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Abstract. Assuming a modest amount of background we give full proofs of the results by
Gleason, Montgomery–Zippin, and Yamabe that characterize Lie groups and generalized
Lie groups among topological groups. Our treatment involves nonstandard reasoning, and
we expose this method in an appendix.
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1. Introduction

A Lie group is a topological group G for which inversion x 7! x�1 W G ! G and
multiplication .x; y/ 7! xy W G�G ! G are analytic maps with respect to some
compatible real analytic manifold structure on its underlying topological space.
It is a remarkable fact that then there is only one such real analytic manifold
structure. �is uniqueness falls under the slogan

Algebra � Topology = Analysis.

Important Lie groups are the vector groups Rn , their compact quotients Rn=Zn ,
the general linear groups GLn.R/ , and the orthogonal groups On.R/ . For each of
these the group structure and the real analytic manifold structure is the obvious
one; for example, GLn.R/ is open as a subset of Rn

2 , and thus an open
submanifold of the analytic manifold Rn

2 . Here and throughout this paper we let
m and n range over N D ¹0; 1; 2; : : : º .

Hilbert’s 5th problem asks for a characterization of Lie groups that is free of
smoothness or analyticity requirements. A topological group is said to be locally
euclidean if some neighborhood of its identity is homeomorphic to some Rn .
A Lie group is obviously locally euclidean, and the most common version of
Hilbert’s 5th problem (H5) can be stated as follows:
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Is every locally euclidean topological group a Lie group?

A positive solution to this problem was achieved in the early �fties by the combined
e�orts of Gleason [3] and Montgomery & Zippin [15]. Yamabe improved their
results in [21] and [22]. Montgomery & Zippin exposed all of this and more in
their book [16] on topological transformation groups. Kaplansky has also a nice
treatment in Chapter 2 of [13]. Of course, the a�rmative solution of H5 gives
further substance to our crude slogan.

We are oversimplifying the story: Hilbert’s original formulation [8] is in terms
of a (local) group of homeomorphisms on a topological manifold. �is suggests
a problem that is still open: if a locally compact group G acts continuously and
faithfully on a topological manifold, is G necessarily a Lie group? See Serre [19]
and Palais [18] for brief accounts that discuss this more general form of H5. Serre
considers the state of H5 just before the decisive papers [3] and [15], and Palais
focuses on Gleason’s contribution.

Locally euclidean topological groups are certainly locally compact. (We
include being hausdor� as part of compactness and of local compactness.) Local
compactness yields a powerful analytic tool, namely Haar measure, and we shall
need it. From now on G denotes a locally compact (topological) group, with
identity 1 , or 1G if we want to indicate G .

A notion that has turned out to be central in the story is that of having no
small subgroups: G is said to have no small subgroups (brie�y: G has NSS)
if there is a neighborhood U of 1 in G that contains no subgroup of G other
than ¹1º . It is also useful to introduce a weaker variant of this property: G is
said to have no small connected subgroups (brie�y: G has NSCS) if there is a
neighborhood U of 1 in G that contains no connected subgroup of G other than
¹1º . Dimension theory also plays a modest role: call a topological space bounded
in dimension if for some n no subspace is homeomorphic to the unit cube Œ0; 1�n .
Recalling that throughout G is locally compact, we can now formulate the main
result as characterizing Lie groups among locally compact topological groups:

Main �eorem. Given G , the following are equivalent:

(1) G is a Lie group;

(2) G has NSS ;
(3) G is locally euclidean;

(4) G is locally connected and has NSCS ;
(5) G is locally connected and bounded in dimension.

In (1) and thoughout this paper we take the de�nition of “Lie group” from the
beginning of this Introduction: it only requires existence (not uniqueness) of a
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compatible real analytic manifold structure. While the identity in a Lie group has
a countable neighborhood base, such countability issues play no explicit role in
our treatment.

We say that G can be approximated by Lie groups if every neighborhood of
its identity contains a compact normal subgroup N of G such that G=N (with
its quotient topology) is a Lie group. �e following result, due to Yamabe, is
closely related to the Main �eorem, and is important in the structure theory of
locally compact groups.

�eorem. Every locally compact group has an open subgroup that can be
approximated by Lie groups.

Hirschfeld [9] used nonstandard methods to simplify some tricky parts of the
work by Gleason and Montgomery. �e present paper is meant to give an account
of [9] with further simpli�cations, and some minor corrections. We also include a
proof of Yamabe’s �eorem, and an appendix on nonstandard methods for readers
not familiar with them. In the rest of this introduction we give more history and
sketch the solution to (global) H5.

Further relevant history. �e clearcut formulation of H5 above became only
possible after basic topological notions had crystallized su�ciently in the 1920’s to
permit the de�nition of “topological group” by Schreier. �e fundamental tool of
Haar measure, on any locally compact group, became available soon afterwards.
Von Neumann used it to extend the Peter-Weyl theorem for compact Lie groups
to all compact groups, and this led to the solution of H5 for compact groups. (In
our treatment of H5 we use a weak form of this extended Peter-Weyl theorem.)
Another important partial solution of H5 is for the case of commutative G , due
to Pontrjagin, and we shall need this as well. Finally, we are going to use a result
of Kuranishi [14]:

if G has a commutative closed normal subgroup N such that N and
G=N are Lie groups, then G is a Lie group.

Gleason [4] and Iwasawa [11] establish this without assuming commutativity of
N , but we don’t need this stronger version and instead obtain it as a consequence
of the Main �eorem; see Section 2.

Goldbring [5] elaborated Hirschfeld’s approach to solve a�rmatively the local
form of H5. (A solution to local H5 was claimed already in [12], but about
20 years ago it was found that this paper was seriously wrong; see [17].)

Gromov [6] made a remarkable use of the results from the 1950’s around H5
in his proof that a �nitely generated group has polynomial growth if and only if
the group has a nilpotent subgroup of �nite index; see also [2].
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Recently, Hrushovski [10] and Breuillard-Green-Tao [1] used the solution of
H5 (even the local form) and Yamabe’s theorem to elucidate the structure of �nite
approximate groups. In this connection, and for another full account of H5, see
also Tao [20].

One-parameter subgroups. Lie theory provides a precious guide towards solving
H5. It tells us that the tangent vectors at the identity of a Lie group are in a
natural bijective correspondence with the 1 -parameter subgroups of the Lie group.
While tangent vectors require a manifold to live on, the notion of 1 -parameter
subgroup makes sense in any topological group.

A 1 -parameter subgroup (or 1 -ps) of G is a continuous group morphism R! G .
�e trivial 1 -parameter subgroup o of G is de�ned by o.t/ D 1 2 G for all
t 2 R . We set

L.G/ WD ¹� W R! Gj � is a 1 -ps of Gº:

For r 2 R and � 2 L.G/ we de�ne r� 2 L.G/ by .r�/.t/ WD �.rt/ , and we
also denote .�1/� by �� . Note that then 0� D o , 1� D � , �� D ��1 , and
r.s�/ D .rs/� for r; s 2 R and � 2 L.G/ . �e operation

.r; �/ 7! r� W R � L.G/! L.G/

will be referred to as scalar multiplication.

�e case of Lie groups. Suppose G is a Lie group. �en each � 2 L.G/

is analytic as a function from R to G , and thus determines a velocity vector
� 0.0/ 2 T1.G/ at the point 1 2 G . �is gives the bijection

� 7! � 0.0/ W L.G/! T1.G/

mentioned above. It respects scalar multiplication: .r�/0.0/ D r� 0.0/ . �e addition
operation on L.G/ that makes this bijection an isomorphism of vector spaces
over R is as follows: for �; � 2 L.G/ and s ranging over R>0 ,

.� C �/.t/ D lim
s!1

�
�.1=s/�.1=s/

�Œst�
:

We make L.G/ a real analytic manifold such that the R -linear isomorphisms
L.G/ Š Rn , with n WD dimG D dimR L.G/ , are analytic isomorphisms. �en
the so-called exponential map

� 7! �.1/ W L.G/! G

yields an analytic isomorphism from an open neighborhood of o in L.G/ onto
an open neighborhood of 1 in G .
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Sketch why NSS implies Lie. �ese facts about Lie groups suggest that we
should try to establish L.G/ as a substitute tangent space at 1 , towards �nding a
compatible manifold structure on G . Note in this connection that the exponential
map � 7! �.1/ W L.G/! G is de�ned for any G . �is is our clue to proving the
key implication NSS) Lie in the Main �eorem.

Indeed, we shall take the following steps towards proving this implication.
Suppose G has NSS.
(1) Show that for any �; � 2 L.G/ there is an � C � 2 L.G/ given by

.� C �/.t/ D lim
s!1

�
�.1=s/�.1=s/

�Œst�
; .s ranging over R>0/

and that this addition operation and the scalar multiplication make L.G/ a
vector space over R .

(2) Equip L.G/ with its compact-open topology (de�ned below) and show that
this makes L.G/ a topological vector space.

(3) Show that the exponential map � 7! �.1/ W L.G/ ! G maps some
neighborhood of o in L.G/ homeomorphically onto a neighborhood of
1 in G . �en local compactness of G yields local compactness of L.G/

and hence the �nite-dimensionality of L.G/ as a vector space over R . It
follows that G is locally euclidean.

(4) Replacing G by the connected component of 1 , we can assume that G
is connected. �en the adjoint representation (de�ned below) of G on the
�nite-dimensional vector space L.G/ has as its kernel a commutative closed
normal subgroup N of G , and yields an injective continuous group morphism
G=N ! GLn.R/ . Since N has NSS, it is locally euclidean by (3). But N is
also commutative, and hence a Lie group (Pontrjagin). �e injective continous
group morphism G=N ! GLn.R/ makes G=N a Lie group (E. Cartan, von
Neumann). Apply the Kuranishi theorem to conclude that G is a Lie group.

Step (1) is tricky, and requires ingenious constructions due to Gleason and Yamabe.
Step (2) is easy, and step (3) is of intermediate di�culty. Step (4) is a reduction
of the problem to a situation that that was well-understood before 1950. New
in our treatment is that we carry out steps (1) and (2) without requiring NSS:
local compactness of G is enough. Some of (3) and (4) can also be done in this
generality, and this is the �rst thing we shall take care of in the next section.

Sketch why every locally euclidean G has NSS. �is is the other key
implication in the Main �eorem, and it passes through the other equivalent
conditions (4) and (5) in the Main �eorem. �is goes roughly as follows. When
we have done step (1) above for all G , without assuming NSS, we can use this
to prove the following implications:
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� if G is locally connected and has NSCS, then G has NSS;
� if G does not have NSCS, then G contains a homeomorphic copy of Œ0; 1�n

for all n .
It only remains to observe that if G is locally euclidean, then G is locally
connected (trivially), and bounded in dimension (by Brouwer).

Acknowledgement. We thank Emmanuel Breuillard for suggesting that our
original seminar notes from 2007 might be worth publishing, and the referee
for many comments that were helpful in improving the exposition.

2. Preliminaries

�roughout this paper G and H are locally compact groups. A set U � G
is said to be symmetric if U�1 D U . Given a closed normal subgroup N of G
we give G=N its quotient topology; it makes G=N a locally compact group. We
also give R its usual topology, and each Rn the corresponding product topology.
Any n -dimensional vector space over R is given the topology that makes the
R -linear isomorphisms with Rn into homeomorphisms.

In this section we state some basic facts on L.G/ and its compact-open
topology. We also list some some elementary facts about locally compact groups
having NSS, and introduce the nonstandard setting that will enable an e�cient
account of the solution of H5.

Generalities on one-parameter groups.

Lemma 2.1. Suppose � 2 L.G/ and � ¤ o . �en either ker � D ¹0º or ker � D Zr

with r 2 R>0 . In the �rst case � maps each bounded interval .�a; a/ .a 2 R>0/

homeomorphically onto its image in G . In the second case � maps the interval
.�r
2
; r
2
/ homeomorphically onto its image in G .

Proof. �is follows from two well-known facts: a closed subgroup of the additive
group of R di�erent from ¹0º and R is of the form Zr with r 2 R>0 , and
any continuous bijection from a compact space onto a hausdor� space is a
homeomorphism.

For �; � 2 L.G/ we say that � C � exists if lims!1
�
�.1=s/�.1=s/

�Œst� exists in
G for all t 2 R , with s ranging over R>0 . In that case the map

t 7! lim
s!1

�
�.1=s/�.1=s/

�Œst�
W R! G

is a 1 -ps of G , and we de�ne � C � to be this 1 -ps.
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Lemma 2.2. Let �; � 2 L.G/ and p; q 2 R .

(1) � C o exists and equals � ;

(2) p� C q� exists and equals .p C q/� ;

(3) if � C � exists, then �C � exists and equals � C � ;

(4) if � C � exists, then p� C p� exists and equals p.� C �/ .

Proof. We leave (1) and (2) to the reader. Note that (2) yields that � C .��/
exists and equals o . For (3), use that for s 2 R>0 and a D �.1=s/; b D �.1=s/

we have ba D b.ab/b�1 , so .ba/n D b.ab/nb�1 . Item (4) is easy when p > 0 .
To reduce the case p < 0 to this case one �rst shows that if � C � exists, then
.��/C .��/ exists, and equals �.� C �/ .

We de�ne the adjoint action of G on L.G/ to be the left action

.a; �/ 7! a�a�1 W G � L.G/! L.G/; .a�a�1/.t/ WD a�.t/a�1;

of G on the set L.G/ . �en each a 2 G gives a bijection

Ad.a/ W L.G/! L.G/; Ad.a/.�/ WD a�a�1;

and for r 2 R and � 2 L.G/ we have Ad.a/.r�/ D r Ad.a/.�/ . If �; � 2 L.G/

and � C � exists, then Ad.a/.�/CAd.a/.�/ exists and equals Ad.a/.� C �/ .

Corollary 2.3. Suppose that �C� exists for all �; � 2 L.G/ , and that the binary
operation C on L.G/ is associative. �en L.G/ with C as its addition and the
usual scalar multiplication is a vector space over R with o as zero element, and
we have a group morphism a 7! Ad.a/ W G ! Aut

�
L.G/

�
of G into the group

of automorphisms of the vector space L.G/ .

In the situation of this corollary the map a 7! Ad.a/ W G ! Aut
�
L.G/

�
is called

the adjoint representation of G .
Next, consider a continuous group morphism � W G ! H . �en we have a

map
L.�/ W L.G/! L.H/; L.�/.�/ WD � ı �;

and L.�/.r�/ D rL.�/.�/ for all r 2 R and � 2 L.G/ . Also, if �; � 2 L.G/ and
� C � exists, so does L.�/.�/C L.�/.�/ and

L.�/.� C �/ D L.�/.�/C L.�/.�/:

If � is injective, so is L.�/ . In particular, if G is a subgroup of H with the
subspace topology and � is the inclusion map, then we identify L.G/ with a
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subset of L.H/ via L.�/ . With N D ker.�/ (a closed subgroup of G ) and oH

the trivial 1 -ps of H we have

L.�/�1.oH / D L.N /:

Note that assigning to each G the set L.G/ and to each � as above the map L.�/

yields a functor L from the category of locally compact groups and continuous
group morphisms into the category of sets.

Generalities on NSS. By “NSS-group” we mean a locally compact group that
has NSS. Here are some examples of NSS-groups, and some basic facts about
them that we shall use freely:
(1) if G is discrete, then G has NSS;
(2) the additive group of R has NSS;
(3) GLn.R/ has NSS;
(4) if G1; : : : ; Gn are NSS-groups, so is G1 � � � � �Gn ;
(5) if � W G ! H is a continuous group morphism, � is injective on a

neighborhood of 1 in G , and H has NSS, then G has NSS.
(6) if N is a closed normal subgroup of G such that N and G=N have NSS,

then G has NSS.
Only the proof of (3) might not be obvious. Hint: Suppose A 2 GLn.R/ is close
to the identity I of GLn.R/ , but A ¤ I . �en A D ICE where E 2 Mn.R/ is
close to but di�erent from the zero matrix. Now use that

Am D ICmE C
 
m

2

!
E2 C � � � CEm

is close to ICmE (for suitable m ). Note also that the Main �eorem and (6)
yield the Gleason–Iwasawa result mentioned in the Introduction.

�e nonstandard setting. A careful reading of the appendix should give enough
background to work in this setting. Here we just �x notations and terminology.
To each relevant “basic” set S corresponds a set S� � S , the star extension
of S . Among these basic sets are R; G , their power sets P.R/;P.G/ , and even
power sets P.R�G/ of certain cartesian products, as needed. We make the usual
Mostowski identi�cation of the star extension P.R/� with a subset of P.R�/ ,
and likewise with other powersets. �us each X � R extends to X� , an internal
subset of R� . Also, any (relevant) relation R and function F on these basic sets
extends to a relation R� and function F � on the corresponding star extensions
of these basic sets. For example, the linear ordering < on R extends to a linear
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ordering <� on R� , and the group operation p W G �G ! G of G extends to a
group operation p� W G� �G� ! G� . For the sake of readability we often drop
the star when indicating the star extension of a relation or function between these
basic sets. As an example, for x; y 2 R� we use xC y and x < y to abbreviate
the cumbersome expressions x C� y and x <� y ; likewise, the star extension
�� W R� ! G� of a 1 -ps � W R! G is usually indicated just by � .

As usual in nonstandard reasoning, we leave it mainly to the context as to
what are the basic sets and basic relations among them: just take what is needed
by the arguments. As to the degree of saturation of the nonstandard extension, it is
enough to assume �C -saturation where � is any in�nite cardinal such that � � #S
for each basic set S . Actually, we use � -richness rather than �C -saturation, since
in the setting of the appendix � -richness is easier to de�ne but equivalent to
�C -saturation.

Given an ambient hausdor� space S and s 2 S , the monad of s , notation:
�.s/ , is by de�nition the intersection of all U � � S� with U a neighborhood
of s in S ; think of the elements of �.s/ as the points of S� that are in�nitely
close to s . �e points of S� that are in�nitely close to some s 2 S are called
nearstandard, and Sns is the set of nearstandard points of S� :

Sns WD
[
s2S

�.s/:

In particular, S � Sns . Since S is hausdor�, �.s/ \ �.s0/ D ¿ for distinct
s; s0 2 S . �us we can de�ne the standard part st.x/ of x 2 Sns to be the unique
s 2 S such that x 2 �.s/ . We also introduce the equivalence relation � on Sns
whose equivalence classes are the monads:

x � y W() st.x/ D st.y/ (“x and y are in�nitely close”):

Notation: for U � S we let cl.U / and int.U / be the closure of U and the
interior of U in the space S . We prove here two well-known basic facts.

Lemma 2.4. Suppose U � S has compact closure cl.U / . �en U � � Sns and
st.U �/ D cl.U / .

Proof. Let x 2 U � , and suppose x … Sns . �en each a 2 cl.U / has a
neighborhood Ua in S such that x … U �a . Take a1; : : : ; an 2 cl.U / such that
cl.U / � Ua1 [ � � �[Uan . �en U � Ua1 [ � � �[Uan , so x 2 U � � U �a1 [ � � �[U

�
an
,

a contradiction. �is argument gives U � � Sns . Let again x 2 U � . �en for each
neighborhood V of st.x/ in S we have x 2 V � , so V � \ U � ¤ ¿ , and thus
V \U ¤ ¿ . �us st.x/ 2 cl.U / . Conversely, let a 2 cl.U / . �en V \U ¤ ¿ for
every neighborhood V of a in S , so V � \ U � ¤ ¿ for such V . By richness
this gives �.a/ \ U � ¤ ¿ , so a 2 st.U �/ .
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Lemma 2.5. Suppose S is a regular hausdor� space and X is an internal subset
of S� such that X � Sns . �en st.X/ � S is compact.

Proof. Let for each point p 2 st.X/ an open neighborhood Up � S of p

be given. It su�ces to show that then �nitely many of the Up cover st.X/ .
By regularity we can pick for each p 2 st.X/ an open neighborhood Vp � S

of p such that cl.Vp/ � Up (and thus st.V �p / � Up ). From X � Sns we
obtain X �

S
p2st.X/ V

�
p , which by richness yields X � V �p1 [ � � � [ V

�
pn

with
p1; : : : ; pn 2 st.X/ . �en st.X/ � Up1 [ � � � [ Upn .

Note that Gns D
S
g2G �.g/ is a subgroup of G� , and that the standard part

map st W Gns ! G is a group morphism that is the identity on G . We let
� WD �.1/ D ker.st/ denote the normal subgroup of in�nitesimals of Gns . �e
equivalence relation � on Gns is given by:

a � b () ab�1 2 �; .a; b 2 Gns/:

Recall from the introduction that m; n range over N . In addition we let i; j
range over N� , � over N� n N , and k over Z� . Also, � will always denote
a positive in�nite element of R� . We adopt Landau’s “big O” and “little o”
notation in the following way: for x; y 2 R� with y > 0 , x D o.y/ means that
jxj < y=n for all n � 1 , and x D O.y/ means that jxj < ny for some n � 1 .
We also adapt it to G as follows:

OŒ�� D OG Œ�� WD
®
a 2 �j ai 2 � for all i D o.�/

¯
;

oŒ�� D oG Œ�� WD
®
a 2 �j ai 2 � for all i D O.�/

¯
D
®
a 2 �j ai 2 � for all i � �/

¯
:

So oŒ�� � OŒ�� � � � Gns , and oŒ�� and OŒ�� are closed under a 7! a` , for
each ` 2 Z ; in particular, these sets are symmetric. By �eorem 5.8 below, oŒ��
and OŒ�� are normal subgroups of Gns . At this point it is clear that if a 2 Gns
and b 2 OŒ��; c 2 oŒ�� , then aba�1 2 OŒ�� and aca�1 2 oŒ�� .

Lemma 2.6. If a 2 OŒ�� , then ai 2 Gns for all i D O.�/ .

Proof. Let a 2 OŒ�� , and take a compact symmetric neighborhood U of 1 in
G . If ai 2 U � for all i D O.�/ , then ai 2 Gns for all i D O.�/ , as desired.
Suppose aj … U � for some j D O.�/ , and take j minimal with this property.
�en ai 2 Gns with st.ai / 2 U for i D 0; : : : ; j . We cannot have j D o.�/ ,
so � D O.j / . �erefore, if i D O.�/ , then i D nj C i 0 with i 0 < j , and thus
ai D .aj /nai

0

2 Gns .
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�e next lemma indicates why OŒ�� is of interest: its elements generate the
one-parameter subgroups of G in a very intuitive way.

Lemma 2.7. Let a 2 OŒ�� . �en the map �a W R! G de�ned by �a.t/ WD st.aŒ�t�/
is a 1 -ps of G . Moreover:

(1) �a` D `�a for all ` 2 Z ;

(2) b 2 � H) �bab�1 D �a ;

(3) �a D o () a 2 oŒ�� ;

(4) L.G/ D ¹�bj b 2 OŒ��º .

Proof. It is clear that �a is a group morphism. To show continuity at 0 2 R ,
let U be a neighborhood of 1 in G . Take a neighborhood V of 1 in G such
that cl.V / � U . Since ak 2 � � V � for all k D o.�/ , we have n � 1 such
that ak 2 V � whenever jkj < �=n . Also ak 2 Gns for such k , so st.ak/ 2 cl.V /
whenever jkj < �=n . Hence �a.t/ D st.aŒ�t�/ 2 U whenever t 2 R and jt j < 1=n .
�e remaining assertions follow easily. In connection with (4) we note that for
� 2 L.G/ and b WD �.1=�/ we have b 2 OŒ�� and � D �b .

�e compact-open topology. Let P be a locally compact space, Q a hausdor�
space, and C.P;Q/ the set of continuous maps P ! Q . For compact K � P
and open U � Q , put

O.K;U / WD
®
f 2 C.P;Q/j f .K/ � U

¯
:

We equip C.P;Q/ with its compact-open topology; this is the topology on
C.P;Q/ that has the �nite intersections of these sets O.K;U / as basic open
sets; it makes C.P;Q/ into a hausdor� space, and makes the evaluation map

ˆ W C.P;Q/ � P ! Q; ˆ.f; p/ WD f .p/;

continuous. Let A be any subset of P and F be a closed subset of Q . �en®
f 2 C.P;Q/j f .A/ � F

¯
is closed, since its complement in C.P;Q/ is the union over all a 2 A of the
open sets ®

f 2 C.P;Q/j f .a/ … F
¯
:

A nonstandard view of the compact-open topology is as follows: Let f 2 C.P;Q/
and g 2 C.P;Q/� ; then

g 2 �.f / () g.p0/ 2 �
�
f .p/

�
for all p 2 P and p0 2 �.p/:
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We apply this to the case where P D R is the real line and Q D G . �en L.G/

is closed in C.R; G/ , and below L.G/ is given the topology induced on it by
the (compact-open) topology of C.R; G/ . Let I WD Œ�1; 1� � R . Let � 2 L.G/ .
�en every neighborhood U of 1 in G determines a neighborhood

N�.U / WD
®
� 2 L.G/j �.t/ 2 �.t/U for all t 2 I

¯
of � in L.G/ , and the collection®

N�.U /j U is a neighborhood of 1 in G
¯

is a neighborhood base of � in L.G/ . (�ese facts are easy to verify using the
above characterization of monads in the compact-open topology.)

Lemma 2.8. �e following maps are continuous:

(1) the exponential map � 7! �.1/ W L.G/! G ;

(2) the scalar multiplication map .r; �/ 7! r� W R � L.G/! L.G/ ;

(3) the adjoint action map G � L.G/! L.G/ .

Proof. Item (1) follows from the continuity of evaluation in the compact-open
topology. To prove (2), let � 2 L.G/ and r 2 R , and let � 0 2 L.G/� and r 0 2 R�

be such that � 0 2 �.�/ and r 0 2 �.r/ ; it su�ces to show that then r 0� 0 2 �.r�/ .
Let t 0 2 R� with t 0 2 �.t/; t 2 R ; then r 0t 0 2 �.rt/ , so

.r 0� 0/.t 0/ D � 0.r 0t 0/ 2 �
�
�.rt/

�
D �

�
.r�/.t/

�
:

�is argument shows that r 0� 0 2 �.r�/ , as desired.

Lemma 2.9. Suppose U � G is a compact neighborhood of 1 in G and contains
no subgroups of G other than ¹1º . �en the set

K WD
®
� 2 L.G/j �.I / � U

¯
is a compact neighborhood of o in L.G/ .

Proof. Let � 2 K� , that is, � 2 L.G/� and �.I �/ � U� . If � 2 R� is
in�nitesimal, then st

�
�.Z�/

�
� U is a subgroup of G , so �.�/ 2 � . Hence

for each neighborhood V of 1 in G there is n > 0 such that �.r/ 2 V � for all
r 2 R� with jr j < 1=n . Consequently, � W R! G de�ned by �.t/ D st.�.t// is
a 1 -ps with �.I / � U , and � 2 �.�/ .
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3. Generating compact connected subgroups

�roughout this section we let a range over G� . We say that a is degenerate
if ai 2 � for all i . (Recall that i ranges over N� .)

Lemma 3.1. G has NSS i� G� has no degenerate elements other than 1 .

Proof. We show the contrapositives. Suppose G does not have NSS. Take an
internal neighborhood U � � of 1 in G� . �en U must contain a nontrivial
internal subgroup H of G� , and so any a 2 H is degenerate.

Next, assume a ¤ 1 is degenerate. Let U be any neighborhood of 1 in G .
�en aZ� � � � U � , so U � contains a nontrivial internal subgroup of G� , and
thus U contains a nontrivial subgroup of G .

At this stage we do not restrict attention to NSS-groups, so we do allow
degenerate elements ¤ 1 in � . Nondegenerate elements in � give rise to
nontrivial connected subgroups of G , by the following elementary fact:

Lemma 3.2. Let a1; : : : ; a� be an internal sequence in G� such that ai 2 �
and a1 � � � ai 2 Gns for all i 2 ¹1; : : : ; �º . �en the set

S WD
®
st.a1 � � � ai /j 1 � i � �

¯
� G

is compact and connected .and contains 1/ .

Proof. �e compactness of S follows from Lemma 2.5. Assume S is not
connected. �en we have disjoint open subsets U and V of G such that
S � U [ V and S meets both U and V . We can assume that 1 2 U , so
a1 2 U

� . �ere are i � � such that st.a1 � � � ai / 2 V , and a1; : : : ; ai 2 V
�

for such i . Take i � � minimal such that a1 � � � ai 2 V � . �en i � 2 and
a1 � � � ai�1 2 U

� . Now a WD st.a1 � � � ai�1/ D st.a1 � � � ai / 2 S . If a 2 U , this
gives a1 � � � ai 2 U

� , and if a 2 V , it gives a1 � � � ai�1 2 V
� , and we have a

contradiction in either case.

In the rest of this section U is a compact symmetric neighborhood of 1 2 G .
If aN� � U � (in particular, if a is degenerate), then we set ordU .a/ D 1 ;
if aN� 6� U � , then we let ordU .a/ be the largest j such that ai 2 U � for all
i � j . �us ordU .a/ D 0 i� a … U � , and ordU .a/ > N if a 2 � . By convention,
k D o.1/ for every k .

Lemma 3.3. Suppose a 2 � and ai … � for some i D o
�
ordU .a/

�
. �en U

contains a nontrivial connected subgroup of G .
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Proof. By the previous lemma the set

GU .a/ WD
°
st.ak/j k D o

�
ordU .a/

�±
is a union of connected subsets of U , each containing 1 , and is thus itself a
connected subset of U . It is also a subgroup of G .

An element a 2 � is said to be U -pure if for some � we have a 2 OŒ�� and
a�C1 … U � ; note that then a is nondegenerate, ordU .a/ ¤ 1 , and the above
holds for � D ordU .a/ . If U contains no nontrivial connected subgroup of G ,
then by Lemma 3.3 every nondegenerate a 2 � is U -pure.

An element a 2 � is said to be pure if it is V -pure for some compact
symmetric neighborhood V of 1 in G . �us:

Corollary 3.4. If G has NSCS , then every nondegenerate a 2 � is pure.

Lemma 3.5. Let a 2 � . �en a is pure i� there is � such that a 2 OŒ�� and
a� … � .

Proof. If a is U -pure, say, then for � D ordU .a/ we have a 2 OŒ�� and a� … � .
Conversely, let � be such that a 2 OŒ�� and a� … � . If ordU .a/ D O.�/ , then
a is U -pure. If � D O

�
ordU .a/

�
, then a� 2 Gns , and we can take a compact

symmetric neighborhood V of 1 in G such that a� … V � , and then a is
V -pure.

Let Q range over internal symmetric subsets of G� such that 1 2 Q � � .
We de�ne Qi to be the internal subset of G� consisting of all a1 � � � ai where
a1; : : : ; ai is an internal sequence in Q . �us

Q1 WD
[
i

Qi

is the internal subgroup of G� internally generated by Q .
We say that Q is degenerate if Q1 � � . If Q1 6� U � , then we let

ordU .Q/ be the largest j such that Qj � U � , and if Q1 � U � , then we set
ordU .Q/ WD 1 . �us e WD ordU .Q/ > N . We set

GU .Q/ WD
®
st.a/j a 2 Qi for some i D o.e/

¯
D

[
iDo.e/

st.Qi /:

Recall that int.U / denotes the interior of U in G .

Lemma 3.6. If e ¤1 , then st.Qe/ 6� int.U / .
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Proof. Assume e ¤ 1 , and take b 2 Qe such that bq … U � for some q 2 Q .
One checks easily that then st.b/ … int.U / .

Lemma 3.7. GU .Q/ is a compact connected subgroup of G contained in U . In
particular, if Qj 6� � for some j D o.e/ , then U contains a nontrivial compact
connected subgroup of G .

Proof. �e set GU .Q/ is the union of the increasing family of subsets st.Qj / of
G with j D o.e/ . We claim: there exists j0 D o.e/ such that st.Qj / D st.Qj0/

for all j D o.e/ with j � j0 . Suppose there were no such j0 . �en trans�nite
recursion yields a (well-ordered) set J of elements j D o.e/ such that (a) for
all j 2 J there is a gj 2 st.Qj / with gj … st.Qi / whenever i 2 J; i < j , and
(b) for every i D o.e/ there is a j 2 J with i < j . From (a) we get #J � #G ,
where #S denotes the cardinality of a set S . Since for every j 2 J and n � 1

there is an i with i > j and i < e=n and we are in a � -rich structure with
� � #G , we get i > J with i D o.e/ , but this contradicts (b). �is proves our
claim.

Let j0 be as in the claim. �en GU .Q/ D st.Qj0/ , so GU .Q/ is compact
by Lemma 2.5. As in the proof of Lemma 3.3, GU .Q/ is a union of connected
subsets of U , each containing 1 , and is thus itself a connected subset of U . It
is also a subgroup of G .

4. Compact groups

�eorem 4.1. Let G be compact and U an open neighborhood of 1 in G . �en
there is a continuous injective group morphism G=N ! GLn.R/ for some n and
some closed normal subgroup N of G contained in U .

Proof. �e Peter-Weyl theorem yields for any a ¤ 1 in G a continuous group
morphism �a W G ! GLna.R/ that does not have a in its kernel Na . As a varies
over G nU , the open sets G nNa cover G nU , so there are a1; : : : ; am 2 G nU
such that N WD Na1 \ � � � \Nam is contained in U . �en the desired result holds
for this N and n WD na1 C � � � C nam .

Corollary 4.2. Let G be compact and U a neighborhood of 1 in G . �en there
is a closed normal subgroup N of G contained in U and an open set V in G

such that N � V � U and every subgroup of G contained in V is contained
in N .

Proof. We can assume that U is open, and then we take N as in the previous
theorem, so that G=N has NSS. Take an open neighborhood W of the identity
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in G=N that contains no nontrivial subgroup of G=N . Let V WD ��1.W / \ U ,
where � W G ! G=N is the natural map. �en V has the desired property.

5. Gleason–Yamabe Lemmas and their Consequences

�is is the most technical part of the story. �e leading idea is to make G

act by isometries on its space of real-valued continuous functions with compact
support, and to use the Haar integral on this space.

Gleason–Yamabe Lemmas. �roughout this subsection we �x a compact sym-
metric neighborhood U of 1 in G and a continuous function � W G ! Œ0; 1� such
that

�.1/ D 1; �.x/ D 0 for all x 2 G n U :

Let Q � U be symmetric with 1 2 Q and let e be a positive integer with
Qe � U . De�ne the function � D �Q;e W G ! Œ0; 1� by

(i) �.1/ D 0 ;
(ii) �.x/ D i=.e C 1/ if x 2 Qi nQi�1; 1 � i � e ;
(iii) �.x/ D 1 if x … Qe .

�en for all x 2 G ,
(iv) �.x/ D 1 if x … U ;
(v) j�.ax/ ��.x/j � 1=e for a 2 Q .
Now use � to smooth 1 �� : de�ne � D �Q;e W G ! Œ0; 1� by

�.x/ D sup
y2G

�
1 ��.y/

�
�.y�1x/ D sup

y2U

�
1 ��.y/

�
�.y�1x/:

�e following properties are easy consequences:

(1) � is continuous, and �.x/ D 0 outside U2 ;
(2) 0 � � � � � 1 ;
(3) j�.ax/ � �.x/j � 1=e for a 2 Q ;

For continuity of � , note that if a 2 � and x 2 G , then �.xa/ � �.x/ is
in�nitesimal in R� . To prove (3), let a 2 Q , and note that for all x; y 2 G ,ˇ̌�

1 ��.a�1y/
�
�
�
1 ��.y/

�ˇ̌
� 1=e;

and y�1ax D .a�1y/�1x , soˇ̌̌�
1 ��.y/

�
�.y�1ax/ �

�
1 ��.a�1y/

�
�
�
.a�1y/�1x

�ˇ̌̌
� 1=e;
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which gives (3).

Let C be the real vector space of continuous functions G ! R with compact
support, with norm given by kf k D supx2G jf .x/j . We have a left action
G � C ! C of G on C given by

.a; f / 7! af; .af /.x/ D f .a�1x/:

More suggestively, .af /.ax/ D f .x/ for a; x 2 G , f 2 C . It is clear that for
a 2 G the map f 7! af is an R -linear isometry of C onto itself, and thus,

kabf � f k � kaf � f k C kbf � f k .a; b 2 G; f 2 C/:

We have the following useful equicontinuity result:
(4) for each " 2 R>0 there is a neighborhood V" of 1 in G , independent of

.Q; e/ , such that ka� � �k � " for all a 2 V" .
To see why, let " 2 R>0 . Uniform continuity of � gives a neighborhood U of
1 in G such that j�.g/ � �.h/j < " for all g; h 2 G with gh�1 2 U . Take a
neighborhood V" of 1 in G such that y�1ay 2 U for all .y; a/ 2 U � V" . �en
j�.y�1ax/ � �.y�1x/j < " for x 2 G; y 2 U and a 2 V" . �is gives (4).

A second smoothing will be done by integration. Take the unique left-invariant
Haar measure � on G such that �.U2/ D 1: (Left-invariance means thatR
f .ax/d�.x/ D

R
f .x/d�.x/ for f 2 C and a 2 G and f 2 C .) �en

(5) 0 �
R
�.x/d�.x/ � 1 , by (1) and (2).

We now introduce the function

� D �Q;e W G ! R; �.x/ WD

Z
�.xu/�.u/ d�.u/:

�us � , a convolution of two functions in C , is continuous, and we have:
(6) �.x/ D 0 outside U4 ;
(7) �.1/ �

R
�.u/2 d�.u/ > 0 , by (2);

(8) ka� � �k � ka� � �k for all a 2 G ;
(9) if a 2 Q , then ka� � �k � 1=e , by (3) and (8).
�e signi�cance of (7) is that the positive lower bound

R
�.u/2 d�.u/ on �.1/

is independent of .Q; e/ .

Lemma 5.1. Let " 2 R>0 . �en there is a neighborhood U D U" � U of 1 in
G , independent of .Q; e/ , such that for all a 2 Q and b 2 U ,b � .a� � �/ � .a� � �/ � "

e
:
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Proof. Let a 2 Q , b 2 U . �en, with x 2 G and y WD b�1x ,

.a� � �/.x/ D

Z �
�.a�1xu/ � �.xu/

�
�.u/d�.u/

b.a� � �/.x/ D .a� � �/.y/ D

Z �
�.a�1yu/ � �.yu/

�
�.u/ d�.u/:

By the left-invariance of our Haar measure we can replace u by x�1yu in the
function of u integrated in the �rst identity, so

.a� � �/.x/ D

Z �
�.a�1yu/ � �.yu/

�
�.x�1yu/ d�.u/:

Taking di�erences gives�
b � .a� � �/ � .a� � �/

�
.x/ D

Z �
.a� � �/.yu/

��
.� � y�1x�/.u/

�
d�.u/:

If the left hand side here is nonzero, then x 2 U4 or a�1x 2 U4 or b�1x 2 U4

or a�1b�1x 2 U4 , and thus x 2 U6 in all cases. Also y�1x D x�1bx , so by (4)
we can take the neighborhood Uc;" � U of 1 in G so small that for all b 2 U"
and x 2 U6 we have y�1x 2 U and k� � y�1x�k < "=�.U3/ . �en U" has the
desired property.

Lemma 5.2. With " 2 R>0 , let U D U" be as in the previous lemma and let
a 2 Q and n � 1 be such that ai 2 U for i D 0; : : : ; n . �en.an� � �/ � n.a� � �/ � n"

e
:

Proof. We have an� � � D
Pn�1
iD0 a

i .a� � �/ , so

.an� � �/ � n.a� � �/ D

n�1X
iD0

ai .a� � �/ � .a� � �/:

By the previous lemma we have for i D 0; : : : ; n � 1 ,ai .a� � �/ � .a� � �/ � "

e
;

which gives the desired result by summation.

Suppose now that Q is a symmetric internal subset of G� with 1 2 Q and
Q � � . Let e 2 N� be such that e � 1 and Qe � U� . �en the constructions and
results above transfer automatically to the nonstandard setting and yield internally
continuous functions

� D �Q;e W G
�
! Œ0; 1��; � D �Q;e W G

�
! R�

satisfying the internal versions of (1)–(9) and Lemmas 5.1 and 5.2. With these
assumptions we have
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Corollary 5.3. Suppose a 2 Q , � D O.e/ , and a 2 oŒ�� . �en

�ka� � �k � 0:

Proof. By Lemma 5.2 we have for each " 2 R>0 ,

k.a�� � �/ � �.a� � �/k �
�"

e
;

so the lefthand side in this inequality is in�nitesimal. Also, by (8) and (4) we
have ka�� � �k � ka�� � �k , so ka�� � �k is in�nitesimal.

Consequences of the Gleason–Yamabe Lemmas.

Lemma 5.4. Let a1; : : : ; a� be an internal sequence in G� such that all ai 2 oŒ�� .
�en a1 � � � a� 2 � .

Proof. Put Q WD ¹1; a1; : : : ; a� ; a�11 ; : : : ; a�1� º , and towards a contradiction, sup-
pose that Q� 6� � . Take a compact symmetric neighborhood U of 1 in G

such that Q�C1 6� U � , so ordU .Q/ � � . By decreasing � if necessary, and Q

accordingly, we arrange that ordU .Q/ D � or ordU .Q/ D � � 1 .
Consider �rst the special case that Qi � � for all i D o.�/ . (�is occurs if G

has NSCS). Take b 2 Q� such that st.b/ ¤ 1 , and then take a compact symmetric
neighborhood U � U of 1 in G such that st.b/ … U4 , and put e WD ordU .Q/ ,
so � D O.e/ . �e previous subsection yields an internally continuous function
� D �Q;e W G

� ! R� satisfying the internal versions of (6)-(9) and Lemma 5.3.
In particular, �.x/ D 0 outside .U�/4 (hence �.b�1/ D 0 ), and �.1/ is not
in�nitesimal. �en kb� � �k is not in�nitesimal. Take an internal sequence
b1; : : : ; b� in Q such that b D b1 � � � b� . �en Lemma 5.3 yields

kb� � �k �

�X
iD1

kbi� � �k � 0;

and we have a contradiction.
Next, assume that Qi 6� � for some i D o.�/ . �en we set

H WD GU .Q/ D
®
st.b/ j b 2 Qi for some i D o.�/

¯
;

so H is a nontrivial compact subgroup of G contained in U , by Lemma 3.7.
By Corollary 4.2 we can take a proper closed normal subgroup N of H and a
compact symmetric neighborhood V � U of 1 in G such that N � int.V / and
every subgroup of H contained in V is contained in N . Put � WD ordV .Q/ , so
N < � � � , and we have the compact subgroup

GV .Q/ D
®
st.b/ j b 2 Qi for some i D o.�/

¯
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of H with GV .Q/ � V , so GV .Q/ � N . By Lemma 3.6 we can take b 2 Q�

with st.b/ … int.V / . �en st.b/ … N , so we can take a compact symmetric
neighborhood U of 1 in G such that N � int.U/ , U4 � V and st.b/ … U4 .

Put e WD ordU .Q/ . If e D o.�/ , then st.Qe/ � GV .Q/ � N , contradicting
st.b/ … N . �is shows � D O.e/ . �e rest of the proof now proceeds as in
the special case considered earlier, with � replaced by � , and b1; : : : ; b� by an
internal sequence b1; : : : ; b� in Q such that b D b1 � � � b� .

Corollary 5.5. Let a1; : : : ; a� be an internal sequence in G� such that all
ai 2 OŒ�� . �en a1 � � � a� 2 Gns .

Proof. If a1 � � � a� 2 U� , we are done. Assume otherwise. Take the least j with
ai � � � aiCj … U� for some i with 1 � i < iCj � � . �en by the previous lemma
we cannot have j D o.�/ , and this gives n � 1 with nj � � < .nC 1/j . Hence

a1 � � � a� D .a1 � � � aj /.ajC1 � � � a2j / � � � .anjC1 � � � a�/ 2 .U�/n � Gns:

Lemma 5.6. If a 2 OŒ�� and b 2 oŒ�� , then .ab/i � ai for all i � � .

Proof. Set bi WD aiba�i . �en .ab/i D b1 � � � bi � a
i . Assuming a 2 OŒ�� and

b 2 oŒ�� , we have bi 2 oŒ�� for i � � by Lemma 2.6 and the remark preceding
it, so b1 � � � bi 2 � for all i � � , by Lemma 5.4.

Lemma 5.7. Suppose that a; b 2 OŒ�� and ai � bi for all i � � . �en
a�1b 2 oŒ�� .

Proof. If a 2 oŒ�� , then b 2 oŒ�� , so .a�1b/i � a�i 2 � for all i � � , and we are
done. So we can assume that a … oŒ�� , and then, replacing � by an element of
N� of the same archimedean class, we have a� … � . Let Q WD ¹1; a; a�1; b; b�1º .
�en Qi � � for all i D o.�/ by Lemma 5.4, and Q� � Gns by Corollary 5.5.
Suppose towards a contradiction that .a�1b/j … � , where j � � . �en � D O.j / .
Take a compact symmetric neighborhood U of 1 in G such that a� … U and
.a�1b/j … U4 , and put e D ordU .Q/ , so e and � have the same archimedean
class. As before we have the internally continuous function � D �Q;e W G� ! R�

satisfying the internal versions of (6)–(9) and Lemma 5.3. �en �..a�1b/j / D 0

and " WD �.1/ > 0 is not in�nitesimal, and thus

" �
.b�1a/j� � � � j.b�1a/� � �
D j

a� � b� D j.a� � �/ � .b� � �/:
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where the �rst equality uses the �rst line of the proof of Lemma 5.2. �e desired
contradiction will be obtained by showing that

j
.a� � �/ � .b� � �/ < ":

Let ı 2 R>0 ; then Lemma 5.2 gives a compact symmetric neighborhood U � U
of 1 in G such that if k > 0 and ai ; bi 2 U � for all i � k , then.ak� � �/ � k.a� � �/ � kı=e; .bk� � �/ � k.b� � �/ � kı=e; soj

k
.ak� � �/ � j.a� � �/

 � jı=e; j
k
.bk� � �/ � j.b� � �/

 � jı=e:
Choose ı 2 R>0 such that jı=e < "=3 , and put k WD min.ordU .a/; ordU .b// .
�en k < � and ai ; bi 2 U � for all i � k , and thereforej

k
.ak� � �/ � j.a� � �/

 < "=3; j
k
.bk� � �/ � j.b� � �/

 < "=3:
Also � D O.k/ , and hence j=k < n for some n . Since ak � bk , this gives.j=k/.ak� � �/ � .j=k/.bk� � �/ D .j=k/ak� � bk� � 0:
In view of the earlier inequalities, this yieldsj.a� � �/ � j.b� � �/ < ";
as promised.

Recall that � 2 R�; � > R .

�eorem 5.8. �e sets OŒ�� and oŒ�� have the following properties:

(1) OŒ�� and oŒ�� are normal subgroups of Gns ;

(2) if a 2 OŒ�� and b 2 � , then Œa; b� WD aba�1b�1 2 oŒ�� ;

(3) OŒ��= oŒ�� is commutative, and OŒ��= oŒ�� � center
�
�= oŒ��

�
.

Proof. As to (1), let a; b 2 OŒ�� . �en .ab/i 2 � for all i D o.�/ by Lemma 5.4,
so ab 2 OŒ�� . �us OŒ�� is a normal subgroup of Gns . For i D O.�/ this
argument shows that oŒ�� is a normal subgroup of Gns . Item (2) follows from
the previous lemma. Item (3) is immediate from (2).

L.G/ as a topological vector space. It follows from Lemma 5.6 that for
a 2 OŒ�� and b 2 oŒ�� we have �a D �ab , so we have a surjective map

a oŒ�� 7! �a W OŒ��= oŒ��! L.G/:
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By Lemma 5.7 we also have for a; b 2 OŒ�� that if �a D �b , then a�1b 2 oŒ�� ,
so the above map is a bijection. We make L.G/ into an abelian group with group
operation C� so that this bijection is a group isomorphism OŒ��= oŒ��! L.G/ ,
in other words, �a C� �b D �ab for a; b 2 OŒ�� . Note that �a C� �a D 2�a for
a 2 OŒ�� . To show that this operation C� is independent of � , we need the next
lemma. In its proof we use that for g; h 2 G and Œg; h� WD ghg�1h�1 we have
gh D Œg; h�hg .

Lemma 5.9. Let a; b 2 oŒ�� and a� 2 OŒ�� . �en .ab/� D ca�b� with c 2 oŒ�� .
Likewise, .ba/� D b�a�d with d 2 oŒ�� .

Proof. We de�ne ci WD Œai�1; Œbi�1; a��Œbi�1; a� 2 � for i D 1; : : : ; � , so c1 D 1 .
We claim that then .ab/i D c1 � � � cia

ibi . �is is clear for i D 1 . Assume the
claim holds for a certain i < � . �en

.ab/iC1 D c1 � � � cia
ibiab D c1 � � � cia

i Œbi ; a�abiC1

D c1 � � � ci
�
ai ; Œbi ; a�

�
Œbi ; a�aiC1biC1 D c1 � � � ciC1a

iC1biC1:

�is proves our claim. Now a� 2 OŒ�� gives a 2 OŒ��� , so Œbi ; a� 2 oŒ���
for 0 � i < � , hence ci 2 oŒ��� for 1 � i � � . Put c WD c1 � � � c� . �en for
1 � j � � , the element cj D .c1 � � � c�/j is a product of j� � �� elements, each
in oŒ��� , so cj 2 � by Lemma 5.4, and thus c 2 oŒ�� , as desired.

With a�1; b�1 in place of a; b , this yields the second part.

Lemma 5.10. Let �; � 2 L.G/ . �en � C � exists and equals � C� � .

Proof. It su�ces to show that � C� � D � C� � for all positive in�nite � 2 R� .
Consider �rst the case � D �� (with � 2 N�; � > N by convention), and set

a WD �.1=�/; b WD �.1=�/; a� WD �.1=�/; b� WD �.1=�/;

so a� D a� , b� D b� . We have a; b 2 oŒ�� , so a�b� D c.ab/� with c 2 oŒ��
by Lemma 5.9. Setting d WD .ab/� we have d D c�1a�b� , and in view of
a� ; b� 2 OŒ�� and �eorem 5.8 this gives d 2 OŒ�� . Hence

� C� � D �a�b� D �cd D �d ;

and thus for all t 2 R ,

.� C� �/.t/ D st.d Œ�t�/ D st
�
.ab/Œ� t�

�
D .� C� �/.t/:

Next we consider the case � D .1C"/� with in�nitesimal " 2 R� . With a; b; a� ; b�
de�ned as before, we have a; b; a� ; b� 2 OŒ�� D OŒ� � and



Hilbert’s 5th Problem 25

a� D a � �."=�/; b� D b � �."=�/; �."=�/; �."=�/ 2 oŒ�� D oŒ� �;

so a�b� D abc with c 2 oŒ�� by �eorem 5.8. For t 2 R>0 we have
Œ� t � D Œ� t �Ck with k D o.�/ , so by the de�nition of OŒ�� and using Lemma 5.6,

.a�b� /
Œ�t�
� .a�b� /

Œ� t�
D .abc/Œ� t� � .ab/Œ� t�;

and thus � C� � D � C� � . For arbitrary positive in�nite � 2 R� we reduce to
the previous two cases by taking �; �0 2 N� nN such that �0� D .1C "/�� with
in�nitesimal " 2 R� .

By Lemma 5.10 we now have the real vector space L.G/ as indicated in
Lemma 2.3. In Section 2 we gave it the topology induced by the compact-
open topology of C.R; G/ . Note also that for �; � 2 L.G/ and r 2 R we have
.� C �/.r/ D .r� C r�/.1/ , that is,

.� C �/.r/ D lim
s!1

�
�
�1
s

�
�
�1
s

��Œrs�
D lim
s!1

�
�
�r
s

�
�
�r
s

��Œs�
:

Corollary 5.11. L.G/ is a topological vector space over R .

Proof. Lemma 2.8 gives the continuity of scalar multiplication, so it remains to
establish the continuity of C . Let �; � 2 L.G/ , and let W be a neighborhood
of � C � in L.G/ . It su�ces to obtain neighborhoods P and Q of � and �

in L.G/ such that for all � 0 2 P and �0 2 Q we have � 0 C �0 2 W . To get
such P;Q , take a compact neighborhood U of 1 in G so small that for all
� 2 L.G/ , if �.t/ 2 .� C �/.t/U for all t 2 I WD Œ�1; 1� , then � 2 W . Next, let
� 0; �0 2 L.G/� and � � � 0 and � � �0 . Fix some � > N , and put

a WD �.1=�/; a0 WD � 0.1=�/; b WD �.1=�/; b0 WD �0.1=�/;

so a; a0; b; b0 2 OŒ�� and ai � a0i and bi � b0i for all i � � , so a oŒ�� D a0 oŒ��
and b oŒ�� D b0 oŒ�� by Lemma 5.7. Hence .ab/k � .a0b0/k whenever jkj � � , so�

� 0
�1
�

�
�0
�1
�

��k
2

 �
�
�1
�

�
�
�1
�

��k!
U � whenever jkj � �:

By overspill (see the subsection on topological spaces and continuity in the
appendix) this gives neighborhoods P and Q of � and � in L.G/ such that for
all � 0 2 P and �0 2 Q we have�

� 0
�1
�

�
�0
�1
�

��k
2

 �
�
�1
�

�
�
�1
�

��k!
U � whenever jkj � �:

It follows that for all � 0 2 P and �0 2 Q we have

.� 0 C �0/.t/ 2 .� C �/.t/ � U for all t 2 I:

�is gives � 0 C �0 2 W for all � 0 2 P and �0 2 Q .
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Corollary 5.12. Suppose the exponential map of G maps some neighborhood of
o in L.G/ homeomorphically onto a neighborhood of 1 in G . �en G is locally
euclidean and has NSS .

Proof. Since G is locally compact, so is L.G/ . It follows that L.G/ has �nite
dimension as vector space over R , and so we can put a norm on L.G/ . With
respect to this norm we take an open ball B centered at o that is homeomorphic
to a neighborhood U of 1 in G via the exponential map of G . Take n > 1 such
that V WD ¹�.1/j � 2 1

n
Bº satis�es V 2 � U . We claim that then V contains no

subgroup of G other than ¹1º . To see why, let a 2 V; a ¤ 1 . Take � 2 1
n
B with

a D �.1/ , and take m > 1 such that m� 2 B n 1
n
B . �en .m�/.1/ D am 2 U n V ,

so aZ 6� V .

6. Consequences of NSS

In this section we assume that our locally compact group G has NSS. We
shall now carry out step (3) from the sketch in the Introduction.

Lemma 6.1. �ere is a neighborhood U of 1 such that for all x; y 2 U ,
x2 D y2 H) x D y .

Proof. Towards a contradiction, let x; y 2 � , x ¤ y and x2 D y2 . �en

y�1.xy�1/y D y�1x D .xy�1/�1;

so with a WD xy�1 we get y�1ay D a�1 . �en y�1aky D a�k for all k .
Take a compact symmetric neighborhood U of 1 in G that contains no non-
trivial subgroup of G . Take positive k such that ai 2 U � for 0 � i � k and
akC1 … U � . Set b WD st.ak/ , so b ¤ 1 , b 2 U , and b D b�1 , so ¹1; bº is a
non-trivial subgroup of G contained in U , a contradiction.

By a special neighborhood of G we mean a compact symmetric neighborhood
U of 1 in G such that U contains no non-trivial subgroup of G and for all
x; y 2 U , if x2 D y2 , then x D y .

In the rest of this section we �x a special neighborhood U of G (which exists
by the lemma above), and we set ord.a/ WD ordU .a/ .

Corollary 6.2. Suppose G is not discrete. �en L.G/ ¤ ¹oº .

Proof. Take a 2 � with a ¤ 1 , and set � WD ord.a/ . �en a 2 OŒ�� and
a … oŒ�� , so �a 2 L.G/ , �a ¤ o where �a is de�ned as in Lemma 2.6.
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Set K WD ¹� 2 L.G/j �.I / � Uº , with I D Œ�1; 1� , so K is a compact
neighborhood of o in L.G/ , by Lemma 2.9. Note that for any � 2 L.G/ there
is � 2 R>0 such that �� 2 K . Put K WD ¹�.1/j � 2 Kº , so K is compact by
Lemma 2.8. Note also that K D

S
�2K �.I / , so K is pathconnected.

Corollary 6.3. �e vector space L.G/ has �nite dimension. �e exponential map
� 7! �.1/ W L.G/! G maps K homeomorphically onto K .

Proof. �e �rst assertion follows from Riesz’s theorem that a locally compact
topological vector space over R has �nite dimension. For the second assertion
it su�ces that the exponential map is injective on K . Let �; � 2 K and
�.1/ D �.1/ . �en .�.1=2//2 D .�.1=2//2 , so �.1=2/ D �.1=2/ , and by induction,
�.1=2n/ D �.1=2n/ for all n , and thus �.i=2n/ D �.i=2n/ for all i 2 Z and n .
By density this gives � D � .

Lemma 6.4. Let a 2 G� . �en ord a is in�nite i� a 2 � .

Proof. Suppose ord a is in�nite. �en a 2 U� and aZ � U� , so .st a/Z � U ,
and thus st a D 1 .

For any symmetric P � G with 1 2 P we let ord.P / be the largest n such that
P n � U if there is such an n , and set ordP WD 1 if P n � U for all n .

We set Un WD ¹x 2 Gj ord x � nº for n � 1 , so Un � UnC1 .

Lemma 6.5. �e sets Un have the following properties:

(1) each Un is a compact symmetric neighborhood of 1 in G ;

(2) ¹Unj n � 1º is a .countable/ neighborhood base of 1 in G ;

(3) ordUn � cn for all n � 1 and some c > 0 independent of n .

Proof. Given n � 1 , it is clear that Un � U , that the complement of Un in G

is open, and that Un is a neighborhood of 1 in G . �is gives (1). For each �

we consider the internal set

U� WD ¹g 2 G�j ordg � �º:

Since � > N by convention, we have U� � � by Lemma 6.4. It follows that for
any neighborhood U of 1 in G we have Un � U for all su�ciently large n ;
this gives (2). From U� � � we also obtain U� � OŒ�� , hence .U�/i � � for
all i D o.�/ by Lemma 5.4, so ordU� � c� for some c 2 R>0 . �is gives (3):
nonexistence of c as in (3) gives � with ordU� < c� for all c 2 R>0 .
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Because 1 has a countable neighborhood base in G , the topology of G is induced
by some metric on G . Given such a metric d on G we obtain also a metric d on
L.G/ by d.�; �/ WD maxjt j�1 d

�
�.t/; �.t/

�
, and one veri�es easily that this metric

induces the same topology on L.G/ as the compact-open topology of C.R; G/ .
We do not need this metric, but it may help in visualizing some arguments.

Proof that G is locally euclidean.. Let � 2 L.G/� . We say that � is in�nitesimal
if � 2 �.o/ , the monad of o in L.G/� . �erefore,

� is in�nitesimal() �.I �/ � �;

by the de�nitions and Corollary 6.3.

Lemma 6.6. Let �; � 2 L.G/� be in�nitesimal, with �.1/ 2 OŒ�� . �en

�.1/�.1/ D .� C �/.1/ � z with z 2 oŒ��:

Proof. Put a WD �.1/; b WD �.1/; c WD .�C �/.1/ . Take an open neighborhood U
of 1 in G with U � U and take � with � D o.�/ and put

W WD ¹w 2 G�j wi 2 U � for i D 1; : : : ; �º:

�en W is internally open in G� and 1 2 W � OŒ�� � oŒ�� . By the de�nition
of c and using transfer we have

�
�.1
e
/�.1

e
/
�e
2 cW for all su�ciently large

e 2 N� nN , so �
�
�1
e

�
�
�1
e

��e
D cwe; we 2 oŒ��;

for all su�ciently large e 2 N� nN . But also, by Lemma 5.9,�
�
�1
e

�
�
�1
e

��e
D abde; de 2 oŒ��;

for all e 2 N� nN . Hence ab D c.wd�1/ with w; d 2 oŒ�� .

Lemma 6.7. K is a neighborhood of 1 in G .

Proof. It is enough to show that � � K� . Let a 2 � and suppose towards a
contradiction that a … K� . Since K is compact we have K D

T
nKUn , and

so K� D
T
� K
�U� by transfer. Take � maximal with a 2 K�U� . �en a D bc

with b 2 K� and c 2 U� � � , and ord c D � . With � WD �c 2 L.G/ de�ned by
�.t/ D st.cŒ�t�/ we have � 2 K , and thus for d WD �.1=�/ 2 K� we have ci � d i
for all i � � , and thus c D du with u 2 oŒ�� by Lemma 5.7. Hence a D bdu .
By Lemma 6.6 we have bd D gh with g 2 K� and h 2 oŒ�� . Hence a D g.hu/
with � D o.ord.hu// , contradicting the maximality of � .

From Lemma 6.7 and Corollaries 5.12 and 6.3 we obtain:

Corollary 6.8. G is locally euclidean of dimension dimR L.G/ .
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�e adjoint representation. Take an R -linear isomorphism L.G/ Š Rn of
vector spaces. It induces a group isomorphism

Aut
�
L.G/

�
Š GLn.R/ � Rn

2

;

and we give the set Aut
�
L.G/

�
the topology that makes this bijection into a

homeomorphism, and thus into an isomorphism of topological groups. It is clear
that this topology on Aut

�
L.G/

�
does not depend on the initial choice of R -linear

isomorphism L.G/ Š Rn .
Let Go be the connected component of 1 in G . It is the subgroup of G

generated by the elements �.t/ with � 2 L.G/ and t 2 R . It is open in G .

Lemma 6.9. �e group morphism Ad W G ! Aut
�
L.G/

�
is continuous, and

ker.Ad/ D ¹a 2 G W a commutes with all elements of Goº . In particular, if G is
connected, then ker.Ad/ D center.G/ .

Proof. One checks easily that if a 2 � and � 2 L.G/ , then a�a�1 2 �.�/ in
L.G/� . Applying this to the � from a basis of the vector space L.G/ , we see
that Ad is continuous at 1 . Since Ad is a group morphism, it follows that Ad
is continuous. Clearly, ker.Ad/ consists of those a 2 G that commute with all
elements of the form �.t/ with � 2 L.G/ and t 2 R .

As indicated in the Introduction, step (4) of “Sketch why NSS implies Lie”, we
may now conclude:

Corollary 6.10. G is a Lie group.

7. Locally Euclidean implies NSS

In these last two sections we revert to the assumption that G is just a locally
compact group, not necessarily locally euclidean or having NSS.

Lemma 7.1. Let U be a neighborhood of 1 in G . �en U contains a compact
subgroup H of G and a neighborhood V of 1 in G such that H contains
every subgroup of G contained in V .

Proof. Shrinking U we arrange that cl.U / is compact. Take an internal neigh-
borhood V of 1 in G� such that V � � . Let S be the internal subgroup of G�
that is internally generated by the union of the internal subgroups of G� that are
contained in V . �en S � � by Lemma 5.4, and so the internal closure H of
S in G� is an internal subgroup of G� contained in U � . By transfer, there is a
neighborhood V of 1 in G and a closed subgroup H of G such that H � U
and H contains every subgroup of G contained in V .
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Corollary 7.2. If L.G/ D ¹oº , then there is a neighborhood base of 1 in G

consisting of compact open subgroups of G .

Proof. Let U be a neighborhood of 1 in G , and take H and V as in the previous
lemma. If L.G/ D ¹oº , then every a 2 � is degenerate, hence aZ� � H� for
each a 2 � , so H is open.

Corollary 7.3. If G is connected and G ¤ ¹1º , then L.G/ ¤ ¹oº .

We de�ne a topological space to be totally disconnected if its connected
components are all singletons.

Lemma 7.4. Let N be a totally disconnected closed normal subgroup of
G and let � W G ! G=N be the canonical map. �en the induced map
L.�/ W L.G/! L.G=N/ is surjective.

Proof. Let H WD G=N , and � 2 L.H/ with �.1/ ¤ 1H . Fix � and put
h WD �.1=�/ 2 �.1H / . Take a compact symmetric neighborhood V of 1H in
H such that �.1/ … V . Take a compact symmetric neighborhood U of 1 in
G such that �.U / � V . Since � is an open map we have �.�/ � �.1H / .
Take a 2 � with �.a/ D h . �en �.a�/ D h� D �.1/ , so a� … U , so
� WD ordU .a/ � � . We have �.st.ak// D st.hk/ D 1H for all k D o.�/ , so
the connected subgroup GU .a/ D ¹st.ak/j k D o.�/º of G is contained in N .
But N is totally disconnected, so GU .a/ D ¹1º , that is, a 2 OŒ�� . Also a … oŒ�� ,
so � ¤ o where � D �a 2 L.G/ is de�ned by �.t/ D st.aŒ�t�/ . If � D o.�/ ,
then �.�.t// D st.hŒ�t�/ D 1 for all t , so � 2 L.N / � L.G/ , that is � D o , a
contradiction. �us � D .r C �/� with r 2 R>0 and in�nitesimal � 2 R� . Hence
�.�.t// D st.hŒ�rt�/ D .r�/.t/ for all t 2 R , that is, L.�/.�/ D r� , and thus
L.�/.1

r
�/ D � .

Recall: a topological space is locally connected i� every neighborhood of any
point in it contains a connected neighborhood of that point.

Lemma 7.5. If G is locally connected and has NSCS , then G has NSS .

Proof. Suppose G is locally connected and has NSCS. Take a compact symmetric
neighborhood U of 1 in G that contains no connected subgroup of G other
than ¹1º . By Lemma 7.1 we can take an open neighborhood V � U of 1 in G

and a compact subgroup N1 of G such that N1 � U and all subgroups of G
contained in V are contained in N1 . Since N1 � U we have L.N1/ D ¹oº , so
N1 is totally disconnected by Corollary 7.2, and we have a compact subgroup N
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of N1 such that N is open in N1 and N � V . Take an open subset W of V
such that N D N1 \W . Note that the set®

a 2 W j aNa�1 � W
¯

is open. But if a 2 W and aNa�1 � W , then aNa�1 � N1 , so aNa�1 � N .
�us the normalizer G1 of N in G is open in G . Let H WD G1=N , and let
� W G1 ! H be the canonical map. Next we show that H has NSS.

Let a 2 �\G�1 . If a is degenerate, then a 2 N �1 , so a 2 N � and �.a/ D 1H .
Suppose a is pure, and put � WD ordU .a/ . �en a�C1 … U � . Take an open
neighborhood V 0 of 1 in G such that V 0N � V � U , so �.a/�C1 … �.V 0/ ,
while �.a/i 2 �.1H / for all i D o.�/ . �us �.a/ is pure in H . �us all
in�nitesimals of H other than 1H are pure, that is, H has NSS. �us L.H/ is
�nite-dimensional, and by Lemma 7.4 the R -linear map

L.�/ W L.G1/ D L.G/! L.H/

is continuous and surjective with kernel L.N / D ¹oº , and thus a homeomorphism.
(So far we have not used that G is locally connected.)

Take a special neighborhood V of H , as de�ned in Section 6. As G is
locally connected, we can take a connected neighborhood U of 1 in G1 such
that

�.U/ �
®
�.1/ j � 2 L.H/; �.I / � V

¯
; I WD Œ�1; 1�:

Let x 2 U . �en �.x/ D �.1/ for a unique � 2 L.H/ with �.I / � V , and there
is a unique � 2 L.G1/ such that � ı � D � , so x D �.1/x.N / with x.N / 2 N .
�e map that assigns to each x 2 U the above � 2 L.H/ is continuous, by
Corollary 6.3. Since L.�/ W L.G1/! L.H/ is a homeomorphism, it follows that
the map x 7! x.N / W U ! N is continuous. But N is totally disconnected and
1.N / D 1 , so x.N / D 1 for all x 2 U . We now use this to derive U \N D ¹1º .
Let x 2 U \ N , so �.x/ D 1 . �en � WD oH satis�es �.x/ D �.1/ , �.I / � V ,
and as � ı oG D oH we get x D oG.1/ D 1 . From U \N D ¹1º we obtain that
� is injective on some neighborhood of 1 in G1 , so G1 has NSS, and thus G
has NSS.

Recall that a topological space is bounded in dimension if for some n it does
not contain a homeomorphic copy of Œ0; 1�n .

Lemma 7.6. If G is bounded in dimension, then G has NSCS .

Proof. Suppose G does not have NSCS. Let U; V range over compact symmetric
neighborhoods of 1 in G . We claim that for every n and U , some compact
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subgroup of G contained in U contains a homeomorphic copy of the n -cube
Œ0; 1�n . Assume this holds for a certain n and let U be given. By Lemma 7.1
we can take V � U and a compact subgroup H � U of G that contains every
subgroup of G contained in V . Since V contains a nontrivial connected compact
subgroup of G , Corollary 7.3 yields a nontrivial � 2 L.H/ . By decreasing V if
necessary we can assume that �.R/ 6� V . Take a compact subgroup G.V / � V

of G with a homeomorphism

� W Œ0; 1�n ! �
�
Œ0; 1�n

�
� G.V /:

�en �.R/ 6� G.V / , so ¹t 2 Rj �.t/ 2 G.V /º is a proper closed subgroup of the
additive group of R , hence equals Zr for some real r � 0 . Replacing � by s�

for a some real s > 0 we arrange that for I WD Œ�1; 1� : �.I / � V , � is injective
on I and �.I / \G.V / D ¹1º . Since G.V / � H we can de�ne

� W Œ0; 1� � Œ0; 1�n ! H; �.s; t/ WD �.s/�.t/ for s 2 Œ0; 1�; t 2 Œ0; 1�n:

It is easy to check that then � W Œ0; 1�nC1 ! �.Œ0; 1�nC1/ is injective and continuous,
and thus a homeomorphism.

Corollary 7.7. If G is bounded in dimension and locally connected, then G has
NSS . In particular, if G is locally euclidean, then G has NSS .

Proof. Use Lemmas 7.6 and 7.5.

�is concludes the proof of the Main �eorem.

8. Yamabe’s �eorem

We keep the convention that G is a locally compact group, and use the results
above to derive Yamabe’s �eorem on approximating some open subgroup of G
by Lie groups. �is doesn’t involve any nonstandard methods.

Lemma 8.1. Let U be a neighborhood of 1 in G . �en there is an open subgroup
G0 of G and a compact normal subgroup N 0 of G0 such that N 0 � U and
G0=N 0 has NSS .

G

U G0

N 0
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Proof. By Lemma 7.1 we can take a compact subgroup H � U of G and an
open neighborhood W � U of 1 in G such that every subgroup of G contained
in W is a subgroup of H . Since H is compact, �eorem 4.1 yields a compact
normal subgroup N 0 � W of H and a continuous injective group morphism
H=N 0 ! GLn.R/ . Since GLn.R/ has NSS, it follows that H=N 0 has NSS. �e
latter gives an open W 0 � W such that N 0 � W 0 and every subgroup of G
contained in W 0 is a subgroup of N 0 . Set

G0 WD the normalizer of N 0 in G D
®
g 2 G j gN 0g�1 D N 0

¯
;

so G0 is a subgroup of G and N 0 is a normal subgroup of G0 . We claim that
G0 and N 0 have the desired properties.

Since N 0 is compact and W 0 is open, we have a symmetric neighborhood V
of 1 in G such that VN 0V � W 0 . �en for all g 2 V , the subgroup gN 0g�1

of G is contained in W 0 , so gN 0g�1 � N 0 , which by symmetry of V gives
gN 0g�1 D N 0 . Consequently, V � G0 and thus G0 is open. It remains to show
that G0=N 0 has NSS. �is holds because VN 0 � W 0 is a neighborhood of N 0
in G0 , so every subgroup of G0 contained in VN 0 is contained in W 0 and thus
in N 0 .

Let Go be the connected component of 1 in G . (�is was de�ned earlier in
Section 6, but there we assumed G to have NSS.) It is clear that Go is a closed
normal subgroup of G and is contained in every open subgroup of G . It is also
easy to verify that G=Go is totally disconnected.

Recall from the Introduction that “G can be approximated by Lie groups”
means that every neighborhood of 1 in G contains a compact normal subgroup
N of G such that G=N is a Lie group.

�eorem 8.2. Suppose G=Go is compact. �en G can be approximated by Lie
groups.

Proof. Let U be a neighborhood of 1 in G . By Lemma 8.1 and its proof we obtain
G0 and N 0 as in that lemma and an open neighborhood W 0 of N 0 such that any
subgroup of G contained in W 0 is a subgroup of N 0 . Note that Go � G0 since
G0 is clopen in G . Consequently, G0=Go is an open subgroup of the compact
group G=Go , and thus of �nite index in G=Go . Hence G0 has �nite index in G ,
so G D g1G0[ � � � [gnG0 where g1; : : : ; gn 2 G . Given g 2 G we have g D gia
with 1 � i � n and a 2 G0 , so gN 0g�1 D gi .aN

0a�1/g�1i D giN
0g�1i , since N 0

is normal in G0 . �us

N WD

n\
iD1

giN
0g�1i D

\
g2G

gN 0g�1
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is a compact normal subgroup of G and N � N 0 � U . It remains to show that
G=N has NSS. Let

W WD

n\
iD1

giW
0g�1i ;

an open subset of G containing N . If H � W is any subgroup of G , then for
each i we have g�1i Hgi � W

0 , so g�1i Hgi � N
0 , and thus H � N .

Corollary 8.3. If G is connected, then G can be approximated by Lie groups.

Lemma 8.4. Let X be a compact space and x 2 X . �en the connected
component of x in X is the intersection of all compact open subsets of X that
contain x .

Proof. Let ¹C�j � 2 ƒº be the collection of all compact open subsets of X that
contain x and put C WD

T
� C� . Consider a decomposition

C D A [ B; A;B closed in X; A \ B D ¿:

Since X is normal we can take disjoint open U; V � X with A � U and B � V .
�en C and X n .U [ V / are disjoint, which gives a �nite subset ƒ0 of ƒ
such that D WD

T
�2ƒ0

C� and X n .U [ V / are disjoint. �en D is compact
and open, and x 2 D . We have D D .U \D/ [ .V \D/ , and only one of the
compact open sets U \D;V \D contains x , say U \D . �en U \D D C� for
a certain � 2 ƒ , and then B \ C� D ¿ , so B D ¿ . �is argument shows that
C is connected. It follows that C is the connected component of x in X .

Corollary 8.5. Let X be a compact space, C a connected component of X ,
and F a closed subset of X such that C \ F D ¿ . �en there is a compact
open subset D of X such that C � D and D \ F D ¿ .

Lemma 8.6. Every compact open neighborhood of 1 in G contains a compact
open subgroup of G .

Proof. Let U be a compact open neighborhood of 1 in G . Set F D U 2 nU , so
F is closed. Now U is compact, G nF is open, and U � G nF , so we have an
open symmetric neighborhood V of 1 in G with V � U and UV � GnF . �en
UV � U 2 gives UV � U . Hence V n � UV n � U for all n . �us H WD

S
n V

n

is an open subgroup of G contained in U . But open subgroups are also closed,
and U is compact, so H is compact.

Lemma 8.7. Suppose G is totally disconnected. �en every compact neighborhood
of 1 contains a compact open subgroup of G .
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Proof. Let U be a compact neighborhood of 1 . Take an open neighborhood
V � U of 1 in G , and set F D U n V . As ¹1º is a connected component
of U , Corollary 8.5 yields compact D � U , open in U , such that 1 2 D and
D \ F D ¿ . �en D � V , so D is open in G . Apply Lemma 8.6 to D .

Corollary 8.8. G has an open subgroup G0 such that G0=Go is compact.

Proof. Apply Lemma 8.7 to G=Go in the role of G .

Combining �eorem 8.2 and Lemma 8.8, we obtain Yamabe’s �eorem as stated
in the Introduction.

9. Appendix on nonstandard methods

�is appendix is for readers not familiar with nonstandard methods. For another
exposition, see [2]; for a detailed treatment, see [7].

�e basic set-up. Suppose a mathematical structure is given by certain ambient
sets, together with certain relations between them. (�is covers almost anything.
For example, a group is a set with a ternary relation on it, namely the graph
of its group operation; a topological space is given by two sets, the set of
points of the space, and the set of open subsets of the space, together with the
membership relation between points and open sets.) More precisely, let S1; : : : ; Sp
(p 2 N�1 ) be the ambient sets, assumed to be nonempty and called basic sets,
and let R1; : : : ; Rq (q 2 N ) be the relations between S1; : : : ; Sp describing
our mathematical structure: for each index j 2 ¹1; : : : ; qº we are given indices
i.1/; : : : ; i.n/ 2 ¹1; : : : ; pº such that

Rj � Si.1/ � � � � � Si.n/:

�ese relations Rj are referred to as the basic relations or as the primitives of
the structure. Often these primitives are (graphs of) functions

f W Si.1/ � � � � � Si.n/ ! Si.nC1/:

Using nonstandard analysis to study this structure includes three things:
(NA1) Each basic set Si is extended to a set S�i � Si , and to each basic

relation Rj as displayed above is associated a corresponding relation

R�j � S
�
i.1/ � � � � � S

�
i.n/

whose intersection with Si.1/ � � � � � Si.n/ is the original relation Rj . �us our
original structure S D

�
S1; : : : ; SpIR1; : : : ; Rq/

�
gets extended to a structure
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S� D
�
S�1 ; : : : ; S

�
p IR

�
1 ; : : : ; R

�
q

�
. �is nonstandard extension S� of S might contain

useful “ideal" elements that are missing in S .
(NA2) Any elementary statement about the original structure S is true in S

if and only if it is true in S� : the transfer principle. After the example below
we explain in a separate subsection what elementary statements are.

(NA3) �e structure S� enjoys a certain logical compactness property—it is
� -rich, � being an in�nite cardinal— that S typically does not.

We de�ne “� -rich” below. For many nonstandard arguments, it is enough to
have (NA3) for � D @0 . For our purpose it is enough to have � � #Si for
i D 1; : : : ; p . A key fact is that for any S and any in�nite cardinal � , there is
always an extension S� such that (NA1), (NA2), and (NA3) hold. At the end of
this appendix we indicate one way—not the most constructive one, but easy to
describe—to obtain such extensions S� , namely ultrapowers.

Example. In applications, one of the basic sets will often be R , with its usual
ordering and (the graphs of) addition and multiplication among the primitives.
We can express by an elementary statement that R with these primitives is an
ordered �eld. �en by transfer, R� with the corresponding starred primitives will
be an ordered �eld extension of R .

Often we also have the subset Z of R as a primitive, and then we can
express by an elementary statement the fact that Z is (the underlying subset of)
a subring of the �eld R and that for every r 2 R there exists a unique k 2 Z

with k � r < k C 1 . �en by transfer the set Z� is a subring of the �eld R�

and there is for each r 2 R� a unique k 2 Z� with k � r < k C 1 ; the latter
expression abbreviates k �� r <� kC� 1 : we omit stars when the context invites
the reader to insert them mentally.

One manifestation of (NA3) here is that there are x 2 R� such that x > n

for every n . �is is because for any n1; : : : ; nm 2 N there is an x 2 R� (even an
x 2 R ) with x > n1; : : : ; x > nm . Such an element x > R is said to be positive
in�nite, and its reciprocal is then a positive in�nitesimal: 0 < 1=x < 1=n for all
n � 1 .

Elementary statements. Let a structure S D
�
.Si /I .Rj /

�
as above be given.

For each basic set Si we take variables that we consider as ranging over Si ;
these are just the symbols v0i ; v1i ; v2i ; : : : . We also �x for each element a 2 Si a
name .a; i/ for a in its role as element of Si . �is allows us to form so-called
atomic S -formulas: these are expressions of the form vmi D vni , or of the form
vmi D c where c is the name of an element of Si , or of the form Rj .t1; : : : ; tn/

where Rj � Si.1/ � � � � � Si.n/ is a primitive, and tk is for k D 1; : : : ; n either
a variable ranging over Si.k/ , or the name of a particular element of Si.k/ .
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Arbitrary S -formulas are constructed, starting with atomic S -formulas, using the
logical symbols for negation, disjunction, conjunction, existential quanti�cation,
and universal quanti�cation: in other words, if �; are S -formulas and v is a
variable, then

:�; .� _  /; .� ^  /; 9v�; 8v�

are also S -formulas; in the latter two, the occurrences of v are said to be bound
by the quanti�er 9v , respectively, 8v . An S -sentence (or elementary statement
about S ) is an S -formula in which all occurrences of variables are bound by
quanti�ers. We have a recursive de�nition of what it means for such a sentence
to be true in S . �is recursion just re�ects the usual meaning of the logical
symbols: for example, an S -sentence 9v� , with v D vni , is true in S i� for
some a 2 Si the shorter S -sentence obtained by replacing the free (=non-bound)
occurrences of v in � by the name of a is true in S .

Let in addition an extension S� of S as in (NA1) be given. �en we have
S� -formulas and S� -sentences, using the names we gave to elements a 2 Si as
well as names for new elements in S�i nSi . Every S -formula is considered as an
S� -formula by reading each Rj in the atomic subformulas as standing for R�j .
In particular, every S -sentence is also an S� -sentence, but in an S� -sentence
each variable vni ranges of course over S�i . In this way we make sense of the
requirement (NA2).

De�nable sets. Let S be as before. Let �
�
v.1/; : : : ; v.n/

�
be an S -formula, that

is, an S -formula � together with distinct variables v.1/; : : : ; v.n/ that include all
variables occurring free in � . Let v.k/ range over Si.k/ for k D 1; : : : ; n . �en
we say that �

�
v.1/; : : : ; v.n/

�
de�nes the subset of Si.1/ � � � � � Si.n/ consisting

of those .a1; : : : ; an/ 2 Si.1/ � � � � � Si.n/ for which the S -sentence obtained from
� by replacing the free occurrences of v.k/ by the name of ak 2 Si.k/ for
k D 1; : : : ; n is true in S .

A set X � Si.1/ � � � � � Si.n/ is said to be S -de�nable if it is de�ned
in this way by some S -formula �

�
v.1/; : : : ; v.n/

�
as above. Every primitive

Rj � Si.1/ � � � � � Si.n/ is S -de�nable, and so is every �nite subset of
Si.1/ � � � � � Si.n/ .

If X; Y � Si.1/ � � � � � Si.n/ are S -de�nable, then so are X [ Y;X \ Y;X n Y .
An S -de�nable map is a map f W X ! Y where X � Si.1/ � � � � � Si.m/ and
Y � Si.mC1/ � � � � � Si.mCn/ are S -de�nable and the graph of f is S -de�nable
as a subset of Si.1/ � � � � � Si.m/ � Si.mC1/ � � � � � Si.mCn/ . If f W X ! Y is S -
de�nable and X 0 � X is S -de�nable, then the image f .X 0/ � Y is S -de�nable
set. Likewise with inverse images.
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Let S� be an extension of S satisfying (NA1) and (NA2). Let an S -
de�nable set X � Si.1/ � � � � � Si.n/ be given. �en we have an S� -de�nable
set X� � S�

i.1/
� � � � �S�

i.n/
with X D X�\ .Si.1/ � � � � �Si.n// : an S -formula that

de�nes X will de�ne, in its role of S� -formula, the set X� . (�is is independent
of the choice of S -formula de�ning X .) Note that if X is �nite, then X� D X .
�e transfer principle (NA2) extends to elementary statements about S that use
the S -de�nable sets X as primitives, with X to be read as X� in construing
the statement to be about S� .

�e sets X� above are in general not the only S� -de�nable sets. For example,
any a 2 S�i n Si yields an S� -de�nable set ¹aº � S�i that is not of the form X�

for any S -de�nable X � Si .

Richness. Let now � be an in�nite cardinal. Our structure S is said to be � -rich
if for all i.1/; : : : ; i.n/ 2 ¹1; : : : ; pº and every family .X�/�2ƒ of S -de�nable
subsets of Si.1/ � � � � � Si.n/ with the �nite intersection property and #ƒ � �

we have
T
�X� ¤ ¿ . (It is enough to require this for n D 1 .) Here the “�nite

intersection property” means that X�1 \ � � � \ X�m ¤ ¿ for all �1; : : : ; �m 2 ƒ .
We often apply richness in its dual form as a covering property: if S is � -rich
and an S -de�nable set X � Si.1/ � � � � � Si.n/ is covered by S -de�nable sets
X� � Si.1/ � � � � � Si.n/ with � 2 ƒ and #ƒ � � , then X is already covered by
�nitely many of these X� .

Note that, as an ordered set, R is not @0 -rich, since
T
n.n;C1/ D ¿ . �us

our initial structure S will usually not be rich in any way. Suppose S� is an
extension of S such that (NA1), (NA2), and (NA3) hold, so S� is � -rich. �us
if X � S�

i.1/
� � � � � S�

i.n/
is S� -de�nable and in�nite, then #X > � .

Power sets and internal sets. We now come to a point that is very characteristic
of the nonstandard setting: for certain basic sets S of our structure S we often
include also its power set P.S/ as a basic set, and the membership relation
2S WD ¹.x; Y / 2 S � P.S/j x 2 Y º as a primitive. �en we can quantify over
elements of P.S/ , which gives enormous expressive power. For example, with
R and P.R/ as basic sets, together with the membership relation between them
and the ordering on R as primitives, we can express by an elementary statement
the fact that every nonempty subset of R with an upperbound in R has a least
upperbound in R .

Let S and P.S/ be among the basic sets of our structure S , with 2S among
the primitives. Given Y 2 P.S/ , the formula v 2S cY , with v a variable ranging
over S and cY the name of Y as element of P.S/ , de�nes the subset Y of S ,
so Y is not only an element in our structure S , but also an S -de�nable subset
of S . In particular, every subset of S is now S -de�nable!
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Next, let an extension S� of S be given that satis�es (NA1) and (NA2).
�en S� and P.S/� are basic sets of S� , and the star extension 2�S of 2S is
among the primitives. We arrange that the elements of P.S/� are subsets of S�
and 2�S is the appropriate membership relation by replacing each P 2 P.S/�

with ¹a 2 S�j a 2�S P º (“Mostowski collapse”). �is identi�es P.S/� with a
subset of P.S�/ . A set X � S� such that X 2 P.S/� via this identi�cation is
traditionally called an internal subset of S� . We leave it to the reader to check
that this is equivalent to being an S� -de�nable subset of S� . A drawback of
this identi�cation is that it destroys the set inclusion P.S/ � P.S/� : with the
above identi�cation a set Y 2 P.S/ turns into Y � � S� , as is easily veri�ed,
and usually Y ¤ Y � .

To illustrate the above for S D R with its ordering among the primitives:
the least upperbound property of R now yields by transfer the fact that every
nonempty internal subset of R� with an upperbound in the ordered set R� has
a least upperbound in R� . (Also, every nonempty internal subset of R� that is
contained in N� has a least element, and, if it has an upperbound in R� , a largest
element.) If our nonstandard extension S� is @0 -rich, it follows for example that
the subset R of R� is not internal, since it has an upperbound in R� but not a
least one.

Internal sequences. �ese powerset conventions on a basic set S apply also to
any �nite cartesian product of basic sets. For example, a sequence a1; : : : ; a� in
S� with � 2 N� , is formally the set of pairs®

.i; ai / j i 2 N�; 1 � i � �
¯
� R� � S�:

To refer to this sequence as being internal will have an obvious meaning if we
have, say, R; S;P.R/;P.R � S/ among the basic sets, and the ordering on R

and the various membership relations as primitives. It is best left to the reader
in such cases to decide what to take as basic sets and primitives in order for the
use of terms like “internal” to make sense.

Products of internal sequences in groups. Let now a group G be part of our
structure S : its underlying set is one of the basic sets, and its product operation
is a primitive. For any n and any sequence a1; : : : ; an in G there is a unique
sequence b0; : : : ; bn in G such that b0 D 1G and biC1 D biaiC1 for all i 2 N

with 0 � i < n . By transfer this yields for an appropriate nonstandard extension
G� : for any � 2 N� and any internal sequence a1; : : : ; a� in G� there is a
unique internal sequence b0; : : : ; b� in G� such that b0 D 1G and biC1 D biaiC1
for all i 2 N� with 0 � i < � ; in this case we use of course a1 � � � a� as a
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suggestive notation for b� ; if all ai are equal to a �xed a 2 G , then we write
this “product” as a� .

Given any symmetric X � G , the smallest subgroup of G that contains X
(usually called the subgroup of G generated by X ) is®

a1 � � � an j a1; : : : ; an is a sequence in X
¯
:

By transfer, this yields: given any internal symmetric X � G� , the smallest
internal subgroup of G� that contains X (which deserves to be called the
internal subgroup internally generated by X ) is®

a1 � � � a� j � 2 N�; a1; : : : ; a� is an internal sequence in X
¯
:

Topological spaces and continuity. To include a (nonempty) topological space
.S; �/ in S , where � is the set of open sets of the space, we take S and P.S/ as
basic sets, together with the membership relation 2S� S � P.S/ and � � P.S/
as primitives. (Of course there may be further primitives involving S .) Let S�
be an extension of S satisfying (NA1) and (NA2). �en we have .S�; ��/ as
part of S� , with �� � P.S�/ after Mostowski collapse. However, �� is not in
general the set of open sets for a topology on the set S� . �e sets in �� are by
de�nition the internally open subsets of S� ; their complements in S� are the
internally closed subsets of S� . By transfer, there is for each internal subset X
of S� a smallest internally closed subset of S� containing X , and we call this
the internal closure of X in S� . An internal neighborhood of a point x 2 S� is
by de�nition an internal set U � S� that contains some internally open V � S�

with x 2 V .
Let a point x 2 S be given. �e monad �.x/ of x is by de�nition the

intersection of all sets U � with U a neighborhood of x in S . �ese sets U �
are among the internal neighborhoods of x . Now assume that our extension
S� is � -rich with � � P.S/ . �en there are internal neighborhoods of x that
are contained in every such U � , that is, there are internal neighborhoods of
x contained in �.x/ . Another useful consequence (“overspill”): if X � S� is
internal and �.x/ � X , then U � � X for some neighborhood U of x in S .

Let the topological space .S 0; � 0/ also be part of our structure S as explained
above; of course we allow .S; �/ D .S 0; � 0/ . To deal with the set C.S; S 0/
of continuous functions f W S ! S 0 we include P.S � S 0/ and 2S�S 0 as
part of S . �en C.S; S 0/ is an S -de�nable subset of P.S � S 0/ , where a
function is identi�ed with its graph. After Mostowski collapse, the S� -de�nable
set C.S; S 0/� � P.S� � S 0�/ consists of the (graphs of) functions g W S� ! S 0�

with the property that g�1.U / 2 �� for all U 2 � 0� . It is these functions g that
are called internally continuous.
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Ultrapowers. Fix an in�nite index set ƒ (often ƒ D N ). An ultra�lter on ƒ

is by de�nition a collection u of subsets of ƒ such that for all A;B � ƒ :
(1) ¿ … u , ƒ 2 u ,
(2) A;B 2 u H) A \ B 2 u ,
(3) A 2 u; A � B H) B 2 u ,
(4) A 2 u or ƒ n A 2 u .
An ultra�lter u on ƒ de�nes a �nitely additive measure � W P.ƒ/! R on the
boolean algebra P.ƒ/ of all subsets of ƒ , by setting �.A/ D 0 if A … u and
�.A/ D 1 if A 2 u . So �.ƒ/ D 1 , and this measure only takes the values 0 and
1 . Any �nitely additive measure � W P.ƒ/! R taking its values in ¹0; 1º with
�.ƒ/ D 1 arises from a unique ultra�lter u on ƒ in this way. �e conditions
(1), (2), (3) above de�ne the notion of a proper �lter on ƒ . It is routine to check
that ultra�lters on ƒ are exactly the proper �lters on ƒ that are maximal with
respect to inclusion. �us by Zorn, every proper �lter on ƒ is contained in an
ultra�lter on ƒ .

Given � 2 ƒ , we have the ultra�lter u.�/ WD ¹A � ƒj � 2 Aº , and ultra�lters
of this form are called principal. If an ultra�lter u on ƒ is not principal, it has
no �nite subset of ƒ as an element, and thus

co�nite.ƒ/ WD
®
A � ƒ j ƒ n A is �nite

¯
� u:

Since co�nite.ƒ/ is a proper �lter on ƒ , there do exist ultra�lters u on ƒ with
co�nite.ƒ/ � u , and these are called nonprincipal.

Let u be an ultra�lter on ƒ . �is allows us to extend functorially each set
S to a set S� as follows. Elements .x�/ and .y�/ of the set Sƒ are said to
be u -equivalent if ¹� 2 ƒj x� D y�º 2 u , that is, x� D y� for almost all � in
the sense of the measure associated to u . �is de�nes an equivalence relation on
Sƒ , and we de�ne S� to be the set of equivalence classes .x�/=u . We identify
S with a subset of S� via the diagonal embedding S ! S� , which sends x 2 S
to the equivalence class .x�/=u with x� D x for all � .

Given sets S1; : : : ; Sn and a relation R � S1 � � � � � Sn , we have a relation
R� � S�1 � � � � � S

�
n such that for all .x1�/ 2 Sƒ1 ; : : : ; .xn�/ 2 Sƒn ,�

.x1�/=u; : : : ; .xn�/=u
�
2 R�() .x1�; : : : ; xn�/ 2 R for u -almost all �:

�en R�\ .S1�� � ��Sn/ D R , and so (NA1) holds with this de�nition of starring
sets and relations among them. Also (NA2) holds by a well-known theorem of
Łoś; its proof is easy and can be found in most basic texts on model theory.
If u is principal, then S� D S for all S , and we get nothing new. But if u
is nonprincipal and ƒ is countable, then (NA3) holds in the sense that S� is
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@0 -rich. �is is adequate for many applications. For any in�nite cardinal � and
any set ƒ with #ƒ � � there exist ultra�lters u on ƒ such that for any initial
structure S the extension S� resulting from u as above is � -rich.
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