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QUINTUPLES OF POSITIVE INTEGERS WHOSE SUMS

IN PAIRS OR IN TRIPLES ARE SQUARES

by Ajai CHOUDHRY

ABSTRACT. This paper is concerned with the two diophantine problems of finding
five positive integers such that their sums either in pairs or in triples are perfect
squares. The known parametric solutions of these problems are very cumbersome
and not given explicitly in the published literature. Moreover, these solutions lead to
numerical examples involving quite large integers. In this paper we first prove that there
is a one-to-one correspondence between quintuples whose pairwise sums are squares
and quintuples whose sums in triples are squares. Next we obtain all quintuples, with
three or four of the five integers being distinct, such that their sums in pairs or
in triples are perfect squares. We also obtain parametrized families of quintuples of
distinct polynomials of degrees 6, 10, and 12 such that their sums in pairs or in triples
are squares. These solutions yield quintuples of positive integers that are much smaller
than the solutions generated by the known parametric solutions.

1. INTRODUCTION

The problem of finding positive integers whose sums in pairs or in triples
are perfect squares dates back to the time of Diophantus who gave a method of
dividing a given number into four parts such that the sum of any three of them is
a perfect square and considered other related problems (see Heath [4, pp. 158,
210–212]). Several other diophantine problems requiring that two or more
linear functions be made perfect squares (for instance, finding three integers
such that their pairwise sums and differences are all perfect squares) have also
attracted considerable attention (see Dickson [2, Chapter XV, pp. 443–458]).
This paper is concerned with the following two similar diophantine

problems :

(i) to find five positive integers such that the sum of any two of them is a
perfect square;

(ii) to find five positive integers such that the sum of any three of them is a
perfect square.
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A solution to the first problem was found by Baker in 1839 (as quoted
by Dickson [2, p. 455]). Thatcher [8] describes several analytical solutions
which yield numerical examples involving fairly large integers — the smallest
such solution involves integers with 9 and 10 digits. He also mentions a
solution, found by computer trials, containing integers with at most 6 digits
[8, p. 27]. Lagrange 1) gave a fairly general multi-parameter solution as well as
a simplification of it but these solutions are very cumbersome and not given
explicitly by the author [5]. In fact, even Lagrange’s simplification leads to a
parametric solution in terms of univariate polynomials of degree 30.
A solution to the second problem was first attempted in 1848 by Gill

(see [2, p. 456] and [9]) who also gave extremely cumbersome formulae in
terms of trigonometric functions to find the required integers. Gill could not
find any solution in positive integers but suggested that his formulae could
lead to such a solution. Wagon used Gill’s formulae and modern computation
techniques to find a solution consisting of five positive integers involving 48
and 49 digits [3, p. 268], and subsequently he found a solution consisting of
integers of 20 and 21 digits [9].
We will show in Section 2 that these two diophantine problems are related

to each other. In fact there is a one-to-one correspondence between quintuples
whose pairwise sums are squares and quintuples whose sums in triples are
squares. In Section 3 we first find all quintuples of rational numbers, three
or four of which are distinct, such that their pairwise sums are squares, and
we then find parametrized families of quintuples of distinct polynomials of
degrees 6, 10 and 12 with their pairwise sums being squares. In Section 4 we
apply the aforementioned one-to-one correspondence to the quintuples found in
Section 3 to obtain quintuples whose sums in triples are squares. The solutions
obtained in this paper are much simpler than the solutions of these problems
published till now. We thus obtain numerical examples of quintuples of positive
integers that are much smaller than the numerical examples generated by the
parametric solutions found earlier, and which have the property that their sums
in pairs or in triples are perfect squares. In Section 5 we state some open
problems and briefly mention the known results related to them.

2. PRELIMINARY REMARKS AND LEMMAS

We first note that any solution to either of the two problems in rational
numbers leads, on multiplying through by a suitable perfect square, to a

1 ) a 20th century namesake of the great 18th century mathematician
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solution in integers. It therefore suffices to obtain quintuples of rational
numbers with the desired property.
We obtain in Lemma 1 the complete solution in rational numbers of a

diophantine chain and use this result in Lemma 2 to obtain a very simple
solution to the problem of finding all quadruples of rational numbers such
that their pairwise sums are perfect squares. In Lemma 3 we show that the
problem of finding r + s rational numbers such that the sum of any r of
them is a perfect kth power is equivalent to the the problem of finding r + s
rational numbers such that the sum of any s of them is a perfect kth power.
It follows that the problem of finding five rational numbers the sum of any
three of which is a square is equivalent to the problem of finding five rational
numbers whose sums in pairs are squares. Wagon [9] has referred to this
equivalence without giving any proof.

LEMMA 1. The complete solution in rational numbers of the diophantine
chain

(2.1) a21 + b21 = a22 + b22 = a23 + b23 ,

is given by

(2.2)

a1 = p1q1r1 + p1q2r2 − p2q1r2 + p2q2r1 ,
a2 = p1q1r1 + p1q2r2 + p2q1r2 − p2q2r1 ,
a3 = p1q1r1 − p1q2r2 + p2q1r2 + p2q2r1 ,
b1 = −p1q1r2 + p1q2r1 − p2q1r1 − p2q2r2 ,
b2 = −p1q1r2 + p1q2r1 + p2q1r1 + p2q2r2 ,
b3 = p1q1r2 + p1q2r1 − p2q1r1 + p2q2r2 ,

where pi, qi, ri, i = 1, 2, are arbitrary rational parameters.

Proof. Using a complete solution of the equation x2 + y2 = z2 + w2

similar to that given by Mordell [7, p. 15], the complete solutions of equations
a21 + b21 = a22 + b22 and a21 + b21 = a23 + b23 may be written as

(2.3)
a1 = p1m1 + p2m2 , a2 = p1m1 − p2m2 ,
b1 = p1m2 − p2m1 , b2 = p1m2 + p2m1 ,

and

(2.4)
a1 = r1s1 + r2s2 , a3 = r1s1 − r2s2 ,
b1 = r1s2 − r2s1 , b3 = r1s2 + r2s1 ,

respectively where mi, pi, ri, si, i = 1, 2, are arbitrary rational parameters.
For these two solutions to be consistent, we equate the two values of a1
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given by (2.3) and (2.4) as well as the two values of b1 , and on solving the
resulting equations for m1, m2 , we get

(2.5)
m1 = (p1r1s1 + p1r2s2 − p2r1s2 + p2r2s1)/(p21 + p22) ,
m2 = (p1r1s2 − p1r2s1 + p2r1s1 + p2r2s2)/(p21 + p22) .

Thus the complete solution of the diophantine chain (2.1) is given by (2.3)
and (2.4) where m1, m2 are given by (2.5) and pi, ri, si, i = 1, 2, are
arbitrary parameters. We now simplify this solution by expressing the two
independent rational parameters s1, s2 in terms of two new independent rational
parameters q1, q2 defined by the following invertible linear transformation :

(2.6) s1 = p1q1 + p2q2 , s2 = p1q2 − p2q1 .

This gives (2.2) as the complete solution of (2.1) in terms of arbitrary rational
parameters pi, qi, ri, i = 1, 2.

LEMMA 2. All quadruples of rational numbers whose pairwise sums are
squares are given by

(2.7) n1 = s− a21 , n2 = s− a22 , n3 = s− a23 , n4 = a21 + b21 − s ,

where s = (a21 + a22 + a23)/2 and a1, a2, a3, b1 are rational numbers defined
by (2.2).

Proof. If (n1, n2, n3, n4) is any such quadruple, the sum
∑4

i=1 ni can be
expressed in three ways as a sum of two squares, and thus there exist rational
numbers ai, bi, i = 1, 2, 3, satisfying the diophantine chain (2.1). The result
now follows readily by solving the linear conditions satisfied by n1, n2, n3, n4
and using the result of Lemma 1.

LEMMA 3. If n1, n2, . . . , nr+s are r + s rational numbers such that the
sum of any r of them is a perfect kth power, then the rational numbers
N1, N2, . . . , Nr+s, defined by Nj = (

∑r+s
i=1 ni)/s − nj, j = 1, 2, . . . , (r + s),

are such that the sum of any s of them is a perfect kth power. Conversely if
the rational numbers N1, N2, . . . , Nr+s are such that the sum of any s of them
is a perfect kth power, then the rational numbers ni = (

∑r+s
j=1 Nj)/r−Ni, i =

1, 2, . . . , (r + s), are such that the sum of any r of them is a perfect kth

power.

Proof. If the rational numbers n1, n2, . . . , nr+s are such that the sum of
any r of them is a perfect kth power, and the numbers Nj, j = 1, 2, . . . , (r+s),
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are defined as stated in the lemma, then taking Nj1 , Nj2 , . . . , Njs as any s of
the r + s numbers Nj , we have

Nj1 + Nj2 + · · ·+ Njs =
∑r+s

i=1 ni − (nj1 + nj2 + · · ·+ njs)
= sum of r of the numbers n1, n2, . . . , nr+s
= a kth power .

The converse is similarly seen to be true.

COROLLARY 1. All n-tuples of rational numbers, whose sums taken n−1
at a time are kth powers, are given by Nj = (

∑n
i=1m

k
i )/(n − 1) − mk

j ,
j = 1, 2, . . . , n.

Proof. This follows immediately from the lemma by taking r = 1,
s = n− 1 and the rational numbers ni as mk

i , i = 1, 2, . . . , n.

Given a quintuple of rational numbers such that their pairwise sums are
perfect squares, we may apply Lemma 3 to obtain quintuples whose sums in
triples are perfect squares. It is to be noted, however, that positive quintuples
whose pairwise sums are squares do not generally yield positive quintuples
whose sums in triples are squares and vice versa. In fact, finding quintuples
of positive integers whose sums in triples are squares is much more difficult
as compared to finding positive quintuples whose pairwise sums are squares.
This is also illustrated by the sizes of the known solutions to these problems
as already mentioned in the Introduction.

3. QUINTUPLES WHOSE PAIRWISE SUMS ARE SQUARES

It is a trivial exercise to find all quintuples of rational numbers only two
of which are distinct and whose pairwise sums are squares. We give below
in Section 3.1 all quintuples of rational numbers, exactly three of which are
distinct, whose pairwise sums are squares. In Section 3.2 we give all such
quintuples in which exactly four of the numbers are distinct and finally in
Section 3.3 we obtain, in parametric terms, several quintuples of distinct
rational numbers all of whose pairwise sums are squares.
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3.1 QUINTUPLES IN WHICH THREE NUMBERS ARE DISTINCT

THEOREM 1. All quintuples of rational numbers, three of which are distinct
and whose pairwise sums are squares, are given by

(3.1)
n1 = n2 = n3 = (qu+ pv)2/2 ,
n4 = {(2p2 − q2)u2 + 2pquv + (2q2 − p2)v2}/2 ,
n5 = (q2u2 − 6pquv + p2v2)/2 ,

where p, q , u , v , are arbitrary rational parameters, and by

(3.2)

n1 = n2 = (p2r2 − 6pqrs+ q2s2)2p2/2 ,
n3 = n4 = (p2r2 + 2pqrs− 7q2s2)2p2/2 ,
n5 = −{(p2 − 2q2)p2r2 − (6p2 − 4q2)pqrs+ (9p2 − 2q2)q2s2}

×{p2r2 + 2pqsr− (8p2 − q2)s2}/2 ,
where p, q, r and s are arbitrary rational parameters.

Proof. The repeated number(s) in the quintuple must necessarily be of
the type k2/2 and so we may take the quintuple either as k2/2, k2/2, k2/2,
x21 − k2/2, x22 − k2/2 or as k2/2, k2/2, m2/2, m2/2, x2 − k2/2.
In the first case, we must choose k, x1 and x2 such that x21+ x22− k2 = t2.

The complete solution of this equation is well-known and is given in terms
of arbitrary parameters p, q, u, v, by

(3.3) x1 = pu+ qv , x2 = −qu+ pv , k = qu+ pv , t = pu− qv ,

and this yields the quintuples given by (3.1). As a numerical example, taking
p = 2, q = 1, u = −4, v = 1, we get the quintuple 2, 2, 2, 47, 34.
In the second case, we must choose k, m and x such that the following

conditions are satisfied :

(3.4)
k2/2+ m2/2 = y2 ,

x2 − k2/2+ m2/2 = z2 .

Adding these equations, we get m2 + x2 = y2 + z2 for which the complete
solution is given, as above, by

(3.5) m = pu+ qv , x = −qu+ pv , y = pu− qv , z = qu+ pv ,

and on substituting these values in the first of the two equations (3.4), we get
the condition

(3.6) k2 − p2u2 + 6puqv − q2v2 = 0 .

This may be considered as a quadratic equation in three variables k, u, v,
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with a known solution k = p, u = 1, v = 0. Thus the complete solution of
equation (3.6) is readily found and is given by

(3.7)
k = p2r2 − 6pqrs+ q2s2 ,
u = −p2r2 + q2s2 ,
v = −2ps(pr− 3qs) .

Substituting these values of u, v in (3.5), we get the values of m and x and
we thus obtain the quintuples given by (3.2). Taking (p, q, r, s) = (2, 1, 1, 1),
we get the quintuple of positive integers 98, 98, 2, 2, 23.

As in both cases we have found the complete solution of all diophantine
equations concerned, (3.1) and (3.2) give all the quintuples with the stated
properties.

3.2 QUINTUPLES IN WHICH FOUR NUMBERS ARE DISTINCT

THEOREM 2. All quintuples of rational numbers, four of which are distinct
and whose pairwise sums are squares, are given by

(3.8)

n1 = n2 = k2
2 , n3 = k2

{
φ21(m1, m2, m3)
φ22(m1, m2, m3)

− 1
2

}
,

n4 = k2
{
φ21(m2, m3, m1)
φ22(m1, m2, m3)

− 1
2

}
, n5 = k2

{
φ21(m3, m1, m2)
φ22(m1, m2, m3)

− 1
2

}
,

where m1, m2 and m3 are arbitrary rational parameters, and

(3.9)

φ1(t1, t2, t3) = t21t
2
2t
2
3 + 2t1t

2
2t
2
3 − t21t

2
2 − t21t

2
3 + 4t1t2t

2
3 + t22t

2
3

−2t1t22 + 2t1t23 + t21 + 4t1t2 − t22 − t23 − 2t1 + 1 ,
φ2(m1, m2, m3) = m21m

2
2m

2
3 − m21m

2
2 − m21m

2
3 − m22m

2
3

−8m1m2m3 + m21 + m22 + m23 − 1 .
Proof. As noted earlier, the repeated number in the quintuple must be

of the type k2/2 and so we may take the five numbers as k2/2, k2/2,
x21− k2/2, x22− k2/2, x23− k2/2. For all pairwise sums to be squares, we must
solve the following diophantine equations :

(3.10) x21 + x22 − k2 = y23 , x22 + x23 − k2 = y21 , x23 + x21 − k2 = y22 .

Each of the three equations in (3.10) may be replaced by two linear equations,
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and thus equations (3.10) are equivalent to the following six linear equations
in variables xi, yi, i = 1, 2, 3 :

(3.11)
k − x1 = m1(x2 − y3) , m1(k+ x1) = x2 + y3 ,
k − x2 = m2(x3 − y1) , m2(k+ x2) = x3 + y1 ,
k − x3 = m3(x1 − y2) , m3(k+ x3) = x1 + y2 ,

where m1, m2 and m3 are arbitrary rational parameters. Solving these linear
equations for xi, yi, i = 1, 2, 3, we get the values of xi which immediately
give us the quintuples mentioned in the theorem. As we have obtained the
complete solution of equations (3.10), the theorem gives all quintuples with
the stated properties.

As a numerical example, taking m1 = 2, m2 = 2, m3 = 3, k = 6, we get
the quintuple of positive integers 18, 18, 12082, 8082, 5607, all of whose
pairwise sums are squares.

3.3 QUINTUPLES IN WHICH ALL FIVE NUMBERS ARE DISTINCT

To find quintuples of distinct numbers ni, i = 1, 2, . . . , 5, whose pairwise
sums are squares, we take ni, i = 1, 2, 3, 4, as given by Lemma 2, and solve
the diophantine equations,

(3.12) n1 + n5 = x21 , n2 + n5 = x22 , n3 + n5 = x23 , n4 + n5 = x24 .

From the first two of the equations (3.12), we get n1−n2 = (x1−x2)(x1+x2)
so that we readily obtain the solution

(3.13)
x1 = p2(r1q1 + r2q2)h1 − p1(r1q2 − r2q1)/h1 ,
x2 = p2(r1q1 + r2q2)h1 + p1(r1q2 − r2q1)/h1 ,

where h1 is an arbitrary parameter. Similarly, from the last two of the equations
(3.12), we get n3−n4 = (x3−x4)(x3+x4) so that we readily obtain the solution

(3.14)

x3 = (p1 + p2){(r1 − r2)q1 + (r1 + r2)q2}h2/2
+(p1 − p2){(r1 + r2)q1 − (r1 − r2)q2}/(2h2) ,

x4 = (p1 + p2){(r1 − r2)q1 + (r1 + r2)q2}h2/2
−(p1 − p2){(r1 + r2)q1 − (r1 − r2)q2}/(2h2) ,

where h2 is an arbitrary parameter. Thus, we get n5 = x21 − n1 from the
first two equations, and n5 = x23 − n3 from the last two equations of (3.12)
with x1, x3 being given by (3.13) and (3.14). Equating the two values of n5 ,
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we get x21 − x23 = n1 − n3 which gives the following condition :

(3.15)

[[{(h22 + 1)h1p1 + h1(h22 + 2h1h2 − 1)p2}q1
+{(h1h22 − h1 − 2h2)p1 + (h22 + 1)h1p2}q2]r1
+[{(−h1h22 + h1 + 2h2)p1 − (h22 + 1)h1p2}q1
+{(h22 + 1)h1p1 + h1(h22 + 2h1h2 − 1)p2}q2]r2]

×[[{(h22 + 1)h1p1 + h1(h22 − 2h1h2 − 1)p2}q1
+{(h1h22 − h1 + 2h2)p1 + (h22 + 1)h1p2}q2]r1
+[{(−h1h22 + h1 − 2h2)p1 − (h22 + 1)h1p2}q1
+{(h22 + 1)h1p1 + h1(h22 − 2h1h2 − 1)p2}q2]r2]

= 16h21h
2
2(p1q2 − p2q1)(p1q1 + p2q2)r1r2 .

Equation (3.15) is of degree 2 in p1, p2 , of degree 2 in q1, q2 , and also of
degree 2 in r1, r2 , and may be solved in several ways. For instance, we can
easily choose parameters q1, q2, such that the coefficient of r2 in either of
the two factors on the left-hand side of (3.15) vanishes and then the factor r1
cancels out on both sides of (3.15) giving a linear equation in r1, r2 which is
readily solved. For fixed numerical values of h1, h2, this leads to values of ni ,
i = 1, 2, . . . , 5, in terms of polynomials of degree 12 in the parameters p1, p2.
We obtain simpler solutions of (3.15) by taking h2 = (1−h1)/(1+h1). With this
value of h2 , on transposing all terms to one side and substituting q1 = h1q2,
the factor 4q22(p1−h1p2) cancels out and the resulting linear equation in p1, p2
is readily solved so that we obtain the following solution of (3.15) :

(3.16)

h2 = (1− h1)/(1+ h1) , q1 = q2h1 ,
p1 = h1(h21 + 1)(h

2
1 − 1)3r21 + 2h21(h21 − 1)(h41 − 4h21 − 1)r1r2

−8h31(h21 + 1)r22 ,
p2 = −(h21 + 1)(h21 − 1)3r21 − 2h1(h21 − 1)(h41 + 4h21 − 1)r1r2

−8h41(h21 + 1)r22 .
Two more solutions of (3.15), similarly obtained, are given by

(3.17)
h2 = (1− h1)/(1+ h1) , q2 = q1h1 ,
r1 = (h21 + 1)

2(p1 − h1p2){(h41 + 4h21 − 1)p1 + h1(h41 − 4h21 − 1)p2} ,
r2 = 2h1(h21 − 1){(3h41 + 1)p21 − 8h31p1p2 + h21(h

4
1 + 3)p

2
2} ,

and

(3.18)

h2 = (1− h1)/(1+ h1) ,
p1 = −h1(h1 + 1)(h21 − 2h1 − 1)q1 − h1(h1 − 1)(h21 + 1)q2 ,
p2 = (h1 + 1)(h21 + 1)q1 − (h1 − 1)(h21 − 2h1 − 1)q2 ,
r1 = (q1 + h1q2){(2h31 − h21 − 2h1 − 1)q21

+h1(h31 − 2h21 + h1 + 2)q22} ,
r2 = (h1q1 − q2){−(h31 + h1)q21 + (h

2
1 − 2h1 − 1)2q1q2

−(h31 + h1)q22} .
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Now on using the solution (3.16), we obtain quintuples, whose sums in
pairs are perfect squares, in terms of polynomials of degree 6 in r1, r2 with
the coefficients themselves being polynomials in h1 of degree at most 20. As
this solution is cumbersome to write, we give below these quintuples explicitly
in the special case when h1 = 2, r2 = 1/2 :

(3.19)

n1 = 911250r61 − 437400r51 − 595512r41 − 59616r31
+606528r21 + 460800r1 + 80000 ,

n2 = −255150r61 − 1117800r51 − 102888r41 + 1590816r31
+854272r21 + 19200r1 − 22400 ,

n3 = 911250r61 + 1312200r
5
1 − 336312r41 − 1269216r31

−718272r21 − 153600r1 + 80000 ,
n4 = 255150r61 + 1117800r

5
1 + 2185137r

4
1 + 1185516r

3
1

+71172r21 − 19200r1 + 22400 ,
n5 = 911250r61 + 4422600r

5
1 + 7050888r

4
1 + 5815584r

3
1

+3083328r21 + 806400r1 + 80000 .

Similarly the solutions (3.17) and (3.18) of equation (3.15) lead to quintuples
given by polynomials of degrees 6 and 10 respectively in r1, r2 where in
both cases the coefficients are again polynomials in h1 . By assigning specific
numerical values to h1 , we can obtain reasonably simple solutions of our
problem.
It is readily seen that the solution (3.19) leads to quintuples of positive

integers when r1 takes any rational value in the intervals [−3.92, −2.72] ,
[−1.09, −1.03] , [−0.26, −0.24] , [0.14, 0.21] and [1.03, 1.22] . We give
below two such quintuples obtained by taking r1 = −3 and r1 = 1/5 :

(i) 728118962 , 41943538 , 346540562 , 60086663 , 29121362 .
(ii) 121818578 , 17374226 , 6459698 , 21725783 , 264932978 .

4. QUINTUPLES WHOSE SUMS IN TRIPLES ARE SQUARES

It follows from Lemma 3 that for any quintuple ni, i = 1, 2, . . . , 5,
whose sums in pairs are squares, there is a corresponding quintuple Nj ,
j = 1, 2, . . . , 5, given by Nj = (

∑5
i=1 ni)/3 − nj , j = 1, 2, . . . , 5, whose

sums in triples are squares. Thus, Theorems 1 and 2 of Section 3 together
with Lemma 3 immediately give all quintuples of rational numbers, three
or four of which are distinct, whose sums in triples are perfect squares.
As numerical examples, on applying Lemma 3 to the quintuple obtained by
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taking (p, q, u, v) = (2, 1, 3, 12) in (3.1), we get the quintuple of positive
integers 12, 12, 12, 417, 300 whose sums in triples are squares and on taking
m1 = −5/2, m2 = −7/2, m3 = −7/6, k = 25425 in Theorem 2, we get the
following quintuple of positive integers with this property :

10944723 , 10944723 , 183660123 , 461011179 , 1759323 .

Similarly, from the quintuples obtained in Section 3.3, we immediately
obtain parametrized families of quintuples, whose sums in triples are perfect
squares, in terms of polynomials of degrees 6, 10 and 12. As a specific example,
we note that the quintuples given by (3.19) immediately lead to quintuples,
given by univariate sixth degree polynomials, whose sums in triples are squares.
However this solution does not yield any numerical examples of quintuples
of positive integers. To obtain quintuples of positive integers, we have to
take a different value of h1 in the solution (3.16). In fact, taking h1 = 5/6
and working out quintuples with pairwise sums being squares as described
in Section 3.3, and then applying Lemma 3, we get, after a slight change in
variables, the quintuples Nj, j = 1, . . . , 5, whose sums in triples are perfect
squares and which are given by

N1 = −3r1(r1 − 2)(12454746638400r31− 182188063433281r21
+364376126866562r1+ 90223974086400) ,

N2 = 13129027560000r61− 88115225338800r51− 741639023231757r41
+3678538394903028r31− 3340198492079028r21
−1110929686099200r1+ 840257763840000 ,

N3 = −3r1(r1 − 2)(11277996760800r31− 249856043998081r21
+499712087996162r1− 189861947193600) ,

N4 = 441281204100r61+ 15151870324800r
5
1+ 456681910914714r

4
1

−2165067546482856r31+ 2538709945634856r21
−327155916384000r1+ 28241997062400 ,

N5 = 3r1(r1 − 2)(23732743399200r31+ 107459583602881r21
−214919167205762r1− 99637973107200) ,

where r1 is an arbitrary parameter. This leads to examples of quintuples in pos-
itive integers when r1 takes any rational value in the intervals [−0.51, −0.394]
and [1.59, 1.67]. Two numerical examples of such quintuples, obtained by
taking r1 = −1/2 and r1 = 5/3, and suitably scaling the results, are as
follows :

(i) 333763076484003 , 36775671937563 , 1208620204287123 ,
720132418225155 , 76127792331603 .

(ii) 1345142316326403 , 538999066496163 , 6263536168803 ,
776258666609790 , 267105220607523 .



348 A. CHOUDHRY

These solutions, involving integers of at most 16 digits, are much smaller
than the aforementioned solutions found by Wagon. We obtain even smaller
examples of such quintuples by using other solutions found in Section 3.3.
For instance, using the solution (3.18) of equation (3.15), and taking h1 = 4,
q2 = 1, we first get quintuples whose pairwise sums are squares, and on
applying Lemma 3, we get quintuples, given by univariate tenth degree poly-
nomials in q1 , whose sums in triples are squares. Denoting by (c0, c1, . . . , cn)
the polynomial c0qn1 + c1q

n−1
1 + · · · + cn, we may write these quintuples of

polynomials as follows :

(−3697822725, −30327296550, −56160813021, −103842240102,
−109817488116, −165730367070, −99417915405, −35308230390,
55807039179, 87672646728, 53387465904),
(8304231675, −6594487350, 21824444595, 31373372970,
78621501420, 134536973490, 152014224771, 162074905722,
116525894859, 81312977736, 47011228848),
(8304231675, 33036490650, 55814738835, 133337577150,
102847820292, 160077561894, 73296428355, 124922040426,
146173940811, 76326695496, 47011228848),
(1245841050, 11387154900, 60350887875, 42790166280,
120489158862, 19198226304, −43338050685, −174461502564

−210383902134, −146449532304, −88263469152),
(3133191675, 9542732250, 24913193475, 62984304090,
134480289132, 212627208834, 338342997555, 263447246826,
221460896331, 67481132616, 41263209648).

We get quintuples consisting only of positive numbers if we assign to q1
any rational value in the interval [−6.43, −3.23]. Two numerical examples,
obtained by taking q1 = −5 and q1 = −7/2 and suitably scaling the results,
are as follows :

(i) 689438025051 , 8653578146587 , 2494643376462 ,
1026253246587 , 1576737123387 .

(ii) 102912949803 , 508481852619 , 31576638603 ,
117938277678 , 70988581803 .

5. SOME OPEN PROBLEMS

The two problems of quintuples considered above may be extended in two
ways. We could ask for six or more integers whose sums in pairs or in triples
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are perfect squares. At present only one numerical example of a sextuple of
integers is known such that all sums in pairs are perfect squares [6, p. 94]. It
would be interesting to determine whether or not there exist infinitely many
such examples of sextuples whose pairwise sums are all perfect squares.
We could also ask for sets of integers such that their sums in pairs or in

triples are perfect cubes. While we know of examples of quadruples such that
all the six pairwise sums are cubes as well as quintuples such that nine of the
ten pairwise sums are cubes [1], no quintuple is at present known for which
all the ten pairwise sums are cubes.
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