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POSITIVE BRAIDS OF MAXIMAL SIGNATURE

by Sebastian BAADER

ABSTRACT. We characterise positive braid links with positive Seifert form via a
finite number of forbidden minors. From this we deduce a one-to-one correspondence
between prime positive braid links of maximal signature and simply laced Dynkin
diagrams, as well as a simple classification of alternating positive braid knots.

1. INTRODUCTION

A positive braid link is the closure of a positive braid, i.e. a finite product
of the standard braid group generators σi . It is well known that positive
braid links are fibred [7] ; their fibre surface is the standard Seifert surface
associated with the braid diagram and gives rise to a canonical Seifert form.
The signature σ of a link is defined as the signature of the symmetrised
Seifert form for any Seifert surface of the link. Positive braid links are known
to have positive signature invariant [6]. The purpose of this paper is to classify
positive braid links with maximal signature, σ = 2g , where g denotes the
minimal genus of a link.

THEOREM 1. There is a natural one-to-one correspondence between prime
positive braids of maximal signature and simply laced Dynkin diagrams,
reading as follows :

An σn1 E6 σ31σ2σ
3
1σ2

Dn σn1σ2σ
2
1σ2 E7 σ41σ2σ

3
1σ2

E8 σ51σ2σ
3
1σ2
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Naturality means that the quadratic form associated with the Dynkin
diagrams is isomorphic to the symmetrised Seifert form of the corresponding
braids. The knots arising from the series An and E6 , E8 are the torus knots
of type T(2, n) (n ∈ N odd), T(3, 4) and T(3, 5) , respectively. The other
diagrams give rise to links with two or three components.
The proof of Theorem 1 is based on a version of minor theory for Seifert

surfaces, inspired by graph minor theory [3]. We define a minor of a Seifert
surface as a subsurface that induces an inclusion on the level of first homology
groups, i.e. a subsurface all of whose complementary components are adjacent
to the boundary of the surrounding surface. The minor relation for Seifert
surfaces is designed to preserve positivity of the Seifert form. In the case of
positive braids, we will characterise positivity of the Seifert form via four
forbidden minors.

THEOREM 2. Let L ⊂ R3 be a positive braid link with non-positive Seifert
form. Then the fibre surface of L contains a minor of type T , E , X or Y .

Here the surfaces of type T , E , X and Y are the canonical fibre surfaces
of the positive braids σ41σ2σ

4
1σ2 , σ

6
1σ2σ

3
1σ2 , σ1σ

2
2σ1σ3σ

2
2σ3 and σ31σ

2
2σ

3
1σ2 ,

respectively. The meaning of these will shortly become clear.
We conclude the introduction with a remarkable consequence of Theorem 1.

Let L be a prime alternating positive braid knot. According to Rasmussen [5],
we have two equalities, σ = s = 2g , between the signature σ , the Rasmussen
invariant s and twice the minimal genus g of L . In particular, the link L has
maximal signature. We are left with T(2, n) , T(3, 4) and T(3, 5) as potential
prime alternating positive braid knots. The latter two are non-alternating.

COROLLARY 3. The torus knots of type T(2, n) are the only prime
alternating positive braid knots.

According to Cromwell [2], the prime components of a positive braid
link are positive braid links. Therefore, alternating positive braid knots are
connected sums of torus knots of type T(2, n) . This statement fits well with the
following result due to Nakamura [4] and Stoimenow [8] : positive alternating
links have positive alternating diagrams.
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2. BRICK DIAGRAMS AND LINKING TREES

The fibre surface of a positive braid link consists of vertical discs, one for
each string, and horizontal bands, one for each crossing. It naturally retracts
on a graph with vertical and horizontal edges called brick diagram. We will
use brick diagrams as a notation for positive braids, as well as their fibre
surfaces. Brick diagrams for the braids appearing in Theorems 1 and 2 are
depicted in Figure 1.

FIGURE 1

Brick diagrams for An , Dn , E6 , E7 , E8 and T , E , X , Y

The rectangles of a brick diagram (with the positive orientation) can be
thought of as a basis for the first homology group of the fibre surface. In
particular, deleting a horizontal or vertical edge of a brick diagram gives rise to
a minor surface. We will use this fact throughout the paper. The symmetrised
Seifert matrix with respect to the rectangle basis is easy to determine from a
brick diagram. All its diagonal entries are 2 ; the remaining coefficients are 1
or 0, depending on whether the corresponding pairs of rectangles are linked
or not. Here two rectangles are linked, if and only if they are arranged as in
the braids σ31 , σ1σ2σ1σ2 or σ2σ1σ2σ1 . Indeed, these all represent the positive
trefoil knot. The rectangles of the braid σ1σ2σ2σ1 are not linked, since this
represents a connected sum of two positive Hopf links. In the above examples,
the rectangles are linked in a tree-like pattern (see Figure 2).
The resulting symmetrised Seifert matrices are nothing but the Cartan

matrices of the linking trees, viewed as Coxeter systems. The first five are
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FIGURE 2

Linking trees for An , Dn , E6 , E7 , E8 and T , E , X , Y

positive definite since they correspond to spherical Coxeter systems. The
remaining four matrices are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 0 0 1 0 0
1 2 0 0 0 0 0 0
1 0 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 0 0 0
1 0 0 0 0 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 0 1 0 0 0 0
1 2 0 0 0 0 0 0 0
1 0 2 1 0 0 0 0 0
0 0 1 2 0 0 0 0 0
1 0 0 0 2 1 0 0 0
0 0 0 0 1 2 1 0 0
0 0 0 0 0 1 2 1 0
0 0 0 0 0 0 1 2 1
0 0 0 0 0 0 0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
2 1 1 1 1
1 2 0 0 0
1 0 2 0 0
1 0 0 2 0
1 0 0 0 2

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 1 0 1 0
1 2 1 0 0 0 0
0 1 2 0 0 0 0
1 0 0 2 1 0 0
0 0 0 1 2 0 0
1 0 0 0 0 2 1
0 0 0 0 0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and have determinant zero 1). As a consequence, every Seifert surface that
contains one of the surfaces T , E , X , Y as a minor has non-positive Seifert
form. We will prove the converse in the next section.

1 ) Incidentally, these correspond to the simply laced affine Coxeter systems (see [1] for an
elegant characterisation of spherical and affine Coxeter systems).
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3. PROOFS OF THEOREMS 1 AND 2

In this section, we will prove the following two statements, which together
imply Theorems 1 and 2.

(1) A braid link represented by a prime positive 3-braid either corresponds to
a simply laced Dynkin diagram, or contains one of the minors T , E , X , Y .

(2) The fibre surface of a prime positive braid with at least 4 strings contains
a minor of type X .
The cases of 3-braids and 4-braids require special care.

3-BRAIDS

Let L be a link represented by a positive 3-braid β . Applying the braid
relation σ2σ1σ2 = σ1σ2σ1 and conjugation to β does not affect the link type
of its closure. Therefore, we may assume that

β = σa11 σ
b1
2 σ

a2
1 σ

b2
2 . . . σ

am
1 σ

bm
2

with all ai ≥ 2, bk ≥ 1. We use
(a1, 0, . . . , 0︸ ︷︷ ︸

b1−1

, a2, 0, . . . , 0︸ ︷︷ ︸
b2−1

, a3, . . . , am, 0, . . . , 0︸ ︷︷ ︸
bm−1

)

as a shortcut for β . In this notation the braids of the forbidden minors T ,
E , Y read (4, 4) , (6, 3) and (3, 0, 3) (see again Figure 1). The surface X
cannot be defined by a 3-braid. Nevertheless, it is a minor of the fibre
surface of the 3-braid (2, 0, 2, 0) , as shown in Figure 3. Note that the second
brick diagram represents a Seifert surface in a straightforward way, but not a
braid. Here and thereafter equality between brick diagrams means isotopy of
surfaces or, equivalently, of their boundary links. The latter is easy to verify.
We distinguish four types of braids β depending on the number m ∈ N .

= ⊂ =

FIGURE 3

If m ≥ 4 then the braid β (more precisely its fibre surface) contains
(2, 2, 2, 2) as a minor, by cutting a suitable number of crossings. After deleting
two more crossings of type σ2 , we end up with (4, 4) , the forbidden minor T .
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If m = 3 and at least one bk ≥ 2 then β contains (2, 2, 2, 0) , hence
(2, 0, 2, 0) , in turn the forbidden minor X .

If m = 3 and all bk = 1 then either β is one of (2, 2, 2) , (2, 2, 3)
or β contains one of (2, 3, 3) , (2, 2, 4) . The closures of the first two braids
are easily identified as E7 and E8 . The others contain the forbidden minors
(3, 0, 3) and (4, 4) , i.e. Y and T .

If m = 2 and both bk ≥ 2 then β contains (2, 0, 2, 0) , in turn X .

If m = 2 and one bk ≥ 2 then either β contains the forbidden minor
(3, 0, 3) or β = (2, a, 0 . . .0︸ ︷︷ ︸

b−1
) , which represents the same link as (a, b + 1) .

This is illustrated in Figure 4, for a = 4, b = 5.

=

FIGURE 4

If m = 2 and both bk = 1 then either β contains one of the forbidden
minors (6, 3) , (4, 4) or β is one of (n, 2) , (3, 3) , (4, 3) , (5, 3) . These are
the braids of type Dn , E6 , E7 and E8 .

If m = 1 then β represents a torus link with 2 strings (type An ) or a
connected sum of two such links.

4-BRAIDS

Let L be a link represented by a positive 4-braid β . We suppose that β
is irreducible and minimal, i.e. β does not decompose into a connected sum
of two non-trivial positive braids and β has the least braid index among all
positive braids representing L . Contrary to above, we suppose that β has no
subwords of the form σ1σ2σ1 and σ2σ3σ2 . From this and irreducibility we
deduce that β contains the fibre surface of the braid σ22σ1σ

2
2σ1 as a minor.

In addition, β contains at least two non-consecutive generators σ3 . Keeping
in mind that there is no subword of the form σ2σ3σ2 , we are left with one
of the four minors shown in Figure 5.
The first three contain X as a minor (for the third one, this is best seen

after the deformation shown in the figure). The last one can be reduced to a
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= =

FIGURE 5

3-braid and does not contain X as a minor. In that case β must have at least
one more crossing of type σ2 or σ3 in order to be a minimal braid. A careful
examination brings up two more minors containing X , see Figure 6.

FIGURE 6

n -BRAIDS (n ≥ 5)
Let L be a link represented by a positive, irreducible and minimal n -

braid β (n ≥ 5). As in the case of 4-braids, we may suppose that β contains
a minor of the form σ22σ1σ

2
2σ1 , as well as a symmetric version thereof on the

right, σ2n−2σn−1σ
2
n−2σn−1 . Since β is irreducible, there exists a chain of small

rectangles, successively linked, connecting a rectangle in the second column
to a rectangle in the second to last column, as illustrated in Figure 7. The
resulting surface manifestly contains X as a minor.

FIGURE 7

In summary, prime positive braid links of minimal braid index n ≥ 4 have
non-positive Seifert form. Non-positivity of the Seifert form is detected by
four forbidden minors T , E , X , Y . At last, every prime positive braid link
with positive Seifert form corresponds to a simply laced Dynkin diagram. This
concludes the proof of Theorems 1 and 2.
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It is conceivable that Theorem 2 carries over to larger classes of fibre
surfaces, as long as they share certain features with positive braid surfaces.
More explicitly, we may ask whether Theorem 2 holds for all fibre surfaces
supporting the tight contact structure on S3 .
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