparison properties
that H may or may not have :

(Aκ) (Angle comparison) ∠p(x, y) ≥ ∠κ
p (x, y) (= ∠p(x, y) ) ;

(Hκ) (Hinge comparison) |xy| ≤ |x̂ŷ| ;
(Dκ) (Distance comparison) |uv| ≥ |u v| whenever u ∈ px , v ∈ py , u ∈ p x ,

v ∈ p y , and |pu| = |p u| , |pv| = |p v| .
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It follows easily from Lemma 1.1 that, for an individual hinge H as above,

(Dκ) ⇒ (Aκ) ⇔ (Hκ) .

For the missing implication (Aκ) ⇒ (Dκ), see Lemma 1.3 below. The metric
space M is called a space of curvature ≥ κ in the sense of Alexandrov if
every point q has a neighborhood Uq such that any two points in Uq are
connected by a segment in M and every hinge H = Hp(x, y) with p, x, y ∈ Uq

(and per(H) < 2Dκ ) satisfies (Dκ). Again due to Lemma 1.1, the upper
angle between two segments in such a space M always exists as a limit, by
monotonicity. We call a segment px in a metric space balanced if, for every
nondegenerate segment qy with q ∈ px \ {p, x} , the angles formed by qy and
the subsegments qp, qx of px satisfy ∠q(p, y)+∠q(x, y) = π . Note that, by (4),
the inequality ∠q(p, y)+ ∠q(x, y) ≥ π always holds, since ∠q(p, x) = π . Of
course, in a Riemannian manifold every segment is balanced.

LEMMA 1.3. Let κ ∈ R , and let M be a metric space. Then :

(i) If M is a space of curvature ≥ κ in the sense of Alexandrov, then all
segments in M are balanced.

(ii) Let H = Hp(x, y) be a hinge in M with balanced sides and per(H) < 2Dκ .
Suppose that every pair of points in px∪py is connected by a segment in M
and every hinge with one side contained in px or py and the opposite
endpoint on the other side of H satisfies (Aκ). Then H satisfies (Dκ).

Proof. For (i), let px, qy be two nondegenerate segments in M such that
q ∈ px \ {p, x} . Let u ∈ qp , v ∈ qx , w ∈ qy be points distinct from q , and
assume that u �= w . If u, v, w are sufficiently close to q , then there is a segment
uw such that the hinge Hu(v, w) with uv ⊂ px satisfies (Dκ). Let (u, v, w)
be a comparison triple in M2

κ for (u, v, w) , and let q ∈ u v be the point with
|q u| = |qu| . Then |qw| ≥ |qw| and so ∠κ

u (q, w) ≥ ∠u(q, w) = ∠u(v, w) by
Lemma 1.1. Now Lemma 1.2 shows that ∠κ

q (u, w) + ∠κ
q (v, w) ≤ π . Passing

to the limit for u, v, w→ q we get ∠q(p, y)+ ∠q(x, y) ≤ π .
We prove (ii). Let (p, x, y) be a comparison triple in M2

κ for (p, x, y) ,
and let u, v and u, v be given as in (Dκ). We first show that |uy| ≥ |u y| .
Omitting some trivial cases, we assume u �∈ {p, x, y} . Choose a segment uy .
Then ∠κ

u (p, y)+∠κ
u (x, y) ≤ ∠u(p, y)+∠u(x, y) = π by the assumptions and so

Lemma 1.2 yields ∠κ
p (u, y) ≥ ∠p(x, y) = ∠p(u, y) . By Lemma 1.1, |uy| ≥ |u y| .

An analogous argument shows that |uv| ≥ |ũ ṽ| if (p̃, ũ, ỹ) is a comparison
triple for (p, u, y) and ṽ ∈ p̃ ỹ is such that |pv| = |p̃ ṽ| . Since |ũ ỹ| =
|uy| ≥ |u y| , we have ∠p̃(ũ, ṽ) = ∠p̃(ũ, ỹ) ≥ ∠p(u, y) = ∠p(u, v) (assuming
p �∈ {u, v} ) and hence |ũ ṽ| ≥ |u v| by Lemma 1.1. So |uv| ≥ |u v| . .
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2. THE GLOBALIZATION THEOREM

Now we prove Toponogov’s theorem, in the form stated in Theorem 2.3
below. The central piece of the argument is Proposition 2.2. The following
lemma and the concluding part of the proof are standard techniques.

LEMMA 2.1. Let κ ∈ R , let M be a metric space, and let H = Hp(x, y)
be a hinge in M with per(H) < 2Dκ . Suppose that there exist a point q
on px , distinct from p, x, y, and a segment qy such that each of the three
hinges Hp(q, y),Hq(p, y),Hq(x, y) with sides in px∪py∪qy satisfies (Aκ), and
∠q(p, y)+ ∠q(x, y) = π . Then H satisfies (Aκ) as well.

Proof. Note that per(p, q, y), per(q, x, y) ≤ per(H) < 2Dκ . Since Hp(q, y)
satisfies (Aκ), we have ∠p(x, y) = ∠p(q, y) ≥ ∠κ

p (q, y) . By the remaining
assumptions, ∠κ

q (p, y)+∠κ
q (x, y) ≤ ∠q(p, y)+∠q(x, y) = π and so Lemma 1.2

gives ∠κ
p (q, y) ≥ ∠κ

p (x, y) . Thus ∠p(x, y) ≥ ∠κ
p (x, y) . .

PROPOSITION 2.2. Let κ ∈ R , and let M be a metric space such that every
pair of points in M at distance < Dκ is connected by a balanced segment.
Let Hp(x, y) be a hinge in M with balanced sides and per(p, x, y) < 2Dκ . If
every hinge Hp′(x′, y′) in M with balanced sides, per(p′, x′, y′) < 4

5 per(p, x, y) ,
and {x′, y′} ∩ (px ∪ py) �= ∅ satisfies (Aκ), then Hp(x, y) satisfies (Aκ) as
well.

Proof. We prove the following assertion, from which the general result
follows easily by a repeated application of Lemma 2.1 : Let H0 = Hp0 (x0, y0)
be a hinge in M with balanced sides and |p0x0| < min

{
1
5 |p0y0|,Dκ−|p0y0|

}
.

If every hinge Hp′(x′, y′) in M with balanced sides, per(p′, x′, y′) < 4
5 per(H0) ,

and {x′, y′} ∩ {x0, y0} �= ∅ satisfies (Aκ), then H0 satisfies (Aκ) as well. We
put a := |p0y0| and b := |p0x0| , so b < 1

5a and a+ b < Dκ .

First, starting from H0 , we will inductively construct a particular sequence
of hinges Hn = Hpn(xn, yn) in M with balanced sides such that {xn, yn} =

{x0, y0} and the numbers ln := |pnxn|+ |pnyn| satisfy

(5) a+ b = l0 ≥ l1 ≥ l2 ≥ . . . ≥ |x0y0| ;

furthermore, for n ≥ 1, |pnxn| = b′ := 2
5a and hence

|pnyn| ≥ |xnyn| − |pnxn| = |x0y0| − b′ ≥ a− b− b′ > b′.
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Constructing Hn from Hn−1

The hinge H0 is already given. For n ≥ 1, if Hn−1 is constructed, let
pn ∈ pn−1yn−1 be the point at distance b′ from yn−1 , and put xn := yn−1 and
yn := xn−1 . Note that

|pnyn| ≤ |pn−1pn|+ |pn−1yn| = ln−1 − b′ ≤ a+ b− b′ < 4
5a

and hence per(pn−1, pn, yn) < 8
5a ≤ 4

5 per(H0) . The sides of Hn are the
subsegment pnxn of pn−1yn−1 and an arbitrarily chosen balanced segment pnyn .
Denote the angle of Hn by γn , and note that since pn−1yn−1 is balanced,
the adjacent angle between pnyn and the subsegment pnpn−1 of pn−1yn−1
equals π − γn . See Figure 2. Clearly ln ≤ ln−1 .
Now we will construct a sequence of hinges Hn := Hpn(xn, yn) in M

2
κ

such that |pnxn| = |pnxn| , |pnyn| = |pnyn| ,
(6) |x0y0| ≥ |x1y1| ≥ |x2y2| ≥ . . . ,
and such that the angle γ̄n of Hn is greater than or equal to γn . Let H0
be a comparison hinge for H0 , thus |p0x0| = b , |p0y0| = a , and γ̄0 = γ0 .
For n ≥ 1, given Hn−1 , let pn ∈ pn−1yn−1 be the point at distance b′ from
yn−1 , put xn := yn−1 , and choose yn such that (pn−1, pn, yn) is a compari-
son triple for (pn−1, pn, yn) . This determines Hn . Put ω̄n := ∠pn−1

(pn, yn) =

∠pn−1
(xn, yn) . See Figure 3. Since per(pn−1, pn, yn) < 4

5 per(H0) and yn ∈
{x0, y0} , the inequalities γn−1 ≥ ω̄n and π−γn ≥ π− γ̄n hold by assumption.
Hence, γ̄n−1 ≥ γn−1 ≥ ω̄n and so |xn−1yn−1| ≥ |xnyn| by Lemma 1.1.
Now we can easily conclude the proof. For n→∞ , we have

|pn−1pn|+ |pn−1yn| − |pnyn| = ln−1 − ln → 0

by (5), consequently ω̄n → π and γ̄n → π (note that |pn−1pn| ≥ a−b−2b′ > 0
and |pn−1yn| = b′ > 0 for n ≥ 2). This implies in turn that

ln − |xnyn| = |pnxn|+ |pnyn| − |xnyn| → 0

as n → ∞ (recall that ln ≤ a + b < Dκ ). In view of (6) and (5), this gives
|x0y0| ≥ |x0y0| , so H0 satisfies (Hκ) and hence also (Aκ). .
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Constructing Hn from Hn−1

THEOREM 2.3. Let κ ∈ R , and let M be a complete metric space of
curvature ≥ κ in the sense of Alexandrov. Suppose that every pair of points
in M at distance < Dκ is connected by a segment. Then every hinge Hp(x, y)
in M with per(p, x, y) < 2Dκ satisfies (Aκ), (Hκ), and (Dκ).

Proof. Recall that by Lemma 1.3 all segments in M are balanced;
furthermore, it suffices to prove that every hinge in M with perimeter
less than 2Dκ satisfies (Aκ). Suppose to the contrary that there exists a
hinge H in M with per(H) < 2Dκ that does not satisfy (Aκ). Then,
by Proposition 2.2, there exists a hinge H1 with per(H1) < 4

5 per(H) and
an endpoint on the union of the sides of H such that H1 does not
satisfy (Aκ) either. Inductively, for n = 2, 3, . . . , there exist hinges Hn such
that per(Hn) < 4

5 per(Hn−1) <
(
4
5

)n
per(H) , some endpoint of Hn lies on the

union of the sides of Hn−1 , and Hn does not satisfy (Aκ). Let pn denote the
vertex of Hn . Clearly the sequence (pn) is Cauchy and thus converges to a
point q ∈ M . However, since M has curvature ≥ κ , all hinges with vertex
and endpoints in an appropriate neighborhood of q satisfy (Aκ). This gives a
contradiction, as pn → q and per(Hn)→ 0. .

APPENDIX : TRIGONOMETRY OF MODEL SPACES

In this appendix, we collect some trigonometric formulae for the model
spaces M2

κ , stated in a unified way for all κ ∈ R in terms of the generalized
sine and cosine functions.
For κ ∈ R we denote by snκ : R → R and csκ : R → R the solutions

of the second order differential equation f ′′ + κf = 0 satisfying the initial
conditions

snκ(0) = 0 , sn′κ(0) = 1 , csκ(0) = 1 , cs′κ(0) = 0 .
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Explicitly,

snκ(x) =
∞∑
n=0

(−κ)n
(2n+ 1)!

x2n+1 =

⎧⎪⎨⎪⎩
sin(
√
κx)/
√
κ if κ > 0 ,

x if κ = 0 ,

sinh(
√−κx)/√−κ if κ < 0 ,

csκ(x) =
∞∑
n=0

(−κ)n
(2n)!

x2n =

⎧⎪⎨⎪⎩
cos(
√
κx) if κ > 0 ,

1 if κ = 0 ,

cosh(
√−κx) if κ < 0 .

Note that
sn′κ = csκ , cs′κ = −κ snκ ,

and

(7) cs2κ +κ sn
2
κ = 1 .

The following functional equations hold. For x, y ∈ R ,
snκ(x+ y) = snκ(x) csκ(y)+ csκ(x) snκ(y) ,(8)

csκ(x+ y) = csκ(x) csκ(y)− κ snκ(x) snκ(y) ;(9)

in particular,

snκ(2x) = 2 snκ(x) csκ(x) ,(10)

csκ(2x) = cs2κ(x)− κ sn2κ(x)(11)

= 2 cs2κ(x)− 1
= 1− 2κ sn2κ(x) .

Replacing x by x/2 in the last three lines one gets

κ sn2κ
( x
2

)
=
1− csκ(x)

2
,(12)

cs2κ
( x
2

)
=
1+ csκ(x)

2
.(13)

Karcher [7] defined a “modified distance function” mdκ : R+ → R+ by

mdκ(x) :=
∫ x

0
snκ(t) dt =

{
(1− csκ(x))/κ if κ �= 0 ,

x2/2 if κ = 0 .

In view of (12), this can be written as

mdκ(x) = 2 sn2κ
( x
2

)
.
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It is easy to check that

csκ +κmdκ = 1 ,(14)

mdκ(x+ y) = mdκ(x− y)+ 2 snκ(x) snκ(y)(15)

= mdκ(x)+ csκ(x) mdκ(y)+ snκ(x) snκ(y)

= mdκ(x) csκ(y)+mdκ(y)+ snκ(x) snκ(y) ,

mdκ(2x) = 2 sn2κ(x)(16)

= 2(1+ csκ(x)) mdκ(x) .

We turn to trigonometry. Consider a triangle in M2
κ with vertices x, y, z

and (possibly degenerate) sides of length a, b, c ≥ 0, where a = |yz| , b = |zx| ,
and c = |xy| , and let α, β, γ ∈ [0, π] denote the angles at x, y, z , respectively,
whenever they are defined. The law of cosines can be stated in a unified
way as

mdκ(c) = mdκ(a+ b)− snκ(a) snκ(b)(1+ cos(γ))(17)

= mdκ(a− b)+ snκ(a) snκ(b)(1− cos(γ))
= mdκ(a)+ csκ(a) mdκ(b)− snκ(a) snκ(b) cos(γ)
= mdκ(a) csκ(b)+mdκ(b)− snκ(a) snκ(b) cos(γ)

(compare (15)), or, in terms of snκ , as

sn2κ
( c
2

)
= sn2κ

(a+ b
2

)
− snκ(a) snκ(b) cos2

(γ
2

)
(18)

= sn2κ
(a− b

2

)
+ snκ(a) snκ(b) sin2

(γ
2

)
.

Multiplying any of these equations by κ one obtains the more familiar formula

(19) csκ(c) = csκ(a) csκ(b)+ κ snκ(a) snκ(b) cos(γ)

for the hyperbolic and spherical geometries. The “dual law of cosines” or
“law of cosines for angles” is the identity

(20) cos(γ) = sin(α) sin(β) csκ(c)− cos(α) cos(β) ;

in the Euclidean case it represents the fact that α + β + γ = π . The law of
sines is given by

(21) snκ(a) sin(β) = snκ(b) sin(α) .
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Let l denote the distance from the midpoint of the side xy of the triangle to
the vertex z . Then

(22) 2 csκ
( c
2

)
mdκ l = mdκ(a)+mdκ(b)− 2mdκ

( c
2

)
;

equivalently,

(23) 2 csκ
( c
2

)
sn2κ
( l
2

)
= sn2κ

(a
2

)
+ sn2κ

(b
2

)
− 2 sn2κ

( c
4

)
.

(This equation may be used to define spaces of curvature ≥ κ or ≤ κ .)
Multiplying by κ one obtains the simple formula

(24) 2 csκ
( c
2

)
csκ(l) = csκ(a)+ csκ(b)

for the hyperbolic and spherical geometries.

Proof of (22). (We omit all subscripts κ .) By (17),

md(l) = md(b) cs
( c
2

)
+md

( c
2

)
− sn(b) sn

( c
2

)
cos(α) ,

md(a) = md(b) cs(c)+md(c)− sn(b) sn(c) cos(α) .
Using (13) and (10) we get

2 cs
( c
2

)
md(l)−md(a) = md(b)+ 2 cs

( c
2

)
md
( c
2

)
−md(c) .

Now the formula follows from (16). .
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