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On the structure of endomorphisms of projective modules

Daniel Ferrand and Dan Laksov�

Abstract. Taking as a model the completed theory of vector space endomorphisms, the
present text aims at extending this theory to endomorphisms of finitely generated projective
modules over a general commutative ring; now analogous results often require totally
different methods of proof.

The first important result is a structure theorem for such modules when the characteristic
polynomial of the endomorphism is separable. The second topic deals with the minimal
polynomial, whose mere existence is shown to require additional hypotheses, even over a
domain. In the third topic we extend the classical notion of ‘cyclic modules’ as the modules
which are invertible over the ring of polynomials modulo the characteristic polynomial.

Regarding the diagonalization of endomorphisms, we show that a classical criterion
of being diagonalizable over some extension of the base field can be transferred nearly
verbatim to rings, provided that diagonalization is expected only after some faithfully flat
base change. Many results that hold over a field, like the fact that commuting diagonalizable
endomorphisms are simultaneously diagonalizable, hold over arbitrary rings, with this
extended meaning of diagonalization. The Jordan-Chevalley-Dunford decomposition, shown
as a particular case of the lifting property of étale algebras, also holds over rings.

Finally, in several reasonable situations, the eigenspace associated with any root of the
characteristic polynomial is shown to be given a more concrete description as the image
of a map. In these situations the classical theory generalizes to rings.
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Introduction

The principal aim of the present text is to extend the theory of endomorphisms
of vector spaces to endomorphisms of finitely generated projective modules, as
far as possible. Our motivations arise from situations in algebra and geometry
which need global properties while the classical theory is too much concentrated
above a one-point scheme to be adequate.

For example, we often meet families of linear maps us which depend on
parameters s , and this situation is usually described as a vector bundle � W E ! S

over the space S of the parameters, together with a map uW E �! E inducing
on each fiber Es D ��1.s/ a linear map us W Es ! Es of vector spaces. Roughly
speaking, the Gelfand point of view then leads us to associate with the space S

a commutative ring A of functions on S (continuous, or algebraic, etc.), and the
vector bundle E is similarly described as a projective A -module of finite type,
say M . To a point s 2 S is thus associated a maximal ideal m of A , and the
map us is equal to the map M=mM �! M=mM induced by u .

The consideration of the generic matrix leads to a situation of the same kind:
in this case S is the spectrum of the ring A D ZŒXij � with n2 independent
variables, and the endomorphism of An is given by the matrix with entries
the Xij .

In a sense the present work is intended to understand how the classical notions
vary in a family of endomorphisms. What we might reasonably expect is not
always true even under strong hypotheses. We encounter, for example, square
matrices with a constant eigenvalue, whose eigenspace is a projective module
of rank 1 which is not free. In the above geometric perspective this means that
there is no (continuous, algebraic, etc.) section � of � with �.s/ a non-zero
eigenvector of us for all s .

However, this work adds nothing to the problem of moduli of vector space
endomorphisms, which is different (see, for example, [MS]).
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The power of the classical theory over a field K comes essentially from two
facts:

– every K -module is free,

– every ideal in KŒT � is principal,

two obviously missing properties over a general commutative ring.

Concerning the lack of bases, we are led to restrict ourselves, from the
outset, to modules of finite type which are locally free, that is, which are
projective. This restriction ensures us the existence of the characteristic poly-
nomial, which indeed plays a central role in this article. More problematic,
as we shall see, is the mere existence of the minimal polynomial because it
should be the generator of an ideal in AŒT � , which is not always principal.

The fact that the ideals in AŒT � are as a rule non principal renders it impossible
to decompose the module into a direct sum of cyclic modules. However, some
results which are usually deduced from this decomposition remain true in general.
For example, we show that the characteristic polynomial always divides some
power of the minimal polynomial, when the latter exists; but this requires a
completely different argument, which rests on the so-called “spectral mapping
theorem” (Theorems 3.6 and 5.5; see Corollary 5.6).

Practically all the results over a field which depend on a hypothesis involving
some extension of the base field extend verbatim over a ring A under a hypothesis
which is analogous, but relative to some faithfully flat algebra A ! A0 . For
example, the classical property of a monic polynomial p to have distinct roots in
some extension of the base field, that is to be separable, has to be translated into
the property that the A -algebra AŒT �=.p/ is étale. This explains why étaleness
is everywhere recurrent in the text.

Our hypotheses are supported by the following rings attached with an
endomorphism uW M ! M of a projective module of finite type over a ring A :
first we have the ring B D AŒT �=.pu/ , where pu is the characteristic polynomial
of u , and there is also the sub-A -algebra AŒu� � EndA.M/ generated by u . The
Cayley-Hamilton theorem asserts that there is a surjective morphism of A -algebras

�W B �! AŒu� I

in particular, M may be seen as a B -module. The kernel of � is a nilpotent
ideal.

The first important result is that the B -module M is invertible when B

is finite étale over A . More generally, being an invertible B -module appears
to be the appropriate generalization of the classical notion of ‘cyclic module’.

Secondly we deal with the existence and properties of the minimal polynomial,
defined as the generator of the ideal Ker.�/ , when it exists, i.e. when AŒu� is
projective as an A -module. We also indicate some situations where this holds,
for example, when A is integrally closed.
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Then we work out the analogue of the diagonalization of endomorphisms.
Classically it involves the minimal polynomial, which is a priori lacking in
our context. Therefore we must rather consider the weaker condition of being
“absolutely semi-simple”, that is of being diagonalizable over some extension of
the base field. This property can be transferred nearly verbatim to rings under
the form: AŒu� is étale over A . With this meaning of the word ‘diagonalizable’,
two commuting endomorphisms which are “diagonalizable”, are shown to be
simultaneously “diagonalizable”.

We also show that the Jordan-Chevalley-Dunford decomposition holds over
rings, simply because it is shown to be a particular case of the lifting property
of étale algebras. In fact, the decomposition u D us C un is here equivalent to
the existence of a quotient B=J , étale over A , where J is a nilpotent ideal.

Finally, we discuss eigenvectors and eigenspaces. We show that in several
reasonable situations the eigenspace associated to any root � of the characteristic
polynomial of u can be given a concrete description as the image of a map close
to the cotranspose of u � � . In these situations the classical theory generalizes
to rings.

One conclusion of this work is that extending over a ring the linear results
which are classical over a field forces us to weaken both the hypothesis and the
conclusion by restricting them to be true only locally for the Zariski, or étale,
or even fpqc topology. After all, we already meet this constraint when working
over a field which is not algebraically closed.

In what follows, all rings are supposed to be commutative with unity.

1. Preliminaries on idempotents, and open and closed subsets

In this section we collect for the convenience of the reader some classical results
on idempotents and open and closed subsets of the prime spectrum of a ring. We
follow the usual notation: see for example [AC], II, 4; in particular, for an ideal
I of a ring A , V.I / denotes the set of prime ideals of A containing I ; it is
closed in Spec.A/ .

1.1. Lemma. Let � W C ! C1 be a surjective morphism of rings, and let
U be the closed subset of Spec.C / image of the map �?W Spec.C1/ ! Spec.C / .
Then the following properties are equivalent:

i) The set U is open and, as a morphism of schemes, �? is an open
immersion: this means that, for all prime ideals p containing I D Ker.�/ , the
map �pW Cp ! .C1/p is an isomorphism, i.e. Ip D 0 .

ii) The ideal Ker.�/ is generated by an idempotent e in C and one has
U D V.e/ ; such an idempotent is unique.
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iii) The ring C has a quotient C ! C0 such that the morphism C �! C0�C1

is an isomorphism of rings.
iv) The morphism � defines a structure of projective C -module on C1 .

Proof. i/ ) ii/ By definition, one has U D V.I / , where I D Ker.�/ .
By assumption, there is an ideal J in C such that Spec.C / is the disjoint
union of V.I / and V.J / . Since ¿ D V.I / \ V.J / D V.I C J / , there are
two elements a 2 I and b 2 J such that 1 D a C b . Moreover, since
Spec.C / D V.I / [ V.J / D V.I J / , the elements of I J are nilpotent, and
thus .ab/m D 0 for some integer m .

The element u D am C bm is not contained in any prime ideal of C , and
thus it is invertible in C . We let e D am=u and e0 D bm=u . Then 1 D e C e0
and ee0 D 0 ; thus e is an idempotent contained in I , and e0 D 1 � e is an
idempotent contained in J . Hence we have inclusions U D V.I / � V.e/ and
V.J / � V.1�e/ . Since, moreover, both pairs of closed subsets ŒV .I /; V .J /� and
ŒV .e/; V .1�e/� are partitions of Spec.C / , these partitions are equal. In particular
one has V.I / D V.e/ . In order to check that Ce D I we can localize at the
prime ideals p of C . In fact, Ce � I and hence .Ce/p � Ip . If p contains I

we have Ip D 0 by assumption, whence .Ce/p D Ip D 0 . If, on the other hand,
p does not contain I then e … p is invertible in Cp and Cp D .Ce/p D Ip .

Uniqueness of e : starting from an equality Ce D Ce1 , the product by
1 � e gives 0 D C.1 � e/ e1 , that is e1 D ee1 . By symmetry we get e D e1 .

ii/ ) i/ The image of 1 � e in C=eC is 1 , thus we have a surjective
morphism C1�e ! C=eC . It is in fact an isomorphism since its kernel
.eC /1�e is zero due to the relation .1 � e/.eC / D 0 . Moreover the morphism
Spec.C1�e/ ! Spec.C / is an open immersion.

ii/ ) iii/ One has C1 D C=eC ; let C0 D C=.1 � e/C . Then we obtain
a factorization C D C0 � C1 such that U is the image of the morphism
Spec.C1/ ! Spec.C / defined by the projection C ! C1 .

iii/ ) iv/ Clear.

iv/ ) ii/ Since C1 is a projective C -module, the C -linear surjection �

admits a C -linear section, that is a map � W C1 ! C such that �� D Id . By
definition of the action, we have c : c1 D �.c/c1 for any c 2 C and c1 2 C1 .
Hence c�.c1/ D �.�.c/c1/ . This applies in particular to c D �.1/ and c1 D 1 ,
from which we see that �.1/ is an idempotent. Now applying the equality
to c1 D 1 and c 2 Ker.�/ we get c�.1/ D 0 , and hence c D ce , where
e D 1 � �.1/ is also idempotent. Conversely, the relation c D ce implies that
�.c/ D 0 since �.�.1// D 1 . Thus Ker.�/ is generated by e .

1.2. Definition. A ring C is said to be connected if Spec.C / is connected
as a topological space.
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The above lemma shows that a ring C is connected if and only if it contains
no idempotent other than 0 and 1 .

1.3. Proposition. Let C be a ring, and let P be a projective C -module of
finite type. Then the support of P is closed and open in Spec.C / . Equivalently
there is a unique idempotent e in C such that AnnC .P / D eC ; moreover, P is
a C=eC -module which is projective. In particular, if the support of P is equal
to Spec.C / , then AnnC .P / D 0 .

More generally, for any integer d , the set of prime ideals p such that
rkp.Pp/ D d is closed and open. In particular, if C is connected, the map
p ! rkp.Pp/ is constant, and thus the rank of P is well defined.

Proof. Since P is of finite type the formation of the ideal AnnC .P /

commutes with localization, and the support of P is the closed set V.AnnC .P // .
Let C1 D C= AnnC .P / . According to the implication iv/ ) ii/ of Lemma 1.1,
we have to prove that C1 is a projective C -module. For doing so we
use twice Theorem 1 of [AC], II, 5.2: P is projective if and only if for
every maximal ideal m of C , there exists t 2 C n m such that Pt is a
free Ct -module; but for such a t we have .C1/t D Ct = AnnCt

.Pt / D 0

if Pt D 0 , and .C1/t D Ct otherwise; in any case it is indeed a free
Ct -module.

Finally, the set of primes p such that rkp.Pp/ � d is the support of the
wedge product ^d .P / , which is closed. Hence the set of primes p such that
rkp.Pp/ D d is open and closed.

1.4. Proposition. Let C �! C 0 be a morphism of commutative rings such
that C 0 is a non-zero projective C -module of finite type. If C is connected, then
there exists a surjection of rings C 0 ! C 00 such that C 00 is a non-zero projective
C -module, and C 00 is connected.

Proof. Since C is connected, it follows from Proposition 1.3 that each
non-zero quotient ring C 00 of C 0 which is C -projective has a strictly positive
well-defined rank over C ; such a quotient C 00 with minimal rank is connected.
In fact, by Lemma 1.1, an idempotent of C 00 would produce a decomposition of
C 00 into a product of rings C 00 D C 00

0 � C 00
1 . If they both were non zero, each

factor would have a strictly smaller rank.

1.5. Proposition. Let p.T / be a monic polynomial in AŒT � , of degree n .
Denote by t the class of T in B D AŒT �=.p/ . Then

i) The characteristic polynomial pt;B.T / of multiplication by t on B is
equal to p.T / . If p.T / splits over A as p.T / D Qn

iD1.T � �i / , then, for all
polynomials f .T / in AŒT � , we have
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pf .t/;B.T / D
nY

iD1

.T � f .�i // :

ii) Let AŒT � ! C be a surjective morphism of rings. Then C is a projective
module over A , of constant (finite) rank, if and only if the kernel of this
morphism is generated by a monic polynomial q.T / ; we thus have an isomorphism
AŒT �=.q/ ' C . The morphism AŒT � ! C factors as AŒT � ! B ! C if and
only if the polynomial q.T / divides p.T / .

iii) Assume that the ring B decomposes as a product B D B0 � B1 ,
with Bi of constant rank over A . Then the polynomial p factors as
a product p.T / D p0.T /p1.T / of two monic polynomials, with isomor-
phisms AŒT �=.pi / ' Bi , and these polynomials are comaximal, that is,
p0AŒT � C p1AŒT � D AŒT � .

Proof. i) On the A -module basis 1; t; : : : ; tn�1 of B , multiplication by t is
represented by the companion matrix of p.T / , whose characteristic polynomial
is well known to be equal to p.T / , as a standard calculation shows. This is
also a direct consequence of the Hamilton-Cayley theorem, which states that
pt;B.t / D 0 ; hence p divides pt;B , and both polynomials have the same degree.

If p.T / D .T � �1/ � � � .T � �n/ in AŒT � , an A -module basis for B is given
by

1; t � �1; .t � �1/.t � �2/; : : : ; .t � �1/ � � � .t � �n�1/ :

On this basis multiplication by t is represented by a triangular matrix with the
elements �1; : : : ; �n on the diagonal. Thus multiplication by f .t/ is represented
by a triangular matrix with the elements f .�1/; : : : ; f .�n/ on the diagonal.

ii) Let AŒT � ! C be a surjective homomorphism, where C is projective of
rank m over A , and let q.T / be the characteristic polynomial of the product by
the image tC of T in C . By the Cayley-Hamilton theorem we have a surjective
homomorphism of A -algebras AŒT �=.q/ �! C . Since these algebras have the
same rank m , the morphism is an isomorphism. The last part follows, since
p.tC / D 0 , and thus the polynomial q.T / divides p.T / .

iii) Let pi .T / be the characteristic polynomial of multiplication by t on Bi .
Since we have a direct decomposition of B as a product, the characteristic
polynomial of t in B factors as p0.T /p1.T / . From i) we deduce that
p.T / D p0.T /p1.T / , and from ii) we get isomorphisms AŒT �=.pi/ ' Bi .
Finally, it is a general fact that two ideals I and J in a ring R are relatively
prime if the morphism R ! R=I �R=J is bijective, as can be seen by tensoring
by R=I .
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2. Finite étale algebras

In this section we recall some results related to finite étale morphisms. Geomet-
rically they may be seen as étale coverings. In fact, the main example of a finite
étale A -algebra is a finite product An of copies of A ; “locally” it is the only one
(see 2.4). In the sequel, finite étale A -algebras will mainly appear as quotients
AŒT �=.p/ where p is a monic polynomial whose discriminant is invertible in A ,
i.e. a separable polynomial (see 2.8).

Proposition 2.9 deserves to be pointed out because it is often used in the text.
For a thorough exposition on étale algebras, see of course [EGA], IV, 17.6, 18.3.

2.1. Definition. A morphism of rings A �! B is said to be finite étale if
it makes B into a projective A -module of finite type and if the multiplication
�W B ˝A B �! B makes B into a projective module over B ˝A B .

The kernel of � is the ideal generated by the elements b ˝ 1 � 1 ˝ b ; due
to Lemma 1.1 (whose idempotent, denoted by e , is here 1 � e ), the condition
on � is equivalent to:

2.2. There exists an element e 2 B ˝A B such that �.e/ D 1 and
e : .b ˝ 1/ D e : .1 ˝ b/ for all b 2 B .

An element e with these properties is an idempotent since the first condition
implies that e � 1 2 Ker.�/ , and the second that e : Ker.�/ D 0 . Such an
idempotent e is unique when it exists, and 1 � e is a generator of the ideal
Ker.�/ .

For simplicity we sometimes write that a ring homomorphism A ! B ‘is’ a
projective quotient if it is surjective and makes B into a projective A -module.
In the next lemma we collect the properties of finite flat algebras used in the
sequel.

2.3. Lemma. i) A surjective morphism A ! B is étale if and only if it
is a projective quotient, that is, if its kernel is generated by an idempotent.

ii) Let f W A �! B be a homomorphism making B into a projective A -module
of finite type. Then f is faithfully flat if and only if f is injective. If A is
connected and B ¤ 0 or, more generally, if for each prime p of A , rankp.B/

is non zero, then f is faithfully flat.
iii) Let f W A �! B and gW B �! C be finite étale algebras. Then

gf W A �! C is also a finite étale algebra.
iv) Let f W A �! B be a finite étale algebra with A connected and B ¤ 0 .

Then there is a non-zero projective quotient B ! B 0 which is connected and
étale over A .
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v) Let f W A �! B be a homomorphism and f 0W A0 �! A0 ˝A B be the
morphism obtained by the base change A ! A0 . If f is finite étale then so
is f 0 . Conversely, if f 0 is finite étale, and A ! A0 is faithfully flat, then
A �! B is finite étale as well.

Proof. i) This is clear from Lemma 1.1, since, in this case, B ˝A B D B .

ii) A faithfully flat morphism is injective ([AC], I, 3.5). Suppose that f is
injective. We have to show that Spec.B/ �! Spec.A/ is surjective ([AC], II,
2.5); this is a consequence of the “going up theorem”, but here we may give the
following easy proof. Let p be a prime ideal of A . The morphism Ap �! Bp

is injective, so that Bp is non zero. Since Bp is a finitely generated projective
module over the local ring Ap , it is free and non zero. Therefore the ring Bp=pBp

is non zero, and each of its prime ideals restricts to p . We have thus shown that
Spec.B/ �! Spec.A/ is surjective.

iii) In the following diagram, where �f and �g are multiplication maps
and m is the natural homomorphism, the square is co-cartesian, that is, it makes
C ˝B C into a tensor product of the three other rings

C ˝A C
m �� C ˝B C

�g �� C

B ˝A B

��

�f

�� B

��

Since f is étale, �f is a projective quotient, and hence the same is true for m .
Since g is étale, �g is a projective quotient. Therefore �gf D �g m is also a
projective quotient.

iv) The proof is similar to that of Proposition 1.4, since a projective quotient
of B is still étale over A , by i) and iii).

v) The direct statement comes from the fact that projectiveness is preserved
under any base change. Conversely, according to [AC], I, 3.6, prop. 12, the
hypothesis implies that B is a finitely generated projective A -module. If we
apply the latter result to the faithfully flat morphism

B ˝A B �! A0 ˝A .B ˝A B/ D .A0 ˝A B/ ˝A0 .A0 ˝A B/

and to the B ˝A B -module B , we conclude that B is a projective B ˝A B -mod-
ule.

2.4. Proposition. Let A �! B be a morphism. Then the following
conditions are equivalent:

i) The morphism A �! B is finite étale of constant rank d .
ii) There exist a finite étale morphism A �! A0 of constant rank � dŠ and

an isomorphism of A0 -algebras A0 ˝A B ' A0d . If, moreover, A is connected
then there exists such an A0 which is also connected.
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iii) There exist a faithfully flat morphism A �! A0 and an isomorphism of
A0 -algebras A0 ˝A B ' A0d .

Proof. i/ ) ii/ We argue by induction on the rank d , starting from the
case where d D 1 , which is obvious. Since B is étale, the ring B ˝A B contains
two idempotents 1 � e and e which yield a decomposition as a product of rings
B ˝A B ' B � C . Consider B ˝A B as a B -algebra via the first factor. It is a
finite étale B -algebra of rank d , and from Lemma 2.3, i) and iii), we see that
the composite B ! B ˝A B ! C is a finite étale algebra of rank d � 1 . By
the induction hypothesis there exist a finite étale B -algebra B ! A0 of constant
rank � .d � 1/Š over B and an isomorphism A0 ˝B C ' A0d�1 . The composite
A ! B ! A0 is finite étale by Lemma 2.3 iii), and of constant rank � dŠ , and
we have the isomorphisms

A0 ˝A B D A0 ˝B .B ˝A B/ ' A0 ˝B .B � C / ' A0 � A0d�1
:

If moreover A is connected, it follows from Lemma 2.3 iv) that there is a non-zero
projective quotient of A0 which is connected.

The implication ii/ ) iii/ is clear, since by Lemma 2.3 ii) a finite étale
morphism of constant rank is faithfully flat.

The implication iii/ ) i/ follows from Lemma 2.3 v).

2.5. Notation. Given a monic polynomial p.T / 2 AŒT � we introduce the
polynomial @p.X; Y / 2 AŒX; Y � defined by the relation

p.X/ � p.Y / D .X � Y / @p.X; Y / :

Then @p.X; X/ D p0.X/ , where p0.X/ is the formal derivative of p.X/ . This
follows immediately, by linearity, from the case p.T / D T n . See Remark 8.4 3)
below for some complements on this polynomial.

The next two propositions develop some consequences of being étale for
algebras of the form AŒT �=.p/ .

2.6. Proposition. Let p.T / 2 AŒT � be a monic polynomial. Write B D
AŒT �=.p/ and denote by t the class of T in B . Let us denote further by
�W B ˝A B ! B the multiplication map. We assume that p0.t / is invertible
in B . Then the following three assertions hold:

i) The morphism A �! B is étale. More precisely, the element

e D @p.t ˝ 1; 1 ˝ t /

p0.t / ˝ 1

in B ˝A B is an idempotent such that �.e/ D 1 and such that, for all b 2 B ,
we have .b ˝ 1/ : e D .1 ˝ b/ : e .
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ii) The map "W B �! B ˝A B , defined by ".b/ D .b ˝ 1/ : e D .1 ˝ b/ : e ,

induces an isomorphism B
��! AnnB˝AB.t ˝ 1 � 1 ˝ t / .

iii) The sequence

.2:6:1/ 0 �! B
"�! B ˝A B

t˝1�1˝t������! B ˝A B
��! B �! 0

is exact and split as a sequence of B ˝A B -modules.

Proof. i) Since B is a free A -module, it is enough to check the conditions
of 2.2. Since @p.X; X/ D p0.X/ we obtain that �.e/ D @p.t; t /=p0.t / D 1 .
From the relation p.t/ D 0 and the definition of @p.X; Y / , we deduce that

.t ˝ 1 � 1 ˝ t / : e D .p.t ˝ 1/ � p.1 ˝ t //=.p0.t / ˝ 1/ D 0 :

Finally, since t is a generator of the A -algebra B , we see that the relation
.t ˝ 1 � 1 ˝ t / : e D 0 implies that .b ˝ 1/ : e D .1 ˝ b/ : e for all b in B .

ii) Since the ideal I D Ker.�/ is generated by 1 � e , the ideal

AnnB˝AB.t ˝ 1 � 1 ˝ t / D AnnB˝AB.I /

is generated by e .

iii) Due to ii), the exactness as a sequence of A -modules is clear. The map
" is B ˝A B -linear when B is endowed with the structure of B ˝A B -module
coming from � . Indeed we have:

".�.x ˝ y// D ".xy/ D .xy ˝ 1/ : e D .x ˝ 1/.y ˝ 1/ : e

D .x ˝ 1/.1 ˝ y/ : e D .x ˝ y/ : e

The sequence is split since B is a projective B ˝A B -module.

2.7. Remarks. 1) The formula for e in the proposition appears to be
asymmetric, since in general p0.t / ˝ 1 ¤ 1 ˝ p0.t / . However, the difference
p0.t / ˝ 1 � 1 ˝ p0.t / is a multiple of t ˝ 1 � 1 ˝ t ; hence it is annihilated by
@p.t˝1; 1˝t / , and we have @p.t˝1; 1˝t /.1˝p0.t // D @p.t˝1; 1˝t /.p0.t /˝1/ .

2) See 8.3 for a sequence analogous to (2.6.1), but without the assumption
that p0.t / is invertible.

We now turn to the discriminant of a polynomial (for more information, see
for example [A], V, §6 and §7):

Let p.T / in AŒT � be a monic polynomial of degree n . Since the algebra
B D AŒT �=.p/ is free over A , we have a norm map

NB=AW B �! A ; defined by NB=A.b/ D det.bB/ ; where bB.x/ D bx :
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An element b in B is invertible in B if and only if NB=A.b/ is invertible in A .
The discriminant of p.T / is defined as

dis.p/ D .�1/n.n�1/=2 NB=A.p0.t // :

Thus p0.t / is invertible in B if and only if the discriminant of p.T / is invertible
in A . Moreover, if p.T / splits as p.T / D .T � �1/ � � � .T � �d / , then

dis.p/ D
Y
i¤j

.�i � �j / :

2.8. Proposition. Let p.T / 2 AŒT � be a monic polynomial. Write B D
AŒT �=.p/ and denote by t the class of T in B . Then B is finite étale over A if
and only if p0.t / is invertible in B , a condition equivalent to the discriminant of
p.T / being invertible in A . We then say that the polynomial p.T / is separable.

Proof. By Proposition 2.6, the only point which remains to be proved is
that p0.t / is invertible if B is étale. For doing so we may assume that A is
connected; from Proposition 2.4 we see that we can also assume that there is
an isomorphism B D AŒT �=.p/ ' An . The image of t under this isomorphism
may be written as .�1; : : : ; �n/ with �i 2 A . Since t is a generator of the
A -algebra B , the sequence .1; t; : : : ; tn�1/ is a basis of this A -module, and thus
the Vandermonde matrix 0

BBB@
1 �1 �2

1 � � � �n�1
1

1 �2 �2
2 � � � �n�1

2
:::

:::

1 �n �2
n � � � �n�1

n

1
CCCA

is invertible, that is �i � �j is invertible in A when i ¤ j . The discriminant
of p.T / is thus invertible.

2.9. Proposition. Let B be a finite étale A -algebra, and let M be a
B -module of finite type. If M is projective as an A -module, it is also projective
as a B -module.

In particular, if J is an ideal in B such that B=J is isomorphic to A , then
B=J is a projective B -module.

Proof. We give two proofs of the proposition:

1) We can assume that A is connected, and hence that B has constant rank,
say d . According to 2:4 , there exist a faithfully flat morphism A �! A0 and
an isomorphism A0 ˝A B ' A0d . Since A0 ˝A M is a module over that ring, it
splits as a product of A0 -modules M1 � � � � � Md . But, by assumption, A0 ˝A M

is projective over A0 , and thus each factor Mi is also projective over A0 . Hence
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A0 ˝A M is projective over A0 ˝A B . The proposition follows by descent of
projectiveness under faithfully flat morphisms ([AC], I, 3.6, prop. 12).

2) For the B -module structure coming from the first factor, the module
B ˝A M is projective. The given B -module structure on M yields a B -linear
map

�M W B ˝A M �! M ; defined by �M .b ˝ x/ D bx :

To prove the proposition it suffices to show that �M admits a B -linear splitting,
that is a map

� W M �! B ˝A M

such that �M � D IdM and �.bx/ D .b ˝1/ : �.x/ where b ˝1 is in B ˝A B . In
fact, the existence of such a B -linear splitting � shows that M is B -isomorphic
to the direct summand �.M/ of the projective B -module B ˝A M , and therefore
M is projective as a B -module.

To define � W M ! B ˝A M we use the idempotent e 2 B ˝A B coming
from the definition of étale morphisms (see 2.2), and we let

�.x/ D e : .1 ˝ x/ :

This map is B -linear since e : .1˝b/ D e : .b˝1/ . In fact, �.bx/ D e : .1˝bx/ D
e : .1 ˝ b/.1 ˝ x/ D e : .b ˝ 1/.1 ˝ x/ D .b ˝ 1/ : �.x/ . Since �.e/ D 1 we have
�M �.x/ D �M .e : .1 ˝ x// D �.e/�M .1 ˝ x/ D x .

3. Endomorphisms with a separable characteristic polynomial

We first introduce some notation and prove some results used in the proof of
Theorem 3.3.

3.1. Notation. In what follows, A will denote a ring and M an A -module of
finite type with an A -linear endomorphism uW M ! M . When M is a projective
A -module of rank n we denote by pu.T / the characteristic polynomial of u

in AŒT � , that is, pu.T / D det.T � u/ . By the Cayley-Hamilton theorem, M is
also an AŒT �=.pu/ -module.

We shall on several occasions use that, given a monic polynomial p.T / in
AŒT � , there is an A algebra A ! A0 which is free of finite rank as an A -module
and such that p.T / splits completely over A0 as p.T / D Qn

iD1.T � �i / . The
splitting algebra of p.T / provides such an algebra which is also universal for
splittings; see e.g. [A], IV, 6.5, [E-L1], and [L-T] (or [F1] for a much more
general point of view).
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3.2. Lemma. Assume that M is a projective A -module of rank n , and let
q.T / in AŒT � be a monic non-constant divisor of the characteristic polynomial
pu.T / of uW M ! M . Then det.q.u// D 0 .

Proof. Let A ! A0 be an A -algebra which is free of finite rank as an
A -module, and over which q.T / splits as q.T / D Qm

iD1.T � �i / . Since the
morphism A ! A0 is injective, and since det.q.1A0 ˝ u// is the image in
A0 of det.q.u// , we can assume from the outset that q.T / splits over A as
q.T / D Qm

iD1.T � �i / with �i in A . Then we have

det.q.u// D
mY

iD1

det.u � �i / :

However, since a root �i of q.T / is also a root of pu.T / , we obtain

det.u � �i / D .�1/n det.�i � u/ D .�1/npu.�i / D 0 :

In particular, we have det.q.u// D 0 .

The following theorem is the first important result of the article.

3.3. Theorem. Let M be a projective A -module of rank n > 0 , and let
uW M ! M be an A -linear endomorphism with characteristic polynomial pu.T / .
Write B D AŒT �=.pu/ . We suppose that the discriminant of pu.T / is invertible
in A , i.e. that B is étale over A .
1) If moreover pu.T / splits over A as pu.T / D Qn

iD1.T � �i / , then the
following two maps are isomorphismsL

i

Ker.u � �i / �! M �! Q
j

M=.u � �j / M

and, for each i , the composite map

Ker.u � �i / �! M �! M=.u � �i / M

is an isomorphism.

2) The following three equivalent assertions hold:

i) The B -module M is invertible, i.e. it is projective of rank 1 .

ii) If pu.T / splits over A as pu.T / D Qn
iD1.T � �i/ , then, for each i , the

quotient M=.u � �i / M is an invertible A -module.

iii) If pu.T / splits over A as pu.T / D Qn
iD1.T � �i/ , then, for each i , the

submodule Ker.u � �i / is an invertible A -module.

Proof of 1). As the characteristic polynomial is supposed to be separable, its
factors .T � �i / are pairwise comaximal, and hence the morphism

B �!
nY

iD1

B=.t � �i / B



On the structure of endomorphisms of projective modules 145

is an isomorphism. Moreover, for each i , we have the isomorphism

B=.t � �i / B
��! A;

defined by t 7! �i . By composition we get an isomorphism B
��! An ; the

projection pi W B ! A onto the i -th factor is characterized by pi .t / D �i .
Tensoring with M , we get the isomorphism

M D B ˝B M
��!

Y
i

Mi ;

where Mi denotes the module .B=.t � �i/ B/ ˝B M D M=.u � �i/ M D p?
i M .

Now we will prove that the composite map

.?/i;j Ker.u � �i / �! M �! M=.u � �j / M

is zero if i ¤ j , and that it is an isomorphism for j D i . This will imply that
the composite mapL

i

Ker.u � �i/ �! M
��! Q

j

M=.u � �j / M

is an isomorphism, whence the map on the left is also an isomorphism.
Let us fix an index i and let q.T / D Q

j ¤i .T � �j / . There exists a monic
polynomial r.T / such that

q.�i / D q.T / C .T � �i/ r.T / :

Since the polynomial p.T / D .T � �i/ q.T / is separable, the element q.�i /

is invertible in A . Introducing the endomorphisms v D q.�i/
�1q.u/ and

w D q.�i /
�1r.u/ , we get the equality

.??/ IdM D v C .u � �i / w :

The Cayley-Hamilton theorem implies that 0 D p.u/ D q.u/.u � �i / D
.u � �i / q.u/ . From this we deduce the relations v.u � �i/ D 0 and Im.v/ �
Ker.u � �i / , and the equality .??/ shows that

v D v2 and Im.v/ D Ker.u � �i / :

It is immediate from the definitions that Im.v/ D Im.q.u// � T
j ¤i Im.u � �j / ,

so that Ker.u � �i / � T
j ¤i Im.u � �j / . Therefore, for i ¤ j , the map

.?/i;j Ker.u � �i / ! M ! M=.u � �j / M

is zero. Now, the kernel of the map

.?/i;i Ker.u � �i / ! M ! M=.u � �i/ M

is Ker.u � �i / \ Im.u � �i / . But if x 2 Ker.u � �i/ then x D v.x/ , and if
x 2 Im.u � �i / then v.x/ D 0 . Thus the map .?/i;i is injective. It is also
surjective since the equality .??/ shows that x � v.x/ mod .u � �i / M , and
we know that v.x/ 2 Ker.u � �i / .
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Proof of 2). Note first that, according to [AC], I, 3.6, prop. 12, the conclusion
of i) is valid if and only if it is established after a faithfully flat base change.
Thus we may, and we will, suppose that the characteristic polynomial is split.

Proving the equivalence i/ , ii/ reduces to proving that M is invertible
over B if and only if each factor Mi is an invertible A -module. This is clear
geometrically: if we allow ourselves to look at M and the Mi as sheaves on
Spec.B/ and Spec.A/ respectively, then Mi D p?

i M appears as the restriction
of M over the open and closed image set of

Spec.A/
Spec.pi /����! Spec.B/ ;

and these open sets cover Spec.B/ .
The equivalence of ii) and iii) comes from the isomorphism .?/i;i .
We next prove that M is an invertible B -module. Since B is étale over A it

follows from Proposition 2.9 that M is a projective B -module. Hence it remains
to prove that M is of rank one. This is a consequence of the following slightly
more general result:

3.3.1. Lemma. Let uW M ! M be an endomorphism of a projective
A -module of finite type. Let q.T / be a monic divisor of its characteristic
polynomial pu , such that q.u/ D 0 . We suppose that M is a projective module
over AŒT �=.q/ . Then the support of M as an AŒT � -module is V.q/ .

Moreover, if q D pu then M is invertible over AŒT �=.pu/ .

It is good to keep in mind the extreme example of the zero endomorphism
of An , with n � 2 ; then p0.T / D T n , and we can take q.T / D T .

Proof. We let C D AŒT �=.q/ ; it is a quotient of B D AŒT �=.pu/ , and M is
endowed with a structure of C -module. We first prove that the support of M is
equal to Spec.C / D V.q/ . To this end, we may clearly assume that Spec.A/ is
connected. It follows from Proposition 1.3 that the support of M is closed and
open in Spec.C / . Hence it follows from Lemma 1.1 that we can factor C into
a product C D C0 � C1 of rings, where Spec.C1/ is isomorphic to the support
of M and C0 ˝C M D 0 .

Since we assume that Spec.A/ is connected, it follows from Proposition 1.5 ii)
that there is a monic divisor q0.T / of q.T / such that C0 D AŒT �=.q0/ . The
relation C0 ˝C M D 0 can thus be written M D q0.u/ M . The latter equality
implies1 that q0.u/ is an isomorphism of M . Hence it follows from Lemma 3.2
that q0.T / D 1 , and consequently that C0 D 0 .

1 The surjectivity of q0.u/ implies the surjectivity of the endomorphism det.q0.u// D ^nq0.u/
of the invertible module ^nM . Hence det.q0.u// is bijective, and q0.u/ is an isomorphism.
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We now suppose that q D pu , i.e. that B D C . To prove that rankB.M/ D 1 ,
we may assume that A is a field k . Since B is then a finite algebra over a
field, we can write B as a product of local rings B D K1 � � � � � Km , each
being a finite k -algebra. Thus M D M1 � � � � � Mm , where Mi D Ki ˝B M is
a free Ki -module since M is projective over B , and this free module is non
zero because Spec.Ki/ is in the support of M , as shown above. We have

dimk.M/ D
mX

iD1

dimk.Mi / D
mX

iD1

dimk.Ki / rankKi
.Mi / :

Moreover, since B D AŒT �=.pu/ we have dimk.M/ D n D deg.pu/ D dimk.B/

and thus dimk.M/ D Pm
iD1 dimk.Ki / . Since, for all i , we have observed that

rankKi
.Mi / � 1 , we obtain that rankKi

.Mi / D 1 for all i . Hence M is an
invertible B -module.

3.4. Corollary. Let M be a projective A -module of rank n , and let
u W M ! M be an A -linear endomorphism with characteristic polynomial
pu.T / . Write B D AŒT �=.pu/ . If pu.T / is separable, that is if the discriminant
of pu.T / is invertible in A , then:

i) The only A -module endomorphisms of M that commute with u are the
polynomials in u with coefficients in A .

ii) A polynomial q.T / in AŒT � satisfies q.u/ D 0 if and only if q.T / is a
multiple of pu.T / , i.e. pu is the minimal polynomial (see §4).

iii) Assume that Spec.A/ is connected. Let N be an A -submodule of M that
is stable under u , that is u.N / 	 N , and such that M=N is projective over A .
Then there exists a unique monic divisor q.T / of pu.T / such that N D q.u/ M .

Conversely, if q.T / in AŒT � is a monic divisor of pu.T / , then q.u/ M is
stable under u , and M=q.u/ M is a projective A -module.

Proof. The subalgebra of EndA.M/ consisting of A -endomorphisms that
commute with u is nothing but EndB.M/ . Moreover, M is an invertible
B -module by the theorem, so the canonical morphism B ! EndB.M/ is an
isomorphism. Hence assertion i) holds.

Assertion ii) is equivalent to having the inclusion B ' EndB.M/ 	 EndA.M/ .

The module M=N of assertion iii) is a B -module since N is stable under u .
By assumption, M=N is a projective A -module and the morphism A ! B is
étale. We deduce from Proposition 2.9 that M=N is a projective B -module,
and it is of rank � 1 as a quotient of the invertible B -module M . By
Proposition 1.3 and Lemma 1.1, the support of M=N is the image of a morphism
Spec.C / �! Spec.B/ , where C is a projective quotient of B . Thus M=N is
an invertible C -module. The surjective map of B -modules M �! M=N gives
rise to a surjective map of invertible C -modules C ˝B M �! M=N , and thus
the latter is an isomorphism.
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Now, since Spec.A/ is connected by assumption, it follows from Proposition
1.5 ii) that there is a monic divisor q.T / of pu.T / such that C D AŒT �=.q/ .
The above isomorphism C ˝B M ! M=N gives an isomorphism M=q.u/ M '
M=N , that is N D q.u/ M .

Conversely, let q.T / be a monic divisor of pu.T / . Then M=q.u/ M is an
invertible module over AŒT �=.q/ D B=q.t/ B , and in particular, a projective
A -module. Finally, it is obvious that q.u/ M is stable under u .

3.5. Examples. Here are two examples coming from geometry:

1. The first one is an example of an endomorphism of a free module with
constant eigenvalues, whose eigenspaces are projective of rank one but not free.

Let A D RŒX; Y �=.X2 C Y 2 � 1/ be the ring of real polynomial functions on
the circle, and denote by x and y the classes of X and Y . Consider the A -
algebra M D C˝RA as a free A -module of rank 2 , with basis .1˝1; i ˝1/ . For
a; b 2 A we shall simply write a C ib instead of the more correct 1˝ a C i ˝ b .
The map

.3:5:1/ uW C ˝R A �! C ˝R A ; a C ib 7�! .x C iy/.a � ib/

is A -linear, but of course it is not C ˝R A -linear since it involves the
complex conjugation. On the specified basis the matrix of u is

�
x y
y �x

�
, and

the characteristic polynomial of u is pu.T / D T 2 � 1 . Let L and L0 be the
two eigenspaces relative to the eigenvalues 1 and �1 respectively (see [F2] for
a thorough but elementary discussion of these eigenspaces and their relation to
the Möbius strip). Let z D x C iy . For any ˛ 2 C ˝R A we have ˛ C z N̨ 2 L

and ˛ � z N̨ 2 L0 , whence we get a decomposition as a direct sum of A -modules

C ˝R A D A2 D L ˚ L0 :

Moreover the A -algebra B D AŒT �=.pu/ of Theorem 3.3 is here the product of
two copies of A along which the B -module M splits into the product L � L0 .
Thus, as stated in Theorem 3.3, M is indeed an invertible B -module.

Let us show that the A -module L is invertible but not free, and that the
same is true for L0 . An element in .�; 	/ 2 S1 � R2 determines a morphism of
R-algebras A ! R , namely a.x; y/ 7! a.�; 	/ , hence a morphism of C -algebras
C ˝R A ! C , a C ib 7! a.�; 	/ C ib.�; 	/ ; the image of x C iy is thus � C i	 .
We now consider the usual realization of S1 as the set of 
 2 C such that

 N
 D 1 ; we denote by f .
/ the complex number image of f 2 C ˝R A by
the morphism attached to 
 , thus the image of x C iy is precisely 
 . Hence the
elements of L are polynomial functions f W S1 �! C satisfying, for all 
 2 S1 ,
the relation, analogous to (3.5.1),

.3:5:2/ f .
/ D 
 : f .
/ :
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We will show that any such function f has a zero on S1 and thus cannot be a
generator of L . To do this, we introduce the function '.
/ D f .
/f . N
/ , which is
easily seen to have only real values. Since the topological space S1 is connected
and compact, '.S1/ is a closed interval in R , and we have to show that this
interval contains 0 . The relation (3.5.2) implies that f .1/ is real and that f .�1/

is purely imaginary. Hence '.1/ � 0 and '.�1/ � 0 , and we are done.

2. In the second example the A -module M is free of rank 3 but it contains
a stable direct factor of rank 2 which is not free. The main point comes from
the article [S] by Samuel.

Let A D RŒX; Y; Z�=.X2 C Y 2 C Z2 �1/ be the ring of polynomial functions
on the sphere S2 , and denote by x; y; z the classes of X; Y; Z , respectively. In
order to define our endomorphism of the free module M D A3 , we introduce its
canonical basis .e1; e2; e3/ ; attached to it are the usual scalar product, denoted
by .� j �/ , and the isomorphism

'W ^2.A3/ �! A3 ; e1 ^ e2 7! e3 ; e2 ^ e3 7! e1 ; e3 ^ e1 7! e2 :

This isomorphism is characterized by the relation .'.˛ ^ ˇ/ j �/ e1 ^ e2 ^ e3 D
˛^ˇ^� . The term '.˛^ˇ/ is usually called, for real three-dimensional Euclidean
spaces, the vector product of ˛ and ˇ , and will be denoted by ˛ Z ˇ . We will
use the classical relation

.3:5:3/ ˛ Z .ˇ Z �/ D .˛ j �/ˇ � .˛ j ˇ/� :

Letting ! D xe1 C ye2 C ze3 , we define the endomorphism uW A3 �! A3 by
the relation

u.˛/ D ! Z ˛ :

The matrix of u on the canonical basis is0
@ 0 �z y

z 0 �x

�y x 0

1
A

From the formula (3.5.3) we, at once, deduce that u2.˛/ D .! j ˛/ ! �˛ , so that
u3 D �u , since u.!/ D 0 and .! j !/ D 1 . Hence the characteristic polynomial
of u is pu.T / D T .T 2 C 1/ .

The eigenspace Ker.u/ , relative to the root T D 0 , is the free submodule
L D A! , as the relation u2.˛/ C ˛ D .! j ˛/ ! shows. The same relation
implies that the submodule P D Ker.u2 C 1/ of A3 is the set of ˛ ’s such that
.! j ˛/ D 0 , that is the orthogonal of L .

We may interpret P as the bundle of the tangent vectors to the sphere S2

as follows: let us view S2 as a subset of R3 ; to a point 
 2 S2 is associated
the morphism of R-algebras A �! R which sends a polynomial a 2 A to its
value a.
/ . Its extension A3 �! R3 sends ! to 
 , and the image of ˛ 2 P
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is a vector ˛.
/ orthogonal to 
 , which therefore has to be seen as a tangent
vector to S2 at the point 
 . Now a deep result of J. L. E. Brouwer (see for
example [M], p. 30) asserts that any tangent vector field on the real sphere must
vanish somewhere. Therefore no ˛ can be part of a basis of P , and hence the
A -module P is not free.

The ring B D AŒT �=.T .T 2 C 1// is clearly étale over A , and it splits as
the product A � C , where C D AŒT �=.T 2 C 1/ . The B -module M D A3 with
its endomorphism splits accordingly as A! � P . The factor P is an invertible
C -module and it is not free, since C is free over A and P is not.

By its very definition, C is isomorphic to C ˝R A . In [S], p. 165, Samuel
shows that A is a factorial domain but C ˝R A is not. He also shows that
C ˝R M is free of rank 2, over C ˝R A . We thus have an exact sequence of
C ˝R A -modules

0 �! M 0 �! C ˝R M �! M �! 0 ;

where M and M 0 are invertible C ˝R A -modules which are not free.

Theorem 3.3 allows us to get a proof of the spectral mapping theorem
by specializing from the generic polynomial, which has indeed a separable
characteristic polynomial.

3.6. The spectral mapping theorem. Let M be a projective A -module of
rank n , and let uW M ! M be an A -linear endomorphism with characteristic
polynomial pu.T / . If pu.T / splits over A as pu.T / D Qn

iD1.T � �i / , then,
for every polynomial f .T / in AŒT � , we have pf .u/.T / D Qn

iD1.T � f .�i // .

Proof. When the discriminant of pu.T / is invertible in A , the assertion
is an immediate consequence of Theorem 3.3 ii), since the endomorphism f .u/

induces on the quotient M=.u � �i / M the map x 7! f .�i /x .
There is a standard way of reducing to this case, as follows (see also [EL1]).

We first note that we can restrict to open affine subschemes of Spec.A/ . Therefore
we can assume that M is free and we choose a base. Then we represent u by
an n � n-matrix with coefficients in A . Specializing the generic n � n-matrix
X D .Xij / with entries Xij that are algebraically independent over Z , to
the matrix representation of u , and splitting pX .T / in the splitting algebra of
pX.T / over the Z-algebra ZŒX� generated by the entries of X , we see that
it suffices to prove the theorem for the generic matrix X . The discriminant dX

of pX .T / is regular, that is non zero in the domain ZŒX� , as can easily be
seen, for example by specializing all the non-diagonal entries of X to zero:
the discriminant

Q
i¤j .Xi i � Xjj / of the resulting diagonal matrix is regular in

ZŒX11; : : : ; Xnn� . Since dX specializes to this discriminant, it is non zero and
hence regular in ZŒX� . It follows that the spectral mapping theorem holds for
X over the algebra ZŒX�Œ1=dX � , and thus over its subalgebra ZŒX� .
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4. Minimal polynomials

Let M be a projective A -module of rank n , and let uW M ! M be an A -linear
map. Denote by

�0W AŒT � �! EndA.M/

the morphism defined by �0.T / D u . Let t be the class of T in B D AŒT �=.pu/ .
It follows from the Cayley-Hamilton theorem that �0 factors through the
A -algebra homomorphism

� W B ! EndA.M/

given by �.t/ D u . The image of � is the A -algebra AŒu� in EndA.M/ generated
by u .

4.1. Lemma. If the ideal Ker.�0/ is principal, it can be generated by a
monic polynomial, which is then its unique monic generator. Suppose that A

is a domain with field of fractions K . Let q 2 KŒT � be the (monic) minimal
polynomial of 1K ˝ u . Then Ker.�0/ is principal if and only if q 2 AŒT � , and
then q is a generator of this ideal.

When Ker.�0/ is principal its unique monic generator is called the minimal
polynomial of u . It divides the characteristic polynomial pu . Note that if M ¤ 0

the minimal polynomial of the zero endomorphism is equal to T .

Proof of 4.1. A generator q0 of Ker.�0/ must divide the characteristic
polynomial, which is monic. Therefore its leading coefficient, say a , is invertible
in A . Then q D a�1q0 is also a generator and it is monic. It is the only one with
this property: indeed, let q1 be another monic generator; the relations q D q1r

and q1 D qr1 imply that r and r1 are monic, and deg.r/ D deg.r1/ D 0 ; hence
r D r1 D 1 .

Now suppose that A is a domain with field of fractions K . The isomorphism
K ˝A EndA.M/ ! EndK.K ˝A M/ ([AC], I, 2.10) implies that the map
K ˝A AŒu� ! KŒ1K ˝ u� � EndK.K ˝A M/ is injective; thus the map
K ˝A AŒu� ! KŒ1 ˝ u� is an isomorphism.

Let q 2 AŒT � be a monic polynomial such that q.u/ D 0 ; and let
f W AŒT �=.q/ ! AŒu� be the associated morphism. Consider the following
commutative square

AŒT �=.q/
f ��

��

AŒu�

��
KŒT �=.q/

1K˝f
�� K ˝A AŒu�

� �� KŒ1 ˝ u� :

If q is the minimal polynomial of u , that is if f is an isomorphism, then
the same holds for 1 ˝ f , i.e. q is also the minimal polynomial of 1 ˝ u .
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Conversely, if 1 ˝ f is an isomorphism, then f is injective (hence bijective)
since the vertical map on the left is injective, due to the fact that AŒT �=.q/ is
free over A .

4.2. Proposition (Existence of the minimal polynomial). Let, as above,
uW M ! M be an endomorphism of a projective A -module of finite type. Assume
that Spec.A/ is connected. Then:

i) The algebra AŒu� is projective as an A -module if and only u has a
minimal polynomial.

ii) If A is an integrally closed domain, then u has a minimal polynomial.

iii) Let q be a monic divisor of pu such that q.u/ D 0 . If the discriminant
d D dis.q/ is regular in A , then q is the minimal polynomial of u .

Proof. The statement i) is given here for the record; a proof has already been
given in 1.5 ii).

ii) The morphism AŒT �=.pu/ �! AŒu� is surjective, and the sub-algebra
AŒu� � EndA.M/ is torsion free; thus the conclusion is a particular case of the
following variant of a ‘Kronecker lemma’:

4.3. Lemma. Given a monic polynomial p 2 AŒT � , let f W AŒT �=.p/ �! C

be a surjective morphism of A -algebras. If A is an integrally closed domain
and if C is torsion free then C is a free A -module, of the form C D AŒT �=.q/

where q is a monic divisor of p .

A proof is given below.

iii) We have to show that the morphism AŒT �=.q/ ! AŒu� is injective. If
the discriminant d is invertible then the module M is projective over AŒT �=.q/

(by Proposition 2.9), and Lemma 3.3.1 implies that the support of M is the whole
spectrum of AŒT �=.q/ ; thus, by Proposition 1.3, the minimal polynomial is q .
If d is only regular, we again use the commutative square

AŒT �=.q/ ��

��

AŒu�

��
.AŒT �=.q//d

�� .AŒu�/d
� �� Ad Œu� ;

whose vertical map on the left is injective, in view of the regularity of d .
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Proof of 4.3. Consider the commutative square associated with the inclusion
of A in its field of fractions K :

AŒT �=.p/

��

f �� C

��
KŒT �=.p/

fK

�� K ˝A C :

Since K is a field, the ideal Ker.fK/ is generated by the class of a monic
polynomial q.T / . It is a divisor of p.T / in KŒT � , thus p.T / D q.T / r.T / with
r.T / in KŒT � . Since p.T / and q.T / are monic, the polynomial r.T / is also
monic. We can then apply the usual Kronecker lemma ([AC], V, 1.3, prop. 11) to
deduce that the coefficients of q.T / are integral over A ; hence q.T / is in AŒT �

since A is integrally closed in K . Since C is torsion free, the map C ! K ˝A C

is injective. Thus the equality fK.q/ D 0 implies f .q/ D 0 . From the above
square we obtain the diagram

AŒT �=.q/

j

��

�� C

��
KŒT �=.q/ �� K ˝A C :

The map j is injective since AŒT �=.q/ is a free A -module, and the lower
horizontal map is an isomorphism. Thus the surjective map AŒT �=.q/ ! C is
an isomorphism.

4.4. Examples

4.4.1. Given a monic polynomial p 2 AŒT � , of degree n , we may consider
the endomorphism of the free A -module AŒT �=.p/ defined by the product of
the class of T , a.k.a. the “companion matrix”. Its minimal polynomial is clearly
equal to p , which is also its characteristic polynomial, because both have the
same degree n .

4.4.2. An explicit particular case of 4.2 iii): Suppose that M is free and
that u is given, over some basis, by a diagonal matrix diag.�1; : : : ; �n/ . Let
�1; : : : ; �s be the distinct elements from the set ¹�1; : : : ; �nº . Then Ker.�0/ is
the set of polynomials f .T / in AŒT � such that f .�i / D 0 for all i . If the
differences �i � �j are regular for i ¤ j , in particular if A is a domain, then
Ker.�0/ is generated by the polynomial q.T / D Qs

iD1.T � �i / .

Proof. The description of the ideal J D Ker.�0/ is clear. Now suppose that
the differences �i ��j are regular. Let f .T / in AŒT � be a polynomial such that
f .�1/ D 0 . Then f .T / is obviously a multiple of T � �1 . Suppose now that a
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polynomial f .T / in J is proved to be a multiple of qi .T / D .T ��1/ � � � .T ��i / ,
say f .T / D qi.T / g.T / . The relation

0 D f .�iC1/ D .�iC1 � �1/ � � � .�iC1 � �i / g.�iC1/ ;

together with the hypothesis that the differences �iC1 � �j are regular, imply
that g.�iC1/ D 0 , and thus qiC1.T / divides f .T / . We conclude, by induction,
that f .T / is a multiple of qs.T / .

4.4.3. Consider the endomorphism u of A2 given by the matrix
�

a c
0 b

�
.

By Euclidean division, any element in Ker.�0/ is the sum of a multiple of
the characteristic polynomial pu.T / D .T � a/.T � b/ and a polynomial of
degree � 1 , say ˛T C ˇ . The condition ˛u C ˇ D 0 is equivalent to

˛ 2 AnnA.a � b/ \ AnnA.c/ and ˇ D �˛a D �˛b :

If this endomorphism has a minimal polynomial q then there are two possibilities:
1) deg.q/ D 1 ; since q is monic this is equivalent to saying that 1 2

AnnA.a � b/ \ AnnA.c/ , that is, equivalent to a D b and c D 0 , and then
q D T � a .

2) deg.q/ D 2 , i.e. q D pu ; since the relation ˛u C ˇ D 0 implies ˛ D 0 ,
we then have AnnA.a � b/ \ AnnA.c/ D 0 .

In all other cases, that is if

0 ¤ AnnA.a � b/ \ AnnA.c/ ¤ A ;

the endomorphism
�

a c
0 b

�
does not have a minimal polynomial.

In particular, let A D kŒX� be the polynomial ring over a field. The
endomorphism given by u D �

1 X
0 1

�
has .T � 1/2 as minimal polynomial. Its

image modulo Xn has a minimal polynomial if and only if n D 1 .

4.4.4. The following easy remark from commutative algebra leads us to con-
struct endomorphisms over a domain which don’t possess a minimal polynomial.
We have learned this method from the paper [Fr].

Two monic polynomials p1; p2 2 AŒT � give rise to an injective morphism of
A -algebras

AŒT �=.p1/ \ .p2/ �! AŒT �=.p1/ � AŒT �=.p2/ :

In general, the ideal .p1/ \ .p2/ is not principal; but it is principal if A is
an integrally closed domain, as can be shown by applying Lemma 4.3 to the
morphism AŒT �=.p1p2/ �! AŒT �=.p1/ \ .p2/ .

In general, the A -algebra M D AŒT �=.p1/ � AŒT �=.p2/ is a free
A -module, and the product in M defines an injective morphism of A -algebras
M �! EndA.M/ . Thus, for t 2 M , the sub-algebra AŒt � � M is isomorphic to
AŒu� � EndA.M/ , where u is the endomorphism x 7! tx . Let us consider the
element t D .t1; t2/ 2 M , where ti is the class of T modulo pi . The algebra
AŒu� generated by x 7! tx is here isomorphic to AŒT �=.p1/ \ .p2/ .
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To construct examples where a minimal polynomial does not exist, it is
thus enough to find two monic polynomials p1 and p2 such that the ideal
.p1/ \ .p2/ of AŒT � is not principal. If we restrict to a domain A with field
of fractions K , it is enough, according to Lemma 4.1, to produce two monic
polynomials in AŒT � whose least common multiple in KŒT � is not in AŒT � .

For a simple explicit example consider a domain A whose field of fractions
K contains an element x , not in A , such that x2 2 A and x3 2 A . Let

p1 D T 2 � x2 and p2 D T 2 � x2T � x2 C x3 D .T � x/.T C x � x2/ :

Then in KŒT � , one has lcm.p1; p2/ D .T 2 �x2/.T Cx �x2/ ; but the coefficient
of T 2 in this polynomial is x � x2 , which is not in A .

To be more concrete, we write the matrix coming out of this construction,
which therefore does not have a minimal polynomial:0

BB@
0 x2 0 0

1 0 0 0

0 0 0 x2 � x3

0 0 1 x2

1
CCA

In her paper [Fr], Sophie Frisch gives a characterization of normality along these
lines.

Finally, we indicate a special situation where the minimal polynomial exists.

4.4.5. Proposition. Let A be a domain containing Q . Let u be an
endomorphism such that Spec.AŒT �=.pu// is irreducible. Then the minimal
polynomial of u exists in AŒT � .

Let K be the field of fractions of A , and let q 2 KŒT � be the minimal
polynomial of u . It is a classical fact over a field (and it is proved in general in
Corollary 5.6) that there exists an integer r for which the following divisibility
relations hold in KŒT � :

q j pu j qr :

Since the morphism AŒT �=.pu/ �! KŒT �=.pu/ is injective and flat, it induces
a bijection between the sets of minimal primes in both rings. Hence the
hypothesis implies that Spec.KŒT �=.pu// D Spec.KŒT �=.q// is irreducible. Thus
the polynomial q is a power q D qs

0 of an irreducible polynomial q0 2 KŒT � ;
and the relation pu j qrs

0 implies that pu is a power of q0 . The following lemma
then implies that q0 is in AŒT � .

4.4.6. Lemma. Let B be a ring, and let A � B be a subring containing Q .
Let f 2 BŒT � be a monic polynomial of which some power f m is in AŒT � ,
with m � 1 . Then f 2 AŒT � .
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Instead of monic polynomials, it is equivalent to consider polynomials whose
constant term is 1 , since the transformation

f .T / 7�! T deg.f /f .1=T /

is multiplicative, as are the hypothesis and the conclusion. Moreover, we will use
power series, and so we consider the inclusion AŒŒT �� � BŒŒT �� . Since Q � A

one can define exponential and logarithm in AŒŒU �� (see, for example, [A], IV,
4 and also exercise 8 of §4). More precisely, one has

log.1 C U / D
X
j �1

.�1/ j �1 U j

j
; exp.U / D

X
j �0

U j

j Š

For a positive rational number a 2 Q , let

.1 C U /a WD exp.a log.1 C U // D
X
j �0

 
a

j

!
U j

where
�

a
j

�
is the binomial polynomial a.a � 1/ � � � .a � j C 1/

j Š
. For a positive integer

m , it is easy to check that

..1 C U /m/
1
m D 1 C U :

Going back to AŒŒT �� , write the hypothesis f m 2 AŒT � as

f m D 1 C a1T C � � � C anT n D 1 C g.T / ;

with g.T / 2 TAŒT � . Then, from loc. cit. end of §4, we can substitute g.T / for
T in .1 C T /

1
m , in the ring AŒŒT �� , and we get

f D .f m/
1
m D .1 C g.T //

1
m 2 AŒŒT �� :

5. Cyclic modules

A finite-dimensional vector space V over a field K , equipped with an endomor-
phism uW V �! V , is said to be cyclic (with respect to u) if there exists x 2 V

such that V is generated by the elements ui .x/ . In other words, V is then a
monogenous KŒu� -module, and thus it is isomorphic to KŒT �=.q/ , where q.T /

is a monic polynomial. This implies that deg.q/ D dimK V , whence q is the
characteristic polynomial of u . This justifies the following definition.
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5.1. Definition. Let uW M ! M be an endomorphism of a projective
A -module of finite type. We say that M is cyclic (with respect to u) if M is
an invertible module over AŒT �=.pu/ .

This property is weaker than the characteristic polynomial pu being separable,
as is shown by Proposition 5.3 below. It may be characterized as follows.

5.2. Proposition. Under the general hypotheses of 5.1, let us write
B D AŒT �=.pu/ . Then the following properties are equivalent:

i) The B -module M is invertible, i.e. M is cyclic.

i0) The AŒu� -module M is invertible.

ii) The morphism of A -algebras � W B �! EndA.M/ is universally injective,
that is, for any A -algebra A ! A0 the map 1˝� W A0˝AB �! A0˝AEndA.M/ D
EndA0.A0 ˝A M/ is injective.

iii) After any base change the characteristic polynomial of u is also its
minimal polynomial.

Note that, since M is projective of finite type, the canonical map

A0 ˝A EndA.M/ ! EndA0.A0 ˝A M/

is bijective for any algebra A0 ([A], II, 5.3). However, in general the map
A0 ˝A AŒu� �! A0 ˝A EndA.M/ is not injective, nor is the map A0 ˝A AŒu� �!
A0Œ1 ˝ u� : the formation of AŒu� does not commute with (non-flat) base change.

Proof. i/ ) ii/ The property of M being invertible over B is pre-
served under any base change A ! A0 ; moreover, it implies the injection

B
�! EndB.M/ � EndA.M/ .

Assertion iii) is a reformulation of ii).

i/ , i0) We have just seen that i) implies that the morphism �W B �! AŒu�

is an isomorphism; hence it implies that M is invertible over AŒu� . Conversely,
this condition implies that AŒu� is projective over A , with the same rank as M ,
which is also the rank of B ; since � is surjective, it is in fact an isomorphism.

iii/ ) i/ If A is a field, the first step of the theory of similarity invariants
shows the existence of an x 2 M whose annihilator in AŒT � is generated by
the minimal polynomial of u . By assumption, the latter is also the characteristic
polynomial. Therefore the map B �! M given by b 7! bx is injective, and
hence it is bijective since the vector spaces B and M have the same dimension.
The conclusion now follows from the
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5.3. Proposition. Let uW M ! M be an endomorphism of a projective
A -module of finite type. Let us write B D AŒT �=.pu/ . Then M is cyclic with
respect to u if and only if, for every maximal ideal m of A , the vector space
M=mM is cyclic relative to NuW M=mM ! M=mM . Due to Theorem 3.3, it
is even enough that this condition be satisfied for those maximal ideals which
contain the discriminant of pu .

Proof. We have to prove that for any maximal ideal m of A one can find an
element s … m and an isomorphism of Bs -modules Bs ! Ms . By assumption,
the module M=mM is free of rank 1 over B=mB . By lifting to M a generator
of M=mM , we define an x 2 M , and thus a B -linear map 'W B �! M . From
the Nakayama lemma we deduce the surjectivity of the map 'mW Bm �! Mm .
The A -module Coker.'/ is of finite type and Coker.'/m is zero; therefore there
exists s 2 A; s … m such that Coker.'/s D 0 , i.e. 's is surjective. But Bs and
Ms are projective As -modules of the same rank; thus 's is an isomorphism,
which shows that M is locally free of rank 1 over B .

The following example illustrates a particular case of the hypotheses of
Proposition 5.3. For more, related, examples see [F2].

5.4. Example. Let A D RŒX� be the polynomial ring over the real numbers,
set M D A2 , and let u be the endomorphism defined by the matrix�

1 X

�X �1

�
The characteristic polynomial is pu.T / D T 2 C X2 � 1 . Let us write B D
RŒX; T �=.T 2 C X2 � 1/ . Then


 the module M is invertible over B , although B is not étale over A ;


 the B -module M is not free.

The RŒX� -algebra B is clearly ramified when X2 D 1 , and the discriminant
of pu.T / is here d D 4.1 � X2/ .

In order to apply the above result we consider the quotients RŒX�=.X � 1/

and RŒX�=.X C 1/ , and we need to check that the R-vector space R2 is cyclic
for the matrices

�
1 1�1 �1

�
and

�
1 �1
1 �1

�
. But, for both these matrices, the vector�

1
0

�
and its image are independent.

Here is a direct proof which does not use Proposition 5.3. The condition for
the B -module M to be free is the existence of � 2 M such that .�; u.�// is a
basis over A . Consider the base change R ! C . The module C ˝R M is free
over C ˝R B : in fact, let � D �

i
1

� 2 C ˝R M ; then we have u.�/ D �
iCX

�iX�1

�
.

Since

det
�

i i C X

1 �iX � 1

�
D �2i
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is invertible in C ˝R A , the elements �; u.�/ yield a basis over C ˝R A , and
thus � is a basis over C ˝R B . By descent from C to R we see that M is
invertible over B .

Let us check that M is not free over B . Consider a non-zero element
� D �

a
b

� 2 M , where a and b are real polynomials in X . The determinant of
.�; u.�// , over the canonical basis of M , is easily seen to be the polynomial

q.X/ D �..a2 C b2/X C 2ab/ :

Since deg.a2 Cb2/ D 2 max.deg a; deg b/ � deg.ab/ , the degree of q.X/ is odd.
Since a real polynomial of odd degree has a real root, q.T / cannot be invertible
in A D RŒX� , and M is not a free B -module.

The following result is a partial generalization of both the spectral mapping
theorem of [LTS] and of 3.6.

5.5. The spectral mapping theorem. Let M be a projective A -module of
rank n , and let uW M ! M be an A -linear map. For b in B D AŒT �=.pu/ we
denote by pb;B.X/ the characteristic polynomial of multiplication by b on B ,
and by p�.b/;M .X/ the characteristic polynomial of the endomorphism �.b/

of M . Then, in AŒX� , we have

pb;B.X/ D p�.b/;M .X/ :

In particular, if we assume that pu splits as pu.T / D Qn
iD1.T � �i/ , then, for

all polynomials f .T / in AŒT � , we have in AŒX�

pf .u/;M .X/ D
nY

iD1

.X � f .�i// :

Proof. First, let us check the equality of the constant terms of the given
polynomials, namely

detB.b/ D detM .�.b// :

The element b can be written as b D f .t/ , where f .T / is a polynomial
in AŒT � of degree strictly less than n D deg.pu/ , and we have to prove
that detB.f .t// D detM .�.f .t/// D detM .f .u// . Since we also have b D
f .t/C pu.t / , we can now assume that f .T / is monic of degree n . Let A ! A0
be a base extension such that A0 is free as an A -module, and such that f .T /

splits into a product of linear factors T � ˛ over A0 . Since A ! A0 is injective
it is enough to check this equality in A0 . As the determinant is multiplicative it
suffices to prove that

detB.t � ˛/ D detM .u � ˛/

for all roots ˛ of f .T / in A0 . However, by Proposition 1.5 i), the left hand side
is equal to .�1/npu.˛/ , and so is the right hand side, by definition.
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The expected equality between polynomials in X can be written as

detBŒX�.X � b/ D detAŒX�˝M .X ˝ 1 � 1 ˝ �.b// ;

which, one sees, is a particular case of the one above.
The second part of the theorem follows from the first, together with the second

part of Proposition 1.5 i).

5.6. Corollary. The kernel of the homomorphism

� W B D AŒT �=.pu/ ! EndA.M/

is a nilideal, that is, the support of M as a B -module is equal to Spec.B/ .
In particular, p0

u.t / is invertible in B if and only if p0
u.u/ is invertible

in AŒu� , and then � is injective.
If the minimal polynomial q.T / exists, then we have, in AŒT � , the usual

divisibility properties
q.T / j pu.T / j q.T /n :

Proof. If �.b/ D 0 we obtain from the theorem above that pb;B.T / D T n .
We then deduce from the Cayley-Hamilton theorem that bn D pb;B.b/ D 0 ,
which proves the first part of the corollary. Since the support of M is the set of
prime ideals of B containing AnnB.M/ , it is equal to Spec.B/ .

When the minimal polynomial q.T / exists, we take b to be the class of
q.T / , to obtain the last assertion of the corollary.

This proof of the equality SuppB.M/ D Spec.B/ can be used to shorten the
proof of 3.3.1.

6. Diagonalizable endomorphisms

In this section we generalize the diagonalization of endomorphisms of vector
spaces to endomorphisms of projective modules over arbitrary commutative rings.

6.1. We first recall the diagonalization property for an endomorphism
uW V ! V of vector spaces of finite dimension over a field K . The K -algebra
KŒu� in EndK.V / generated by u is isomorphic to KŒT �=.q/ , where q.T / is
the minimal polynomial of u .

The following properties are known to be equivalent (see, for example, [A],
VII, 5.8, and [A], V, 7):

(6.1.1) The roots of q , in an extension of K , are distinct.

(6.1.2) The algebra KŒu� is étale over K .
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(6.1.3) There exists an extension L of K such that the endomorphism

1 ˝ uW L ˝K V �! L ˝K V

is diagonalizable, in the usual sense.
Note that the proper extension to a ring A of the notion of distinct elements

is elements with distinct images in each residue field 
.p/ of A , and then they
may be called everywhere distinct. Let � and � be elements in A with distinct
images in each 
.p/ . The factorization

A �! A=p ,! 
.p/

shows that the condition “everywhere distinct” is equivalent to: “for all prime
ideals p , � � � … p”. Ultimately, this condition is equivalent to: “� � � is
invertible in A”. Hence, over a ring A , the condition (6.1.1) must be translated
as follows: if .�1; : : : ; �n/ denote the roots of q in some extension A0 of A ,
then �i � �j 2 A0� , for i ¤ j , a condition equivalent to q being separable.

When the above three properties are satisfied, Bourbaki writes that u is
absolutely2 semi-simple.

6.2. Theorem. Let M be a projective module of rank n over a connected
ring A . Let uW M �! M be an endomorphism and let AŒu� in EndA.M/ be
the algebra generated by u . The following three properties are equivalent:

i) The A -algebra AŒu� is projective as an A -module and the roots �1; : : : ; �s

of the minimal polynomial q.T / of u in any faithfully flat extension A ! A0 of
A are everywhere distinct, that is, �i � �j is invertible in A0 when i ¤ j ; in
other words, q is separable.

ii) The algebra AŒu� is finite étale over A .
iii) There exists a faithfully flat morphism A �! A0 such that A0 ˝A M is free

with a basis on which the matrix U of 1A0 ˝u is diagonal with the property that
distinct diagonal entries are everywhere distinct, that is, if U D diag.�1; : : : ; �n/ ,
and if �i ¤ �j then �i � �j is invertible in A0 .

Proof. The equivalence i/ , ii/ is established in 2.8.

ii/ ) iii/ According to 2.4, there exist a finite étale morphism A �! A0 ,
with A0 connected, and an isomorphism of A0 -algebras A0 ˝A AŒu� ' A0s . The
image of 1 ˝ u may be written as .�1; : : : ; �s/ with �i 2 A0 , and it follows
from 2.8 that �i � �j is invertible in A0 if i ¤ j .

Now, the A0 -module A0 ˝A M decomposes as a product of projective
A0 -modules M1 � M2 � � � � � Ms . Since A0 is connected, each module Mi

has constant rank. By covering Spec.A0/ with a finite number of open sets over
which the Mi are free, and by taking the disjoint union of these sets, we can find

2The translator of Bourbaki into English has forgotten this crucial adjective in the definition of
Jordan decomposition [A], VII, 5.9.
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a faithfully flat map A0 �! A00 such that each A00 ˝A0 Mi is a free A00 -module,
of rank, say, n.i/ . On A00 ˝A0 Mi the endomorphism 1 ˝ u is simply the map
x 7! �i x . Finally, if we choose any basis in each factor, the matrix of 1 ˝ u

may be written as

diag.�1; : : : ; �1„ ƒ‚ …
n.1/

; �2; : : : ; �2„ ƒ‚ …
n.2/

; : : : ; �s; : : : ; �s„ ƒ‚ …
n.s/

/ :

iii/ ) ii/ Let �1; : : : ; �s be the distinct elements from the set ¹�1; : : : ; �nº .
The free A0 -module A0 ˝A M splits into a direct sum of free A0 -modules
A0 ˝A M D M1 ˚ � � � ˚ Ms such that 1 ˝ u acts as x 7! �i x on Mi . Since the
differences �i � �j are invertible in A0 , we deduce from 4.4.2 that 1 ˝ u has a
minimal polynomial, namely the separable polynomial q.T / D Q

.T ��i / . Hence
the A0 -algebra A0Œ1 ˝ u� ' A0ŒT �=.q/ is finite étale. Since A0 is flat over A ,
the morphism A0 ˝A AŒu� ! A0Œ1 ˝ u� is injective, hence it is an isomorphism.
It follows from Proposition 2.4 that AŒu� is finite étale over A .

6.3. Remark. We shall not introduce a specific adjective to qualify these
morphisms; the choice of Bourbaki (‘absolutely semi-simple’) is a little cumber-
some; we prefer to say: AŒu� is étale.

However, the semi-simplicity property itself deserves to be pointed out: if AŒu�

is étale then each u-stable submodule N of M such that M=N is projective
over A has a u-stable complement. Indeed, M=N is then projective over AŒu� ,
by Proposition 2.9.

Note that the projectiveness (over A ) of M=N is necessary. For example, if
A D kŒX� then the endomorphism u D �

X 0
0 1CX

�
of M D A2 is injective, not

surjective, and its characteristic polynomial is separable; but the strict sub-module
u.M/ � M is not a direct summand of M , since the quotient M=u.M/ is
isomorphic to k2 .

A classical result on endomorphisms of vector spaces says that two commuting
endomorphisms which are both diagonalizable are simultaneously diagonalizable,
that is, there exists a basis on which they both are given by diagonal matrices.
In our context, the result states as follows.

6.4. Proposition. Let u and v be two commuting endomorphisms of a
projective A -module M of finite type. If AŒu� and AŒv� are étale over A , then
the sub-algebra AŒu; v� of EndA.M/ they generate is étale.

If A is connected, there exists a faithfully flat morphism A ! A0 such that
A0 ˝A M is a free A0 -module with a basis with respect to which the matrices of
u and v are both diagonal.
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Proof. Since u and v commute, the commutative A -algebra AŒu; v� is
endowed with a surjective map

C D AŒu� ˝A AŒv� �! AŒu; v� :

This morphism allows us to define a structure of C -module on M , for which
we have an isomorphism

C= AnnC .M/ ' AŒu; v� :

We thus have to show that C= AnnC .M/ is étale over A . Lemma 2.3 implies that
C is étale over A , as are AŒu� and AŒv� . Therefore M is a projective C -module,
by Proposition 2.9. It then follows from Proposition 1.3 that C= AnnC .M/ is a
projective quotient of C ; hence it is étale over A .

Proposition 2.4 ensures the existence of a faithfully flat morphism A ! A0 ,
with A0 connected, such that the algebra A0˝AAŒu; v� is split, say A0˝AAŒu; v� '
A0m . As in the beginning of the proof of Theorem 6.2, we can assume that in
the related decomposition of A0 ˝A M as M1 � � � � � Md , each Mi is a free
A0 -module. Moreover, on each factor, 1 ˝ u and 1 ˝ v act as multiplication by
a constant.

It is perhaps worth recalling that in general there is no relation between the
dimensions of the three algebras AŒu� , AŒv� and AŒu; v� , even over a field. For
example, consider the diagonal endomorphisms of A3 given by

u D diag.1; 1; 0/ ; v D diag.0; 1; 1/ :

Then AŒu� and AŒv� are of rank 2, and AŒu; v� is of rank 3, with basis .1; u; v/ ,
since u2 D u; v2 D v and uv D u C v � 1 .

7. The Jordan-Chevalley-Dunford decomposition

If u is an endomorphism of a vector space over a field K , the following result
is classical:

The endomorphism u has a Jordan decomposition u D us C un , where us

is absolutely semi-simple and un is nilpotent, if and only if the eigenvalues of
u are separable over K .

See, for example, [A], VII, 5.8 and 5.9.

Over a ring A , the condition “us is absolutely semi-simple” has to be replaced
by: the algebra AŒus� is étale over A . See §6.
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We must find a substitute for the condition “the eigenvalues of u are separable”
which remains meaningful over rings. For a monic polynomial p.T / , the condition
that its roots should be separable has to be replaced by:

(1) There exist a monic separable divisor q of p and an integer s such that
p divides qs .

Equivalently, if A is connected,

(2) The A -algebra B D AŒT �=.p/ has a quotient B=J which is finite étale
over A , with J a nilpotent ideal in B .

In fact, (1) implies (2) with J the ideal generated by q.T / in B . The opposite
implication follows from Proposition 1.5 ii), which provides a monic polynomial
q.T / in AŒT � such that B=J D AŒT �=.q/ ; and Proposition 2.8 implies that q.T /

is separable.

Actually, the generalization of Jordan decomposition is a special case of the
following fundamental result of Grothendieck:

7.1. Theorem (Lifting property for étale algebras). Let A ! B be an
A -algebra, let J be a nilpotent ideal in B , and let � W B ! B=J denote the
canonical projection. If B=J is finite étale over A , then there exists a unique
morphism of A -algebras � W B=J �! B such that �� D IdB=J .

Two direct proofs are given below. This result can also be found in the EGA
as follows: in [EGA], IV, 18.3.1, the definition given in 2.1 is shown to imply
“formal étaleness” as defined in [EGA], IV, 17.1. To deduce the statement of
Theorem 7.1 from this proposition, take Y 0

0 D X D Spec.B=J / , Y D Spec.A/ ,
and Y 0 D Spec.B/ .

Before giving proofs of this theorem we translate it into the “Jordan
decomposition” we have in mind.

7.2. Theorem (Jordan decomposition). Let u be an endomorphism of a
finitely generated projective A -module M . We assume that A is connected.

i) If AŒu� has an étale quotient defined by a nilpotent ideal I , then there
exists a couple of endomorphisms us and un in AŒu� such that

u D us C un ;

where AŒus � is étale over A and where un is nilpotent. This decomposition is
unique if un is specified to be in I .

ii) Suppose that the ring B D AŒT �=.pu/ has an étale quotient B=J defined
by a nilpotent ideal J . Then, as in i), there exists a couple of endomorphisms
us and un in AŒu� such that

u D us C un ;



On the structure of endomorphisms of projective modules 165

where AŒus� is étale over A and where un is nilpotent, but in general without
the uniqueness assertion.

iii) If A is reduced, the hypotheses in i) and in ii) are equivalent.

The hypothesis in ii) is the direct translation of the classical one; it is weaker
than the hypothesis in i).

If A is not reduced, uniqueness is lacking without some additional assumption;
if fact, for a nilpotent element a 2 A , 1 C a is invertible and we get another
decomposition

u D us C un D .1 C a/us C .un � aus/ :

Proof. i) Let � W AŒu� ! AŒu�=I be the projection onto the étale quotient.
Since I is nilpotent, from the lifting property 7.1 one has a unique morphism of
A -algebras � W AŒu�=I ! AŒu� such that �� D IdAŒu�=I . Let us D �.�.u// . This
morphism � induces an isomorphism onto its image AŒu�=I ' AŒus � , which
shows that AŒus� is étale over A . Finally, un D u � us is nilpotent since it is
in I .

Now we prove that the obtained decomposition is unique. Let u D s C n be
a decomposition where AŒs� is étale, and n 2 I . The composite morphism

f W AŒs� �! AŒu� �! AŒu�=I

is then surjective, with a nilpotent kernel. It is in fact an isomorphism. To see
this, it is enough to show that f is faithfully flat, and hence injective, as follows
from Lemma 2.3 ii). It is flat by Proposition 2.9 because AŒs� is étale over A ,
and AŒu�=I is projective over A by assumption. Finally Spec.f / is surjective
since the kernel of f is nilpotent.

The inverse isomorphism f �1 composed with the inclusion AŒs� 	 AŒu�

gives a section of � , which coincides with � in view of the uniqueness assertion
in 7.1.

ii) Let t denote the class of T in B D AŒT �=.pu/ . Applying 7.1 to the
quotient B ! B=J , we get, in B , a decomposition

t D s C n

where AŒs� is an étale sub-algebra of B , and where n is nilpotent. From 2.9 we
derive that M is projective over AŒs� . Since the kernel of AŒs� � B �! AŒu�

is a nilideal, the support of M as a module over AŒs� is the whole spectrum
of that ring. Hence AnnAŒs�.M/ D 0 and the morphism AŒs� � B �! AŒu� is
injective. Therefore, taking the images us of s , and un of n , in AŒu� , we get
the expected decomposition in AŒu� .

iii) Since the kernel of the morphism B �! AŒu� is nilpotent, the hypothesis
in i) implies the hypothesis in ii).
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Conversely, let J be a nilpotent ideal in B ; denote by I its image in AŒu� ;
we have the following commutative square of surjective morphisms

B

��

�� AŒu�

��
B=J

f
�� AŒu�=I :

Suppose that A is reduced and that B=J is étale over A . Then B=J is reduced:
this is trivial if B=J is split as a product Am , and the general case comes
from 2.4. But the kernel of f is nilpotent; thus f is injective, i.e. it is an
isomorphism. We conclude that AŒu�=I is étale over A , as B=J is.

Proof of 7.1. a) We first prove uniqueness. Let C D B=J . Given two
A -algebras sections of � , say �; � W C �! B , we introduce the morphism of
A -algebras !W C ˝A C �! B defined by !.x ˝ y/ D �.x/ �.y/ . We have
!.x ˝ 1/ D �.x/ , and !.1 ˝ x/ D �.x/ . Thus, to prove uniqueness we have to
check that !.x ˝ 1 � 1 ˝ x/ D 0 , that is !.I / D 0 , where I denotes the kernel
of the morphism �W C ˝A C �! C . Since

�� D �� D IdC

the following triangle is commutative:

C ˝A C
! ��

�
���

��
��

��
��

B

�
����
��
��
��

C

The kernel I 0 of ! is contained in I , and a power I m of I is contained in
I 0 since the kernel of � is nilpotent. Since C is étale over A , the ideal I is
generated by an idempotent e . We thus have e D em 2 I 0 , which shows that
I D I 0 . In particular !.I / D 0 , as we wished to prove.

b) We now prove the existence of � under the additional assumption that
the A -algebra B is monogenous: B D AŒt � . (This is enough for the applications
in 7.2.)

We can assume that A is connected. By induction on the least integer m

such that J m D 0 , we can assume that J 2 D 0 . Since B=J is a projective
A -module, it follows from Proposition 1.5 ii) that there exist a monic polynomial
q.T / 2 AŒT � and an isomorphism AŒT �=.q/ ' B=J which sends T to the
image Nt of t in B=J . The expected section � is determined by the image �.Nt/ ,
which has to be a root b in B of the minimal polynomial q.T / of Nt . We try
b D t C x with x 2 J . Since x2 D 0 , we have

q.t C x/ D q.t/ C x q0.t / :
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By Proposition 2.8 the image of q0.t / in B=J D AŒT �=.q/ is invertible since
AŒT �=.q/ is étale. As J 2 D 0 , the element q0.t / is invertible in B as well.
Moreover, by definition of q.T / , the image of q.t/ in B=J is zero, so q.t/ is
in J . Finally, if we let x D �q.t/ q0.t /�1 , we have q.t C x/ D 0 .

This proof is very close to the Newton approximation procedure; it is due to
Chevalley ([C], I, 8, thm 7), and it can be made effective.

c) We now explain another particular case which shows clearly what is going
on. Suppose that the étale algebra B=J is split as a product of copies of A ,
say B=J D As . Since J is nilpotent, the map Spec.B=J / �! Spec.B/ is a
homeomorphism. Thus Spec.B/ is the disjoint union of s open and closed sets,
each of them being homeomorphic to Spec.A/ . From Lemma 1.1 we deduce
a factorization B D B1 � � � � � Bs and s surjective morphisms of A -algebras
Bi ! A inducing the bijections Spec.A/ ! Spec.Bi / . Then the product of the
s canonical inclusions A 	 Bi gives the section � W As �! B D Q

Bi we were
looking for.

Remark. Instead of the topological argument used in the above proof and
of Lemma 1.1, we could as well use the lifting to B of the idempotents
associated with the decomposition of B=J . This is due to the following result:

7.3. Lemma. Let a be an element in a ring R such that a�a2 is nilpotent.
Then there is an idempotent b 2 R such that b � a 2 .a � a2/R .

For a proof, see for example, [A], VIII, 9.4.

d) Second proof of the existence: Let C D B=J . Consider the composite
morphism

B
i�! B ˝A C

�˝1����! C ˝A C ;

with i.b/ D b ˝ 1 . Since C is étale over A , the kernel of the multiplication
�W C ˝A C �! C is generated by an idempotent e . The kernel of � ˝ 1

is J ˝A C , a nilpotent ideal. According to the above lemma there exists an
idempotent " 2 B ˝A C such that .� ˝ 1/."/ D e . Let �W B ˝A C �! D

be the morphism to the quotient D D B ˝A C=".B ˝A C / . We get a surjective
homomorphism �0W D ! C with nilpotent kernel making the following diagram
commutative:

B

'
���

��
��

��
��

�
i �� B ˝A C

�

��

�˝1 �� C ˝A C

�

��
D

�0

�� C ;

where ' D �i , and where the square is co-cartesian, i.e. it makes C into a
tensor product of the three other rings. The commutativity shows that �0' D � .
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The map i is finite étale by base change from A ! C , and � is a projective
quotient by definition, thus � is an étale morphism, by Lemma 2.3 i). Hence the
composite map ' D �i is finite étale. In fact, it is an isomorphism: by tensoring
with C over B , the diagram becomes

C
i ��

N' ���
��

��
��

��
C ˝A C

1˝�

��

C ˝A C

�

��
C ˝B D

1C ˝�0

�� C :

Since the square is cocartesian, the map 1C ˝ �0 is an isomorphism; finally we
get that N'W C D B=J �! D=JD D C ˝B D is an isomorphism.

As the ideal J is nilpotent, we first deduce from this that ' is surjective.
We also deduce that the map Spec.D/ �! Spec.B/ is surjective, i.e. that ' is
faithfully flat; hence it is also injective. This allows us to conclude that ' is an
isomorphism.

We can now define the required section � W C �! B by the condition

'� D �j ;

where j W C �! B ˝A C is the canonical injection j.c/ D 1 ˝ c :

C

�

����
��
��
��
�

j

��
B

i
��

'
���

��
��

��
��

B ˝ C

�

��

�˝1 �� C ˝A C

�

��
D

�0

�� C :

It remains to calculate �� . We have

�� D �0 ' � D �0 � j D � .� ˝ 1/ j D IdC :

8. Eigenspaces

We use the words eigenvalue and eigenspace with their classical meaning: an
eigenvalue � is a root of the characteristic polynomial, and the eigenspace relative
to � is the submodule Ker.u��/ of M . If the base ring is not a domain, it may
happen that Ker.u � �/ is non zero even if � is not an eigenvalue. For example,
if ab D 0 with a and b non zero in A , the map x 7! ax has a non-zero kernel
but its determinant a is not equal to zero, that is 0 is not an eigenvalue.
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In this section we show that the eigenspace is often definable as an image,
essentially the image of (a variant of) the cotranspose .u � �/c of u � � ; see
also [L]. Without any additional hypothesis on u , this description as an image is
efficient for the generic eigenvalue alone, that is for � equal to the class of T

in B D AŒT �=.pu/ . To obtain this type of description for all the eigenvalues, we
must restrict ourselves to particular classes of endomorphisms for example those
for which AŒu� is étale.

8.1. Lemma. Let C be a ring, let L and L0 be C -modules, and let
f W L ! L0 and f 0W L0 ! L be C -linear maps such that

.8:1:1/ ff 0 D dL0 and f 0f D dL ;

where dL0.x0/ D d x0 and dL.x/ D d x for some element d 2 C . Finally, let
M D Coker.f / . We asssume that the maps dL and dL0 are injective. Then

i) The module M is annihilated by d , and it is thus a C=dC -module.

ii) The following sequence is exact, where 	W M ! L=dL is induced by f 0 ,

0 �! M
	�! L=dL

Nf�! L0=dL0 can�! M �! 0 :

Proof. To prove assertion i) we note that, if x0 2 L0 , then d x0 D
f .f 0.x// 2 Im f , and hence the image of d x0 in M is zero.

In order to prove assertion ii), we first check that the sequence

L0=dL0 xf N0
�! L=dL

Nf�! L0=dL0

is exact, that is Im. xf N0 / D Ker. Nf / . If x 2 L is such that f .x/ 2 dL0 D
f .f 0.L0// then x 2 f 0.L0/ since dL0 , and thus f , are injective. The same
argument, using the injectivity of dL , shows that the sequence

L=dL
Nf�! L0=dL0 xf N0

�! L=dL

is exact, that is, xf N0 induces an isomorphism from Coker. Nf / D M onto
Im. xf N0 / D Ker. Nf / .

8.2. Notation. We shall apply the previous lemma in the following situation:
Let M be an A -module with an A -linear map uW M ! M , and let p.T /

be a monic polynomial of degree n such that

.8:2:1/ p.u/ D 0 :

Moreover, let C D AŒT � and L D L0 D AŒT � ˝A M , let f D T ˝ 1 � 1 ˝ u ,
and let f 0 D @p.T ˝ 1; 1 ˝ u/ , where @p is the polynomial, introduced in 2.5,
which is defined in the polynomial ring AŒT; U � by

.8:2:2/ .T � U / @p.T; U / D p.T / � p.U / :
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For simplicity we often write T � u and @p.T; u/ instead of T ˝ 1 � 1 ˝ u and
@p.T ˝ 1; 1 ˝ u/ .

Due to the hypothesis p.u/ D 0 , the endomorphism @p.T; u/ of AŒT � ˝A M

satisfies the relation

.T � u/ @p.T; u/ D @p.T; u/.T � u/ D p.T / :

This corresponds to the condition (8.1.1) of the previous lemma, with f D T �u ,
f 0 D @p.T; u/ and d D p.T / . The equality Coker.f / D M from the lemma
becomes here the well-known exact sequence (see for example [A], III, 8.10)

AŒT � ˝A M
T ˝1�1˝u�������! AŒT � ˝A M

��! M �! 0

where �.
P

T i ˝ xi / D P
ui .xi / .

Denote by t the class of T in B D AŒT �=.p/ ; the ring B corresponds
to the ring C=dC of the lemma. The condition p.u/ D 0 gives a structure
of B -module on M . On B ˝A M D L=dL , the maps Nf and xf N0 becomes,
respectively, t ˝ 1 � 1 ˝ u and @p.t; u/ .

8.3. Proposition. Let M be an A -module with an A -linear map uW M !M ,
and let p.T / be a monic polynomial such that

p.u/ D 0 :

Denote by t the class of T in B D AŒT �=.p/ . Then the following sequence is
exact

.8:3:1/ 0 �! B
	�! B ˝A B

t˝1�1˝t������! B ˝A B
��! B �! 0 ;

where 	 is defined as 	.b/ D @p.t; t /.1 ˝ b/ . On tensoring this sequence
on the right by M over B , exactness is preserved and we obtain the se-
quence

.8:3:2/ 0 �! M
	M�! B ˝A M

t˝1�1˝u������! B ˝A M
�M�! M �! 0 ;

where now the first arrow is defined as 	M .x/ D @p.t; u/.1˝x/ . In other words,
the subspace Im.@p.t; u// of B ˝A M is the eigenspace of 1 ˝ u relative to the
eigenvalue t ˝ 1 .

Proof. The exactness of these two sequences is merely a translation of
Lemma 8.1.
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8.4. Remarks. 1) The main application of Proposition 8.3 is to the case
where M is projective of finite type over A and p.T / is the characteristic
polynomial pu.T / . The endomorphism @pu.T; u/ is then equal to the cotranspose
.T � u/c of T � u (in [A], III, 8.6, the cotranspose of v is denoted by Qv ). In
fact, we have the two relations

.T � u/ ı .T � u/c D pu.T / and .T � u/ ı @.T; u/ D pu.T / ;

and the endomorphism .T � u/ of AŒT � ˝A M is injective.

2) On B ˝A M there are two B -module structures, called, for simplicity, the
left and the right structure. It is important to note that the sequence (8.3.2) is
exact for both these structures, even though, in general, it is not split for the left
B -module structure. It is obvious that the sequence

B ˝A M
t˝1�1˝u�������! B ˝A M

��! M �! 0

is exact as a sequence of B ˝A B -modules. It remains to check that the map
	M W M �! B ˝A M is linear for the left structure. Since t 2 B acts on M as
tx D u.x/ , we have to show that 	M .u.x// D .t ˝ 1/ 	M .x/ . We already know
that 	M is linear for the right structure, so we have 	M .u.x// D .1 ˝ u/	M .x/ .
Moreover, the definition (8.2.2) gives

.t ˝ 1 � 1 ˝ u/@p.t; u/ D p.t/ ˝ 1 � 1 ˝ p.u/ D 0 :

Thus we have .1 ˝ u/ @p.t; u/ D .t ˝ 1/ @p.t; u/ .

3) The polynomial @p.T; U / can be given an explicit expression in terms of
the coefficients of

p D T n C an�1T n�1 C � � � C a0 :

In fact, if we write @p.T; U / D Pn�1
iD0 T ipi .U / , then pn�1 D 1 , and for j > 0

we have pj �1.U / D aj C Upj .U / . Denoting by p�m the sum of the monomials
of degree � m , we get

pj .U / D p� j C1

U j C1
D U n�j �1 C an�1U n�j �2 C � � � C aj C1 :

With the notation of the above proposition we may write

	M .x/ D tn�1 ˝ pn�1.u/.x/ C � � � C 1 ˝ p0.u/.x/ 2 B ˝A M :

4) The endomorphism �M 	W M �! B ˝A M �! M is equal to p0.u/ . This
remark “explains” the analogy between the sequences (2.6.1) and (8.3.1). In fact,
we have 	 D p0.t / " .
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8.5. We now wish to describe the eigenspace relative to a general eigen-
value � . Giving a root � of p.T / in some A -algebra A0 is the same thing as
giving a morphism of A -algebras

f W B �! A0 ; f .t/ D � :

Hence a root gives rise to the following commutative diagram, obtained from
(8.3.2) by the base change f :

.8:5:1/ A0 ˝B M
1˝	M �� A0 ˝B .B ˝A M/

1˝.t˝1�1˝u/ �� A0 ˝B .B ˝A M/

A0 ˝B M
1˝	M

�� A0 ˝A M

˝1�1˝u

�� A0 ˝A M :

The submodule Ker.� ˝ 1 � 1 ˝ u/ in A0 ˝A M is the eigenspace relative to
� . It contains Im.1 ˝ 	M / but, unfortunately, it may be different from it. In
other words, the lower row is not exact in general; for example, consider the case
where u D 0 , � D 0 , and M ¤ 0 . (See 8.7 below for a less trivial example.)

8.6. Proposition. Let M be an A -module with an A -linear map uW M !M,
and let p.T / be a monic polynomial such that p.u/ D 0 . Moreover, denote
by t the class of T in B D AŒT �=.p/ . Let f W B �! A0 be a morphism of
A -algebras, and let � D f .t/ . Then the sequence

.8:6:1/ 0 �! A0 ˝B M
1˝	M����! A0 ˝A M


˝1�1˝u�������! A0 ˝A M

is exact, under each of the following hypotheses:

i) the morphism f W B �! A0 is flat;

ii) M is a projective B -module;

iii) B is finite étale over A .

Proof. The commutativity of (8.5.1) reduces the proof to verifying that, under
each of the hypotheses, the following sequence, obtained by tensoring (8.3.2) by
A0 on the left over B , remains exact:

0!A0˝BM
1˝	M��! A0˝B.B˝AM/

1˝.t˝1�1˝u/��������! A0˝B.B˝AM/
1˝���!A0˝BM !0 :

This is obvious when f is flat.
Assume now that M is a projective B -module. Then it is also projective over

A , and thus B ˝A M is projective over B for the left B -module structure. The
sequence (8.3.2) is exact as a sequence of B -modules for the left structure, by
virtue of Remark 8.4 (2). As each term is projective over B , it is split for the
same structure. Hence it remains exact by tensoring on the left by A0 over B .
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If B is finite étale over A then p0.t / ˝ 1 is invertible in B ˝A B , by
Proposition 2.8, and thus the maps " and 	 D .p0.t /˝1/ " have the same image.
Moreover, we observed in 2.6 that the sequence (2.6.1), which begins with " , is
split as a sequence of B ˝A B -modules. Hence the sequence

0 �! B
	�! B ˝A B

t˝1�1˝t������! B ˝A B
��! B �! 0

is also split as a sequence of B ˝A B -modules. Therefore it remains exact when
tensoring over B ˝A B by the B ˝A B -module A0 ˝A M . The last point to be
checked is the isomorphism

B ˝B˝AB .A0 ˝A M/
��! A0 ˝B M :

Now, it is a general fact that the kernel of the surjective map A0˝AM ! A0˝B M

is generated by the elements ba0 ˝ x � a0 ˝ bx ; hence it is the sub-module
Ker.�/ .A0 ˝A M/ .

8.7. Example. In this example the situation is simple enough to make the
maps in the above results explicit.

Let A be a ring containing two elements a and b such that ab D 0 . Consider
the endomorphism u of A2 given by the matrix

�
a 0
0 b

�
. The characteristic

polynomial pu.T / D T 2 � .a C b/T admits two factorizations pu.T / D
.T � a/.T � b/ D T .T � .a C b// . We have @pu.X; Y / D X C Y � .a C b/ , and
hence the map 	M W M �! B ˝A M of (8.3.2) is

	M .x/ D t ˝ x C 1 ˝ u.x/ � 1 ˝ .a C b/ x :

For the canonical basis .e1; e2/ of M we thus have

	M .e1/ D .t � b/ ˝ e1 ; 	M .e2/ D .t � a/ ˝ e2 :

An element b1 ˝ e1 C b2 ˝ e2 in B ˝A M is inside the generic eigenspace
Ker.t ˝ 1 � 1 ˝ u/ if .t � a/ b1 D 0 and .t � b/ b2 D 0 . An immediate
verification confirms that such a b1 is of the form .t � b/ c1 , and b2 is of the
form .t � a/ c2 with ci 2 A , as the exactness of the sequence (8.3.2) predicts.

For special eigenvalues the situation is more difficult. Let � be a root of pu.T /

in A , and let f W B ! A be the morphism it defines, that is, f .t/ D � . Then
A f̋;B M D M=.u � �/ M , and A f̋;B .B ˝A M/ D B=.t � �/ B ˝A M D M .
The map 1 ˝ 	M of (8.5.1) can now be written as

	
W M=.u � �/ M �! M ; 	
.x/ D �x C u.x/ � .a C b/x :

To determine the eigenspaces and discuss the exactness of the sequence (8.6.1)
we must introduce the ideals: a D AnnA.a/ , b D AnnA.b/ and c D AnnA.a�b/ .
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i) For the eigenvalue � D a , we find the inclusion

Im.	a/ D Im.u � b/ D .a � b/ Ae1 	 Ker.u � a/ D Ae1 C ce2 :

It is an equality if and only if a � b is invertible in A , that is if B is étale. The
same conclusion holds for the associate other eigenvalue � D b .

ii) For the eigenvalue � D 0 we get the inclusion

Im.	0/ D bAe1 C aAe2 	 Ker.u/ D ae1 C be2 :

It is an equality if and only if a D bA and b D aA .
For the ring A D ZŒa; b�=.ab/ the relations a D bA and b D aA are satisfied,

but a � b is not invertible; thus the inclusion in i) is strict, whereas the second
one, in ii), is an equality. In the ring ZŒa; b�=.a2; ab; b2/ , both inclusions are
strict.

This remark shows that in general the exactness of the sequence (8.6.1) depends
not only on u and on the polynomial p , but it also depends on the choice of
the eigenvalue.

About the possible decompositions of M into a sum of eigenspaces, the same
example shows that it depends on the choice of a factorization of the characteristic
polynomial:


 If we use the decomposition pu D .T � a/.T � b/ , the eigenspaces are
Ker.u � a/ D Ae1 C ce2 and Ker.u � b/ D ce1 C Ae2 , and their sum is equal to
the whole module M . However, their intersection is trivial if and only if a � b

is regular.

 If we now use the decomposition pu D T .T � .a C b// , we find

Ker.u/ D ae1 C be2 and Ker.u � .a C b// D be1 C ae2 . The image of the
map

Ker.u/ � Ker.u � .a C b// �! M

is the submodule .a C b/ M , and its kernel is isomorphic to .a \ b/ M . This
map is not even surjective without some strong conditions.
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