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On invariant Schreier structures
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Abstract. Schreier graphs, which possess both a graph structure and a Schreier structure

(an edge-labeling by the generators of a group), are objects of fundamental importance in

group theory and geometry. We study the Schreier structures with which unlabeled graphs

may be endowed, with emphasis on structures which are invariant in some sense (e.g.

conjugation-invariant, or so�c). We give proofs of a number of “folklore” results, such as

that every regular graph of even degree admits a Schreier structure, and show that, under

mild assumptions, the space of invariant Schreier structures over a given invariant graph

structure is very large, in that it contains uncountably many ergodic measures. Our work is

directly connected to the theory of invariant random subgroups, a �eld which has recently

attracted a great deal of attention.
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1. Introduction

A Schreier graph � possesses two kinds of structures, which we will for

the moment refer to as a geometric structure and an algebraic structure. �e

former is the underlying graph structure, which determines the geometry of � ,

in particular allowing one to equip � with a metric. �e latter is the labeling of

edges of � with the generators of a group G , which one may always assume to

be the free group Fn WD ha1; : : : ; ani . �e algebraic structure is not an arbitrary

labeling: each vertex x 2 � must be attached to precisely one “incoming” and

one “outgoing” edge labeled with a given generator ai . Each such labeling,

together with a choice of root, identi�es � as a particular subgroup of Fn , and

� I am grateful to my advisor, Vadim Kaimanovich, for his support and for helpful comments
regarding the preparation of this paper. I thank the anonymous referee for suggesting a number of
improvements.
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in general a given unlabeled graph may possess many—indeed, even uncountably

many—distinct algebraic structures.

�is paper is, broadly speaking, an investigation of the algebraic structures—

which we will henceforth call Schreier structures—with which 2n-regular graphs

may be endowed (recall that a graph is 2n-regular if each of its vertices has degree

2n). We are especially interested in random Schreier structures which are invariant

in some sense. To be more precise, denote by ƒ the space of Schreier graphs of

Fn (which are naturally rooted graphs) and by � the space of rooted 2n-regular

graphs, and consider the forgetful map f W ƒ! � that sends a Schreier graph

to its underlying unlabeled graph. �ere is an induced map f W P.ƒ/ ! P.�/

from the space of probability measures on ƒ to the space of probability measures

on � , and moreover the space P.X/ , where X D ƒ or � , contains several

subspaces of “nice” measures, namely: C.ƒ/ , the space of probability measures on

ƒ invariant under the action of Fn by conjugation; I.X/ , the space of measures

invariant with respect to the discrete measured equivalence relation underlying

X ; U.X/ , the space of unimodular measures; and S.X/ � U.X/ , the space of

so�c measures (roughly speaking, those measures which admit approximations by

measures supported on �nite graphs).

Our results may be summarized as follows:

i. �e map f W ƒ ! � is surjective, i.e. every 2n-regular graph admits a

Schreier structure (�eorem 4.4).

ii. C.ƒ/ D I.ƒ/ D U.ƒ/ , i.e. the spaces of conjugation-invariant, invariant, and

unimodular measures on ƒ coincide (�eorem 5.2).

iii. f�U.ƒ/ � U.�/ , i.e. the image of a unimodular (equivalently, invariant)

measure on ƒ is a unimodular measure on � (Proposition 5.3).

iv. �e induced map f W S.ƒ/! S.�/ is surjective, i.e. any so�c measure on

� can be lifted to a so�c measure on ƒ (Proposition 6.1).

v. Assuming it is nonempty, the �ber f �1.�/ of invariant measures over a

unimodular measure � 2 U.�/ supported on rigid graphs is very large, in

that it contains an uncountable family of ergodic measures, many of which

we are able to describe explicitly (�eorem 6.3).

vi. For a large class of groups G , the Dirac measure ıG concentrated on an

unlabeled Cayley graph of G can be lifted to a nonatomic invariant measure

on ƒ (�eorem 6.4).

�e �rst three of these statements are certainly known to experts, yet they

might best be described as “folklore”—though they are often used, it may be

di�cult (and in some cases impossible) to �nd explicit and general proofs in the

literature. Moreover, we are able to use statement iii. to exhibit closed invariant
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subspaces of ƒ which do not support an invariant measure (see Corollary 5.5

and Example 5.7). �e latter three statements comprise the main results of the

paper. Morally speaking, they show that there exists a wealth of invariant algebraic

structures sitting atop a given invariant geometric structure. �is is line with and

expands upon recent work by Bowen [Bo], who showed that the subspace of

I.ƒ/ consisting of measures supported on in�nite graphs is a Poulsen simplex

(the set of extremal points, i.e. ergodic measures, is dense). Indeed, some of our

work is inspired by his.

Via the correspondence between the Schreier graphs of a given group G

and the lattice of subgroups L.G/ of that group, an invariant Schreier structure

determines an invariant random subgroup, i.e. a conjugation-invariant probability

measure on L.G/ . �e study of invariant random subgroups has recently attracted

a great deal of attention (see, for example, [AGV], [ADMN], [Bo], [BGK], [Ca],

[Ve1], and [Ve2]), but much about them remains unknown. Concerning our work,

we do not know whether statement iv. above holds in full generality, i.e. whether

any unimodular random graph supports an invariant Schreier structure, or whether

it is possible to obtain a complete description of the invariant Schreier structures

which sit atop a given invariant graph structure. It would also be interesting to

understand invariant Schreier structures from a more algebraic point of view. �e

subgroups corresponding to distinct Schreier structures on the same underlying

graph, for instance, are clearly isomorphic in a strong sense, but we do not know

what else can be said.

2. �e space of rooted graphs

Consider the space � of (isomorphism classes of) connected rooted graphs of

bounded geometry, i.e. the space of connected graphs � D .�; x/ each of which

is equipped with a distinguished vertex x , called its root, and for which there

exists a number d (whose precise value will not presently concern us) such that

max
y2�

deg.y/ 6 d

for all � 2 � . �e space � may naturally be realized as the projective limit

(2.1) � D lim
 �

�r ;

where �r is the set of (isomorphism classes of) r -neighborhoods centered at

the roots of elements of � and the connecting morphisms �r W �rC1 ! �r are

restriction maps that send an .r C 1/ -neighborhood V to the r -neighborhood

U of its root. (Looking at things the other way around, �r.V / D U only if

there exists an embedding U ,! V that sends the root of U to the root of V .)
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Endowing each of the sets �r with the discrete topology turns � into a compact

Polish space. �roughout this paper, we will think of an r -neighborhood U 2 �r

both as a rooted graph and as the cylinder set

U D
®

.�; x/ 2 � j Ur.x/ Š U
¯

;

where Ur.x/ denotes the r -neighborhood of the point x 2 � . A �nite Borel

measure � on � is the same thing as a family of measures �r W �r ! R that

satis�es

�r.U / D
X

V 2��1
r .U /

�rC1.V /

for all U 2 �r and for all r . We will be interested primarily in the space of 2n-

regular rooted graphs, namely rooted graphs each of whose vertices has degree

2n , and we will also denote this space by � . Note that imposing regularity is, in

a sense, hardly restrictive: every graph of bounded geometry d , for instance, can

be embedded into a regular graph (e.g. by attaching branches of the d -regular

tree to vertices whose degrees are less than d ).

3. Invariant, unimodular, and so�c measures

As is detailed in [Ka], there are two notions of invariance for measures �

on � . �ere is invariance in the classical sense of Feldman and Moore [FM],

according to which invariance is de�ned with respect to the underlying discrete

measured equivalence relation of � , and there is unimodularity in the sense of

Benjamini and Schramm [BS] (see also [AL]). Let us go over these notions in

turn.

Consider �rst the equivalence relation E � � � � whereby .�; x/ � .�; y/

if and only if there exists an isomorphism � W � ! � of unrooted graphs. �e

left projection �` W E ! � that sends an element of E to its �rst coordinate

determines a left counting measure Q�` on E with “di�erential” d Q�` D d�� d� ,

where �� is the counting measure on the equivalence class of � . In other words,

Q�` is de�ned on Borel sets E � E as

Q�`.E/ D

Z

��

�

E \ ��1
` .�/

�

d� D

Z

jE \ ��1
` .�/jd�:

In analogous fashion, the right projection �r W E ! � that sends an element of

E to its second coordinate determines a right counting measure Q�r on E . We

now say that the measure � is invariant if the lift Q�` (or Q�r ) is invariant under

the involution � given by .�; �/ 7! .�; �/ ; see the following diagram.
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.E ; Q�`/ .E ; Q�r/

.ƒ; �/

!

!
�

 

!�`

 !

�r

De�nition 3.1. (Invariance) A measure � on � is invariant if Q�` D Q�r , i.e. if

the left and right counting measures on the equivalence relation E coincide. We

denote the space of invariant measures on � by I.�/ .

Consider next the space Q� of doubly rooted graphs, whose elements are graphs

.�; x; y/ (which we again assume to be connected and of bounded geometry, with

the same bound d ) with a distinguished principal root x and secondary root

y . �e left projection �x W Q� ! � given by .�; x; y/ 7! .�; x/ determines a

measure Q�x on Q� with di�erential d Q�x D dw� d� , where w� is the weighted

counting measure on � given by

w�.y/ D
ˇ

ˇOy

�

Autx.�/
�ˇ

ˇ;

i.e. the mass assigned to a vertex y 2 � is the cardinality of its orbit under the

action of the stabilizer Autx.�/ 6 Aut.�/ . �us, Q�x is de�ned on Borel sets

E � Q� as

Q�x.E/ D

Z

w�

�

E \ ��1
x .�/

�

d�:

Here as before there is a second projection, namely the right projection �y W Q�!

� given by .�; x; y/ 7! .�; y/ , which, again in analogous fashion, determines a

measure Q�y on Q� . We say that the measure � is unimodular if the lift Q�x (or

Q�y ) is invariant under the natural involution given by .�; x; y/ 7! .�; y; x/ .

De�nition 3.2. (Unimodularity) A measure � on � is unimodular if Q�x D Q�y ,

i.e. if the left and right weighted counting measures on the space of doubly rooted

graphs coincide. We denote the space of unimodular measures on � by U.�/ .

Unimodularity can also be described as follows. Let Q�1 � Q� denote the space

of doubly rooted graphs .�; x; y/ whose principal and secondary roots are at unit

distance from one another. We present Q�1 as the projective limit

(3.1) Q�1 D lim
 �
Q�1

r ;

where Q�1
r is the set of (isomorphism classes of) r -neighborhoods of edges that

connect the principal and secondary roots of graphs .�; x; y/ 2 Q�1 . A measure

� on the projective system (2.1) may be lifted to a measure Q� on (3.1) by putting

Q�.U; x; y/ D wU .y/�.U; x/;
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where, as above, wU .y/ D jOy.Autx.U //j , and the measure � is unimodular

precisely if Q�.U; x; y/ D Q�.U; y; x/ for all .U; x; y/ 2 Q�1
r and for all r .

A special subspace of the space of unimodular measures on � is the space of

so�c measures, denoted S.�/ . �eir origin is group theoretic and goes back to

Gromov [Gr], who de�ned so�c groups as those groups whose Cayley graphs can

be approximated by a sequence of �nite graphs (we will make this precise in a

moment). It was later realized that the notion of so�city, which can be formulated

in terms of the weak convergence of measures, naturally generalizes to objects

other than groups, such as unimodular random graphs (see, once again, [AL] and

[BS]), invariant random Schreier graphs, and, more generally, discrete measured

equivalence relations [EL]. It is unknown whether all unimodular measures are

so�c. In fact, this question is open even for Dirac measures concentrated on

Cayley graphs (that is, it is unknown whether all groups are so�c). We refer the

reader to the survey of Pestov [Pe] for more on so�c groups.

To make sense of the de�nition of so�city, observe that a �nite 2n-regular

graph � naturally determines a unimodular measure on � , namely the �nitely

supported measure attained by choosing a position of the root of � uniformly at

random. �e de�nition of so�city now goes as follows.

De�nition 3.3. (So�city) A unimodular measure � 2 U.�/ is so�c if there exists

a sequence of �nite graphs ¹�iºi2N such that �i ! � weakly, where �i is the

unimodular measure on � determined by �i .

An important fact about the space of unimodular measures is that it is closed

in the weak-� topology (see, for instance, [Ka]), which shows that the space of

so�c measures is indeed contained in the space of unimodular measures.

4. Schreier graphs and Schreier structures

Given a countable group G with generating set A D ¹ai ºi2I and a subgroup

H 6 G , consider the natural action of G on the space of cosets GnH . �is

action is transitive and determines a rooted graph .�; H/ as follows. �e vertex

set of � is identi�ed with GnH , and two vertices Hg and Hg0 are connected

with an edge directed from Hg to Hg0 and labeled with the generator ai if

and only if Hgai D Hg0 . �e graph � (which is rooted at the coset H ) is

called a Schreier graph, and we denote by ƒ.G/ the space of Schreier graphs

of G , which we endow with a topology in the usual way (strictly speaking,

ƒ.G/ , like � , consists of isomorphism classes of graphs, where isomorphisms

are required to respect the root and edge-labeling). Note that Schreier graphs are

necessarily 2jAj-regular, meaning that each of their vertices has degree 2jAj .
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Schreier graphs may have both loops, i.e. cycles of length one, and multi-edges,

i.e. multiple edges that join the same pair of vertices. Note also that Schreier

graphs naturally generalize Cayley graphs, which arise whenever the subgroup H

is normal, i.e. when the cosets Hg correspond to the elements of a group.

We will primarily be interested in Schreier graphs of the �nitely generated

free group of rank n with a �xed set of generators, i.e.

Fn D ha1; : : : ; ani;

which, in a certain sense, subsumes all of the other cases. Our �rst observation

is this: Given a Schreier graph .�; H/ 2 ƒ.Fn/ , the subgroup H 6 Fn can be

recovered from � in a very natural way. Namely, H is precisely the fundamental

group �1.�; H/ , i.e. the set of words read upon traversing closed paths that begin

and end at the coset H . Note that we thereby identify �1.�; H/ as a speci�c

subgroup of Fn and are not interested merely in its isomorphism class. By the

above discussion, it follows that ƒ.G/ � ƒ.Fn/ whenever G is a group with

generating set A D ¹a1; : : : ; anº . It also follows that we could de�ne Schreier

graphs “abstractly,” without appealing to the coset structure determined by a

subgroup of Fn . �at is, we could de�ne a Schreier graph to be a (connected

and rooted) 2n-regular graph whose edges come in n di�erent colors and are

colored so that every vertex is attached to precisely one “incoming” edge of

a given color and one “outgoing” edge of that color. �ere is a natural one-

to-one correspondence between the space of Schreier graphs ƒ.Fn/ viewed in

the abstract and the lattice of subgroups of Fn , denoted L.Fn/ . Namely, every

subgroup H 2 L.Fn/ determines a Schreier graph, and every Schreier graph

� 2 ƒ.Fn/ determines a subgroup of Fn (by passing to the fundamental group).

De�nition 4.1. (Schreier structure) Let � 2 � be a 2n-regular graph. A Schreier

structure † on � is a labeling of its edges by the generators of the free group

Fn D ha1; : : : ; ani that turns � into a Schreier graph, i.e. a map † W E0.�/! A ,

where E0.�/ denotes a choice of orientation for each edge .x; y/ 2 � , such that

for each x 2 � and each 1 6 i 6 n , there is precisely one incoming edge labeled

with ai and one outgoing edge labeled with ai attached to x .

It is natural to ask whether any (connected and rooted) 2n-regular graph

admits a Schreier structure, i.e. whether the forgetful map f W ƒ! � that sends

a Schreier graph to its underlying unlabeled (and undirected) graph is surjective.

It is well-known that this question has a positive answer, but the literature on

Schreier graphs can be a bit fuzzy on this point. A statement of the result (in

various forms) is to be found, for example, in [Gro], [Lu], [Ha], [GKN], and [GN],

the latter four of which cite one another on this question, but the only proof of
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the claim in these sources is the one due to Gross [Gro], who showed in 1977 that

every �nite 2n-regular graph can be realized as a Schreier graph of the symmetric

group (this proof is reproduced in [Lu]). In fact, seeing that every 2n-regular

graph can be realized as a Schreier graph of Fn requires nothing but classical

results from graph theory that go back much further than the aforementioned

sources. Let us go over the argument here. We would like to thank Grigorchuk

for pointing out to us that he too has recently written a careful proof of the

fact that every 2n-regular graph admits a Schreier structure; it appears in his

survey [Gr].

A graph in � possesses a Schreier structure if and only if it is 2-factorable.

Recall that a 2-factor of a graph � is a 2-regular subgraph of � whose vertex

set coincides with that of � . Note that a 2-factor needn’t be connected (if it

were, it would be a Hamiltonian cycle). A graph is 2-factorable if it can be

decomposed into 2-factors whose edge sets are mutually disjoint, whence the

connection with Schreier structures becomes plain: if � has a Schreier structure,

then the subgraph �i of � consisting of those edges labeled with the generator

ai is a 2-factor, and � D �1 [ : : :[�n is a 2-factorization of � . Conversely, if

� D �1[ : : :[�n is a 2-factorization of � , one need only give an orientation to

the components of each �i and label their edges with the generator ai to obtain

a labeling of � . �e following result was proved by Petersen [Pet] in 1891.

�eorem 4.2. (Petersen) Every �nite 2n-regular graph is 2-factorable.

�eorem 4.2 can be proved by using the fact that a �nite connected graph has

an Euler tour, i.e. a closed path that visits every edge exactly once, if and only

if each of its vertices is of even degree. One can then split any �nite 2n-regular

graph into a certain bipartite graph and apply Hall’s theorem (also known as the

marriage lemma) to extract a 2-factor; by induction, one obtains a 2-factorization

(see Chapter 2.1 of [Di] for the full argument). By the above discussion, we have

the following corollary.

Corollary 4.3. Every �nite (connected and rooted) 2n-regular graph admits a

Schreier structure.

Passing to the in�nite case is made possible via an application of the in�nity

lemma, which asserts that every in�nite locally �nite tree contains a geodesic ray;

it appears in König’s classical text on graph theory [Kö], �rst published in 1936

(see Chapter 6.2), or in Chapter 8.1 of [Di].

�eorem 4.4. Every (connected and rooted) 2n-regular graph admits a Schreier

structure.
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Proof. Let � be an in�nite 2n-regular graph (the �nite case has already been

taken care of by �eorem 4.2). Assume that � is connected, and let x0 2 � be

an arbitrarily chosen root. Consider Ur , the r -neighborhood centered at x0 , and

note that the cardinality of its cut set C , i.e. the set of edges that connect vertices

in Ur to vertices not in Ur , is even. �is follows from the equation
X

x2Ur

deg.x/ D 2jE.Ur/j C jCj;

given that the left hand side and the �rst term in the right hand side are even

numbers. Consider now the graph Ur [ C . By grouping the edges in C into

pairs, removing each pair from Ur [ C , and connecting the vertices in Ur to

which the elements of each pair were attached by a new edge, we “close up”

the neighborhood Ur and turn it into a 2n-regular graph. By Corollary 4.3, this

graph admits a Schreier structure, which in turn determines a labeling of Ur .

We now employ the in�nity lemma. Let †r denote the set of Schreier structures

of Ur (we have just shown that †r is nonempty), and construct a tree by regarding

the elements of each †r as vertices and connecting every vertex in †rC1 by

an edge to the vertex in †r that represents the Schreier structure obtained by

restricting the structure on UrC1 to Ur . It follows that there exists a geodesic ray

in our tree, i.e. an in�nite sequence of Schreier structures on the neighborhoods

¹Urºr2N each of which is an extension of the last and which exhaust � . �is

implies the claim.

5. Schreier graphs versus unlabeled graphs

In this section, we compare Schreier graphs and unlabeled graphs, focusing on

the spaces of invariant and unimodular measures on these two classes of graphs

and how such measures behave under the forgetful map that sends a Schreier

graph to its underlying unlabeled graph. Note that a homomorphism of Schreier

graphs is a homomorphism of graphs that respects the additional structure carried

by a Schreier graph, i.e. that preserves the root and maps one edge to another

only if both edges have the same label and orientation. An important feature

of Schreier graphs is that this additional structure lends them a certain rigidity

which is not generally enjoyed by unlabeled graphs.

Proposition 5.1. �e vertex stabilizer Autx.�/ 6 Aut.�/ of a Schreier graph

.�; x/ is always trivial.

Proof. Let .�; x/ 2 ƒ be an arbitrary Schreier graph, and suppose that � 2

Autx.�/ is a nontrivial automorphism, so that there exist distinct points y; z 2 �
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(which are necessarily equidistanced from x ) such that �.y/ D z . If y and z

are at unit distance from x , then � obviously �xes each of them, since, by

de�nition, the edges .x; y/ and .x; z/ have di�erent labels. If y and z are at

distance r > 1 from x , then consider a geodesic  W Œ0; r�! � that joins x to

y . Since � is an isometry, the image �� is a geodesic that joins x to z . Now

let 0 6 t < r be a value such that .t/ D ��.t/ but .tC1/ ¤ ��.tC1/ (since

y ¤ z , such a value must exist). �en � must send .t C 1/ to ��.t C 1/ , but

this is impossible, since the edges ..t/; .t C 1// and ..t/; ��.t C 1// again

have di�erent labels.

�e spaces I.�/ and U.�/ are not the same. �e Dirac measure concentrated

on an in�nite vertex-transitive nonunimodular graph (such as the grandfather

graph, �rst constructed by Tro�mov [Tr]) is an example of a measure that is

invariant but not unimodular. Conversely, taking an invariant measure supported on

rigid graphs, i.e. graphs whose automorphism groups are trivial, and multiplying

each of these graphs by a �nite nonunimodular graph (such as the segment of

length two) yields a measure which is unimodular but not invariant (see [Ka]).

As we will soon show, however, the notions of invariance and unimodularity

coincide for Schreier graphs, and both can be viewed in terms of a third notion:

conjugation-invariance.

Consider the action of G on L.G/ by conjugation, i.e. the action given by

.g; H/ 7! gHg�1 . When thought of as an action on ƒ.G/ , it is easily seen to

be continuous, and it admits an easily visualized interpretation: Given a Schreier

graph .�; H/ and a g 2 G , where we assume that g has a �xed presentation

in terms of the generators of G , it is possible to read the element g starting

from the root H (or, indeed, from any other vertex). �is is accomplished by

following, in the proper order, edges labeled with the generators that comprise g

(note that following a generator a�1
i is tantamount to traversing a directed edge

labeled with ai in the direction opposite to which the edge is pointing). Applying

the element g to the graph .�; H/ then amounts simply to “shifting the root"

of .�; H/ in the way just described. �at is, one begins at the vertex H , then

follows a path corresponding to the element g , and then declares its endpoint

to be the new root. Note that if G has generators of order two, then a path

corresponding to an element g 2 G may not be unique; however, the endpoint

of any path which represents g is uniquely determined by g .

It is interesting to ask about the existence of invariant measures with respect

to the action G ˚ L.G/ . Indeed, the study of such measures, which also go

under the name of invariant random subgroups, has recently attracted a great deal

of attention (see [AGV], [ADMN], [Bo], [BGK], [Ca], [Ve1], and [Ve2]). Let us

say that a measure on ƒ.G/ or, in light of the inclusion ƒ.G/ ,! ƒ.Fn/ , on
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ƒ.Fn/ D ƒ , is conjugation-invariant if it is invariant under this action. Denote

the space of such measures by C.ƒ/ .

�eorem 5.2. �e spaces of invariant, unimodular, and conjugation-invariant

measures on the space of Schreier graphs coincide.

Proof. Proposition 5.1 implies that I.ƒ/ D U.ƒ/ . Indeed, since the vertex

stabilizer of a Schreier graph � is always trivial, the spaces E and Qƒ1 may

be identi�ed, and the weighted counting measure w� is precisely the counting

measure �� . To see that C.ƒ/ D I.ƒ/ , it is enough to know that, by the classical

theory (see Corollary 1 of [FM] or Proposition 2.1 of [KM]), a measure is invariant

in the sense of De�nition 3.1 if and only if it is invariant with respect to the

action of a countable group whose induced orbit equivalence relation coincides

with the equivalence relation E � � �� . Since Fn is clearly such a group, it

follows that C.ƒ/ D I.ƒ/ D U.ƒ/ .

Let f W ƒ ! � be the forgetful map that sends a Schreier graph to its

underlying unlabeled graph. Our next proposition shows that f sends unimodular

measures to unimodular measures.

Proposition 5.3. �e image of a unimodular measure under f is unimodular,

i.e. f�U.ƒ/ � U.�/ .

Proof. Lift � to Qƒ1 , and consider the map Qf W Qƒ1
r !

Q�1
r that sends a

neighborhood .U; x; y/ 2 Qƒ1
r to its underlying unlabeled neighborhood. It is

easy to see that both f and Qf extend to homomorphisms of projective systems

and therefore that � WD f�� and Q� WD Qf� Q� are measures. We thus have a diagram

(5.1)

. Qƒ1
r ; Q�/ . Q�1

r ; Q�/

.ƒr ; �/ .�r ; �/

 

!
Qf

 !�  ! �

 

!
f

for each r , where ƒr and �r are the images of Qƒ1
r and Q�1

r , respectively, under

the natural projection .U; x; y/ 7! .U; x/ . To see that the measure Q� satis�es

the unimodularity condition, note that for any .U; x; y/ 2 Q�1
r , there is a one-

to-one correspondence between the preimages Qf �1.U; x; y/ and Qf �1.U; y; x/ ,

which is given simply by exchanging the principal and secondary roots of the

distinguished edges of neighborhoods in Qƒ1
r . (�is correspondence is one-to-

one by Proposition 5.1.) It is now straightforward that, since the measure Q� is

unimodular, the aforementioned preimages have the same mass and therefore that

Q�.U; x; y/ D Q�.U; y; x/ .
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It remains to check that Q� is in fact the lift of � . To see this, note that, again

by Proposition 5.1,

j Qf �1.U; x; y/j D wU .y/jf �1.U; x/j:

Moreover, we have

��
Qf �1.U; x; y/ D f �1.U; x/:

A bit of diagram chasing now yields the result. Starting from the upper right

hand corner of our diagram, we have

Q�.U; x; y/ D Q�
�

Qf �1.U; x; y/
�

D
1

wU .y/
�

�

��
Qf �1.U; x; y/

�

D
1

wU .y/
�

�

f �1.U; x/
�

D
1

wU .y/
�.U; x/;

so that �.U; x/ D wU .y/ Q�.U; x; y/ , as desired.

Remark 5.4. As shown in [Ka], this implies that an invariant measure on the

space of Schreier graphs is supported on graphs which are unimodular almost

surely. A result which is similar in spirit was recently attained by Biringer and

Tamuz [BT], who showed that a conjugation-invariant measure on the lattice of

subgroups of a unimodular group is supported on subgroups which are unimodular

almost surely.

An interesting consequence of Proposition 5.3 is that it allows one to exhibit

closed invariant subspaces of ƒ which do not admit an invariant measure.

Corollary 5.5. Let � 2 � be an in�nite vertex-transitive nonunimodular graph.

�en f �1.�/ , the space of Schreier structures over � , is a closed invariant

subspace of ƒ which does not support an invariant measure.

Proof. Let X WD f �1.�/ . It is easy to see that X is closed and invariant, as

the equivalence class of � in the space of rooted graphs (that is, the set of

rerootings of � up to isomorphism) consists of a single point. Suppose that

� is an invariant (equivalently, unimodular) measure supported on X . �en its

image f�� is the Dirac measure on � . But this is a nonunimodular measure,

contradicting Proposition 5.3.

Remark 5.6. More generally, Corollary 5.5 can be applied to nonunimodular

graphs whose equivalence classes are �nite.
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Example 5.7. Given a rooted d -regular tree T , where d > 3 , together with a

boundary point ! 2 @T , one constructs the grandfather graph � of Tro�mov

[Tr] as follows: note �rst that the boundary point ! allows one to assign an

orientation to each edge of T , namely the orientation that “points to ! ,” i.e.

given an edge .x; y/ , there is a unique geodesic ray  W Z>0 ! T beginning

either at x or at y and such that limt!1 .t/ D ! , and it is the orientation of

this ray that determines the orientation of .x; y/ . Next, connect each vertex x 2 T

to its grandfather, namely the vertex one arrives at by moving two steps towards

! with respect to the orientation just de�ned. �e result is a .d 2�d C2/ -regular

vertex-transitive nonunimodular graph, and moreover it is not di�cult to see that

X WD f �1.�/ is a large (uncountable) space (e.g. see �eorem 6.4 below). By

Corollary 5.5, X does not support an invariant measure.

6. Invariant Schreier structures over unlabeled graphs

It would be interesting to fully understand the relationship between unimodular

measures on ƒ and unimodular measures on � . We do not know, for instance,

whether the induced map f W U.ƒ/ ! U.�/ is surjective, i.e. whether, given

a unimodular measure � on the space of rooted graphs, there always exists a

unimodular measure � on the space of Schreier graphs such that f�� D � .

Something quite close to this statement, however, is indeed true; namely, the

induced map between the spaces of so�c measures on ƒ and � is surjective

(note that this map is well-de�ned, as applying the forgetful map f to a so�c

approximation of a measure � 2 S.ƒ/ yields a so�c approximation of the measure

f�� ).

Proposition 6.1. �e induced map f W S.ƒ/! S.�/ is surjective.

Proof. Let � 2 S.�/ be a so�c measure and ¹�iºi2N a so�c approximation of

� consisting of 2n-regular graphs. By �eorem 4.4, each �i may be endowed

with a Schreier structure †i . We thus obtain a sequence of measures �i 2 S.ƒ/ ,

namely those arising from the graphs .�i ; †i / . By compactness, this sequence

has a convergent subsequence whose limit measure � is obviously so�c and,

moreover, must map to � under f .

A further natural question of interest is to describe the �ber of invariant

measures f �1.�/ over a given unimodular measure � 2 U.�/ . Although we are

unable to answer this question in full generality, we are able to show that, under

mild assumptions, this �ber is very large, in that it contains uncountably many

ergodic measures. Invariant Schreier structures, in other words, are not “trivial
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decorations” but themselves possess a rich structure. �e aforementioned mild

assumption is rigidity. To be more precise, a graph is said to be rigid if its

automorphism group is trivial, and we require that our unimodular measure �

be supported on rigid graphs. Such an assumption is not very restrictive and,

indeed, even natural, as essentially all known examples of invariant measures on

the space of rooted graphs (such as random Galton-Watson trees—see [LPP]—or

their horospheric products [KS]) are supported on rigid graphs.

In proving the following results, we will understand an ai -cycle to be any

graph obtained by choosing a vertex x in a Schreier graph and, with x as our

starting point, “following the generator ai ” in both directions as far as one can

go. An ai -cycle is thus always isomorphic to the Cayley graph of a cyclic group

with generating set A D ¹ai º . A fundamental operation on ai -cycles for us will

be reversal; that is, given an ai -cycle, one may always reverse its orientation by

applying the formal inversion ai 7! a�1
i to its labels. Note that this operation

does not destroy the Schreier structure of a graph (although it may well yield a

new Schreier structure). We �rst establish a lemma.

Lemma 6.2. Let � be a Schreier graph whose underlying unlabeled graph is

rigid, and let ai be a �xed generator of Fn . �en the space X of Schreier

graphs obtained by independently reversing the orientations of ai -cycles in � or

keeping their orientations �xed is either �nite or uncountable.

Proof. Let ¹Cj ºj 2J , where J � N , be an enumeration of the ai -cycles in � ,

and consider the space ¹0; 1ºJ . For each ! D .!j /j 2J 2 ¹0; 1ºJ , denote by

�! the Schreier graph obtained from � by �xing the orientation of the ai -

cycle Cj if !j D 0 and reversing it if !j D 1 . �e space X is in one-to-one

correspondence with ¹0; 1ºJ : on the one hand, each � 2 X can be realized as

some �! (by recording the orientation of each of its ai -cycles), and if � and �

are distinct elements of X , then clearly �! ¤ �!0 . Conversely, if ! ¤ !0 , then

�! ¤ �!0 . Indeed, let j 2 J be an index for which !j ¤ !0
j . �en if �! and �!0

have isomorphic Schreier structures, there must exist a nontrivial automorphism

� W � ! � of the underlying unlabeled graph (as the identity map preserves the

orientation of Cj ), which contradicts the fact that our Schreier graph is rigid. We

thus �nd that X is �nite if and only if J is �nite and uncountable otherwise.

�eorem 6.3. Let � 2 U.�/ be a nonatomic ergodic measure supported on rigid

graphs. �en provided it is nonempty, the �ber f �1.�/ of invariant measures

over � contains uncountably many ergodic measures.

Proof. Let � 2 f �1.�/ be a lift of � to a (necessarily nonatomic) invariant

measure on ƒ ; assume, moreover, that � is also ergodic. Put X WD supp.�/ ,
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and let p 2 .0; 1/ be a �xed probability. By the pigeonhole principle, there must

exist a generator ai of Fn such that a � -random Schreier graph � contains

in�nitely many ai -cycles with positive probability, since otherwise � would be

�nite almost surely and � would be an atomic measure. By ergodicity, it must

in fact be the case that almost every � 2 X contains in�nitely many ai -cycles.

For each Schreier graph � 2 X , denote by ��;p the Bernoulli measure over

f .�/—the underlying unlabeled graph—obtained by independently reversing the

orientation of each ai -cycle (for our chosen index i ) of � with probability p . By

Lemma 6.2, these measures are nonatomic. Denote by �p the measure obtained

by integrating the measures ��;p against the base measure � .

�e measure �p can be described explicitly as follows. Let U 2 ƒr be

a cylinder set for which �.U / > 0 . �e graph U has an obvious “cycle

decomposition,” namely the 2-factorization that comes from its Schreier structure;

independently reversing (with probability p ) the orientations of the ai -cycles

in this factorization yields a (conditional) Bernoulli measure on the set of

neighborhoods U1; : : : ; Uk with the same cycle decomposition as U . Since

reversing the orientation of a cycle in U may yield a neighborhood isomorphic

to U , we must quotient isomorphic neighborhoods Ui Š Uj . Doing this for all

U 2 ƒr determines the measures that �p assigns to cylinder sets and also makes

plain that, if p ¤ q , then �p ¤ �q .

It is not di�cult to see that �p is invariant; indeed, passing to the space Qƒ1 of

doubly rooted graphs, it is obvious that, for a given doubly rooted neighborhood

.U; x; y/ 2 Qƒ1
r , we have �p.U; x; y/ D �p.U; y; x/ , since the cycle decomposition

of a neighborhood is independent of a choice of basepoint(s). Moreover, the

measure �p is ergodic: Put QX WD supp.�p/ and denote by � W QX ! X the

obvious projection of QX onto X , and suppose that A � QX is a nontrivial

invariant set. Assume for the moment that A is a union of cylinder sets. �en

there exists a cylinder set U � QX such that A \ U D ¿ , and by ergodicity of

the measure � , for every � D .�; H/ 2 A there exist in�nitely many g 2 Fn

(corresponding to in�nitely many distinct positions of the root of � ) such that

.�; gHg�1/ 2 �.U / . On the other hand, the set of Schreier graphs .�; H/ such

that .�; gHg�1/ … U for all g 2 Fn is a null set with respect to any conditional

measure ��;p and hence a null set with respect to �p . It follows that �p.A/ D 0 ,

a contradiction. Since A can be approximated to arbitrary accuracy by unions of

cylinder sets (i.e. for any " > 0 , there exists a union of cylinder sets A" with

�p.A4 A"/ < "), we �nd that A must be trivial.

Let us consider highly nonrigid graphs as well. �e following theorem shows

that in the case when � is the Dirac measure concentrated on an unlabeled Cayley

graph, it can very often be lifted to a nonatomic measure in I.ƒ/ D U.ƒ/ .
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�eorem 6.4. Let G be an in�nite noncyclic group, and suppose A D ¹a1; : : : ; anº

is a generating set for G such that none of the elements aiaj 2 G , for distinct

1 6 i; j 6 n , is of order two. �en there exists a nonatomic measure � 2 I.ƒ/

such that f�� D ıG , where ıG is the Dirac measure concentrated on an unlabeled

Cayley graph of G .

Proof. Assume, without loss of generality, that A does not contain the identity,

and let ai 2 A be a generator such that G (which we think of as the Cayley

graph determined by A) contains in�nitely many ai -cycles. Since G is in�nite

and noncyclic, such an ai must exist. Now let aj 2 A be a generator distinct

from ai (such a generator must again exist, since otherwise G Š Z ), and put

anC1 WD aiaj . Let A0 D A [ ¹anC1º , and let G0 be the Cayley graph of G

determined by our new generating set.

Consider now the space X � ƒ.FnC1/ obtained from G0 by independently

reversing the orientation of each anC1 -cycle contained in G0 or leaving it the

same. We claim that the space X is uncountable: Let �; � 0 2 X be two relabelings

of G0 such that � keeps the orientation of a particular anC1 -cycle C the same

whereas � 0 reverses it.

Next, choose a vertex x in C � � , and let y denote the vertex reached upon

traversing the outgoing edge labeled with anC1 attached to x . Let ;  0 W Œ0; r�! G

be geodesics in G (and not in G0 ) that connect the origin to x and to y ,

respectively (note that  and  0 may be empty), and denote by H and H 0 the

subgroups corresponding to the graphs � and � 0 , respectively. �en

w./anC1w. 0/�1 DW h 2 H;

where w./ and w. 0/ are the words read upon traversing  and  0 . But it is

not di�cult to see that h 2 H 0 if and only if anC1 D a�1
nC1 , i.e. if and only if

anC1 has order two, a contradiction (see Figure 1). It follows that if �; � 0 2 X

assign di�erent orientations to a particular anC1 -cycle, then they are not equal.

On the other hand, the number of ways to assign orientations to the anC1 -cycles

in G0 is clearly uncountable. �erefore, X is uncountable.

By choosing to reverse the orientations of anC1 -cycles independently of one

another with a �xed probability p 2 .0; 1/ , we obtain a measure � whose support

is X and which, in light of the fact that X is uncountable, is nonatomic. �e

measure � is ergodic by the same argument given in �eorem 6.3.

Remark 6.5. �eorem 6.4 certainly applies to a large class of groups. Even

so, the conditions of the theorem can be weakened. Indeed, the theorem holds

whenever G has a Cayley graph that contains in�nitely many ai -cycles (for some

i ) such that its fundamental group changes upon reversing the orientation of one
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e

  0

x y
C

e

  0

x y
C

Figure 1

If two elements of X assign di�erent orientations to a particular anC1 -

cycle C in G0 , then they must represent distinct subgroups of FnC1 ,

as the word read upon traversing the path  , then following the out-

going edge labeled with anC1 , and then traversing the inverse of  0

(left) cannot belong to both subgroups unless anC1 has order two.

(and hence any) such cycle. On the other hand, note that one cannot in general

insist on a minimal generating set. �is is impossible, for example, when G is

a free product of cyclic groups.

To conclude, let us pose a concrete question to which we do not know the

answer.

Question 6.6. Describe the invariant Schreier structures on Z
2 , the standard

two-dimensional lattice.

It is not di�cult to see that there exists a large number of invariant Schreier

structures on Z
2 . Consider, as in the proof of �eorem 6.4, the random Schreier

structures one obtains by taking the standard Cayley structure on Z
2 and randomly

reversing the orientations of ai -chains (that is, horizontal or vertical copies of

Z ). Yet there are doubtless many more invariant Schreier structures, e.g. ones

where ai -cycles consist of “in�nite staircases,” or �nite-length cycles. It would

be nice to have a full description of the geometric possibilities. Here is an even

simpler question to which we do not know the answer:

Question 6.7. Describe the periodic Schreier structures on Z
2 .

By a periodic Schreier structure, we mean one whose orbit under the action

of the free group is �nite.
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