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�e number of vertices of a tropical curve

is bounded by its area

Tony Yue YU

Abstract. We introduce the notion of tropical area of a tropical curve de�ned in an open

subset of Rn . We prove that the number of vertices of a tropical curve is bounded by the

area of the curve. �e approach is totally elementary yet tricky. Our proof employs ideas

from intersection theory in algebraic geometry. �e result can be interpreted as the fact

that the moduli space of tropical curves with bounded area is of �nite type.
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1. Introduction and statement of the theorem

We begin with some heuristic motivations from algebraic geometry. Let X be

a complex projective space. �e moduli space of algebraic curves embedded in

X with bounded area with respect to the Fubini-Study metric is of �nite type,

because the Hilbert schemes are of �nite type [Gr]. �is article tries to establish an

analogous result of �niteness in tropical geometry. Some combinatorial techniques

of this paper are used to study the compactness of tropical moduli spaces in [Yu2]

(see also [GS, NS] for related �niteness results).

�eorem 1.1. Let A be a positive real number, U an open subset of Rn for

n � 2 , and K � U a compact subset. �ere exists an integer N , such that for

any tropical curve G in U with area bounded by A , the number of vertices of

G inside K is bounded by N .

Let us explain some of the terminologies used above.

De�nition 1.2. Let Z=2Z act on Zn n 0 by multiplication by �1 , and denote the

quotient by W . For any w 2 W , we de�ne its norm jwj D
pP

.wi /2 for some
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representative .w1; : : : ; wn/ 2 Zn n 0 . We do the same construction for Qn n 0 ,

and denote the quotient by WQ .

De�nition 1.3. A tropical curve G in an open subset U � Rn is a �nite

one-dimensional polyhedral complex in U satisfying the following properties:

(i) G is closed in U as a topological subspace. We call the 0-dimensional

faces of G vertices, and the one-dimensional faces of G edges. �e set of

vertices is denoted by V.G/ ; the set of edges is denoted by E.G/ . �ere

are two kinds of edges: those edges which have both endpoints in U are

called internal edges; while the rest are called unbounded edges.

(ii) Each vertex of G is at least 3-valent.

(iii) Each edge e is equipped with a weight vector we 2 W parallel to the

direction of e inside Rn . If we is k times a primitive integral vector, we

call jkj the weight of the edge e .

(iv) We require that the balancing condition holds, i.e. for any vertex v of G ,

we have
P

e3v ew e D 0 , where the sum is taken over all edges containing v

as an endpoint, and ew e is the representative of we which points outwards

from v .

Remark 1.4. �e balancing condition in De�nition 1.3(iv) is a necessary condition

for a tropical curve G to be the amoeba of an analytic curve [Mi, NS, Sp, BPR].

It is generalized to a global non-toric setting in [Yu1] using vanishing cycles in

k -analytic étale cohomology.

De�nition 1.5. For any open subset V � U , we denote by GjV the restriction

of G to V .

De�nition 1.6. For an edge e of a tropical curve G , we de�ne its tropical area

as

Area.e/ D jej � jwej;

where jej means the Euclidean length of the segment e in Rn , and jwe j is the

norm of the weight vector we . �e tropical area of a tropical curve G is by

de�nition the sum of the tropical areas over all its edges. In this article, tropical

area is simply called area for short.

Example 1.7. Let e be an edge connecting the point 0 D .0; : : : ; 0/ to the point

x D .x1; : : : ; xn/ , and let ew e D .w1; : : : ; wn/ 2 Zn n 0 be a representative of the

weight vector we . By de�nition, there exists � 2 R such that x D � � ew e . We

have

Area.e/ D j�j �

nX

iD1

.wi /2:
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Remark 1.8. To the best of our knowledge, the notion of tropical area in

De�nition 1.6 did not appear in the existing literature. It corresponds to the

symplectic area under the tropical limit. �ere are many ways to see this. For

example, we can explain in the framework of Berkovich spaces [Be]. Let k

be a non-archimedean �eld with non-trivial valuation, X a closed k -analytic

annulus of inner radius r1 and outer radius r2 , and f W X ! .Gan
m /n a k -

analytic morphism. Let � W .Gan
m /n ! Rn denote the tropicalization map taking

coordinate-wise valuations. Suppose that the image .� ı f /.X/ is an edge e of

the tropical curve G . Put ! D ��
� Pn

iD1 d 0xi ^ d 00xi

�
; which is a .1; 1/ -form on

.Gan
m /n in the sense of [CD]. One computes that

R
X f �! D jwej2 � log r2

r1
. Since

jwe j � log r2

r1
D jej , we obtain that

R
X f �! D jwe j � jej D Area.e/:

Having introduced all the notions, we now explain the proof. Intuitively, if

we regard tropicalization as a classical limit from strings to particles, then the

balancing condition resembles a conservation of momentum. �e idea of the proof

is to cover our tropical curve by a collection of paths (Section 3), thought of as

paths of particles, and then try to bound the number of vertices on each path

(Section 4).

We begin by observing that the balancing condition de�ned locally around

each vertex has the following global consequence.

Lemma 1.9. Let G be a tropical curve in an open set U � Rn , and let W be

an open subset of Rn such that

(i) W � U .

(ii) W is a smooth manifold with corners.

(iii) V.G/ \ @W D ¿ .

(iv) G intersects @W transversely.

For each edge e of G that intersects @W , let ew e denote the representative of

the weight vector we pointing from the inside of W to the outside. �en we have

(1)
X

e\@W ¤¿

ew e D 0:

Proof. Let v1; : : : ; vl be the vertices of G inside W , e1; : : : ; em the edges of G

contained in W . Let B1; : : : ; Bl be open balls of radius r > 0 and with center

v1; : : : ; vl . Let C1; : : : ; Cm be open cylinders of radius r and with central axis

e1; : : : ; em . We choose r small enough so that the closures of the balls and the

cylinders do not intersect nearby edges and that all of them are contained in W .

Let B D
Sl

iD1 Bi . We consider a chain of open sets in Rn verifying (i)–(iv):

B � B [ C1 � B [ C1 [ C2 � � � � � B [ C1 [ � � � [ Cm � W:
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�e equation (1) holds for B by the de�nition of the balancing condition. �en

we show by induction that (1) holds for every open set in the chain above, and

in particular holds for W .

Next, we note that it su�ces to prove �eorem 1.1 in a particular situation.

Let K 0 be the n-simplex obtained as the convex hull of the n C 1 points

.0; : : : ; 0/ , .1; 0; : : : ; 0/ , : : : ,.0; : : : ; 0; 1/ in Rn , and let U 0
ı

be the interior of

the convex hull of the n C 1 points .�ı; �ı; : : : ; �ı/ , .1 C 3ı; �ı; �ı; : : : ; �ı/ ,

.�ı; 1 C 3ı; �ı; : : : ; �ı/ , : : : , .�ı; : : : ; �ı; 1 C 3ı/ , where ı is a positive real

number. Let U; K be the open subset and the compact subset in the statement

of �eorem 1.1. For any point x 2 K , we can �nd a pair .Ux ; Kx/ which is

isomorphic to .U 0
ı
; K 0/ for some ı > 0 up to a similarity transformation, such

that x is in the interior Kı
x of Kx and that Ux is included in U . By the

compactness of K , there is a �nite subset ¹x1; : : : ; xmº � K such that

K �

m[

iD1

Kı
xi

�

m[

iD1

Kxi
�

m[

iD1

Uxi
� U:

�erefore, we can deduce �eorem 1.1 from the following particular situation.

�eorem 1.10. Let A be a positive real number. Let K 0; U 0
ı

be the compact

subset and the open subset of Rn as de�ned above. Put K D K 0 , U D U 0
ı
.

Let Kı denote the interior of K . �ere exists an integer N such that for any

tropical curve G in U with area bounded by A , the number of vertices of GjKı

is bounded by N .

�e proof of �eorem 1.10 consists of two parts. �e �rst part (Sections 2–4)

treats the case where we have a nice interpretation of the area of a tropical curve

as intersection numbers; the second part (Sections 5–6) explains how to reduce

the general case to the case considered in the �rst part via a certain modi�cation.

In Section 7, we give an example to better illustrate �eorem 1.1.

2. Interpretation of the area as intersection numbers

Let K be as in �eorem 1.10. In this section, we study a particular type of

tropical curves in Kı , called saturated tropical curves. We prove that in this case,

the area is equal to certain intersection numbers.

�e boundary @K is a simplicial complex of dimension n � 1 . We denote

by .@K/n�2 its skeleton of dimension n � 2 . In this section, we study an even

simpler situation, where G is a tropical curve in Kı , and G is saturated in the

sense of the following de�nition.
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De�nition 2.1. A tropical curve G in Kı is said to be saturated if G\.@K/n�2 D

¿ and if G intersects @K n.@K/n�2 perpendicularly, where G denotes the closure

of G in Rn as a topological subspace.

Remark 2.2. �e word “saturated" is used because in this case, the area is

concentrated in K in some sense.

For an intersection point between G and @K , we de�ne its multiplicity to be

the weight of the corresponding edge of G .

Proposition 2.3. �e balancing condition implies that G intersects each face of

@K by the same number of times (counting with multiplicity as de�ned above),

which we denote by d .

Proof. We use Lemma 1.9, where we take U to be Kı and

W D
®
x 2 Kı

ˇ̌
dist.x; @K/ > �

¯

for � a positive number su�ciently small such that .U n W / \ V.G/ D ¿ . For

1 � i � n , let di be the number of intersections (counting with multiplicity)

between G and the face of K de�ned by xi D 0 . Let d be the number of

intersections (counting with multiplicity) between G and the face of K de�ned

by x1 C � � � C xn D 1 . �en equation (1) means that

d1e1 C d2e2 C � � � C dnen D d.e1 C � � � C en/;

where we denote by e1; : : : ; en the vectors with coordinates .1; 0; : : : ; 0/ , : : : ,

.0; : : : ; 0; 1/ respectively. �erefore we obtain that d1 D d2 D � � � D dn D d .

Proposition 2.4. Area.G/ D d .

Proof. Let e1; : : : ; en denote the points in Rn with coordinates .1; 0; : : : ; 0/; : : : ;

.0; : : : ; 0; 1/ respectively. Let K1 be the union of the n segments connecting

0 and ei , for i 2 ¹1; : : : ; nº . We de�ne a measure � on K1 . We start with

the zero measure on K1 . For each edge e of G , we add to � a measure

�e de�ned as follows: Let .x1; : : : ; xn/; .y1; : : : ; yn/ 2 K be the two endpoints

of e and let .w1; : : : ; wn/ 2 Zn n ¹0º be a representative of the weight vector

of e . We de�ne the restriction of �e to the segment connecting 0 and ei to

be 1Œxi ;yi � � jwi j � � , where 1Œxi ;yi � is the characteristic function of the segment

Œxi ; yi � � R , and � denotes the one-dimensional Lebesgue measure. �en by

De�nition 1.6, the area of G is the total mass of � . Let us calculate the

measure � .
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Lemma 2.5. Let z.1/; : : : ; z.l/ be the intersection points between G and the face

of K de�ned by x1 C � � � C xn D 1 with multiplicity m.1/; : : : ; m.l/ respectively.

We have m.1/ C � � � C m.l/ D d by Proposition 2.3. Let
�
z

.k/
1 ; : : : ; z

.k/
n

�
be the

coordinates of z.k/ for k D 1; : : : ; l . We �x i 2 ¹1; : : : ; nº and assume that

z
.1/
i � z

.2/
i � � � � � z

.l/
i . Let �i denote the restriction of � to the segment

connecting 0 and ei . We have

�i D

lX

kD1

m.k/ � 1
Œ0;z

.k/

i
�

almost everywhere.

Proof. Let z
.0/
i D 0 , z

.lC1/
i D 1 , and � 2 .0; 1/ . Assume that there is no

vertex of G with i th coordinate equal to � and that z
.j /
i < � < z

.j C1/
i ,

for some j 2 ¹0; : : : ; lº . Let us show that the density of �i at the point

� � ei is d �
Pj

kD1
m.k/ , which we denote by d� . Let H �

�
be the half space®

.x1; : : : ; xn/ 2 Rn
ˇ̌
xi � �

¯
, W the interior of K \ H �

�
. Lemma 1.9 implies

that X

p2G\@H �
�

ˇ̌
wi

e.p/

ˇ̌
D d� ;

where e.p/ denotes the edge of G containing p . So by construction, the

tropical curve G contributes d� to the density of �i at the point � � ei 2

Œ0; ei � .

We continue the proof of Proposition 2.4. We calculate the total mass of � ,

denoted by m.�/ . We have

m.�/ D

nX

iD1

m.�i/ D

nX

iD1

lX

kD1

m.k/ � z
.k/
i D

lX

kD1

m.k/

nX

iD1

z
.k/
i D

lX

kD1

m.k/ D d:

3. Paths and collection of paths

In this section, we introduce the notion of paths and collection of paths.

Let R be an n-dimensional polyhedron in Rn , V an open subset of Rn

containing R . In this section, we �x a direction i 2 ¹1; : : : ; nº and assume that

R has an .n � 1/ -dimensional face F contained in a hypersurface de�ned by

xi D c , for some c 2 R , and that R is contained in the half space xi � c .

Morally, we can think of the i th direction as time, and the rest as space directions.

Let H be a tropical curve in V such that there is an edge e0 of H whose

interior intersects the relative interior of F transversely.
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De�nition 3.1. A path P starting from e0 with direction i is a chain of weighted

segments s0; s1; : : : ; slP such that

(i) s0 D e0 \ R , slP D e0
0 \ R for some edge e0

0 of H such that exactly one

endpoint of e0
0 does not belong to the interior Rı .

(ii) s1; : : : ; slP �1 are edges of H , and s1; : : : ; slP �1 � Rı .

(iii) Every two consecutive segments in the chain share one endpoint.

(iv) �e projection to the i th coordinate Rn ! R restricted to P is injective.

(v) Each segment sj carries the weight vector w0
sj

D we=jwi
e j 2 WQ , where e

is the edge of H containing sj .

De�nition 3.2. A union U of m paths P1; : : : ; Pm is a sub-polyhedral complex

of H , such that

(i) Set theoretically U D
Sm

j D1 Pj .

(ii) Each segment s of U carries the weight vector w0
s D k � we=jwi

e j 2 WQ ,

where e is the edge of H containing s , and k D #
®
j

ˇ̌
Pj contains s

¯
.

Lemma 3.3. Let m D jwi
e0

j . �en there exists a collection of m paths P1; : : : ; Pm

starting from e0 with direction i such that each segment s in the union

U D
Sm

j D1 Pj veri�es the following property:

Let e be the edge of H containing s , and let ew 0
s and ew e be representatives

of the weight vectors w0
s and we respectively. By construction ew 0

s and ew e are

parallel so there exists q 2 Q such that ew 0
s D q ew e . �e property is that jqj � 1 .

Proof. We assign to each edge e of our tropical curve H an integer ci .e/ called

capacity (in the i th direction). Initially we set ci .e/ D jwi
e j . To construct the path

P1 , we start with the segment s0 D e0 \ R , and we decrease the capacity ci .e0/

by 1. Suppose we have constructed a chain of segments s0; s1; : : : ; sj . Let B be

the endpoint of sj with larger i th coordinate. If B 2 @R we stop, otherwise we

choose ej C1 to be an edge of H such that:

(i) B is an endpoint of ej C1 .

(ii) For any point x 2 ej C1 n B , the i th coordinate of x is larger than the i th

coordinate of B .

(iii) �e capacity ci .ej C1/ is positive.

�e existence of such ej C1 is ensured by the balancing condition on H . After

choosing ej C1 , we decrease the capacity ci .ej C1/ by 1 and set sj C1 D ej C1 \ R .

We iterate this procedure until we stop, and we obtain the path P1 . We apply

the same procedure m times and obtain the collection of paths P1; : : : ; Pm as

required in the lemma.



264 T. Y. Yu

4. Tropical vertex bound and genus bound

Let K be as in �eorem 1.10, and let G be a saturated tropical curve in Kı

with area d as in Section 2. In this section, we give a very coarse bound on the

number of vertices of G in terms of the area d and the dimension n .

Proposition 4.1. #V.G/ � 2.n � 1/2d 2:

Proof. Let .x1; : : : ; xn/ be the standard coordinates on Rn . We �x a direction

i 2 ¹1; : : : ; nº . Let z
.1/
i ; : : : ; z

.l/
i be the intersection points between G and the

face of K de�ned by xi D 0 with multiplicity m.1/; : : : ; m.l/ respectively. By

Proposition 2.4, we have m.1/ C � � � C m.l/ D d . Let e
.k/
0i be the edge of G

corresponding to the intersection point z
.k/
i . For each intersection point z

.k/
i ,

by Lemma 3.3, we obtain a collection of m.k/ paths starting from e
.k/
0i with

direction i . So for k D 1; : : : ; l , we obtain in total d paths, and we label them

as Pi1; : : : ; Pid . For each such path P , let V.P / denote the set of vertices of

P that lies in Kı , and let V0.P / be the following subset of V.P / .

A vertex Q belongs to V0.P / if and only if there is an edge of G , denoted

by e.Q/ , such that

(i) �e vertex Q is an endpoint of the edge e.Q/ .

(ii) �e edge e.Q/ is not in contained in the path P .

(iii) �ere exists j 2 ¹1; : : : ; nº , j ¤ i , such that the j th component of we.Q/

is non-zero.

We claim that (see Lemma 4.2)

(2) #V0.P / � 2d.n � 1/:

Now we vary i , and in the same way, we get nd paths Pik for i D 1; : : : ; n ,

k D 1; : : : ; d . We claim that (see Lemma 4.3)

(3)

n�1[

iD1

d[

kD1

V0.Pik/ � V.G/:

Combining equations (2) and (3), we have proved our proposition.

Lemma 4.2. For a path P among the paths Pik constructed in the proof above,

we have the following bound

#V0.P / � 2d.n � 1/:

Proof. Let SP;j D
P

Q2V0.P / jw
j

e.Q/
j for j 2 ¹1; : : : ; bi ; : : : ; nº WD ¹1; : : : ; nº n ¹iº ,

where e.Q/ is the edge of G associated to the vertex Q as in the de�nition of

V0.P / in the proof of Proposition 4.1. Now we �x j , and let
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E�
0;j .P / D

®
e.Q/

ˇ̌
Q 2 V0.P /; ew j

e.Q/
< 0

¯
;

EC
0;j .P / D

®
e.Q/ j Q 2 V0.P /; ew j

e.Q/
> 0

¯
;

where ew e.Q/ is the representative of we.Q/ that points outwards from Q . Let

S�
P;j D

X

e2E�
0;j

.P /

� ew j
e ;

SC
P;j D

X

e2E
C

0;j
.P /

ew j
e :

Let pi W Rn ! R be the projection to the i th coordinate, and pj the projection

to the j th coordinate. By De�nition 3.1(iv), pi jP is injective. Assume that the

image of pi jP is the closed interval Œ0; zP
i � . Let

qi D

8
ˆ̂̂
<
ˆ̂̂
:

.pi jP /�1.0/ for xi 2 .�1; 0�

.pi jP /�1.xi / for xi 2 Œ0; zP
i �

.pi jP /�1.zP
i / for xi 2 ŒzP

i ; 1/

Rj � D
®
.x1; : : : ; xn/ 2 Rn

ˇ̌
xj � pj .qi.xi // � �

¯
:

We choose � to be a su�ciently small positive real number such that

(i) Rı
j � �

®
.x1; : : : ; xn/ 2 Rn

ˇ̌
xj � 0

¯
.

(ii) @Rj � \ V.G/ D ¿ .

(iii) @Rj � intersects G transversely.

(iv) 8e 2 E�
0;j .P / , e \ Rı

j � ¤ ¿ .

Let

Tj � D @.Rj � \ K/ n .@K \ ¹xj D 0º/:

�en for any y 2 Tj � \ G , let e.y/ denote the edge of G corresponding to the

intersection point y . By Lemma 1.9, we have

X

y2Tj �\G

jw
j

e.y/
j D d:

�erefore S�
P;j � d , and similarly SC

P;j � d , so SP;j D S�
P;j C SC

P;j � 2d . Let

SP D
P

1�j �n;j ¤i SP;j . We have SP � 2d.n � 1/ . By the de�nition of the set

V0.P / , each vertex Q 2 V0.P / contribute at least 1 to the quantity SP so we

obtain that #V0.P / � 2d.n � 1/ .
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Lemma 4.3. Let Pik; V0 be as in the proof of Proposition 4.1, we have

n�1[

iD1

d[

kD1

V0.Pik/ � V.G/:

Proof. By Lemma 1.9 and Lemma 3.3, we see that for any edge e � G , any

i 2 ¹1; : : : ; nº such that wi
e ¤ 0 , there exists k 2 ¹1; : : : ; d º such that the path

Pik constructed in the proof of Proposition 4.1 contains e . Now for any vertex

v of G , since v is at least 3-valent by de�nition, there exists an edge e of G

containing v such that wi
e ¤ 0 for some i 2 ¹1; : : : ; n�1º . �is means that there

exists k 2 ¹1; : : : ; d º such that the path Pik contains e by what we have just

said. However it can happen that v … V0.Pik/ . In such cases, by the de�nition

of the set V0.Pik/ , there exists another edge e0 6� Pik such that w
j
e0 D 0 for

any j 2 ¹1; : : : ; bi ; : : : ; nº . Since wi
e0 ¤ 0 , there exists k0 2 ¹1; : : : ; d º such that

the path Pik0 contains e0 . Since e0 ¤ e , there exists j 2 ¹1; : : : ; bi ; : : : ; nº such

that w
j
e ¤ 0 , which implies that v 2 V0.Pik0/ . To sum up, we have proved that

for any vertex v of G , there exists i 2 ¹1; : : : ; n � 1º , k 2 ¹1; : : : ; d º such that

v 2 V0.Pik/ , so we have proved our lemma.

Remark 4.4. By analogy with algebraic geometry, we can expect a much better

bound on the number of vertices based on the Castelnuovo bound on the genus

of a smooth curve of given degree in the projective space Pn (see for example

[ACGH]1). Indeed, once we know how to bound the genus of our tropical

curve G , which is by de�nition rankH1.G/ , we can bound the number of

vertices immediately. For example, using cellular homology to calculate the Euler

characteristic of G , we have

1 � rankH1.G/ D #V.G/ � #¹internal edges of G º:

�en it su�ces to observe that the number of internal edges is bounded below

by the hypothesis that each vertex is at least 3-valent.

Conjecture 4.5. �e number of vertices of G is bounded by 2�.d; n/ C .n C 1/

d � 2 , where �.d; n/ is de�ned by

�.d; n/ D
m.m � 1/

2
.n � 1/ C m�;

where

m D

�
d � 1

n � 1

�
and � D d � 1 � m.n � 1/:

�is should be achieved when d > 2n by a tropical analogue of Castelnuovo

curves.

1Many thanks to Olivier Debarre for pointing out this reference to me.
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5. Bound on the weight vectors by the area

In this section, we show that the weight vectors of the edges of a tropical

curve can be bounded by the area.

Proposition 5.1. Fix i 2 ¹1; : : : ; nº . Let R be the convex hull of the 2n points

®
.�1; : : : ; �n/ 2 Rn

ˇ̌
�j 2 ¹�1; C1º for j 2 ¹1; : : : ; bi ; : : : ; nº; �i 2 ¹0; 1º

¯
:

Let V be an open set in Rn containing R . Let H be a tropical curve in

V such that there is an edge e0 of H whose interior contains the point

0 D .0; : : : ; 0/ 2 Rn . �en we have

Area.HjRı/ � jwi
e0

j;

where wi
e0

denotes the i th component of the weight vectors of the edge e0 .

Proof. Denote m D jwi
e0

j . By Lemma 3.3, we obtain a collection of m paths

P1; : : : ; Pm starting from e0 with direction i . Each path Pk connects the origin

O with a point on the boundary @R , denoted by zk . By De�nition 3.1 (iv), the

i th coordinate of zk is strictly positive. �is implies in particular that the length

of Pk under the Euclidean metric is at least one, so we have Area.Pk/ � 1 .

By summing up contributions from all Pk , for k D 1; : : : ; m , we obtain that

Area.HjRı/ � m .

Corollary 5.2. Let A; U; K; G; ı be as in �eorem 1.10, and denote by I the

number of intersection points between G and @K (with no multiplicity concerned).

�en I � A=ı .

Proof. By Proposition 5.1, each intersection point contributes at least ı to the

total area of G , whence the corollary.

Corollary 5.3. Let A; U; K; G; ı be as in �eorem 1.10. For any edge e of GjKı ,

any i 2 ¹1; : : : ; nº , we have jwi
ej � A=ı .

Proof. By Proposition 5.1, for any edge e of GjKı , any i 2 ¹1; : : : ; nº , the

weight vector we contributes at least jwi
ej � ı to the total area of G , whence the

corollary.

6. �e saturation trick

Finally we perform a trick to reduce the general case to the saturated case

considered in Sections 2 and 4. Using the notations and assumptions as in �eorem



268 T. Y. Yu

1.10, our aim is to construct from G a saturated tropical curve G0 in Kı (in the

sense of De�nition 2.1).

Let � be a positive real number and put

LK D
®
x 2 Kı

ˇ̌
dist.x; @K/ > �

¯
:

We choose � small enough such that V.G/ \ .Kı n LK/ D ¿ .

Lemma 6.1. For any w 2 Zn , there exists non-negative integers a0; : : : ; an such

that

w D

nX

iD0

ai e
0
i ;

where we denote e0
i D �ei for i D 1; : : : ; n , and e0

0 D e1 C � � � C en . Furthermore

we require that ai is zero for at least one i 2 ¹0; : : : ; nº . �is determines

a0; : : : ; an uniquely.

Initially we set G0 D GjKı . �en for each edge e of G0 such that the

closure e intersects @K non-perpendicularly, or e \ .@K/n�2 ¤ ¿ , we do the

following modi�cation to G0 . Let we be the weight vector of e and choose the

representative ew e that points from LK to Kı n LK . Now put ew e into the lemma

above and we get .n C 1/ non-negative integers a0; : : : ; an . Let P D e \ @ LK ,

be D .Kı n LK/ \ e . We �rst delete be from G0 . Now P becomes an unbalanced

vertex. �en we add to G0 the rays starting from P with direction e0
i and

multiplicity ai for all i 2 ¹0; : : : ; nº . �is makes the vertex P balanced again

and we �nish our modi�cation concerning the edge e (see Figure 1).

e

Figure 1

Lemma 6.2. Using notations in �eorem 1.10. By construction we have

(i) G0 is a saturated tropical curve in Kı .

(ii) #V.GjKı / � #V.G0/ .

(iii) Area.G0/ � Area.GjKı/ C n.A=ı/2 � A C n.A=ı/2 .
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Proof. (i) follows directly from the construction. (ii) is obvious since our

modi�cation may add new vertices to GjKı but never decreases the number

of vertices. For (iii), each time we do a modi�cation to an edge, we add at

most n rays, each of which has area less than A=ı (Corollary 5.3). Moreover by

Corollary 5.2, there are at most A=ı edges of G intersecting with @K , so the

total area of all the rays we added to GjKı is bounded by n.A=ı/2 .

To conclude, combining the previous lemma with Proposition 4.1, we have

proved �eorem 1.10, with 2.n�1/2.ACn.A=ı/2/2 being the bound on the number

of vertices. We have also proved �eorem 1.1 using the reduction explained at the

end of Section 1.

7. An example of a tropical curve with �nite area

but in�nite number of vertices

To better illustrate �eorem 1.1, we give an example of a tropical curve2 G in

an open set U � R2 with �nite area A but in�nite number of vertices. It does not

contradict �eorem 1.1 because the number of vertices of G inside any compact

subset in U will still be �nite. Intuitively, �eorem 1.1 says that concentrations

of vertices can only happen near the boundary of U as long as the area of the

tropical curve is bounded.

Let .x; y/ be coordinates on R2 . Let C be the convex hull of the four points

.0; 0/; .0; 1/; .1; 0/; .1; 1/ in R2 and let U be the interior of C . Our tropical curve

G consists of the following segments (they are all taken after intersection with

U ):

(i) the segment Œ.4�n; 4�n/; .4�.n�1/; 4�.n�1//� with multiplicity 2n�1 ,

(ii) the ray starting at the point .4�n; 4�n/ with direction .�1; 0/ and multiplicity

2n�1 ,

(iii) the ray starting at the point .4�n; 4�n/ with direction .0; �1/ and multiplicity

2n�1 ,

(iv) the ray starting at the point .4�n; 4�n/ with direction .�1; 2/ and multiplicity

2n ,

(v) the ray starting at the point .4�n; 4�n/ with direction .2; �1/ and multiplicity

2n ,

where n is taken over all positive integers (see Figure 2). One checks that the

balancing condition is veri�ed (see De�nition 1.3(iv)).

2Here we drop the �niteness assumption in De�nition 1.3 of tropical curves.
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Figure 2

Proposition 7.1. We have Area.G/ D 14 .

Proof. For each integer n � 1 , the segments from (i)-(v) contributes to Area.G/

by 3 �2�n; 2�.nC1/; 2�.nC1/; 5 �2�n; 5 �2�n respectively. Summing over all n � 1

we get Area.G/ D 14 .
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