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Hyperorthogonal family of vectors
and the associated Gram matrix

Bent Fuglede

Abstract. A family of non-zero vectors in Euclidean n-space is termed hyperorthogonal
if the angle between any two distinct vectors of the family is at least �=2 . Any
hyperorthogonal family is finite and contains at most 2n vectors. It decomposes uniquely
into the union of mutually orthogonal irreducible subfamilies. An equivalent formulation
in terms of the associated Gram matrix is given.
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Let n and p be natural numbers. The standard inner product of two vectors
v; w 2 Rn is denoted by hv; wi , and the corresponding norm of v by
kvk D hv; vi1=2 .

Definition 1. A p -tuple .v1; : : : ; vp/ of vectors in Rn n ¹0º is said to be
hyperorthogonal if

hvi ; vj i � 0 for any two distinct i; j 2 ¹1; : : : ; pº:

The vectors of a hyperorthogonal p -tuple are of course distinct. A p -tuple
.v1; : : : ; vp/ [of vectors] in Rn n ¹0º is hyperorthogonal if and only if the
normalized vectors vi=kvik , i 2 ¹1; : : : ; pº , form a hyperorthogonal p -tuple (of
points) on the unit sphere †n in Rn , in the sense that the spherical distance
d.vi ; vj / � �=2 for any two distinct i; j 2 ¹1; : : : ; pº .

It is shown in Theorem 1 that an irreducible hyperorthogonal p -tuple in
Rn n¹0º of rank r is maximal if and only if p D r C1 . According to Theorem 2
every hyperorthogonal p -tuple decomposes uniquely into the union of mutually
orthogonal irreducible hyperorthogonal subtuples. A hyperorthogonal 2n-tuple on
†n is the same as the union of an orthonormal basis .v1; : : : ; vn/ for Rn and
its negative .�v1; : : : ; �vn/ . Furthermore, there is no hyperorthogonal p -tuple
in Rn n ¹0º with p > 2n .
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We close by considering the p � p matrix A D .hvi ; vj i/ associated with a
hyperorthogonal p -tuple .v1; : : : ; vp/ . Such matrices are characterized by being
positive semidefinite with diagonal entries > 0 and off-diagonal entries � 0 . In
a corollary to Theorem 2, an equivalent decomposition of such a matrix A is
obtained.

The concepts and results obtained in this paper naturally extend to the case
of p -tuples of vectors in E n ¹0º , where E denotes any n-dimensional vector
space over R , endowed with an inner product.

The present concept of hyperorthogonal p -tuples enters in an elementary proof
of a characterization of certain positive projections related to Jordan algebras, given
in [3].

Further related results are mentioned at the end of the paper.

Definition 2. A hyperorthogonal p -tuple .v1; : : : ; vp/ in Rn n ¹0º is termed
maximal hyperorthogonal, or just maximal, if it cannot be extended to a
hyperorthogonal .p C 1/ -tuple by adjoining a vector (necessarily non-zero) from
the linear span lin.v1; : : : ; vn/ of .v1; : : : ; vn/ .

A single vector v 2 Rn n ¹0º trivially forms a hyperorthogonal 1 -tuple. It is
not maximal because the antipodal pair .v; �v/ is a hyperorthogonal 2 -tuple in
lin.v/ D Rv .

Definition 3. A p -tuple .v1; : : : ; vp/ in Rn n ¹0º is said to be reducible if some
q among its vectors, with q 2 ¹1; : : : ; p � 1º , are orthogonal to the remaining
p � q vectors.

Remark 1. An irreducible (i.e. not reducible) hyperorthogonalp -tuple.v1; : : : ; vp/

in Rn n ¹0º is maximal if (and only if) it cannot be extended to an irreducible
hyperorthogonal .p C 1/ -tuple by adjoining a vector v 2 lin.v1; : : : ; vp/ . In fact,
if .v1; : : : ; vp; v/ were a reducible hyperorthogonal .p C 1/ -tuple then v would
be orthogonal to v1; : : : ; vp , and hence v D 0 .

Example 1. The vertices v1; : : : ; vnC1 of a regular n-simplex in Rn centered at
0 form a maximal irreducible hyperorthogonal .n C 1/ -tuple in Rn n ¹0º . Indeed,
the angle between two of the vertices is 2 arccos 1

n
> �

2
(if n � 2 ), which also

implies irreducibility. Maximality follows from the implication (i) ^ (iii) H) (ii)
in Theorem 1 below since p D n C 1 here and since .v1; : : : ; vnC1/ clearly has
full rank n .

A pair of vectors .v; w/ in Rn n ¹0º is termed antipodal if there exists a real
number ˛ < 0 such that w D ˛v . An antipodal pair in Rn n ¹0º is the same as
a maximal hyperorthogonal 2 -tuple in Rn n ¹0º , and is moreover irreducible.
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Remark 2. If a hyperorthogonal p -tuple .v1; : : : ; vp/ in Rn n ¹0º contains an
antipodal pair, say .v1; v2/ , then the remaining vectors v3; : : : ; vp are orthogonal
to v1 and v2 . If .v1; : : : ; vp/ is moreover irreducible then p D 2 , and we just
have an antipodal pair.

Lemma 1. Let .v1; : : : ; vp/ be a hyperorthogonal p -tuple in Rn n ¹0º of rank r

and having no antipodal pair containing vp . For any vector v 2 Rn let v0 denote
the orthogonal projection of v on the orthogonal complement .Rvp/? of Rvp

in Rn . Then .v0
1; : : : ; v0

p�1/ is hyperorthogonal of rank r � 1 . If .v1; : : : ; vp/ is

(a) maximal or (b) irreducible,

then so is .v0
1; : : : ; v0

p�1/ .

Proof. Clearly n; p � r � 2 , for if r D 1 then .v1; vp/ would be an antipodal
pair. Assuming as we may that kvpk D 1 , we have

(1) v0
i D vi � hvi ; vpivp for i < p:

In view of (1) the p -tuple .v0
1; : : : ; v0

p�1; vp/ has the same rank r as .v1; : : : ; vp/ .
Being orthogonal to vp ¤ 0 , .v0

1; : : : ; v0
p�1/ therefore has rank r � 1 . Since

.v1; : : : ; vp/ is hyperorthogonal it follows from (1) that so is .v0
1; : : : ; v0

p�1/

because

(2) hv0
i ; v0

j i D hvi ; vj i � hvi ; vpihvj ; vpi � 0

for distinct i; j < p .

(a) Suppose that .v1; : : : ; vp/ is maximal. For maximality of the hyperorthogonal
.p�1/ -tuple .v0

1; : : : ; v0
p�1/ , suppose that, on the contrary, there exists a non-zero

vector v 2 lin.v0
1; : : : ; v0

p�1/ such that .v0
1; : : : ; v0

p�1; v/ is hyperorthogonal. Then
v is orthogonal to each vi � v0

i (which belongs to Rvp , by (1)), and hence

hv; vii D hv; v0
ii � 0 for i 2 ¹1; : : : ; p � 1º;

by hyperorthogonality of .v0
1; : : : ; v0

p�1; v/ . Thus .v1; : : : ; vp; v/ is hyper-
orthogonal in Rn n ¹0º along with .v1; : : : ; vp/ and .v1; : : : ; vp�1; v/ , in view
of hvp; vi D 0 . Furthermore,

v 2 lin.v0
1; : : : ; v0

p�1; vp/ D lin.v1; : : : ; vp�1; vp/;

by (1). This contradicts the maximality of .v1; : : : ; vp/ .

(b) Suppose that .v1; : : : ; vp/ is irreducible. If .v0
1; : : : ; v0

p�1 ) is reducible we
may assume that, for example, v0

1; : : : ; v0
q are orthogonal to v0

qC1; : : : ; v0
p�1 for

some q 2 ¹1; : : : ; p � 2º . We then show that (when thus including vp ) either

(3) .v1; : : : ; vq/ ? .vqC1; : : : ; vp�1; vp/
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or

(4) .v1; : : : ; vq; vp/ ? .vqC1; : : : ; vp�1/:

For i 2 ¹1; : : : ; qº and j 2 ¹q C 1; : : : ; p � 1º we have in fact in view of (1)
by hyperorthogonality of .v1; : : : ; vp/

(5) 0 � hvi ; vj i D hv0
i ; v0

j i C hvi ; vpihvj ; vpi � 0

because v0
i ? v0

j and that hvi ; vpi � 0 and hvj ; vpi � 0 , again by hyperorthogo-
nality of .v1; : : : ; vp/ . Thus the equality signs in (5) prevail, and so hvi ; vj i D 0

for i � q < j � p � 1 , and the non-negative number hvi ; vpihvj ; vpi therefore
equals 0 . Hence either hvi ; vpi D 0 for every i 2 ¹1; : : : ; qº , or else hvj ; vpi D 0

for every j 2 ¹q C 1; : : : ; p � 1º . In the former case, (3) holds in view of (5)
with equality signs, as just established; and similarly in the latter case, (4) holds.
In either case, this contradicts the irreducibility of .v1; : : : ; vp/ .

Remark 3. If v1; : : : ; vp are normalized, that is, if they lie on †n , it is natural
to replace the orthogonal projection v0 of any v 2 †n on Rn�1 D .Rvp/?
with v ¤ ˙vp by the spherical projection vı (the point of the “equator”
†n�1 D .Rvp/? \ †n nearest to v ). Clearly vı D v0=kv0k , and hence Lemma 1
remains valid when v0

i is replaced by vı
i , i < p .

Theorem 1. Let .v1; : : : ; vp/ be a hyperorthogonal p -tuple in Rn n ¹0º of rank
r . Then r � 1 , and if .v1; : : : ; vp/ is irreducible then either p D r or p D r C1 .
Any two of the following three properties imply the third:

(i) .v1; : : : ; vp/ is irreducible,

(ii) .v1; : : : ; vp/ is maximal,

(iii) p D r C 1 .

Proof. Clearly p; n � r � 1 . It follows that, if p D 1 , then r D 1 and
hence p D r . Furthermore, the singleton .v1/ is not maximal, the antipodal pair
.v1; �v1/ � lin.v1/ being hyperorthogonal. Thus (ii) and (iii) fail, and there is
nothing more to prove when p D 1 . We therefore assume that p � 2 .

Suppose that (i) holds. Assume for a moment that .v1; : : : ; vp/ is a union of
antipodal pairs. By Remark 2 these are mutually orthogonal, and by irreducibility
there is just one antipodal pair. Such a pair is maximal, and p D 2 , r D 1 ,
whence (ii) and (iii) hold. We may therefore assume for example that .vi ; vp/

is not an antipodal pair for any i 2 ¹1; : : : ; p � 1º . It follows that r � 2 , for
if r D 1 then .v1; vp/ would be an antipodal pair. By Lemma 1 the projection
.v0

1; : : : ; v0
p�1/ of .v1; : : : ; vp�1/ on .Rvp/? is an irreducible hyperorthogonal

.p � 1/ -tuple of rank r � 1 . This shows by induction that p � 1 equals either
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r � 1 or r because p D 2 implies either r D 1 or r D 2 , the former in case
.v1; v2/ is antipodal, and the latter if not. Thus (i) implies that either p D r C 1

or p D r . If in addition .v1; : : : ; vp/ is maximal then so is .v0
1; : : : ; v0

p�1/ by
Lemma 1(a), and hence by induction p �1 D .r �1/C1 , that is p D r C1 . This
is because p D 2 now implies r D 1 , and hence p D r C 1 , a hyperorthogonal
pair of rank 2 being clearly non-maximal. Thus (i) ^ (ii) H) (iii).

To show that (i) ^ (iii) H) (ii), suppose that, on the contrary, .v1; : : : ; vp/

is not maximal. We shall then prove that p ¤ r C 1 , that is, p D r . There
exists a non-zero vector v 2 lin.v1; : : : ; vp/ such that .v1; : : : ; vp; v/ is an ir-
reducible hyperorthogonal .p C1/ -tuple, cf. Remark 1. In particular, hv; vpi � 0 .
Clearly .v1; : : : ; vp; v/ has unchanged rank r . If .v; vp/ were an antipodal pair
then hvi ; vpi D 0 for i 2 ¹1; : : : ; p � 1º , cf. Remark 2, in contradiction with
the irreducibility of .v1; : : : ; vp/ since p � 2 . Thus actually .v; vp/ is not
antipodal, nor is .vi ; vp/ for any i 2 ¹1; : : : ; p � 1º , for then p C 1 D 2 by
Remark 2 applied to the irreducible .p C 1/ -tuple .v1; : : : ; vp; v/ . Consequently,
Lemma 1 applies to the hyperorthogonal .p C 1/ -tuple .v1; : : : ; vp�1; v; vp/ of
rank r , while keeping vp . It thus follows by Lemma 1 that .v0

1; : : : ; v0
p�1; v0/

is hyperorthogonal. Because v 2 lin.v1; : : : ; vp/ and that v0
p D 0 we have

v0 2 lin.v0
1; : : : ; v0

p�1/ , and we conclude from the supposed non-maximality of
.v1; : : : ; vp/ that .v0

1; : : : ; v0
p�1/ likewise is not maximal. According to Lemma 1

as it stands it follows from (i) that .v0
1; : : : ; v0

p�1/ is irreducible and has rank
r � 1 . By induction, p � 1 D r � 1 , and hence indeed p D r . This is because
p D 2 now implies r D 2 D p , a hyperorthogonal pair .v1; v2/ of rank 1 being
antipodal and hence maximal. The conclusion p D r contradicts (iii), and so
.v1; : : : ; vp/ must actually be maximal, that is, (i) ^ (iii) H) (ii).

The remaining implication (ii)^ (iii) H) (i) will be established after the proof
of (7) below.

For Assertion (d) of the following theorem, see alternatively [3], Theorem 2.
Assertion (c) shows that p � 2n holds for any hyperorthogonal p -tuple in
Rn n¹0º . In particular, there is no infinite hyperorthogonal family, as is also clear
because †n is compact.

Theorem 2. Let .v1; : : : ; vp/ be a hyperorthogonal p -tuple in Rnn¹0º of rank r .

(a) There exists a decomposition of ¹1; : : : ; pº , unique up to permutation, into
nonvoid subsets J1; : : : ; Jm with m 2 ¹1; : : : ; pº such that the corresponding
hyperorthogonal subtuples .vj W j 2 Jk/ with k 2 ¹1; : : : ; mº are irreducible and
(if m � 2 ) mutually orthogonal in Rn .

(b) These hyperorthogonal subtuples are all maximal if and only if .v1; : : : ; vp/

itself is maximal.
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(c) We have

(6) p � r C m and p � 2r � 2n:

Furthermore, .v1; : : : ; vp/ is maximal if and only if p D r Cm and hence p � 2 .
(d) If p D 2n and hence r D m D n then .v1; : : : ; vp/ is maximal, and

is the union of n antipodal pairs (necessarily mutually orthogonal if n � 2 ).
If, in addition, each vi is normalized then .v1; : : : ; v2n/ is the union of an
orthonormal base for Rn , say .v1; : : : ; vn/ , and its opposite orthonormal base
.�v1; : : : ; �vn/ . Conversely, any such union is maximal hyperorthogonal on †n

and has rank n .

Proof. (a) The existence part follows right away in view of Definition 3. For
uniqueness of the decomposition, write briefly V for .v1; : : : ; vp/ , and Vk for
.vj W j 2 Jk/ , so that we have a decomposition V D Sm

kD1 Vk of V into mutually
orthogonal subtuples Vk . For any other such decomposition V D S

l Wl of V

into mutually orthogonal subtuples Wl of V , suppose for some k and l that
Vk \ Wl ¤ ¿ . Then

Wl D .Vk \ Wl / [ ..V n Vk/ \ Wl /

defines a decomposition of Wl into two mutually orthogonal subtuples Vk \ Wl

and .V n Vk/ \ Wl of Wl and hence of V because Vk ? V n Vk . Since Wl

is irreducible and Vk \ Wl ¤ ¿ we must have .V n Vk/ \ Wl D ¿ , that is
Wl � Vk . By interchanging the roles of Vk and Wl in this argument we also
have Vk � Wl , and so Vk D Wl . Thus any two Vk and Wl are either disjoint
or identical. This means, however, that the two decompositions V D S

k Vk and
V D S

l Wl must be the same (up to permutation).

(b) With the above abbreviations we show by contradiction that V is maximal
if and only if each Vk is so. For the “only if” part, suppose that some Vk is not
maximal. There exists then v 2 lin Vk such that .v/[Vk remains hyperorthogonal,
that is, v ¤ 0 and hv; vj i � 0 for all j 2 Jk . This contradicts the maximality
of V because v 2 lin V and that .v/ [ V remains hyperorthogonal. Indeed,
for any l 2 ¹1; : : : ; mº with l ¤ k , Vl is orthogonal to Vk and therefore
v 2 lin Vk , whence hvj ; vi D 0 for every j 2 Jl , and altogether hvj ; vi � 0

for any j 2 ¹1; : : : ; pº . – For the “if” part, suppose that V is not maximal.
Then there exists v 2 lin V such that .v/ [ V remains hyperorthogonal, that is,
hv; vj i � 0 for all j 2 ¹1; : : : ; pº . For any k 2 ¹1; : : : ; mº denote by v0 the
orthogonal projection of v on lin Vk . Then .v0/ [ Vk remains hyperorthogonal,
in contradiction with the maximality of Vk . Indeed, for any j 2 Jk we have
vj 2 Vk , hence v � v0 ? vj , and so hv0; vj i D hv; vj i � 0: Furthermore v0 ¤ 0 ,
for otherwise v D v � v0 ? vj , hence v ? lin.vj W j 2 Jk/ D lin Vk , and so
v D v0 by definition of v0 , in contradiction with v ¤ 0 .
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(c) For the second inequality (6), denote pk D #Jk and rk D rk Vk . Clearly
p D P

k pk and r D P
k rk , the latter because the Vk are mutually orthogonal.

Since Vk is irreducible it follows by Theorem 1 that pk � rk C 1 , and hence

(7) p D
mX

kD1

pk � m C
mX

kD1

rk D m C r � 2r;

the latter inequality because each rk � 1 and hence r � m . By Theorem 1, all the
irreducible subtuples Vk are maximal if and only if pk D rk C 1 for all k � m ,
which in turn, by addition, is equivalent to p D r Cm since anyway pk � rk C1 ,
as already noted. Thus, by (b), V is maximal if and only if p D r C m . And
if V is maximal and reducible then m > 1 and hence p D r C m > r C 1 ,
thus establishing by contradiction the remaining implication (ii) ^ (iii) H) (i) in
Theorem 1.

(d) If p D 2n , and hence n D r � m by (6), then by (7) with equality it
follows from (c) that V is maximal, and we have m D r , hence rk D 1 for
every k 2 ¹1; : : : ; mº ; furthermore, pk D rk C 1 D 2 for every k because Vk

is irreducible and maximal, by (b), and thus each of the m D r D n subtuples
Vk is an antipodal pair, as noted after Example 1. The final assertion in (d) is
easily verified.

Exercise 1. Determine all hyperorthogonal .2n � 1/ -tuples on †n , for example
for n D 3 . (Hint: begin by determining the non-maximal ones.)

We continue identifying a p -tuple .v1; : : : ; vp/ of vectors in Rn with the
n � p matrix V with columns v1; : : : ; vp . We only consider matrices with real
entries. The transpose of a matrix V is denoted by V t . The following lemma
concerning the associated Gram matrix V tV is well known.

Lemma 2. (a) For any n � p matrix V D .v1; : : : ; vp/ of rank r , the p � p

matrix

(8) A
defD V tV D .hvi ; vj i/i;j 2¹1;:::;pº

is positive semidefinite and has rank r .

(b) Conversely, every positive semidefinite p � p matrix A of rank r has the
form (8) with V an r � p matrix, necessarily of rank r .

Proof. (a) A is obviously symmetric: hvi ; vj i D hvj ; vii , and positive semidefi-
nite:

pX
i;j D1

hvi ; vj ixixj D
D pX
iD1

xivi ;

pX
j D1

xj vj

E
D

���
pX

iD1

xi vi

���2 � 0
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for x1; : : : ; xp 2 R . Clearly rk A � rk V D r . For the proof that rk A � r we
may assume for example that v1; : : : ; vr are linearly independent. The principal
submatrix

B
defD .hvi ; vj i/i;j �r

of A then has full rank r . Otherwise there would be an r -tuple .c1; : : : ; cr/ 2
Rr n ¹0º such that

Pr
j D1 cj hvi ; vj i D 0 for every i � r , and hence˝Pr

iD1 ci vi ;
Pr

j D1 cj vj

˛ D 0 , that is,
Pr

iD1 ci vi D 0 , in contradiction with the
linear independence of v1; : : : ; vr .

(b) There exists an orthogonal p � p matrix � such that

�tA� D ƒ
defD diag.�1; : : : ; �p/;

with �i > 0 for i � r and �i D 0 for i > r because rk ƒ D rk A D r .
Consider the r � p matrix U obtained from diag.

p
�1; : : : ;

p
�r / by adjoining

after it p � r columns equal to 0 . Then U tU D ƒ , and the r � p matrix

V
defD U �

has the same rank r as U , and satisfies V tV D �t U tU � D �tƒ� D A .

Remark 4. For any n � r , (8) of course remains valid after the r � p matrix
V in the proof of Lemma 2 has been extended by adjoining n � r new rows
equal to 0 , whereby rk V remains equal to r . Also note that it was shown in
the proof of Lemma 2 that every positive semidefinite p � p matrix A of rank
r has a principal submatrix B of full rank r .

Lemma 3. For n; p � 1 let V D .v1; : : : ; vp/ be an n � p matrix with column
vectors v1; : : : ; vp in Rn n ¹0º . Let

A D .aij /i;j 2¹1;:::;pº
defD V t V

be the associated Gram matrix, cf. Lemma 2, obviously with diagonal entries
> 0 . Then

(a) V is hyperorthogonal if and only if the off-diagonal entries of A are all
� 0 .

(b) V is irreducible if and only if A is irreducible in the sense that one
cannot decompose ¹1; : : : ; pº into two nonvoid disjoint parts J1 and J2 such
that aij D 0 for i 2 J1 and j 2 J2 .

(c) V is maximal (hyperorthogonal) if and only if A (with all off-diagonal
entries � 0 ) is maximal in the sense that one cannot adjoin to A a new last
column a 2 RnC1 and the corresponding last row at in such a way that the
extended .p C 1/ � .p C 1/ matrix has all diagonal entries > 0 , all off-diagonal
entries � 0 , and is positive semidefinite with the same rank as A .
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Proof. Assertions (a) and (b) are easily verified. For (c), suppose first that V is
hyperorthogonal, but not maximal. There is then a column vector v 2 Rnn¹0º such
that the n�.pC1/ matrix W with columns v1; : : : ; vp; v remains hyperorthogonal
with unchanged rank r (namely v 2 lin.v1; : : : ; vp/ ). In view of Lemma 2,

B
defD W tW

is an extension of A to a positive semidefinite .p C 1/ � .p C 1/ matrix of rank
r with diagonal entries > 0 and off-diagonal entries � 0 , by (a). This shows
that A is not maximal in the stated sense.

Conversely, suppose that A is not maximal. There is then a column vector
b 2 Rp with coordinates bi � 0 , and a number c > 0 , such that the symmetric
.p C 1/ � .p C 1/ matrix �

a b

c d

�

remains positive semidefinite with rank r . In particular, the first p rows of B

have rank r (not just rank � r because rk A D r ). The system of linear equations

pX
j D1

aij xj D bi ;

i 2 ¹1; : : : ; pº , therefore has a solution .x1; : : : ; xp/ . The linear combination
v D Pp

j D1 xj vj satisfies

(9) hvi ; vi D
pX

j D1

hvi ; vj ixj D
pX

j D1

aij xj D bi � 0

for i 2 ¹1; : : : ; pº , showing that the .p C 1/ -tuple .v1; : : : ; vp; v/ is hyper-
orthogonal along with .v1; : : : ; vp/ . Note at this point that v ¤ 0 , for if v D 0

then b D 0 , by (9), and since c > 0 this would imply that rk B D 1 C rk A ,
which is false. We have thus shown that indeed .v1; : : : ; vp/ is non-maximal if
A is so, thereby completing the proof of (c).

In view of Lemma 3 we have the following equivalent version of Theorem 2.

Corollary 1. Let A D .aij /i;j 2¹1;:::;pº be a positive semidefinite p � p matrix of
rank r with diagonal entries > 0 and off-diagonal entries � 0 .

(a) There exists a decomposition of ¹1; : : : ; pº , unique up to permutation, into
nonvoid subsets J1; : : : ; Jm with m 2 ¹1; : : : ; pº such that the corresponding
positive semidefinite principal submatrices Ak D .aij /i;j 2Jk

with k 2 ¹1; : : : ; mº
are irreducible and (if m � 2 ) mutually orthogonal in Rn , in the sense that
aij D 0 for all .i; j / 2 Jk � Jl and distinct k; l 2 ¹1; : : : ; mº .
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(b) These positive semidefinite principal submatrices Ak are all maximal if
and only if A is itself maximal.

(c) We have

p � r C m and p � 2r:

Furthermore, A is maximal if and only if p D r C m and hence p � 2 .

(d) If p D 2n , and hence r D m D n , and if the diagonal entries of A

equal 1 , then A is maximal, and (up to a permutation of rows and the same
permutation of columns) A equals the block matrix

(10) A D
�

In �In

�In In

�
;

where In denotes the n � n unit matrix. Conversely, this block matrix A has
rank n and is maximal with diagonal entries 1 and off-diagonal entries 0 or
�1 .

In (d), the requirement that the diagonal entries of A equal 1 of course
amounts to the columns of V from Lemma 2 being normalized. For (10) note
that, by Theorem 2, the columns of V therefore are v1; : : : ; vn; �v1; : : : ; �vn

in terms of an orthonormal base .v1; : : : ; vn/ for Rn . If instead we order the
columns of V as v1; �v1; v2; �v2; : : : ; vn; �vn then A becomes the diagonal
block matrix

A D diag.E; E; : : : ; E/ with E D
�

1 �1

�1 1

�
:

Exercise 2. Determine all positive semidefinite .2n � 1/ � .2n � 1/ matrices of
rank n with diagonal entries 1 and off-diagonal entries � 0 .

Related results. The author owes to the Editors the following observations.
The inequality r � p � m of the last corollary is contained in Lemma 4 of

Section 3.5, Chapter 5 of [1].
Unit vectors v1; : : : ; vp in Rn with equal inner products hvi ; vj i for distinct

i; j in ¹1; : : : ; pº have been studied in [4]. For example, given an integer d � 1 ,
if hvi ; vii D 1 and hvi ; vj i D �1=d for i ¤ j , then p � n C Œn=d � ; see [4],
Theorem 4.2.

Given a subset S of the real interval Œ�1; 1� , a spherical S -code is a
subset V of the unit sphere in Rn such that hv; v0i 2 S for any pair .v; v0/
of distinct vectors in V . In particular, a spherical Œ�1; 0� -code is precisely a
hyperorthogonal set of unit vectors. Bounds on cardinalities of spherical S -codes
have been established in [2] and more recent papers.
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