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Abstract. We apply Voronoi’s algorithm to compute representatives of the conjugacy classes

of maximal �nite subgroups of the unit group of a maximal order in some simple Q -algebra.

�is may be used to show in small cases that non-conjugate orders have non-isomorphic

unit groups.
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1. Introduction

Let A be some simple Q -algebra and let ƒ and � be two maximal orders

in A . If A is not a division algebra, then the order ƒ is generated by its unit

group ƒ� as a Z -lattice (see Lemma 2.1). So ƒ� and �� are conjugate in A�

if and only if the two orders ƒ and � are conjugate, which can be decided

with the arithmetic theory of orders exposed in the next section. By the theorem

of Skolem and Noether we hence have that the unit groups are conjugate if and

only if ƒ and � are isomorphic as orders over the center of A . �e motivation

of this paper is to develop tools for deciding whether the two unit groups are

isomorphic, which is in general much more di�cult than the conjugacy problem.

In fact this innocent question was raised by Oliver Braun during his work on

the paper [BC] that grew out of his Bachelor thesis in Aachen supervised by the

second author.

One invariant of the isomorphism class of ƒ� is the number of conjugacy

classes of maximal �nite subgroups. Our main result is that these maximal �nite

subgroups arise as automorphism groups of well rounded minimal classes, which

will be de�ned in Section 5. �e basic idea underlying this approach is already

apparent in Ryškov’s paper [Ry] on the computation of the �nite subgroups

of GLn.Z/ . Nevertheless, whereas Ryškov classi�es all �nite subgroups and
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then develops ad hoc arguments to determine the maximal ones, our method

permits in principle to solve the problem directly. Precisely, a re�nement of the

classical Voronoi algorithm, involving Bergé-Martinet-Sigrist’s equivariant version

of Voronoi’s theory [BMS], is applied to compute the cellular decomposition of

a suitable retract of a cone of positive de�nite Hermitian forms, and therewith

also the (�nitely many) conjugacy classes of maximal �nite subgroups of ƒ� .

As will be illustrated in Section 8, this turns out to be enough, in some cases, to

distinguish between non-isomorphic unit groups. �e argument can of course not

be reversed: non-isomorphic unit groups might have the same conjugacy classes

of maximal �nite subgroups. Note also that, as in the classical case of GLn.Z/ ,

the obtained cellular decomposition can be used to compute the integral homology

of ƒ� . �e relevance of Voronoi theory in such homology computations was

�rst highlighted in the works of Soulé [Sou1, Sou2] and Ash [A1, A2], and it has

given rise since then to numerous developments (we refer the interested reader

to P. Gunnels’ appendix of [St] which provides an excellent survey on this topic,

and to [DES, Ra, RF] for recent related works, especially on Bianchi groups).

�e methods apply to arbitrary (semi)-simple Q -algebras, though we are mainly

interested in the case where A is a matrix ring over either an imaginary quadratic

number �eld or a de�nite rational quaternion algebra. For these algebras we may

ease these computations by adopting a projective notion of minimal vectors as

exposed in Section 7.

2. Conjugacy classes of maximal orders

�e theory in this section is well known and can be extracted from the two

books [Re] and [D]. However, we did not �nd a self-contained short exposition

of the proof of �eorem 2.4, so we repeat the details here for the reader’s

convenience. Let A be a simple Q -algebra. �en A D Mn.K/ for some rational

division algebra K with center Z.K/ . Let R be the maximal order in Z.K/

and choose some maximal R -order O in K . An O -lattice L of rank n is a

�nitely generated O -submodule of the right K -module V WD Kn that contains

a K -basis. By Steinitz-theorem (see for instance [Re, �eorem 4.13, Corollary

35.11]) there are right ideals c1; : : : ; cn of O and a basis .e1; : : : ; en/ of V such

that

L D e1c1 ˚ � � � ˚ encn:

�e family .ci ; ei /1�i�n is called a pseudo-basis of L . �e Steinitz-invariant of

L , denoted St.L/ , is the class

St.L/ WD Œc1� C � � � C Œcn�
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in the group Cl.O/ of stable isomorphism classes of right O -ideals and does not

depend of the choice of a pseudo-basis. By Eichler’s theorem (see [Re, �eorem

(35.14)]) the reduced norm

nr W Cl.O/ ! ClK.R/

induces a group isomorphism between Cl.O/ and the ray class group ClK.R/ ,

the quotient of the ideal group of R modulo those principal ideals ˛R for which

�.˛/ > 0 for all real places � of Z.K/ that ramify in K .

If n � 2 (which we assume in the following) then, as a consequence of

Corollary 35.13 of [Re], two lattices L1; L2 � V are isomorphic as O -modules,

if and only if they have the same Steinitz-invariant. In particular, L is isomorphic

to L.c/ where

L.c/ D e1O ˚ : : : ˚ en�1O ˚ enc

for any ideal c with Œc� D St.L/ . �e endomorphism ring

EndO.L/ D
®

X 2 Mn.K/ j XL � L
¯

is a maximal order in EndK.V / Š A . In fact any maximal order in A is obtained

this way (see [Re, Corollary 27.6]). If Œc� D St.L/ then EndO.L/ is conjugate in

GLn.K/ to

EndO

�

L.c/
�

D ƒ.c/ WD

0

B

B

B

B

@

O : : : O c
�1

::: : : :
:::

:::

O : : : O c
�1

c : : : c O0

1

C

C

C

C

A

where O0 D Ol .c/ D ¹x 2 K j xc � cº .

Lemma 2.1. For n � 2 any maximal order ƒ in A D Mn.K/ is generated as

a Z -order by its unit group.

Proof. Without loss of generality let ƒ D ƒ.c/ and let

.x1; : : : ; xd /; .y1; : : : ; yd /; .z1; : : : ; zd /

be Z -bases of O , c , respectively c
�1 . We denote by eij the matrix units in

Mn.K/ having an entry 1 at i; j and 0 elsewhere, and In D e11 C : : : C enn the

unit matrix. Let X be the Z -order spanned by ƒ.c/� . Since In and In C xkeij

2 ƒ.c/� we obtain that xkeij 2 X for all k D 1; : : : ; d , 1 � i ¤ j � n � 1 .

Similarly ykeni and zj ein , as well as ykzj enn and zj ykei i are in X for all

i D 1; : : : ; n�1 , k; j D 1; : : : ; d . As the ykzj generate O0 and the zj yk generate

O the order X contains ƒ.c/ .
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Corollary 2.2. Let ƒ and � be two maximal orders in the simple algebra A

and assume that A is not a division algebra. �en ƒ� and �� are conjugate in

A� if and only if ƒ and � are conjugate.

A separating invariant of the conjugacy classes of maximal orders in A can

be constructed in a suitable class group of the center of A .

De�nition 2.3. Let ClK.n/ WD ClK.R/=hnr.a/n j a E Oi denote the quotient of

the ray class group ClK.R/ de�ned above modulo the n-th powers of the reduced

norms of the two-sided O -ideals.

Note that the subgroup hnr.a/n j a E Oi can be obtained from the discriminant

of K . In particular it does not depend on the choice of the maximal order O .

Also if K is commutative then ClK.n/ D Cl.K/= Cl.K/n is just the class group

of K modulo the n-th powers.

�eorem 2.4. Let A D Mn.K/ be a simple Q -algebra and O a maximal order

in K . For any two right O -ideals c and c
0 , the corresponding maximal orders

ƒ.c/ and ƒ.c0/ are conjugate in A� D GLn.K/ if and only if nr.Œc�/ D nr.Œc0�/
in ClK.n/ .

Proof. We use the approach in [D, Section VI.8]. Let � WD Mn.O/ D ƒ.O/ .

�en any other maximal order in A arises as the left order of some � -right

ideal, in particular

ƒ.c/ D Ol

�

I.c/
�

D
®

a 2 A j aI.c/ � I.c/
¯

where I.c/ D

0

B

B

B

B

@

O : : : O

::: : : :
:::

O : : : O

c : : : c

1

C

C

C

C

A

:

Two left orders Ol .I / and Ol .I
0/ are conjugate, if and only if I 0 D aIJ for

some a 2 A� and some two-sided fractional � -ideal J . By Morita theory any

two-sided � -ideal J is of the form J D Mn.a/ for some two-sided O -ideal a

in K . By [Re, Lemma (35.8)], the reduced norm of J D HomO.On; an/ equals

nr.a/n 2 ClK.R/ and the reduced norm of I.c/ D HomO.L.O/; L.c// is nr.c/ .

By [Re, �eorem 35.14] the reduced norm is injective, so

I.c/ D aI.c0/Mn.a/ for some a 2 A� if and only if nr.c/ D nr.c0/ nr.a/n:
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3. Positive cones

Let K be some rational division algebra and A D Mn.K/ . �en AR WD A˝QR

is a semi-simple real algebra, hence a direct sum of matrix rings over one of

H , R or C . It carries a canonical involution that we use to de�ne symmetric

elements. Let d denote the degree of K , so d 2 D dimZ.K/.K/ , and let

�1; : : : ; �s be the real places of Z.K/ that ramify in K,

�1; : : : ; �r the real places of Z.K/ that do not ramify in K,

�1; : : : ; �t the complex places of Z.K/.

�en

KR WD K ˝Q R Š
s

M

iD1

Md=2.H/ ˚
r

M

iD1

Md .R/ ˚
t

M

iD1

Md .C/:

�e “canonical” involution � (depending on the choice of this isomorphism)

is de�ned on any simple summand of KR to be transposition for Md .R/ ,

transposition and complex (respectively quaternionic) conjugation for Md .C/ and

Md=2.H/ . �e resulting involution on KR is again denoted by � . As usual it

de�nes a mapping � W Mm;n.KR/ ! Mn;m.KR/ by applying � to the entries and

then transposing the m � n-matrices. In particular this de�nes an involution �

on AR D Mn.KR/ . In general this involution will not �x the set A .

De�nition 3.1. † WD Sym.AR/ WD
®

F 2 AR j F � D F
¯

is the R -linear subspace

of symmetric elements of AR . It supports the positive de�nite inner product

hF1; F2i WD trace.F1F2/

where trace is the reduced trace of the semi-simple R -algebra AR . �e real

vector space † contains the open real cone of positive elements

P WD
®

.q1; : : : ; qs; f1; : : : ; fr ; h1; : : : ; ht / 2 † j qi ; fj ; hk pos. def.
¯

:

Let V be the simple left A-module Kn . �en VR WD V ˝Q R D Kn
R

and for

any x 2 VR the matrix xx� lies in † . �e following lemma is easily checked:

Lemma 3.2. Any F 2 † de�nes a quadratic form on VR by:

F Œx� WD hF; xx�i 2 R for all x 2 VR:

�is quadratic form is positive de�nite if and only if F 2 P .

As a consequence, with a slight abuse of language, we will sometimes refer

to elements of † as forms.
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4. Minimal vectors

Let A D Mn.K/ for some division algebra K . As before we �x some

maximal order O in K and choose some right O -lattice L in the simple left

A-module V D Kn . �en ƒ WD EndO.L/ is a maximal order in A with unit

group ƒ� WD GL.L/ D ¹a 2 A j aL D Lº .

Following [A2], we will de�ne the L -minimum of a form F 2 P with respect

to a weight.

De�nition 4.1. A weight ' on L is a GL.L/ -invariant map from the projective

space P.Kn/ to the positive reals, such that maxx2P.Kn/ '.x/ D 1 .

A natural choice for the weight is '0.x/ D 1 for all x 2 Kn � ¹0º . However,

another rather standard choice for ' is possible, which allows for de�nitions

having a natural geometric interpretation and somehow simplify the computations,

at least in the case of imaginary quadratic �elds or de�nite quaternion algebras

(see Section 7). Roughly speaking, this alternative weight is given by the inverse of

the gcd of the coe�cients of a vector in Kn with respect to a given pseudo-basis

of the lattice L . To be more precise, we need the following de�nition

De�nition 4.2. Let L D e1c1 ˚ � � � ˚ encn . To any ` D
Pn

iD1 ei`i 2 L � ¹0º we

associate the integral left O -ideal

a` WD
n

X

iD1

c
�1
i `i

as well as its norm

N.a`/ WD jO=a`j D NZ.K/=Q

�

nr .a`/d
�

:

Lemma 4.3. (a) N.a`/ � 1 for all ` 2 L � ¹0º .

(b) For any � 2 K� and ` D
Pn

iD1 ei `i 2 L � ¹0º , one has a`� D a`� .

(c) If g 2 GL.L/ and ` D
Pn

iD1 ei `i 2 L � ¹0º , then ag` D a` .

Proof. (a) is clear, because all c
�1
i `i are integral left O -ideals, and (b) is

straightforward.

To see (c) write gei D
Pn

j D1 ej gj i . Since gL � L we get gj i 2 cj c
�1
i . �en

g` D
Pn

j D1 ej .
Pn

iD1 gj i `i / and

ag` D
n

X

j D1

c
�1
j

n
X

iD1

gij `i �
X

j;i

c
�1
j cj c

�1
i `i � a`:

One obtains equality by applying g�1 2 GL.L/ .
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Now for any x 2 Kn , we can �nd � 2 K � ¹0º such that x� 2 L . It follows

from the previous lemma that the class of nr.ax�/ in ClK.R/ does not depend

on the choice of an element � with this property. Consequently, if we de�ne the

norm of a class in ClK.R/ as the smallest possible norm of an integral ideal in

that class, we can associate to x a well-de�ned quantity Nx by the formula

Nx D N
�

Œnr.ax�/�
�

D min
I�O

Œnr.I /�DŒnr.ax�/�

NZ.K/=Q

�

nr .I /d
�

;

where as before � is any element in K � ¹0º such that x� 2 L . �is in turn can

be used to de�ne a weight '1 on Kn setting

(1) '1.x/ D N �2=ŒKWQ�
x

(that this is indeed a weight follows immediately from Lemma 4.3).

Remark 4.4. As explained in [A2], the space of weights is isomorphic to RhK�1 ,

where hK stands for the class number of K . In particular, the trivial weight '0

is the only possible choice if hK D 1 (and '1 D '0 in that case).

Having �xed a weight ' on L , we can de�ne the minimum of a form and

its set of minimal vectors as follows:

De�nition 4.5. �e L -minimum of F 2 P with respect to the weight ' is

minL.F / WD min
`2L�

®

0
¯

'.`/F Œ`�:

�e set of minimal vectors of F in L is de�ned as

SL.F / WD
®

` 2 L � ¹0º j '.`/F Œ`� D minL.F /
¯

:

Remark 4.6. �e set SL.F / is �nite. Indeed, let m WD min ¹'.`/ j ` 2 L n ¹0ºº .

�en m > 0 as ' takes only �nitely many positive real values, so SL.F / �
®

` 2 L j F Œ`� � m�1 minL.F /
¯

which is a �nite set and can be computed as the

set of vectors of smallest length in a Z -lattice.

5. Minimal classes

We keep the general assumptions of the previous section: K is a division

algebra, O a maximal order in K and L a right O -lattice in Kn , on which a

weight ' is �xed.
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De�nition 5.1. Two elements F1 and F2 2 P are called minimally equivalent

with respect to L and ' , if SL.F1/ D SL.F2/ . We denote by

ClL.F1/ WD
®

F 2 P j SL.F / D SL.F1/
¯

the minimal class of F1 . If C D ClL.F1/ is a minimal class then we de�ne

SL.C / D SL.F1/ the associated set of minimal vectors. A minimal class C is

called well rounded, if SL.C / contains a K -basis of V . �e form F 2 P is

called perfect with respect to L , if ClL.F / D ¹aF j a 2 R; a > 0º .

Remark 5.2. Note that minimal classes and all subsequent de�nitions in this

section actually depend on the weight ' , although we do not indicate it

systematically in our notations. No inconstancy can arise from this, since we

work with �xed weight ' (and �xed lattice L ).

�e group GLn.K/ , and hence also its subgroup GL.L/ , acts on † by

.F; g/ 7! g�Fg (where we embed A into AR to de�ne the multiplication). Two

forms in † are called L -isometric, if they are in the same GL.L/ -orbit. For

F 2 P we denote by

AutL.F / WD
®

g 2 GL.L/ j g�Fg D F
¯

the automorphism group of F . �en AutL.F / is always a �nite subgroup of

GL.L/ . �e group GL.L/ acts on the set of minimal classes. Two minimal

classes are called equivalent, if they are in the same orbit under this action. �e

stabiliser of a minimal class is called the automorphism group of the class,

AutL.C / D
®

g 2 GL.L/ j gSL.C / D SL.C /
¯

:

Lemma 5.3. (see [Ba, Proposition 2.9]) Let C be a well rounded minimal

class. �en the canonical form TC WD
P

x2SL.C / xx� 2 P is positive de�nite

and AutL.C / D AutL.T �1
C / . Two well rounded minimal classes C and C 0 are

equivalent, if and only if T �1
C and T �1

C 0 are L -isometric.

Proof. �e proof is similar to the one in [Ba]. �e well roundedness of C implies

that the rank of TC is maximal: �e mapping .; / W V � V ! KR; .x; y/ WD x�y

is Hermitian and non-degenerate. Let ¹x1; : : : ; xnº � SL.C / be a K -basis of V ,

then for any v 2 V

n
X

iD1

xix
�
i v D

n
X

iD1

xi .xi ; v/ D 0 if and only if v 2 V ? D ¹0º

so the kernel of the positive semide�nite matrix
Pn

iD1 xix
�
i is ¹0º , therefore

TC is invertible and hence in P . Clearly AutL.C / � AutL.T �1
C / . To see the
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converse put s WD jSL.C /j and let S 2 Mn;s.K/ be a matrix whose columns are

the elements of SL.C / , in particular TC D SS� . Take some g 2 Aut.T �1
C / D

®

g 2 GL.L/ j gTC g� D TC

¯

and put S 0 WD gS . �en S 0.S 0/� D TC D SS� and

for any F 2 P

(?)
X

y2cols.S 0/

F Œy� D trace
�

.S 0/�FS 0� D hS 0.S 0/�; F i D hSS�; F i D
X

x2SL.C /

F Œx�:

If x is some column of S and y WD gx , then '.y/ D '.x/ , because of the

GL.L/ -invariance of ' . Moreover '.y/F Œy� � '.x/F Œx� D min`2L�¹0º '.`/F Œ`� ,

whence F Œy� � F Œx� , with equality if and only if y 2 SL.C / . So we can only

have equality in .?/ if SL.C / D ¹cols.S 0/º and hence g 2 AutL.C / .

6. Maximal �nite subgroups of GL.L/

In this section we will use variants of the Voronoi algorithm to compute a

set of representatives of the conjugacy classes of maximal �nite subgroups of

GL.L/ . �e known methods (see e.g. [PP]) start with the list of all conjugacy

classes of �nite subgroups of GLn.K/ . For each group G they compute the

invariant lattices to �nd the GL.L/ -conjugacy classes of subgroups in the class

of G . In particular for reducible groups G this set of invariant lattices is in�nite

and one needs to use the action of NGLn.K/.G/ . Also it seems to be di�cult to

restrict to one isomorphism class of O -lattices L .

Here we will start with some lattice L and use the tessellation of the cone

of positive de�nite Hermitian forms into L -minimal classes to obtain a list

of subgroups of GL.L/ that contains representatives of all conjugacy classes

of maximal �nite subgroups of GL.L/ . To check maximal �niteness and also

conjugacy of the groups in the list, we use a relative version of Voronoi’s theory.

De�nition 6.1. Let G � GL.L/ be some �nite subgroup. Let F.G/ WD
®

F 2 † j g�Fg D F for all g 2 G
¯

denote the space of G -invariant Hermitian

forms. It contains the cone F>0.G/ WD F.G/ \P of positive de�nite G -invariant

forms. For F 2 F>0.G/ the G -minimal class of F is ClL.F / \ F.G/ . A form

F 2 F>0.G/ is called G -perfect with respect to L , if ClL.F / \ F.G/ D
¹aF j a 2 R>0º .

Lemma 6.2. Let

�G W † ! F.G/; F 7! 1

jGj
X

g2G

g�Fg

be the usual averaging operator and C be a G -invariant minimal class. �en

C \ F.G/ D �G.C /:
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Proof. Since �G.F / D F for all G -invariant forms, it is clear that C \F.G/ �
�G.C / . So let F 2 C . �en SL.F / D SL.C / . Since SL.C / is G -invariant,

SL.C / D SL.g�Fg/ for any g 2 G . As �G.F / is a sum of positive de�nite

forms, also SL.�G.F // D SL.C / and so �G.F / 2 C .

As in the classical case, Voronoi’s algorithm, as described e.g. in [O] can be

adapted to the case of G -invariant forms to compute the G -perfect forms and

the cellular decomposition of F>0.G/ into G -minimal classes up to the action of

the normaliser (see for instance [Ba, �eorem 2.4] for details on this procedure

in the classical case).

Proposition 6.3. Let G � GL.L/ be �nite. �en there exists at least one G -perfect

form with respect to L .

Proof. We will show that L � ¹0º is discrete and admissible in the sense of

[O, De�nition 1.4]. �en by [O, Proposition 1.8] there exists a G -perfect form.

Moreover, [O, �eorem 1.9] tells us that the Voronoi domains of the G -perfect

forms form an exact tessellation of F.G�/>0 .

Clearly L � ¹0º is discrete in VR WD V ˝Q R . For the admissibility we need to

show that for any F 2 @P , the boundary of P , and any � > 0 there is some

` 2 L � ¹0º , such that '.`/F Œ`� < � . If F 2 @P , it is positive semide�nite, so

®

x 2 VR j F Œx� D 0
¯

D
®

x 2 VR j F x D 0
¯

� VR

is a subspace. In particular the volume of the convex set

K� WD
®

x 2 VR j F Œx� < �
¯

D �K�

is in�nite and by Minkowski’s convex body theorem K� contains some 0 ¤ ` 2 L .

�en F Œ`� < � and hence also '.`/F Œ`� < � since '.`/ � 1 .

Lemma 6.4. Let G � GL.L/ be �nite. �en any G -perfect form F with respect

to L is well rounded.

Proof. �e proof is similar to the classical case. Assume that hSL.F /iK ¤ V .

�en there is some linear form H 2 V � D Kn so that Hx D 0 for all x 2 SL.F / .

Let

F0 WD 1

jGj
X

g2G

g�H �Hg:

Since SL.F / is G -invariant, x�F0x D 0 for all x 2 SL.F / , so SL.F C �F0/ �
SL.F / for all � > 0 with equality, if � is small enough. So F C �F0 2
ClL.F / \F>0.G/ contradicting the assumption that F is G -perfect with respect

to L .
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�eorem 6.5. Let G � GL.L/ be some maximal �nite subgroup of GL.L/ . �en

G D AutL.C / for some well rounded minimal class C with respect to L , such

that C \ F.G/ spans a subspace of F.G/ of dimension 1 .

Proof. �e group G always �xes some G -perfect form F with respect to L .

Let C WD ClL.F / . �en SL.C / D SL.F / is G -invariant, so G � AutL.C / . By

Lemma 6.4 C is well rounded, so AutL.C / is �nite and the maximality of G

implies that G D AutL.C / .

With �eorem 6.5 we obtain a �nite list of �nite subgroups of GL.L/ that

contains a system of representatives of conjugacy classes of maximal �nite

subgroups. We need to be able to test maximal �niteness and conjugacy in

GL.L/ of such groups AutL.C / .

Proposition 6.6. Let G � GL.L/ be some �nite subgroup. �en the maximal

�nite subgroups H of GL.L/ that contain G are of the form H D AutL.CG/

for some G -minimal class CG .

Proof. Let H be some maximal �nite subgroup of GL.L/ that contains G .

By �eorem 6.5 there is some G -invariant L -minimal class C such that

H D AutL.C / . By Lemma 6.2 SL.C / D SL.CG/ for the G -minimal class

CG D �G.C / and H D AutL.CG/ .

Remark 6.7. To test whether two maximal �nite subgroups G1 , G2 of GL.L/ are

conjugate, one computes a system of representatives Ri of the NGL.L/.Gi / -orbits

of Gi -perfect forms and then checks whether a given form in R1 is L -isometric

to some form in R2 . Since Gi D AutL.Fi / for all Fi 2 Ri , any isometry yields

a conjugating element.

7. Imaginary quadratic �elds and de�nite quaternion algebras

In this section we will assume that K is either the �eld of rational numbers, an

imaginary quadratic number �eld or a de�nite quaternion algebra over the rationals.

�ese are exactly the cases, where KR is a division algebra and Sym.KR/ D R .

We thus have in those cases (and in those cases only) the noteworthy property

that

(2) 8� 2 KR; 8x 2 VR F Œx�� D ���F Œx�:

As a consequence, it is more natural and more e�cient to compute minima

with respect to the weight '1 de�ned in the previous subsection, because of the

following lemma
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Lemma 7.1. For any F 2 P one has

minL.F / WD min
`2L�¹0º

F Œ`�

N.a`/2=ŒKWQ�

where the minimum on the left-hand side is computed with respect to the weight

'1.`/ D N
�2=ŒKWQ�

`
.

Proof. �e inequality minL.F / � min`2L�¹0º
F Œ`�

N.a`/2=ŒKWQ� is clear, since N` �
N.a`/ for every ` 2 L � ¹0º . In the opposite direction, every ` 2 L � ¹0º , there

exists � 2 K � ¹0º such that a`� D a`� � O and N.a`�/ D N.Œa`�/ D N`

(in particular, `� 2 L ) . Using (2), we see that F Œ`�

N.a`/2=ŒKWQ� D F Œ`��

N.a`�/2=ŒKWQ� D
'1.`�/F Œ`�� � minL.F / , whence the conclusion taking the minimum of the

left-hand side over L � ¹0º .

Remark 7.2. �e reformulation given in Lemma 7.1 of the minimum of a form

with respect to '1 has two noteworthy applications

(1) It can be interpreted in terms of minimal distance to cusps as explained in

[Me] (see also [EGM, chapter 7]).

(2) One can easily deduce from this that the Voronoi complex will depend only

on the Steinitz class of L modulo n th powers (see [BC, �eorem 3.8]).

8. Examples

We will use the method from the previous section to compute the conjugacy

classes of maximal �nite subgroups of GL.L/ for imaginary quadratic number

�elds K . �is is an invariant of the isomorphism class of GL.L/ and will show

that for small examples these groups are not isomorphic.

Example 8.1. Let K WD QŒ
p

�15� , O D OK D ZŒ1C
p

�15
2

� , n D 2 . �en

Cl.K/ D ¹ŒOK �; Œ}2�º where }2 is some prime ideal dividing 2 , so there are two

isomorphism classes of OK -lattices in K2 : one corresponding to the lattice L0

with Steinitz-invariant ŒOk � and the other one to the lattice L1 with Steinitz-

invariant Œ}2� . For both lattices the perfect forms are given in [BC].

For both lattices L , Table 1 lists the GL.L/ -orbits of well rounded minimal

classes C according to their perfection corank together with their stabilizers

G D AutL.C / . �e two classes of perfection corank 0 contain the perfect forms.

�e third column gives the dimension of �G.C / . If this dimension is one,

then �G.C / � hF i for some G -perfect form F , the next column gives the

automorphism group AutL.F / and the last one indicates whether G is maximal

�nite.
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Table 1

Well rounded minimal classes for K D QŒ
p

�15�

C G D AutL.C / dim
�

�G.C /
�

AutL.F / maximal

L D L0 perf. corank = 0

P1 C6 1 C6 no

P2 C4 1 C4 no

perf. corank = 1

C1 D12 1 D12 yes

C2 D12 1 D12 yes

C3 C2 2 no

C4 C2 2 no

perf. corank = 2

D1 D8 1 D8 yes

D2 D8 1 D8 yes

D3 V4 1 V4 yes

D4 V4 1 V4 yes

L D L1 perf. corank = 0

P C3 W C4 1 C3 W C4 yes

perf. corank = 1

C1 D8 1 D8 yes

C2 D8 1 D8 yes

C3 D12 1 D12 yes

perf. corank = 2

D V4 1 V4 yes

L D L0 : �e two groups G D D8 and G D D12 are absolutely irreducible

maximal �nite subgroups of GL2.K/ . Since dim.F.G// D 1 for both groups

and Ci and Di are inequivalent .i D 1; 2/ one gets 2 conjugacy classes of

maximal �nite subgroups of both isomorphism types D8 and D12 . To prove

that G WD AutL.D3/ is maximal �nite, we compute the well rounded G -

minimal classes, using Voronoi’s algorithm and starting with the G -perfect form

F 2 �G.D3/ . SL.F / D ¹˙v1; ˙v2º with av1
D OK , av2

D }2 . �erefore both

minimal vectors are G -eigenvectors and the G -Voronoi domain has 2 faces, both

of which are dead ends (see [Ma, De�nition 13.1.7]). So F is the unique G -perfect

form and there are no other well rounded G -minimal classes. �e situation is the

same for AutL.D4/ . �e two G -perfect forms in D3 and D4 (rescaled to have

minimum 1) are Galois conjugate but not L -isometric, with shows that AutL.D3/

and AutL.D4/ are not conjugate in GL.L/ .

�e proof that G WD AutL.Pi / is not maximal �nite is similar for both cases

i D 1; 2 . �e space of invariant forms has dimension 2, there are two G -orbits
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on SL.Pi / , so the G -Voronoi domain of Pi has two faces, corresponding to

1-dimensional G -minimal classes with automorphism group D12 (for P1 ) resp.

D8 (for P2 ). One checks for i D 1; 2 that AutL.Pi / is properly contained in

these groups.

L D L1 : As in the free case the uniform groups AutL.P / and AutL.Ci / ,

i D 1; 2; 3 are maximal �nite and represent distinct conjugacy classes. For the

group G D AutL.D/ Š V4 we again have a unique G -perfect form F and

the two L -minimal vectors of F are eigenvectors for G . So both faces of the

G -Voronoi domain of F are dead ends and G D AutL.F / is maximal �nite.

As GL2.OK/ and GL.L1/ have di�erent conjugacy classes of maximal �nite

subgroups one �nds the following corollary.

Corollary 8.2. GL2.OK/ D GL.L0/ and GL.L1/ are not isomorphic.

Example 8.3. Table 2 lists the results of similar computations which we did for

certain small imaginary quadratic �elds. In particular we �nd

Corollary 8.4. Let K be one of the six �elds in Table 2. �en non-conjugate

maximal orders in M2.K/ have non-isomorphic unit groups.

Table 2

Number of conjugacy classes of maximal �nite subgroups

D8 D12 V4 SL2.3/ Q8 C3 W C4

K D QŒ
p

�15� St.L/ D ŒOK � 2 2 2 – – –

St.L/ D Œ}2� 2 1 1 – – 1

K D QŒ
p

�5� St.L/ D ŒOK � 3 2 1 – 1 –

St.L/ D Œ}2� 1 2 1 1 – –

K D QŒ
p

�6� St.L/ D ŒOK � 3 2 1 1 – –

St.L/ D Œ}2� 1 1 2 – 1 1

K D QŒ
p

�10� St.L/ D ŒOK � 3 2 1 – 1 –

St.L/ D Œ}2� 1 – 3 1 – 2

K D QŒ
p

�21� St.L/ D ŒOK � 6 4 2 – – 2

St.L/ D Œ}2� 2 - 6 – – –

St.L/ D Œ}3� – 2 6 2 – –

St.L/ D Œ}5� – – 8 – 2 –
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