
L’Enseignement Mathématique (2) 60 (2014), 3–24 DOI 10.4171/LEM/60-1/2-1

Systole and �2g�2 of closed hyperbolic surfaces of genus g

Sugata Mondal

Abstract. We apply topological methods to study eigenvalues of the Laplacian on closed
hyperbolic surfaces. For any closed hyperbolic surface S of genus g , we get a geometric
lower bound on �2g�2.S/ W �2g�2.S/ > 1=4 C �0.S/ > 0; where �0.S/ is an explicit
constant which depends only on the systole of S .
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1. Introduction

Here a hyperbolic surface is a complete two-dimensional Riemannian manifold
with curvature equal to �1 . Any hyperbolic surface is isometric to a quotient
H=� , where H is the Poincaré upper halfplane and � is a Fuchsian group,
i.e. a discrete torsion-free subgroup of PSL.2; R/ . The Laplacian on H is the
differential operator which associates to a C 2 -function f the function

�f .z/ D y2
� @2f

@x2
C @2f

@y2

�
:

It induces a differential operator on S D H=� which extends to a self-adjoint
operator �S densely defined on L2.S/: Its domain is the Sobolev space H.S/

consisting of the functions � 2 L2.S/ whose gradient in the sense of distributions
is a measurable vector field which satisfies

R
Skr�k2

dv < 1: The Laplacian
is a non-positive operator whose spectrum is contained in a smallest interval
.�1; ��0.S/� � R� [ ¹0º with �0.S/ � 0 . The Rayleigh quotients allow us to
characterize the bottom of the spectrum of S :

�0.S/ D inf

Z
S

kr�k2
dvZ

S

�2dv

;
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where the infimum is taken over all non-constant smooth functions � with
compact support. Recall that the bottom of the spectrum on H is �0.H/ D 1=4

(cf. [Cha], p. 46, Theorem 5).

Definition 1.1. Let � > 0: A non-zero function f W S ! R is a � -eigenfunction
if f 2 L2.S/ and satisfies �f C �f D 0: One calls � an eigenvalue. When
0 < � � 1=4 , � is called a small eigenvalue and f is called a small eigenfunction.

When S is a compact hyperbolic surface, the spectrum of S is a discrete set:

0 D �0.S/ < �1.S/ � �2.S/ � : : : � �n.S/ � : : :

where in the above sequence each number is repeated according to its multiplicity
as an eigenvalue and �i .S/ denotes the i -th non-zero eigenvalue of S for i � 1 .

Definition 1.2. For a hyperbolic surface S the systole s.S/ of S is defined to
be the minimum of the lengths of closed geodesics on S .

The main result of this paper is

Theorem A. Let S be a closed hyperbolic surface of genus g . Then there exists
an explicit constant �0.S/ > 0 , which depends only on the systole of S , such
that �2g�2.S/ > 1=4 C �0.S/:

We recall some general facts about the behavior of �2g�2 as a function on
Mg , the moduli space of closed hyperbolic surfaces of genus g . Any eigenvalue
�i , in particular �2g�2 , is a continuous function on Mg (see for instance [C-C]).
The moduli space Mg is the space of all closed hyperbolic surfaces of genus g

up to isometry. Recall that the set I� D ¹S 2 Mg W s.S/ � �º is compact ([Bu],
p. 163). By [O-R], we have �2g�2.S/ > 1=4 for all S 2 Mg . Hence there exists
a non-zero constant �.�/ such that �2g�2.S/ > 1=4 C �.�/ for all S 2 I� . This
proves the theorem with �0.S/ D �.s.S//: The content of Theorem A is to make
this constant explicit in terms of the geometry of S . We shall see that we can
take �0.S/ to be any positive number smaller than

min
° 1

4.g � 1/
;
1

4

� � cosh 	0

sinh 	0

�2 � 1
� ±

where 2s.S/sinh 	0 D jS j , the area of the surface S . Observe that 1
4.g�1/

D �
jS j

and 1
4
.. cosh �0

sinh �0
/2 � 1/ D s.S/2

jS j2 .

We now sketch briefly the proof of the above theorem. It uses topological
methods as in [O-R]. First we recall that an open subset of a surface S is called
incompressible if the fundamental group of any of its connected components maps
injectively into 
1.S/ . It is plain that simply connected open subsets of S are



Systole and �2g�2 of closed hyperbolic surfaces of genus g 5

incompressible. Let E� denote the eigenspace of the Laplacian on S for the
eigenvalue �: For � > 0 , let E 1

4
C� be the direct sum of eigenspaces E� with

� � 1
4

C �: For f ¤ 0 2 E 1
4

C� , define the nodal set Z.f / as f �1.0/: It is
proved in [O-R], using the analyticity of eigenfunctions on H , that Z.f / is
the union of a finite graph and a discrete set. Let G.f / be the subgraph of
Z.f / obtained by suppressing those connected components which are homotopic
to a point on S (equivalently, those which are contained in a topological disc).
Due to this modification, each component of S n G.f / is incompressible. One
of the main observations in [O-R] was that for any f ¤ 0 2 E 1

4 , the Euler
characteristic of at least one component of S n G.f / is strictly negative. For
� > 0 there is no reason, in general, to believe such a result for f ¤ 0 2 E 1

4
C�:

However, we will prove the following

Lemma 1.3. Let S be a closed hyperbolic surface of genus g . Then there exists
an explicit constant �0.S/ > 0 depending only on the genus g and the systole
of S , such that for any f ¤ 0 2 E 1

4
C�0.S/ , the Euler characteristic of at least

one component of S n G.f / is strictly negative.

Let † be a Riemannian surface. Let ˝ � † be an open set such that the
closure S̋ is a submanifold with piecewise smooth boundary. Then denote by �

the Laplace operator of † restricted to ˝ . Dirichlet eigenvalues of ˝ are the
� ’s such that the problem ´

�u D �u on ˝;

u D 0 on @˝;

admits a non-zero solution u , continuous on S̋ and smooth on ˝ . The smallest
� for which such a solution exists is denoted by �0.˝/ and is called the first
Dirichlet eigenvalue of ˝ . This number can be defined in terms of Rayleigh
quotients in a similar way as the bottom of the spectrum of ˝ :

�0.˝/ D inf

Z
˝

kr�k2dvZ
˝

�2dv

;

where the infimum is taken over all non-zero smooth functions � with compact
support in ˝ . From this characterization it is evident that for any two submanifolds
˝1 and ˝2 as above with compact closure, we have �0.˝1/ � �0.˝2/ when
˝1 ¨ ˝2 . The above lemma will be deduced from the following
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Proposition 1.4. Let S be a closed hyperbolic surface of genus g . Let � � S

be a surface with smooth boundary which is homeomorphic either to a disc or
to an annulus. Then there exists a constant �.�/ > 0 , depending on the length
l� of the geodesic in S homotopic to a generator of 
1.�/ and on the area of
� , such that the first Dirichlet eigenvalue of � satisfies �0.�/ > 1=4 C �.�/:

Furthermore there exists an explicit constant �0.S/ > 0 depending only on the
systole of S such that �.�/ > �0.S/:

Notation 1.5. For any surface � � S with smooth boundary, j�j denotes the
area of � for the area measure on S , and L.@�/ denotes the length of the
boundary of � .

We shall see in the proof that �.�/ is a strictly decreasing function of j�j
when l� is kept fixed and a strictly increasing function of l� when j�j is kept
fixed. The statement in the proposition then follows from the observation that
both parameters, i.e. j�j and l� , are bounded: the former being bounded above
by 4
.g � 1/ and the latter being bounded below by s.S/ .

The proof of the above proposition depends mainly on two geometric
inequalities: the Faber–Krahn isoperimetric inequality and Cheeger’s inequality.
The scheme of the proof of Theorem A then follows the same lines as that of
Theorem 1 in [O-R].

Existence of surfaces with small eigenvalues was proved originally by
Randol [R1]. We shall recall a construction of P. Buser [Bu] for the construction
of such surfaces. The construction is carried out by first considering a genus
g hyperbolic surface admitting a pair of pants decomposition with very short
boundary geodesics, then constructing an orthogonal family of functions with small
Rayleigh quotient. The number of functions in that family is exactly .2g � 2/ .
This gives the existence of at least .2g � 3/ small eigenvalues (which is the
maximum possible number by [O-R]).

After proving Theorem A in §2, in the subsequent parts of the paper we study
the behavior of �i as a function on the moduli space Mg . We recall that the
moduli space Mg is the space of all closed hyperbolic surfaces of genus g

up to isometry. We focus our interest on the first 2g � 2 non-zero eigenvalues.
Theorem A (or even a continuity argument on Mg ) implies one direction of the
following

Claim 1.6. For a family Sn of closed hyperbolic surfaces in Mg , �2g�2.Sn/

tends to 1=4 if and only if the systole s.Sn/ tends to zero.

The other direction follows from a construction due to P. Buser [Bu], as we
shall see in §3.

The above proposition can be compared with the following result of Schoen,
Wolpert and Yau [S-W-Y]. Let M be a closed oriented surface of genus g
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with a metric of (possibly variable) Gaussian curvature K . For an integer n � 1

consider the family zCn of curves on M which are a disjoint union of simple closed
geodesics and which divide M into n C 1 components (necessarily n � 2g � 3 ).
Define a number ln by

ln D min¹L.C /W C 2 zCnº;
where L.C / denotes the length of C .

Theorem 1.7 (Schoen–Wolpert–Yau). Suppose that for some constant k > 0 we
have �1 � K � �k: Then there exist positive constants ˛1; ˛2 depending only
on g such that for 1 � n � 2g � 3 , we have ˛1k3=2ln � �n � ˛2ln and
˛1k � �2g�2 � ˛2:

Recall that the Bers constant ˇ , see [B], which depends only on g , has
the property that l2g�2 < ˇ . So this theorem implies that �2g�2 is bounded
above by a constant depending only on g . Observe also that the construction of
Buser ([Bu], Theorem 8.1.3) leads to the same conclusion. Namely by Buser’s
construction for any ı > 0 there exists a constant � > 0 such that �2g�2 < 1

4
Cı

for any S 2 Mg with s.S/ < �: Since �2g�2 is a continuous function on Mg

and I� D ¹S 2 Mg W s.S/ � �º is compact the existence of an upper bound is
clear. In this context we would like to mention a paper due to Dodziuk, Pignataro,
Randol and Sullivan [D-P-R-S] where the authors obtained results similar to that
of [S-W-Y] in the context of arbitrary (non-compact) hyperbolic surfaces.

In §3 we will study the behavior of �i .S/ as s.S/ tends to zero. More
precisely, let Mg denote the compactification of Mg obtained by adding the
moduli spaces of (not necessarily connected) non-compact finite area hyperbolic
surfaces with area equal to 4
.g�1/ . Let @Mg D MgnMg be the corresponding
boundary of Mg . We study the behavior of �i .Sn/ when Sn 2 Mg tends to a
point in @Mg . By Theorem 1.7 and the above discussion, it is clear that �i .S/

is bounded above for all S 2 Mg and for 1 � i � 2g � 2 . Indeed the method
using Buser’s construction works for any i , showing that �i is bounded by a
constant depending only on g and i . So for any i we can consider the set

Vi D ®
lim

n!1�i .Sn/W.Sn/is a sequence in Mg converging to a point in @Mg

such that lim
n!1�i .Sn/ exists

¯
:

With this notation, the above claim says that V2g�2 D ¹1
4
º: Using a result of

Courtois and Colbois [C-C], we will also prove the following assertion:

Claim 1.8. For any 1 � i � 2g � 3 , there exists a ƒi .g/ 2 .0; 1
4
� such that Vi

contains the interval Œ0; ƒi.g/� .
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In §4 we study non-compact hyperbolic surfaces of finite area. Recall that for
a non-compact hyperbolic surface S of finite area, the spectrum of the Laplace
operator is composed of two parts: the discrete part and the continuous part.
The continuous part covers the interval Œ1=4; 1/ and is spanned by Eisenstein
series. The discrete part is the union of the residual spectrum and cuspidal
spectrum. The residual spectrum is a finite set contained in the interval .0; 1=4/

and it corresponds to poles of the analytic continuation of Eisenstein series. The
cuspidal spectrum consists of those eigenvalues whose associated eigenfunctions
tend to zero uniformly near any cusp. The number of cuspidal eigenvalues is
known to be infinite for arithmetic groups [I]. The cuspidal eigenvalues can
possibly appear anywhere in the interval .0; 1/: Denote by �c

i .S/ the i -th
cuspidal eigenvalue of S .

In analogy to Theorem A, one can investigate the following conjecture.

Conjecture 1. Let S be a finite area hyperbolic surface of type .g; n/ , i.e.
topologically equivalent to a genus g surface with n punctures. Then there exists
an explicit constant �0.S/ > 0 , depending only on the systole of S; such that
�c

2g�2Cn.S/ > 1=4 C �0.S/:

This would be an extension of a result of Jean-Pierre Otal and Eulalio Rosas
(Theorem 2 in [O-R]). However our methods do not suffice to settle this conjecture.
In this connection we state the following conjecture of Otal and Rosas in [O-R]
which is motivated by [O], Propositions 2 and 3.

Conjecture 2. Let S be a finite area hyperbolic surface of type .g; n/ . Then
�c

2g�2.S/ > 1=4:

Now we consider a finite area hyperbolic surface S of type .g; n/ . Denote
by Tg;n the Teichmüller space of all marked hyperbolic surfaces of type .g; n/ .
For any choice of pair of pants decomposition of S one can define a system
of coordinates on Tg;n , the Fenchel–Nielsen coordinates which consist, for each
curve in the pants decomposition, of the length of that curve and a twist parameter
along that curve ([Bu], Chapter 6). Now we consider the set Tg;n

0 of all
hyperbolic surfaces in Tg;n for which all twist parameters are equal to zero.
Each surface in Tg;n

0 carries an involution � which when restricted to each pair
of pants is the orientation reversing involution that fixes the boundary components.
This involution induces an involution on each eigenspace of the Laplacian. The
eigenfunctions corresponding to the eigenvalue �1 are called antisymmetric and
the corresponding eigenvalue is called an antisymmetric eigenvalue. We denote
the i -th antisymmetric cuspidal eigenvalue of S 2 Tg;n

0 by �o;c
i .S/:

Theorem B. For any S0 2 Tg;n
0 there exists an explicit constant �0.S0/ > 0;

depending only on the systole of the surface S0 , such that �o;c
g .S0/ > 1

4
C�0.S0/:
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As a matter of fact, the constant �0.S/ can be taken equal to any number
below

min
° 1

2.2g � 2 C n/
;

1

4

� � cosh 	0

sinh 	0

�2 � 1
� ±

;

where 2 s.S/ sinh 	0 D jS j:

Acknowledgements. I would like to express my sincere gratitude to my advisor
Jean-Pierre Otal whose encouragements, kindness and patience were significant
ingredients in the work.

2. Geometric lower bound on �2g�2.S/

2.1. Proof of Proposition 1.4. Suppose first that � � S is a disc or more
generally a domain such that 
1.�/ maps to zero in 
1.S/ . Then choose an
isometric lift of � to H , still denoted by � . We will use the Faber–Krahn
inequality ([Cha], p. 87) in the following form.

Theorem 2.1 (Faber–Krahn inequality). Let � � H be a domain such that @�

is smooth. Let D be a geodesic disc in H with same area as � , i.e. j�j D jDj:
Then

�0.�/ � �0.D/;

with equality if and only if � is isometric to D .

Let B.t/ be the geodesic disc in H with radius t . The geodesic disc with
same area as � has radius t .�/ D 2 sinh�1. j�j

4�
/: By the Faber–Krahn inequality

�0.B.t.�/// 6 �0.�/:

Since � is contained in S whose area equals 2
.2g � 2/ , by the Gauss–
Bonnet theorem, j�j < 2
.2g � 2/ . Therefore, B.t.�// is contained in the disc
with radius t0 D 2 sinh�1.g � 1/ . Recall that for two subsurfaces D1 and D2

in H with compact closure, �0.D1/ > �0.D2/ when D1 ¨ D2 . Thus �0.B.t//

is a strictly decreasing function of t . Hence �0.B.t.�/// > �0.B.t0// . Now by
Theorem 5 in [Cha], we have

�0.B.t// > lim
s!1 �0.B.s// D 1

4
:

Hence we finally have a strictly positive �1.j�j/ which depends only on the area
j�j of � such that �0.B.t.�/// D 1

4
C �1.j�j/: Since �0.B.t// is a strictly

decreasing function of t , �1.j�j/ is a strictly decreasing function of j�j which
is bounded below by the constant �1.S/ D �0.B.t0// � 1

4
:
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Suppose now that � is an annulus and that the image of 
1.�/ in 
1.S/

is a non-trivial cyclic subgroup h
i . Let T denote the cylinder H=h
i . Let �

denote the core geodesic of T and l the length of � . Then l is the length
of the shortest geodesic of S homotopic to a generator of 
1.�/ . Consider an
isometric lift of the annulus � to H=h
i , still denoted by � . We need to prove
that �0.�/ > 1

4
C �0.S/ where �0.S/ depends only on l and j�j . We will use

Cheeger’s inequality ([Cha], p. 95) in the following form:

Theorem 2.2 (Cheeger’s inequality). Let � ¨ T be a submanifold with piecewise
smooth boundary. Let h.�/ be the Cheeger constant of � . Then

�0.�/ > h2.�/

4
:

Recall that the Cheeger constant of � is equal to inf¹L.@V /
jV j º; where V

ranges over all compact submanifolds of � with smooth boundary.
The proof of Proposition 1.4 in the case of an annulus follows from Cheeger’s

inequality and the next lemma.

Lemma 2.3. Let � ¨ T be a submanifold with piecewise smooth boundary and
let h.�/ be the Cheeger constant of � . Then we have

h.�/ > 1 C �2.j�j; l/;

for some �2.j�j; l/ > 0 which depends only on the area of � and on the length
l of the core geodesic of T .

Proof. First we observe that the Cheeger constant is bounded below by the quantity
inf¹L.@V /

jV j º where V ranges over connected submanifolds of � . Secondly, this
infimum is the same when V ranges over all discs or essential annuli contained
in � . Recall that an annulus is essential when it is not homotopically trivial in
T : This is because any connected, compact submanifold V � � is diffeomorphic
either to a disc with some discs removed or to an essential annulus with some
discs removed. In both cases, taking the union of V with those removed discs,
one obtains a submanifold V

0

which is either a disc or an essential annulus
which satisfies L.@V

0

/ � L.@V / and jV 0 j � jV j . Therefore L.@V
0
/

jV 0 j < L.@V /
jV j :

Suppose now that V � � is diffeomorphic to a disc. By the isoperimetric
inequality ([B-Z], p. 11), one has .L.@V /

jV j /2 � 1 C 4�
jV j : Therefore if V � � then

.L.@V /
jV j /2 � 1 C 4�

j�j : Since jV j < 2
.2g � 2/ , we get .L.@V /
jV j /2 > 1 C 1

g�1
:

Now we suppose that V � � is an essential annulus. In order to prove the
claim in this case we will need the following notion of symmetrization, which is
close to the notion of Steiner symmetrization ([H], p. 18).
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Definition 2.4. Let V � T be an essential annulus. The symmetrization of V is
the annulus V0 � T symmetric with respect to � with constant width and which
has the same area as V .

Recall that the Fermi coordinates on T assign to each point p the pair
.s; r/ 2 ¹�º � R , where r is the signed distance of p from � , and s is the
point of � nearest to p . After parametrizing the geodesic � by arc-length, these
coordinates provide a diffeomorphism between T and R=lZ�R . The hyperbolic
metric in these coordinates equals dr2 C cosh r2ds2 .

Lemma 2.5. Let V � T be an essential annulus with piecewise smooth boundary
and V0 be the symmetrization of V . Then L.@V / � L.@V0/:

Original annulus V Symmetric annulus V0

r1.�/

r2.�/

r3.�/

r4.�/

� �

Figure 1

Proof. First we consider the case when each component of @V is a graph over
� . By that we mean that there exist two functions r1 and r2W Œ0; l� ! R such that
ri is a piecewise smooth map (there is a partition 0 D s1 < s2 < � � � < sm D l

such that each restriction ri jŒsj ;sj C1� is smooth) with ri .0/ D ri .l/ and the
components of @V are parametrized in Fermi coordinates as ¹.s; ri.s//; s 2 Œ0; l�º
for i D 1; 2 . Then the components of the symmetrization V0 of V are the graphs
of the constant functions r3 D 	 and r4 D �	 with 	 D sinh�1. jV j

2l
/ . Up to

exchanging r1 and r2 , we may suppose that r1.s/ > r2.s/ for all 0 � s � l .
Then we calculate the areas of V and V0 :

jV j D
Z l

0

Z r2.s/

r1.s/

cosh r dr ds D
Z l

0

¹sinh r2.s/ � sinh r1.s/º ds

and

jV0j D
Z l

0

Z �

��

cosh r dr ds D
Z l

0

2 sinh 	 ds D 2l sinh 	:

The length of @V0 is
L.@V0/ D 2l cosh 	
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and the length of @V satisfies

L.@V / D
Z l

0

¹Pr1.s/2 C 1º1=2 cosh r1.s/ ds C
Z l

0

¹Pr2.s/2 C 1º1=2 cosh r2.s/ ds

�
Z l

0

¹cosh r1.s/ C cosh r2.s/º ds:

Call L0 the constant equal to the last expression. Observe that L.@V / D L0

if and only if Pr1.�/ = 0 = Pr2.�/ . This implies that r1 and r2 are constants.
One has

L.@V /2 � jV j2 � .L0 C jV j/.L0 � jV j/:
Now,

L0 C jV j D
Z l

0

�
.cosh r2.s/ C sinh r2.s// C .cosh r1.s/ � sinh r1.s//

�
ds

D
Z l

0

�
exp.r2.s// C exp.�r1.s//

�
ds

and similarly

L0 � jV j D
Z l

0

�
exp.�r2.s// C exp.r1.s//

�
ds:

Thus we have

.L0 C jV j/.L0 � jV j/

D
�Z l

0

�
exp.r2.s// C exp.�r1.s//

�
ds

�

�
�Z l

0

�
exp.�r2.s// C exp.r1.s//

�
ds

�

�
�Z l

0

�
exp.r2.s// C exp.�r1.s//

� 1
2
�

exp.�r2.s// C exp.r1.s//
� 1

2 ds

�2

(by the Cauchy–Schwarz inequality)

D
�Z l

0

�
2 C 2 cosh.r1.s/ C r2.s//

� 1
2 ds

�2

:

Since cosh x � 1 8x , we get .L0 C jV j/.L0 � jV j/ � 4l2 D L.@V0/2 � A.V0/2 .
Equality holds if and only if r1; r2 are independent of s and if r1 D �r2 .

Since by construction jV j D jV0j , the lemma is proven when V is an annulus
whose boundary components are graphs over � .
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Now we consider the case of an arbitrary annulus with piecewise smooth
boundary. By approximation, it suffices to prove Lemma 2.5 for those V which
satisfy the following property: there exists a partition of � :

0 D s1 < s2 < � � � < sk D l D 0

such that over each interval [si ; siC1 ], @V is a union of the graphs of finitely
many functions. We consider now such an annulus. We consider the strip over
[si ; siC1 ] in T which is diffeomorphic to [si ; siC1 ]�R in Fermi coordinates.
Denote by V i the intersection of V with this strip. For 1 � i � k , we
denote by fj , j D 0; 1; 2; : : : ; l.i/ the boundary curves of V i i.e. in Fermi
coordinates the components of @V i are parametrized as ¹.s; fj .s//W s 2 Œsi ; siC1�º
for j D 0; 1; 2; : : : ; l.i/ and for any s 2 Œsi ; siC1� , r.f0.s// > r.f1.s// > � � � >

r.fl.i/.s// . Now we calculate the area of V i :

jV i j D
X

j Dl.i/�1;l.i/�3;:::;1

Z siC1

si

Z fj C1.s/

fj .s/

cosh r dr ds

D
l.i/X

j D1

Z siC1

si

.�1/j C1 sinh fj .s/ds:

The length of @V i is given by

L.@V i / D
l.i/X

j D1

Z siC1

si

¹ Pfj .s/2 C 1º1=2 cosh fj .s/ds �
Z siC1

si

l.i/X
j D1

cosh fj .s/:

Call L0.i/ the constant equal to the last expression and calculate

L.@V /2 � jV j2

D
�X

i

L.@V i /
�2 �

�X
i

jV i j
�2

�
�X

i

L0.i/
�2 �

�X
i

jV i j
�2

D
�X

i

Z siC1

si

l.i/X
j D1

expŒ.�1/j C1fj .s/�ds

�

�
�X

i

Z siC1

si

l.i/X
j D1

expŒ.�1/j fj .s/�ds

�
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�
�X

i

Z siC1

si

.expŒ.�1/0C1f0.s/� C expŒ.�1/1C1f1.s/�/ds

�

�
�X

i

Z siC1

si

.expŒ.�1/0f0.s/� C expŒ.�1/1f1.s/�/ds

�

�
�Z l

0

.2 C 2 cosh.f1.s/ � f0.s//
1
2 /ds

�2

(by Cauchy–Schwarz)

� 4l2 D L.@V0/2 � jV0j2:

Hence using the same argument as before we finally prove Lemma 2.5.

So now we have .L.@V /
jV j / � .L.@V0/

jV0j / D cosh �
sinh �

where jV j D 2l sinh 	 . Thus
we conclude the proof of Lemma 2.3 by taking

�2.�; l/ D 1

2
min

° cosh �

sinh �
� 1;

�
1 C 4


j�j
� 1

2 � 1
±

where j�j D 2l sinh � .

Since cosh �
sinh �

is a strictly decreasing function of 	 we have

� L.@V /

jV j
�

� cosh 	1

sinh 	1

>
cosh 	0

sinh 	0

where 2l sinh 	1 D j�j and 2s.S/ sinh 	0 D jS j D 4
.g � 1/ (since
V � � ¨ S ). To conclude the proof of Proposition 1.4 we take

�0.S/ D 1

2
min

°
�1.S/;

1

4.g � 1/
;

1

4

� � cosh 	0

sinh 	0

�2 � 1
� ±

:

Remark 2.6. From the expression of �0.S/ we observe that if .Sn/ is a sequence
in Mg , then �0.Sn/ tends to zero only if s.Sn/ tends to zero. The computations
in the proposition also show that for any � � S diffeomorphic to a disc or to
an annulus one has

�0.�/ � 1

4
C 2�0.S/:

2.2. Proof of Theorem A. The proof at this point follows the same lines as that
of �2g�2.S/ > 1

4
in [O-R] and we refer to [O-R] for the details. We take �0.S/

as in Proposition 1.4. Consider the space E 1
4

C�0.S/ . Recall that E� is the direct
sum of the eigenspaces of the Laplacian with eigenvalues less than or equal to � .
Let f ¤ 0 2 E 1

4
C�0.S/ . The nodal set Z.f / of f is defined as f �1.0/ . Recall
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that G.f / is the subgraph of Z.f / obtained by suppressing those connected
components which are zero homotopic on S . Each component of S n G.f / is
an open surface, possibly equal to S when G.f / is empty. The sign of f on
a component of S n G.f / can be defined as follows. There is a finite collection
of disjoint closed topological discs .Dj / with @Dj

T
Z.f / D ¿ such that each

component of Z.f / which is zero homotopic is contained in one of the Dj ’s.
Therefore each component of S n G.f / is a union of a component of S nZ.f /

with a finite number of those Dj ’s. Define the sign of f on such a component to
be the one of f on the corresponding component of S nZ.f / . Now we denote
the union of all components with positive, resp. negative, sign as C C.f / , resp.
C �.f / . As a consequence of the construction, the surfaces C C.f / and C �.f /

are incompressible. As recalled earlier, an open subset of a surface S is called
incompressible if the fundamental group of any of its connected components maps
injectively into 
1.S/: The union of the connected components of C C.f / , resp.
C �.f / , which are neither discs nor rings is denoted by SC.f / , resp. S�.f / .
The surfaces S˙.f / may be empty or disconnected but by construction when
they are nonempty, they are incompressible.

Denote the Euler characteristic of SC.f / , resp. S�.f / , by �C.f / , resp.
��.f / . (We use the convention that the Euler characteristic of the empty
set is zero.) The incompressibility property of SC.f / and S�.f / gives that
�C.f / C ��.f / is greater than �.S/ . By definition, we have �˙.f / � 0 with
equality only if S˙.f / is empty.

Lemma 2.7. The Euler characteristic of at least one component of S n G.f / is
negative.

Proof. Let us suppose by contradiction that for some f ¤ 0 2 E 1
4 C�0.S/ , each

component Si , 1 � i � m of S n G.f / has non-negative Euler characteristic.
So, each such component is homeomorphic either to an open disc or to an open
annulus. Since f 2 E 1

4
C�0.S/ the Rayleigh quotient of f , R.f / is � 1

4
C�0.S/:

Therefore, since G.f / has measure zero, for at least one component, say S1 ,
one has

R.f jS1
/ D

Z
S1

krf k2

Z
S1

f 2

� 1

4
C �0.S/:

Now we shall calculate the Rayleigh quotient R.f jS1
/ and show that our choice

of �0.S/ leads to a contradiction.
Let us assume that S1 is homeomorphic to an open disc. The case when S1 is

an annulus can be dealt with similarly. Since f is smooth and f j@S1
D 0 we can

choose, by Sard’s theorem, a sequence .�n/ of regular values of f converging
to 0 . Then the level set

¹x 2 S1W f .x/ D �nº
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is a smooth submanifold of S for n large enough. Furthermore one of the
components of this level set confines a domain Dn ¨ S1 homeomorphic to a
closed disc with smooth boundary such that S1 n Dn has arbitrarily small area.
Now we consider the Rayleigh quotient, R.fnjDn

/ of the function fn D f � �n

restricted to the region Dn . This function vanishes on @Dn . As �n converges
to 0 , R.fnjDn

/ converges to R.f jS1
/ . Thus for any ı > 0 , in particular for

�0.S/=2 , we can find �n small enough such that

R.fnjDn
/ � 1

4
C �0.S/ C �0.S/

2
<

1

4
C 2�0.S/:

Now since Dn is a closed disc with smooth boundary which is contained in
S1 � S , it follows from the Rayleigh quotient characterization of the first Dirichlet
eigenvalue of Dn that R.fnjDn

/ � �0.Dn/ . By Remark 2.6 we have

�0.Dn/ � 1

4
C 2�0.S/:

This is a contradiction when n is sufficiently large.

So some component of S n G.f / has negative Euler characteristic. This
component is a component of S˙.f / . Thus we obtain

�C.f / C ��.f / < 0:

Now we start with some definitions and complete the proof.

Definition 2.8. According to the sign of f on Si , we denote this component as
Si

C.f / or Si
�.f / . For each such surface with negative Euler characteristic, we

consider a compact core, i.e. a compact surface Ki
˙.f / � Si

˙.f / such that the
inclusion is a homotopy equivalence. We then define the surface †C.f / , resp.
†�.f / , as the union of the compact cores Ki

C.f / , resp. Ki
�.f / , and of those

components (if any) of the complement S n S
Ki

C.f / , resp. S n S
Ki

�.f / ,
which are annuli. Therefore, †C.f / , resp. †�.f / , is obtained from

S
Ki

C.f / ,
resp.

S
Ki

�.f / , by adding (if any) the annuli between the components ofS
Ki

C.f / , resp.
S

Ki
�.f / . We call †.f / D †C.f /[†�.f / the characteristic

surface of f , while †C.f / , resp. †�.f / , is called the positive, resp. negative,
characteristic surface of f . The definition of these surfaces depends uniquely
on the choice of compact cores and those are well defined up to isotopy. By
construction the Euler characteristic of †C.f / , resp. †�.f / , is �C.f / , resp.
��.f / . It is clear that †C.�f / D †�.f / and †�.�f / D †C.f / .

2.3. Proof of Theorem A (continued). Let m denote the dimension of the
space E 1

4
C�0.S/ . Theorem A will follow from the inequality m � .2g � 2/ .

Let S.E 1
4

C�0.S// denote the unit sphere of E 1
4

C�0.S/ (for some arbitrary norm)



Systole and �2g�2 of closed hyperbolic surfaces of genus g 17

and let P .E 1
4

C�0.S// be the projective space of E 1
4

C�0.S/ i.e. the quotient of
S.E 1

4 C�0.S// by the involution f ! �f .
For each integer i with 2 � 2g � i � �1 , we denote

Ci D ¹f 2 S.E 1
4

C�0.S//W �C.f / C ��.f / D iº:

According to the lemma and its consequence above, S.E 1
4

C�0.S// D S�1
2�2gCi .

On the other hand, each Ci is invariant under the antipodal involution. Let
Pi be the quotient of Ci under the antipodal involution. The projective space
P .E 1

4
C�0.S// is the union of the sets Pi .

Lemma 2.9. For any integer i such that 2 � 2g � i � �1 , the covering map
Ci ! Pi is trivial.

Proof. Let f 2 Ci : We use the notation introduced in the definition of the
characteristic surface of f : Si

˙.f / is a connected component of negative Euler
characteristic of S˙.f / and Ki

˙.f / is a compact core of Si
˙.f / . We may

assume that the compact core has been chosen in such a way that any connected
component of Z.f / that is contained in some Si

˙.f / is indeed contained in
the interior of the corresponding Ki

˙.f / .
For any function g 2 E 1

4
C�0.S/ close enough to f , and for each i , Ki

˙.f /

is contained in a component Sl
˙.g/ of S˙.g/ . Fix a neighborhood V.f / of f

in S.E 1
4 C�0.S// such that these inclusions occur on each surface Ki

˙.f / .
We will show that for any g 2 Ci \ V.f / , the characteristic surfaces †C.f /

and †C.g/ , resp. †�.f / and †�.g/ , are isotopic. Choose the compact cores
Ki

˙.g/ of surfaces S˙.g/ so that when Ki
˙.f / is contained in Sj

˙.g/ , it is
also contained in the interior of Kj

˙.g/ . Now observe that if two components
of the boundaries of surfaces Kj

C.f / are homotopic in S then the homotopy
between them is achieved by an annulus contained in †C.f / , by the definition
of the characteristic surface. Since this annulus joins two curves of Kj

C.g/

by definition of the characteristic surface again, it is contained in one of the
connected components †C.g/ too.

We deduce from this that each connected component of †˙.f / is contained
in a connected component of †˙.g/ (of the same sign). Since †C.f / and
†�.f / are incompressible in S , they are incompressible in †C.g/ and †�.g/

respectively. In particular, their Euler characteristics satisfy

�C.f / � �C.g/ and ��.f / � ��.g/I
these inequalities can be equalities if and only if the surfaces †C.f / and
†C.g/ ,resp. †�.f / and †�.g/ , are isotopic. But since g 2 Ci , we have

�C.f / C ��.f / D i D �C.g/ C ��.g/:
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Thus †C.f / and †C.g/ are isotopic. The same holds for †�.f / and †�.g/ .
Since the isotopy class of †C.f / and the isotopy class of †�.f / are locally

constant on Ci , they are constant on each connected component of Ci . Finally
we observe that the functions f and �f cannot be in the same connected
component of Ci , for otherwise †C.f / and †�.f / would be isotopic. But two
disjoint and incompressible surfaces of negative Euler characteristic contained
in S cannot be isotopic. Thus the covering map in Lemma 2.9 is trivial.

2.4. Completion of the proof of Theorem A. We conclude the proof of
Theorem A following a method of B. Sévennec [Se]. The double cov-
ering S.E 1

4
C�0.S// ! P .E 1

4
C�0.S// is associated to a cohomology class

ˇ 2 H 1.P .E 1
4 C�0.S//; Z=2Z/ . Each covering Ci ! Pi is described by the

Čech cohomology class, ˇjPi
. Since each of these coverings is trivial, we have

ˇjPi
D 0 . Since P .E 1

4
C�0.S// is the union of Pi and since there are at most

2g � 2 of them, we have ˇ2g�2 D 0 ; see [Se], Lemma 8. Since ˇ has order m

in the Z=2Z-cohomology ring of P .E 1
4

C�0.S// , we have m � 2g � 2 .

3. Systole and the Laplace spectrum

In this section we study the eigenvalues of the Laplacian as functions on the moduli
space. Recall that the moduli space Mg is the space of all closed hyperbolic
surfaces of genus g up to isometry. Mg can be compactified to a space Mg

by adding the moduli spaces of (not necessarily connected) non-compact finite
area hyperbolic surfaces with area equal to 4
.g � 1/ . In this compactification
a sequence .Sn/ in Mg , with s.Sn/ ! 0 , converges to S1 2 Mg0;n0

(with
2g0 � 2 C n0 D 2g � 2 ) if and only if for any given � > 0 the � -thick part
.Sn

Œ�;1// converges to S1Œ�;1/ in the Gromov–Hausdorff topology. Recall that
the � -thick part of a surface S is the subset of those points of S where the
injectivity radius is at least � . Recall also that the injectivity radius of a point
p 2 S is the radius of the largest geodesic disc that can be embedded in S with
center p .

It is a classical result that for any i , �i is a continuous function on Mg

(see for instance [C-C]). It is also shown in [C-C] that eigenvalues less than 1=4

are continuous up to @Mg . Let .Sn/ be a sequence of surfaces in Mg which

tends to S1 2 @Mg D Mg n Mg .

Theorem 3.1 ([C-C] and [He]). Let �.Sn/ be a sequence of eigenvalues of Sn

which converges to � < 1=4 . Then � is an eigenvalue of S1 and up to extracting
a subsequence and possibly multiplying by a scaling constant the corresponding
eigenfunctions on Sn converge to an eigenfunction on S1 uniformly over compact
subsets.
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Our situation is a bit different. For a fixed i we shall study the behavior of
�i.Sn/ when Sn 2 Mg tends to a point in @Mg . Recall

Vi D ®
lim

n!1�i .Sn/W.Sn/ is a sequence in Mg converging to a point in @Mg

such that the limit exists
¯
:

In [R3] Randol showed a limiting behavior of �2g�2 over some special family.
Now we apply Theorem A to prove Claim 1.6 in the following form:

Claim 3.2. �2g�2.Sn/ tends to 1
4

if and only if s.Sn/ tends to zero. In particular
V2g�2 D ¹1

4
º:

Proof. By Theorem A, if �2g�2.Sn/ tends to 1
4

then �0.Sn/ tends to zero. For
the other direction we use Buser’s construction. By the definition of the systole,
there is a closed geodesic 
 on S such that the length of 
 is equal to s.S/ .
Now from the Collar Theorem (cf. [Bu]) of L. Keen [K] (see also [R2]) and the
explicit computations in [Bu], p. 219, we see that for any � > 0 and any i � 1

we have ı > 0 such that whenever s.S/ < ı , we can find at least i disjoint
annuli in the collar neighborhood of 
 such that the first Dirichlet eigenvalue of
each of the annuli is � 1

4
C � . The corresponding eigenfunctions are orthogonal.

Hence we have �i�1.S/ � 1
4

C � . Therefore using Theorem A for an i � 2g � 1

we obtain the convergence �i�1.Sn/ ! 1
4

.

Now we show that such a limiting behavior is not true in general for i � 2g�3 .
More precisely, we shall prove Claim 1.8, rephrased as follows:

Claim 3.3. For any 1 � i � 2g � 3 , there exists ƒi .g/ , 0 < ƒi .g/ � 1
4

such
that Vi D Œ0; ƒi.g/� .

Before starting the proof we recall the definition of the Teichmüller space, Tg .
It is the space of all marked closed hyperbolic surfaces of genus g . Let S 2 Tg .
Given a pair of pants decomposition of S , we have a coordinate system on Tg ,
the Fenchel–Nielsen coordinates. Mg is the quotient of Tg by the action of
Modg , the Teichmüller modular group. Since Modg acts properly discontinuously
on Tg , Tg ! Mg is a ramified topological covering. Thus the pre-composition
of this covering map with �i yields a map, also denoted by �i , from Tg to R .
We shall use the same notation for a point in Tg and its image in Mg .

Proof of Claim 3.3. We shall prove the claim for i D 1 . The proof for
1 � i � 2g � 3 is similar. We choose a pair of pants decomposition P of an
S 2 Tg and consider the corresponding Fenchel–Nielsen coordinates .lPj ; �P

j /

on Tg . Here lPj ’s denote the length coordinates and �P
j ’s denote the twist

coordinates (cf. [Bu]). We fix two geodesics � and � 0 among the boundary
geodesics of the pants decomposition P . Thus the length functions l� and l� 0
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respectively of � and � 0 are among lPj ’s. Suppose that the pants decomposition
is chosen in such a way that � is non-separating and � 0 is separating.

First we prove that Vi is not empty. From a construction of P. Buser [Bu],
Theorem 8.1.3, it follows that if 0 < ı < 1

24
then �2g�3.S/ < 1

4
for any S 2 Tg

with lPj .S/ < ı for all j (the number 1
24

has no particular significance other
than ensuring this condition). We fix one such ı and consider one M 2 Tg such
that lPj .M/ < ı for all j . Now consider a sequence of surfaces .Sn/ 2 Tg

such that .lPj ; �P
j /.Sn/ D .lPj ; �P

j /.M/ for all .lPj ; �P
j / except l� and the

l� .Sn/ coordinate decreases to zero as n goes to infinity. Then .Sn/ converges
to a point S1 2 @Mg . By our choice of ı (for M ) and since the number
of components of S1 is exactly one, it follows from [C-C], Theorem 0.1, that
0 < limn!1�1.Sn/ D �1.S1/ D p < 1

4
. Now consider another sequence .S

0

n/ ,
constructed in the same way as .Sn/ except that we vary the coordinate l� 0

instead of l� . In this case the limiting surface of the sequence .S 0
n/ has two

components. So using [C-C] again limn!1�1.S
0

n/ D 0 . Thus we see that 0 and
p are in V1 , proving that V1 is not empty.

Next we prove that whenever some 0 < c � 1
4

is in V1 , the whole interval
.0; c� is contained in V1 . Since c is in V1 we have a sequence .Pn/ in Mg

such that limn!1�1.Pn/ D c: Up to extracting a subsequence, we may assume
that .Pn/ converges to P1 2 @Mg . Then P1 is a finite area connected (since
c > 0 ) non-compact hyperbolic surface of type .g0; m/ (where g0 C m

2
D g ). For

some marking of Pn , there is a pants decomposition of S , �1; : : : ; �k ; : : : ; �3g�3

such that �1; : : : ; �k are exactly those curves on Pn whose lengths tend to
zero. Consider the corresponding Fenchel–Nielsen coordinates .li ; �i /iD1;2;:::;3g�3

on Tg . These coordinates induce coordinates on Tg
0
;m which will be denoted

by the same notation. In these coordinates we can choose representatives of
Pn in Tg such that .li

n; �i
n/.Pn/ converges to .li

1; �i
1/ for i > k and,

for i � k , li
n converges to zero. Next, using the Buser construction ([Bu],

Theorem 8.1.3), we choose an N1 2 Tg
0
;m such that �1.N1/ D � < c: Then

by [C-C], Theorem 0.1, for any sequence .Nn/ in Mg converging to N1 in
@Mg ; one has limn!1�1.Nn/ D �: In particular we consider the sequence .Nn/

such that .li ; �i /.Nn/ D .li ; �i /.N1/ for i > k and .li ; �i /.Nn/ D .li ; �i /.Pn/

for i � k . Then limn!1�1.Nn/ D �:

At this point we construct a path �n in Mg joining Pn and Nn for each n .
Let us consider the path given by the coordinate axes i.e. the path first goes
along the li axes from li .Pn/ to li .Nn/ for each i D k C 1; k C 2; : : : ; 3g � 3

in the increasing order and then the same for �i ’s. Finally for any t 2 Œ�; c�

we apply the continuity property of �1 on Mg to get a surface Qn on �n

such that �1.Qn/ D t . By construction each point on � , in particular Qn , has
.li ; �i/.Qn/ D .li ; �i/.Pn/ for i � k and all other .li ; �i/.Qn/ are bounded by
the corresponding coordinates of P1 and N1 . Hence Qn converges to a point
Q1 2 @Mg and since �1.Qn/ D t for each n we have limn!1�1.Qn/ D t:



Systole and �2g�2 of closed hyperbolic surfaces of genus g 21

Therefore V1 contains Œ�; c� and � being arbitrary, the whole of .0; c� . That
ƒi .g/ � 1

4
follows from the last claim.

Remark 3.4. A relevant question to ask here is whether 1
4

belongs to Vk or not.
It is not hard to show, using [C-C], Theorem 0.1, that the existence of a surface
N 2 @Mg which has k components and �1.N / � 1

4
would guarantee that

1
4

2 Vk . In this connection we would like to mention that if g , the genus of the
surface, is large then a result of Brooks and Makover in [B-M] (see also [B-B-D])
shows that for any given � there exists a surface S 2 Mg with �1.S/ > 3

16
� �

(and > 1
4

� � if one assumes the Selberg conjecture).

4. Non-compact finite area hyperbolic surfaces

In this section we study non-compact finite area hyperbolic surfaces. Recall that
Tg;n denotes the Teichmüller space of all marked hyperbolic surfaces with finite
area and of geometric type .g; n/ . Given any pair of pants decomposition of any
S 0 2 Tg;n one can consider the Fenchel–Nielsen coordinates on Tg;n . Fix one
such coordinate system on Tg;n . Denote by Tg;n

0 the set of all surfaces in Tg;n

all of whose twist parameters are equal to zero. Recall that each surface in Tg;n
0

carries an involution � which when restricted to each pair of pants is the orientation
reversing involution that fixes the boundary components. This involution induces an
involution on each eigenspace of the Laplacian. The eigenfunctions corresponding
to the eigenvalue �1 are called antisymmetric and the corresponding eigenvalue
is called an antisymmetric eigenvalue. We denote the i -th antisymmetric cuspidal
eigenvalue of S 2 Tg;n

0 by �o;c
i .S/:

We observe that in Proposition 1.4 we have considered domains in S which
are diffeomorphic either to discs or to annuli. Since S is compact, the domains
have compact closures. Now for S0 2 Tg;n , we may have nodal domains whose
closure is not compact. To tackle this problem we consider only those domains
which are diffeomorphic either to discs or to annuli and where respective boundary
curves are not homotopic to a puncture. For any such disc or annulus, Cheeger’s
inequality is still true (cf. [Cha]). The computations in Lemma 2.9 then apply.
Therefore for any � � S0 diffeomorphic either to a disc or to an annulus whose
boundary curves are not homotopic to a puncture, we have an explicit constant
�0.S0/ > 0 such that

�0.�/ � 1

4
C 2�0.S0/ >

1

4
C �0.S0/:

Proof of Theorem B. The proof proceeds along the same lines as that of Theo-

rem A. We choose �0.S0/ as above and consider Eo

1
4

C�0.S0/ , the subspace of
C 1.S0/ , spanned by the anti-symmetric cuspidal eigenfunctions with eigenvalue
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� 1
4

C �0.S0/ . Then we use the same arguments as in Theorem A to prove that

the dimension of Eo

1
4

C�0.S0/ is less than g . First for f ¤ 0 2 Eo

1
4

C�0.S0/ we
consider the subgraph G.f / of Z.f / obtained by suppressing those components
of Z.f / which are bounded and homotopic to a point in S0 (equivalently, those
which are contained in a bounded disc in S0 ). Next we consider the components
of S0 nG.f / with their signs attached as defined in Section 2.2. Denote by F.�/

the fixed point set of the isometry � . The set F.�/ divides S0 into two isometric
components S1 and S2 . Each Si is a non-compact finite area hyperbolic surface
with geodesic boundary and genus 0 . Each puncture of S0 gives rise to two
ideal points, one on @S1 and another on @S2 .

Claim 4.1. For any f ¤ 0 2 Eo

1
4

C�0.S0/ each component of S0 n G.f / is
contained in one of the Si ’s and is incompressible there.

Proof. By antisymmetry of f with respect to � we have F.�/ � Z.f /: Since
each bounded component of F.�/ is incompressible, F.�/ � G.f /:

Now we can argue as in the proof of Lemma 2.7 to conclude that the Euler
characteristic of at least one component of S0 n G.f / is negative. In fact using
the symmetry of G.f / with respect to � , the Euler characteristic of at least
one component of Sj n G.f / is negative for each j D 1; 2 . Next we consider

the unit sphere S.Eo

1
4 C�0.S0// and the projective space P .Eo

1
4 C�0.S0// over

Eo

1
4 C�0.S0/ . Define �C.f / , resp. ��.f / , as the sum of the Euler characteristics

of the components of S1 n G.f / with positive sign, resp. negative. Consider the

decomposition of S.Eo

1
4

C�0.S0// into sets

Ci D ¹f 2 S.Eo

1
4

C�0.S0//W �C.f / C ��.f / D iº:

The arguments in Lemma 2.9 can be applied. Using the incompressibility of
the components of S1 n G.f / the possible values of �C.f / C ��.f / are at

most .g � 1/ (since �.Si / D 1 � g ) for any f 2 Eo

1
4

C�0.S0/ . Exactly the same
arguments as in Theorem A work to prove that for any integer i , the covering map

Ci ! Pi is trivial. We conclude that the dimension of Eo

1
4

C�0.S0/ is � g .

References

[B] L. Bers, Spaces of degenerating Riemann surfaces. In L. Greenberg (ed.),
Discontinuous Groups and Riemann Surfaces. Annals of Mathematics
Studies 79. Princeton University Press, Princeton, N.J., and University
of Tokyo Press, Tokyo, 1974, 43–55. MR 0361051 Zbl 0294.32016

http://www.ams.org/mathscinet-getitem?mr=0361051
http://zbmath.org/?q=an:0294.32016


Systole and �2g�2 of closed hyperbolic surfaces of genus g 23

[B-Z] Yu. D. Burago and V.A. Zalgaller, Geometric Inequalities. Akademiya
Nauk SSSR, Leningradskoe Otdelenie Matematicheskogo Instituta im.
V.A. Steklova, “Nauka”, Leningrad, 1980. English transl., Grundlehren
der mathematischen Wissenschaften 285. Springer Series in Soviet
Mathematics. Springer Verlag, Berlin, 1988. Translated from the Russian
by A. B. Sosinskiı̆. MR 0602952 Zbl 0436.52009

[Bu] P. Buser, Geometry and Spectra of Compact Riemann Surfaces. Progress in
Mathematics 106. Birkhäuser Boston, Boston, MA, 1992. MR 1183224
Zbl 0770.53001

[B-B-D] P. Buser, M. Burger and J. Dodziuk, Riemann surfaces of large genus and
large �1 . In T. Sunada (ed.), Geometry and Analysis on Manifolds.
Lecture Notes in Mathematics 1339. Springer Verlag, Berlin etc., 1988,
54–63. MR 0961472 Zbl 0646.53040

[B-C] P. Buser and G. Courtois, Finite parts of the spectrum of a Riemann surface.
Math. Ann. 287 (1990), 523–530. MR 1060691 Zbl 0711.58033

[B-M] R. Brooks and E. Makover, Riemann surfaces with large first eigenvalue.
J. Anal. Math. 83 (2001), 243–258. MR 1828493 Zbl 0981.30031

[Cha] I. Chavel, Eigenvalues in Riemannian Geometry. Including a chapter by
B. Randol. With an appendix by J. Dodziuk. Pure and Applied
Mathematics 115. Academic Press, Orlando, FL, 1984. MR 0768584
Zbl 0551.53001

[C-C] B. Colbois and G. Courtois, Les valeurs propres inférieures à 1=4 des
surfaces de Riemann de petit rayon d’injectivité. Comment. Math.
Helv. 64 (1989), 349–362. MR 0998853 Zbl 0684.53040

[D-P-R-S] J. Dodziuk, T. Pignataro, B. Randol and D. Sullivan, Estimating small
eigenvalues of Riemann surfaces. In L. Keen (ed), The Legacy of Sonya
Kovalevskaya. Contemporary Mathematics 64. American Mathematical
Society, Providence, RI, 1987, 93–121. MR 0881458 Zbl 0607.58044

[H] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators.
Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006. MR 2251558
Zbl 1109.35081

[He] D.A. Hejhal, Regular b -Groups, degenerating Riemann Surfaces, and
spectral theory. Mem. Amer. Math. Soc. 88 (1990), no. 437. MR 1052555
Zbl 0718.11024

[I] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms. Bib-
lioteca de la Revista Matemática Iberoamericana. Revista Matemática
Iberoamericana, Madrid, 1995. MR 1325466 Zbl 0847.11028

[K] L. Keen, Collars on Riemann surfaces. In L. Greenberg (ed.), Discontinuous
Groups and Riemann Surfaces. Annals of Mathematics Studies 79.
Princeton University Press, Princeton, N.J., and University of Tokyo
Press, Tokyo, 1974, 263–268. MR 0379833 Zbl 0294.32016

[O] J.-P. Otal, Three topological properties of small eigenfunctions on hyperbolic
surfaces. In M. Kapranov, S. Kolyada, Yu. I. Manin, P. Moree and
L. Potyagailo (eds.), Geometry and Dynamics of Groups and Spaces.
Progress in Mathematics 265. Birkhäuser Verlag, Basel, 2008, 685–695.
MR 2402419 Zbl 1187.35145

http://www.ams.org/mathscinet-getitem?mr=0602952
http://zbmath.org/?q=an:0436.52009
http://www.ams.org/mathscinet-getitem?mr=1183224
http://zbmath.org/?q=an:0770.53001
http://www.ams.org/mathscinet-getitem?mr=0961472
http://zbmath.org/?q=an:0646.53040
http://www.ams.org/mathscinet-getitem?mr=1060691
http://zbmath.org/?q=an:0711.58033
http://www.ams.org/mathscinet-getitem?mr=1828493
http://zbmath.org/?q=an:0981.30031
http://www.ams.org/mathscinet-getitem?mr=0768584
http://zbmath.org/?q=an:0551.53001
http://www.ams.org/mathscinet-getitem?mr=0998853
http://zbmath.org/?q=an:0684.53040
http://www.ams.org/mathscinet-getitem?mr=0881458
http://zbmath.org/?q=an:0607.58044
http://www.ams.org/mathscinet-getitem?mr=2251558
http://zbmath.org/?q=an:1109.35081
http://www.ams.org/mathscinet-getitem?mr=1052555
http://zbmath.org/?q=an:0718.11024
http://www.ams.org/mathscinet-getitem?mr=1325466
http://zbmath.org/?q=an:0847.11028
http://www.ams.org/mathscinet-getitem?mr=0379833
http://zbmath.org/?q=an:0294.32016
http://www.ams.org/mathscinet-getitem?mr=2402419
http://zbmath.org/?q=an:1187.35145


24 S. Mondal

[O-R] J.-P. Otal and E. Rosas, Pour toute surface hyperbolique de genre g ,
�2g�2 > 1=4 . Duke Math. J. 150 (2009), 101–115. MR 2560109
Zbl 1179.30041

[R1] B. Randol, Small eigenvalues of the Laplace operator on compact Riemann
surfaces. Bull. Amer. Math. Soc. 80 (1974), 996–1000. MR 0400316
Zbl 0317.30017

[R2] , Cylinders in Riemann surfaces. Comment. Math. Helv. 54 (1979), 1–5.
MR 0522028 Zbl 0401.30036

[R3] , A remark on �2g�2 . Proc. Amer. Math. Soc. 108 (1990), 1081–1083.
MR 1000167 Zbl 1000167

[Se] B. Sévennec, Multiplicity of the second Schrödinger eigenvalue on closed
surfaces. Math. Ann. 324 (2002), 195–211. MR 1931764
Zbl 1053.58014

[S-W-Y] R. Schoen, S. Wolpert, and S.-T. Yau, Geometric bounds on the low
eigenvalues of a compact surface. In R. Osserman and A. Weinstein
(eds.), Geometry of the Laplace Operator. Proceedings of Symposia in
Pure Mathematics XXXVI. American Mathematical Society, Providence,
R.I., 1980, 279–285. MR 0573440 Zbl 0446.58018

(Reçu le 27 novembre 2012)

Sugata Mondal, Institut de Mathématiques de Toulouse, Université Paul Sabatier,
118, route de Narbonne 31062 Toulouse Cedex 9, France

e-mail: sugmondal2000@gmail.com

© Fondation L’Enseignement Mathématique

http://www.ams.org/mathscinet-getitem?mr=2560109
http://zbmath.org/?q=an:1179.30041
http://www.ams.org/mathscinet-getitem?mr=0400316
http://zbmath.org/?q=an:0317.30017
http://www.ams.org/mathscinet-getitem?mr=0522028
http://zbmath.org/?q=an:0401.30036
http://www.ams.org/mathscinet-getitem?mr=1000167
http://zbmath.org/?q=an:1000167
http://www.ams.org/mathscinet-getitem?mr=1931764
http://zbmath.org/?q=an:1053.58014
http://www.ams.org/mathscinet-getitem?mr=0573440
http://zbmath.org/?q=an:0446.58018
mailto:sugmondal2000@gmail.com

	Introduction
	Geometric lower bound on \lambda_{2g-2}(S)
	Systole and the Laplace spectrum
	Non-compact finite area hyperbolic surfaces
	References

