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On the incenters of triangular orbits on elliptic billiards

Olga Romaskevich�

Abstract. We consider 3 -periodic orbits in an elliptic billiard. Numerical experiments

conducted by Dan Reznik have suggested that the locus of the centers of inscribed circles

of the corresponding triangles is an ellipse. We prove this fact by the complexi�cation of

the problem coupled with the complex law of re�ection.
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1. �e statement of the theorem and the idea of the proof

Elliptic billiards are at the same time a classical and popular subject (see, for
example [KoT], [CM], [Ta1] and [Ta2]) since they continue to deliver interesting
problems. We will consider an ellipse and the corresponding billiard: a point-like
particle follows straight lines inside the ellipse and bounces along the boundary
obeying to the standard re�ection law, the angle of incidence equals the angle of
re�ection. Let the trajectory from a point on the boundary repeat itself after two
re�ections: this means that we obtained a triangle which presents a 3-periodic
trajectory of the ball in the elliptic billiard. Poncelet’s famous theorem [Po] states
that the sides of these triangles are tangent to some smaller ellipse confocal to
the initial one.

We prove the following fact which was observed experimentally by Dan Reznik
[Re]:

�eorem 1.1. For every elliptic billiard the set of incenters (the centers of the

inscribed circles) of its triangular orbits is an ellipse.

�e proof uses very classical ideas: complexify and projectivize, that is, replace
the Euclidean plane by the complex projective plane. �is approach was used by
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Ph. Gri�ths and J. Harris in [GH] and, more recently, by R. Schwartz in [Sch].
�e main tool in the proof is that of complex re�ection: we consider an ellipse
as a complex curve and de�ne a complex law of re�ection o� a complex curve.
�e locus of the incenters will be also a complex algebraic (even rational) curve.
We will prove that the latter curve is a conic in CP

2 . Its real part will be a
bounded conic – an ellipse.

�e reasons for developing complex methods for the solution of a problem
in planimetry are twofold: �rst of all, such an approach shows that sometimes
complexi�cation paradoxically simpli�es things. We think that complex methods
could be a useful apparatus in obtaining many results of this kind. Ideologically,
this work is related with the recent work by A. Glutsyuk where he studies complex
re�ections, see for example [G] and the joint work with Yu. Kudryashov [GK].
�e second reason to develop the complex approach for this particular problem
was the incompetence of the author to prove this fact by computing everything
in Euclidian coordinates. �e reader is encouraged to �nd an alternative proof of
�eorem 1.1.

�e complex re�ection law and its basic properties needed here are reviewed
in Section 2. Section 3 contains the proof of �eorem 1.1. In Section 4 we discuss
the position of the foci for the resulting incenters ellipse.

2. Complex re�ection law

For our purposes it will be useful to pass from the Euclidean plane R
2 to

the complex projective plane CP
2 : the metric now is replaced, in local complex

coordinates .z; w/ , by a quadratic form ds2 D dz2 C dw2 . In the following
we will be interested in the geometry of this new space CP

2 with quadratic
form ds2 . One could have replaced the initial Euclidean metric by a pseudo-
Euclidean one: the geometry of billiard motion in such a space is also interesting
and somewhat similar to our case. �e best references here will be [KT] and
[GR].

De�nition 2.1. �e lines with directing vectors that have zero length are called
isotropic. All other lines are said to be non-isotropic.

Let us �x a point x 2 CP
2 and de�ne complex symmetry with respect to a

line passing through x as a map acting on the space Lx of all lines passing
through x . �ere are two isotropic lines L

v1

x and L
v2

x in Lx with directing
vectors v1 D .1; i/ and v2 D .1; �i/ .
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De�nition 2.2 (Complex re�ection law). For a point x 2 CP
2 , the complex

re�ection (symmetry) in a non-isotropic line Lx 2 Lx is the mapping given by
the same formula as in the case of standard real symmetry: it’s a linear map
that in the coordinates de�ned by the line Lx and its orthogonal line L?

x has

diagonal matrix

 

1 0

0 �1

!

.

�e image of any line L under re�ection in an isotropic line L
v1

x (or L
v2

x )
is de�ned as a limit of its images under re�ections with respect to a sequence
of non-isotropic lines converging to L

v1

x (or L
v2

x ).
Moreover, the complex re�ection in a curve at a point x of the curve is the

re�ection in the tangent of the curve at x .

�eorem 2.3 ([G], Lemma 2.3). a. �e complex symmetry with respect to any

isotropic line L at some point x 2 L is well de�ned for all non-isotropic lines

(i.e. the latter limit of the images of a sequence of non-isotropic lines exists

independently of the approximating sequence) and maps every non-isotropic

line containing x to L .

b. Under the re�ection at the point x with respect to some isotropic line

L 2 Lx , the line L itself may be mapped to any line passing through x

(i.e. the mapping in this case is multivalued). In particular, it can stay �xed.

�e isotropic directions generated by the vectors v1 and v2 can be represented
by the points I1 D .1 W i W 0/ 2 CP

2 and I2 D .1 W �i W 0/ 2 CP
2 , respectively.

We choose an a�ne coordinate z on the projective line CP
1 D C [1 at in�nity,

that is, the line through points I1 and I2 in such a way that I1 D 0 and I2 D 1 .
�e lemma below implies �eorem 2.3 and follows easily from the de�nition. It
describes the re�ection in a line close to isotropic.

Lemma 2.4 ([G], Proposition 2.4). For any " 2 NC n ¹0; 1º , let L" be the line

through the origin .0; 0/ 2 C
2 and having direction " . Let �" W CP

1 ! CP
1 be

the re�ection in L" acting on the space CP
1 of the lines through the origin.

�en �".z/ D "2

z
in the above introduced coordinate z .

Proof. �e map �" is a projective transformation that preserves L" as well as the
set of isotropic lines. So �"."/ D " and �"¹0; 1º D ¹0; 1º . Let us show that �"

permutes 0 and 1 . Otherwise, it would have three �xed points on the in�nity
line CP

2 n C
2 and therefore be the identity map of the in�nity line. Moreover,

the points lying on L" are �xed for �" . In this case �" should be identity but
it’s a nontrivial involution, contradiction.

We see that the restriction of �" is a nontrivial conformal involution of
CP

2 n C2 �xing " and permuting 0 and 1 . So it should map z to "

z2
.
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3. �e proof

Let us consider triangular orbits of the complexi�ed elliptic billiard: the
triangles are inscribed into a complexi�ed ellipse and satisfying the complex
re�ection law. Denote the initial ellipse from �eorem 1.1 by � , and the Poncelet
ellipse tangent to all triangular orbits by  . We use the same symbols for
complexi�cations of these conics. �e following classical fact will be used for �

and  , and for the inscribed circles.

Lemma 3.1 ([Kl], p. 179, [Be], p. 334). a. Ellipses � and  in the real plane

are confocal if and only if their complexi�cations have 4 common isotropic

tangent lines and their common foci lie on the intersections of these lines.

b. �e two tangent lines to a complexi�ed circle passing through its center are

isotropic.

De�nition 3.2 (Sides and degenerate sides of a triangle). A side of a triangle in
CP

2 with disctinct vertices is a complex line through a pair of its vertices. A
triangle is called degenerate if all its vertices lie on the same line. A priori, a
triangular orbit may have coinciding vertices. We will call A the degenerate side

through two coinciding vertices if A is obtained as a limit of sides A"; " ! 0 of
non-degenerate triangular orbits. For such a side A its image under re�ection is
de�ned as a limit (which exists as the limit in De�nition 2.2) of images of A" .

By taking a family A" of lines tangent to  and converging to A , and
computing their images (in fact, applying Lemma 3.3 below), one could deduce
the structure of degenerate triangular orbits formulated in Lemma 3.4.

Lemma 3.3. Let A be a common isotropic tangent line to two analytic (algebraic)

curves  and � and let the tangency points be quadratic and distinct. If A is

deformed in a family A" (A D A0 ) of lines tangent to  then the image of A"

under the re�ection in � tends to some non-isotropic line as " ! 0 .

Proof. An essentially equivalent, if not more general, case of this lemma is
contained in [G], see Proposition 2.7 and its Addendum. Albeit (now) logically
independent, Glutsyuk’s statement inspired our formulation.

�e isotropic line A is deformed in a family A" : let us suppose that the
family is chosen in such a way that the angle between A and A" is precisely
" . Suppose that A" intersects � in some point a" tending to the point a0 of
isotropic tangency. A simple computation shows that since the tangency points
are quadratic, the tangent line T" to � at the point a" has the angle of the orderp

" with A . �is with Lemma 2.4 shows that the limit of the re�ected lines is
a non-isotropic one.
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Now we can describe the degenerate triangles occurring in our problem.

Lemma 3.4. If a triangular orbit in the complexi�ed ellipse � is degenerate then

it has two coalescing non-isotropic non-degenerate sides B and one degenerate

isotropic side A .

Proof. Since deg � D 2 , two vertices should merge, so the degenerate side A

through them is tangent to � and to  , and hence is isotropic by Lemma 3.1.
�e other two sides are non-isotropic by Lemma 3.3 and they coincide.

Lemma 3.5 (Main lemma). �e complex curve of incenters C intersects the

complex line F through the foci of � at exactly two points with multiplicity 1 .

Proof. Let c 2 C \ F and suppose that the corresponding triangle is degenerate,
see Figure 1. By Lemma 3.4 one of its sides is isotropic, and two other sides
coincide and are non-isotropic. We will denote the isotropic line as A and the
non-isotropic line as B . Line A is tangent to the inscribed circle, so by Lemma
3.1, c 2 F \ A . Also c is a point of intersection of bisectors, so either c 2 B

or c 2 B? . Note that B is tangent to the inscribed circle, hence if c 2 B , then
B should be isotropic, which is contradictory. So c 2 B? , but by Lemma 3.1 c

is a focus. B? is tangent to � and passes through the focus, so it should be
isotropic which is impossible since B is not isotropic.

Now consider the case of a not degenerate triangle corresponding to c 2 C\F .
Consider the re�ection in F : the inscribed circle, as well as its center c , are
mapped to themselves. If the set of the sides of a triangle and their images under
the re�ection in F consists of six lines, then the inscribed circle and the ellipse
 should be tangent to all of them. But �ve tangent lines already de�ne a conic,
so  must be a circle. But in this case, �eorem 1.1 is trivial and the locus under
consideration is a point.

�erefore some sides of the triangle should map to some other sides. One
needs to consider two cases: either there is a side which maps to itself, or there
are two sides which map to each other. But the latter case reduces to the former:
indeed, the points of intersection of the two exchanging lines with � (not lying
on F ) are mapped to each other, so the line connecting them is mapped to itself.
�erefore, in the non-degenerate case, the corresponding triangle has a side which
is symmetric with respect to F and tangent to  . �ere are only two such lines,
and hence only two intersections c1 and c2 , both real (see Figure 2), and only
two triangles corresponding to them, for each ci , i D 1; 2 .

Let us now prove that the intersections C \ F have multiplicity 1 . Let us
parametrize the ellipse  by a parameter " , and consider the corresponding center
c."/ 2 C , assuming that c.0/ 2 F . It su�ces to prove that @c

@"
.0/ ¤ 0 . Suppose
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Figure 1
Two complex confocal ellipses � and  having four common isotropic tan-
gent lines. �e line F of real foci passes through the intersections of
isotropic lines. A degenerate trajectory for an elliptic billiard in � with
caustic  : the degenerate triangle is an interval between points 1 and 2

and its sides are lines A and B . Line A is isotropic while B is not.

Figure 2
Two triangular orbits in � corresponding to the centers c1; c2

of inscribed circles lying on the foci line F
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the contrary: the centers of the circles do not change in the linear approximation:
c."/ D c.0/ C O."2/ . �en the radius of the incircle r."/ has nonzero derivative
at " D 0 , unless for " D 0 both the incircle and the ellipse  are tangent to the
sides of the triangle at the same points. �is is impossible if  is not a circle,
since two distinct conics can not be tangent at more than two distinct points. So
we have that the radii of the incircles change linearly: r."/ D r.0/ C ˛".1 C o.1//

for some ˛ ¤ 0 . But this is not possible due to symmetry: indeed, the radius has
to be an even function of " .

�eorem 1.1 follows directly from Lemma 3.5 since an algebraic curve
intersecting some line in exactly two points (with multiplicities) is a conic.

4. Foci study

One could surmise that the ellipse C that is obtained in �eorem 1.1 is confocal
to the initial one. It appears that it is not so. Figure 3 shows how the foci of the
ellipse C move regarding the foci of the ellipse � .

We suppose that the ratio between the semi-axis of the initial ellipse � is
t 2 .0; 1/ . �e upper branch on Figure 3 is the graph of the distance from the
center of � to its foci: just the arc of the circle ¹.t;

p
1 � t2/; t 2 .0; 1/º . �e

lower branch is the graph of an analogous (quite complicated) function for the
ellipse C . �is graph was obtained by brute force computation. �e reader is
encouraged to �nd a geometrical meaning for the position of the foci of C .

Figure 3
Distances between the common center of ellipses � and C and their foci

as functions of the ratio of semi-axes of the initial ellipse
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