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On the Van Est homomorphism for Lie groupoids

David Li-Bland and Eckhard Meinrenken

Abstract. �e Van Est homomorphism for a Lie groupoid G � M , as introduced by
Weinstein-Xu, is a cochain map from the complex C1.BG/ of groupoid cochains to
the Chevalley-Eilenberg complex C.A/ of the Lie algebroid A of G . It was generalized
by Weinstein, Mehta, and Abad-Crainic to a morphism from the Bott–Shulman–Stashe�
complex �.BG/ to a (suitably de�ned) Weil algebra W.A/ . In this paper, we will give an
approach to the Van Est map in terms of the Perturbation Lemma of homological algebra.
�is approach is used to establish the basic properties of the Van Est map. In particular, we
show that on the normalized subcomplex, the Van Est map restricts to an algebra morphism.
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1. Introduction

In their 1991 paper, Weinstein and Xu [WX] described an important general-
ization of the classical Van Est map [Est2, Est3, Est1] to arbitrary Lie groupoids
G �M . Recall that the complex of groupoid cochains for G consists of smooth
functions on the space BpG of p -arrows, that is, p -tuples of elements of G such
that any two successive elements are composable. Its in�nitesimal counterpart is
the Chevalley-Eilenberg complex C�.A/ D �.^�A�/ of the Lie algebroid of G .
�e generalized van Est map is a morphism of cochain complexes

(1) VE W C1.B�G/! C�.A/:

Weinstein and Xu de�ne this map in terms of the following formula, for
f 2 C1.BpG/ and X1; : : : ; Xp 2 �.A/ ,

(2) ı.Xp/ � � � ı.X1/VE.f / D ��
X
s2Sp

sign.s/L.X1;]
s.1/
/ � � �L.Xp;]

s.p/
/f:

Here the X i;] for X 2 �.A/ are the generating vector �elds for certain commuting
G -actions on BpG , and � W M ! BpG is the inclusion as trivial p -arrows.

Weinstein and Mehta [Meh] indicated a generalization of (1) to a morphism
of bidi�erential complexes,

(3) VE W ��.B�G/! W�;�.A/;

from the Bott-Shulman-Stashe� double complex (i.e. the de Rham complex of the
simplicial manifold B�G ) to a certain Weil algebra of the Lie algebroid A . �eir
theory was formulated within the framework of supergeometry. Abad and Crainic
[AC] gave a di�erent construction of the Weil algebra and the Van Est map in
terms of classical geometry, using representations up to homotopy. Generalizing a
result of Crainic [Cra], they proved a ‘Van Est theorem’, stating that the map (3)
induces an isomorphism in cohomology in su�ciently low degrees (depending
on the connectivity properties of the �bers of the target map of G ).

�e Van Est map for groupoids, with its associated Van Est theorem, has a
number of important applications. It arises in the context of integration problems
for Poisson and Dirac manifolds [BCWZ, CF2, CZ] as well as for general Lie
algebroids [Cra, CF1, LGTX]. It is a tool in linearizing groupoid actions and
Poisson structures [CF4, Wei2], and is related to the interplay between Cartan
forms and Spencer operators [CSS, Sal]. Finally, it enters the formulation of index
theorems for foliations and more general groupoids [CM, PPT1, PPT2, PPT3].

�e proof of a Van Est theorem in [Cra] involves a certain double complex.
In [AC], this is enlarged to a triple complex. In this paper, we will show that this
double/triple complex, in conjunction with the Perturbation Lemma of homological
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algebra, may in fact be used to give a conceptual ‘explanation’ for the van Est
map itself. �e basic properties of the Van Est map follow rather easily from this
approach. For example, one obtains a simple proof of the fact that the Van Est
map restricts to an algebra morphism on the normalized subcomplex, a fact �rst
proven in [Meh] via di�erent techniques.

Let us brie�y summarize this construction for the Van Est map (1). One
begins by considering the principal G -bundles �p W EpG ! BpG , where EpG is
the pC 1 -fold �ber product of G with respect to the source map s . �e tangent
bundle to the �bers of �p de�nes a Lie algebroid TFEpG . �e structure maps
of the simplicial manifold E�G lift to Lie algebroid morphisms; thus TFE�G
is a simplicial Lie algebroid. One thus obtains a double complex, with bigraded
summands Cs.TFErG/ , and equipped with a Chevalley-Eilenberg di�erential d
and a simplicial di�erential ı . Let Tot� C.TFEG/ be the associated total complex.
Pullback under the map to the base is a morphism of di�erential spaces

(4) ��� W C
1.B�G/! Tot� C.TFEG/:

Similarly, the identi�cation TFE0G D s�A determines a pullback map C.A/ !
C.TFE0G/ , which de�nes a morphism of di�erential spaces

(5) ��0 W C
�.A/! Tot� C.TFEG/:

�ere is also a map ��0 W Tot
� C.TFEG/! C�.A/ left inverse to ��0 , de�ned using

the inclusion A ,! TFE0G with underlying map M ,! E0G . However, since
this inclusion is not a Lie algebra morphism, the map ��0 is not a cochain map,
in general.

�e simplicial manifold E�G admits a canonical simplicial deformation
retraction onto M � E�G . �is determines a homotopy operator h for the
simplicial di�erential ı on the double complex C�.TFE�G/ . We will prove:

Proposition. �e composition ��0 ı .1 C h ı d/�1 W Tot
� C.TFEG/ ! C�.A/ is a

cochain map, and is a homotopy inverse to ��0 .

�is proposition is a fairly direct application of the Basic Perturbation Lemma
of homological algebra, due to Brown [BRO] and Gugenheim [Gug] (cf. Appendix
B). We will take the composition

(6) VE W ��0 ı .1C h ı d/�1 ı �� W C1.B�G/! C�.A/

as a de�nition of the Van Est map. A more re�ned version of the Perturbation
Lemma, due to Gugenheim-Lambe-Stashe� [GLS] (cf. Appendix B) applies to
cochain complexes with additional algebra structures. �ese conditions are not
satis�ed for the double complex C�.TFE�G/ , but they do apply to the normalized



96 D. Li-Bland and E. Meinrenken

subcomplex. We thus recover the result of Weinstein-Xu [WX] that the Van Est
map restricts to a ring homomorphism on the normalized subcomplex.

�e method generalizes to the Van Est map (3) for the Bott-Shulman-Stashe�
double complex. To this end, we will develop a new geometric description of
the Weil algebra W.A/ of a Lie algebroid, as sections of a suitably de�ned Weil
algebroid. It may be regarded as a translation of the super-geometric approach
of Weinstein and Mehta, and is of course equivalent to the description given by
Abad-Crainic [AC]. Working with the triple complex W�;�.TFE�G/ we use the
Perturbation Lemma to de�ne the Van Est map:

(7) VE D ��0 ı .1C h ı d0/�1 ı �� W ��.B�G/! W�;�.A/:

Here d0 is the Chevalley-Eilenberg di�erential on W�;�.TFE�G/ . Again, we �nd
that VE restricts to an algebra morphism on a normalized cochains.

Our �nal result is a direct formula for (7), generalizing Equation (2). Any
section X 2 �.A/ de�nes two kinds of contraction operators ıS .X/ and ıK.X/
on W.A/ , of bidegrees .�1;�1/ and .�1; 0/ , respectively. (If M D pt so that
A D g is a Lie algebra, we have W p;q.g/ D Sqg�˝^pg� , and the two contraction
operators are contractions on Sg� and ^g� , respectively.)

�eorem. For � 2 �q.BpG/ , X1; : : : ; Xp 2 �.A/ , and any n � p ,

ı.Xp/ � � � ı.XnC1/ıS .Xn/ � � � ıS .X1/VE.�/

D ��
X
s2Sp

�.s/L.X1;]
s.1/
/ � � �L.Xn;]

s.n/
/ı.XnC1;]

s.nC1/
/ � � � ı.Xp;]

s.p/
/�:

Here � W M ! BpG is the inclusion as constant p -arrows, and �.s/ is C1 if the
number of pairs .i; j / with 1 � i < j � n but s.i/ > s.j / is even, and �1 if
that number is odd.

Our main motivation for developing our approach to the Van Est map are
integration problems for group-valued moment maps. �is will be explained in a
forthcoming paper.

Acknowledgments. We thank Marius Crainic, Rui Fernandes, �eodore Johnson-
Freyd, and Xiang Tang for discussions and helpful comments.

2. Lie groupoid and Lie algebroid cohomology

We begin with a quick review of Lie groupoids, Lie algebroids, and the
associated cochain complexes. For more detailed information, see for example,
Mackenzie [Mac], Moerdijk and Mrčun [MM] or Crainic-Fernandes [CF3].
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2.1. �e De Rham complex of a simplicial manifold. �e basic de�nitions for
simplicial manifolds are recalled in Appendix A. In short, a simplicial manifold is
a contravariant functor X W Ord! Man. Here Man is the category of manifolds,
with morphisms the smooth maps, and Ord is the category of ordered sets
Œp� D ¹0; : : : ; pº for p D 0; 1; 2; : : : , with morphisms the nondecreasing maps
Œp0�! Œp� . One denotes Xp D X.Œp�/ . Of special signi�cance are the face maps
@i W Xp ! Xp�1 and degeneracy maps �i W Xp ! XpC1 , induced by the morphism
Œp � 1�! Œp� omitting i , respectively the morphism Œp C 1�! Œp� repeating i .

�e simplicial de Rham complex of X� is the double complex ��.X�/ , with
the simplicial di�erential

ı D

pC1X
iD0

.�1/i@�i W �
q.Xp/! �q.XpC1/;

of bidegree .1; 0/ and the second di�erential d D .�1/pdRh of bidegree .0; 1/

where dRh is the de Rham di�erential. �e two di�erentials commute in the
graded sense, i.e. dı C ıd D 0 , and both are graded derivations relative to the
cup product

(8) � [ �0 D .�1/p
0q pr� � ^ .pr0/��0:

Here pr W XpCp0 ! Xp and pr0 W XpCp0 ! Xp0 are the front face and back face
projections, induced by the morphisms Œp� ! Œp C p0�; i 7! i , respectively
Œp0� ! Œp C p0�; i 7! p C i . If S� ! X� is a simplicial vector bundle, with
the property that the simplicial maps S� are �berwise isomorphisms, then the
simplical di�erential ı extends to sections of S� in an obvious way, and the
cup-product generalizes to a product

�q.Xp; Sp/˝�
q0.Xp0 ; S

0
p0/! �qCq

0

.XpCp0 ; .S ˝ S
0/pCp0/:

Note however that only the simplicial di�erential ı is de�ned on ��.X�; S�/ ;
the second di�erential is de�ned if S� comes with a �at simplicial connection.

Occasionally it is better to work with the normalized subcomplex e� �.X�; S�/ ,
consisting of forms that pull back to zero under all degeneracy maps. �e
normalized forms are a subalgebra with respect to the cup product.

Any manifold M can be regarded as a simplicial manifold, by taking Mp DM
in all degrees and all simplicial structure maps to be the identity. �e simplicial
di�erential ı on ��.M�/ is given by the identity in odd degrees p > 0 and zero
otherwise.

2.2. Lie groupoids. Let G �M be a Lie groupoid. �e source and target maps
are denoted by s; t W G ! M ; they are submersions onto a submanifold M � G

of units. Elements of G are viewed as arrows
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m0
g
 � m1

from m1 D s.g/ to m0 D t.g/ . If g and g0 are elements with s.g/ D t.g0/ , then
we write gg0 for their groupoid product. �e groupoid inverse will be denoted by
g 7! g�1 . Suppose H � N is a second Lie groupoid. A smooth map H ! G is
called a morphism of Lie groupoids if it restricts to a map of units and intertwines
all the structure maps for the Lie groupoids. It is depicted as a diagram

(9) H
////

O�

��

N

�

��
G

//// M

If the map . O�; s/ W H ! G s �� N is a di�eomorphism, then we say that G acts
on N along � . In this case, G ËN WD G s �� N is called the action groupoid,
its target map

t W G ËN ! N; .g; n/ 7! g:n D t.g; n/

is called the action map, and the map � W N ! M is the moment map for the
action. In particular, G acts on its space M of units; here N DM , with � the
identity map. A principal G -bundle

(10) P
�
//

�

��

B

M

is a manifold P with a G -action along � , together with submersion � W P ! B

such that � ı t D � ı s as maps G Ë P ! B , and such that the map

(11) .t; s/ W G Ë P ! P �B P

is a di�eomorphism.
To de�ne the cochain complex for a Lie groupoid G �M , let

BpG D ¹.g1; : : : ; gp/ 2 G
p
j s.gi / D t.giC1/; i D 1; : : : ; p � 1º

be the manifold of p -arrows

(12) m0
g1
 � m1

g2
 � m2  � � � �

gp

 � mp;

with base points m0; : : : ; mp 2M . For p D 0 we put B0G DM . �en B�G is a
simplicial manifold: the map BG.f / W BpG ! Bp0G de�ned by a nondecreasing
map f W Œp0�! Œp� takes the p -arrow (12) to the p0 -arrow

mf .0/
g0

1
 � mf .1/

g0
2
 � mf .2/  � � � �

g0
p0

 �� mf .p0/;
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where g0i is obtained by composition of arrows (or insertion of trivial arrows).
�at is, g0i D gf .i/C1 � � �gf .iC1/ for f .i/ < f .i C 1/ , and g0i D mi for f .i/ D
f .i C 1/ . In particular the degeneracy maps �i W BpG ! BpC1G; i D 0; : : : ; p

repeat the i -th base point, by inserting a trivial arrow, while the face map
@i W BpG ! Bp�1G; i D 0; : : : ; p drops the i -th base point mi :

@i .g1; : : : ; gp/ D

8̂̂<̂
:̂
.g2; : : : ; gp/ i D 0;

.g1; : : : ; gigiC1; : : : ; gp/ 0 < i < p;

.g1; : : : ; gp�1/ i D p:

For p D 1 we have @0.g/ D s.g/; @1.g/ D t.g/ . �e de Rham complex ��.B�G/
of this simplicial manifold is a bidi�erential algebra, called the Bott-Shulman-
Stashe� complex, after [BSS, Shu]. A ı -cocycle in �q.B0G/ D �q.M/ is (by
de�nition) a G -invariant q -form on M , and a ı -cocycle ˛ 2 �q.B1G/ D �q.G/
is a multiplicative q -form on G , i.e. the pull-back under groupoid multiplication
Mult W B2G ! G equals the sum pr�1 ˛ C pr�2 ˛ .

�e di�erential algebra �0.B�G/ D C1.B�G/ (with the simplicial di�erential
ı ) is the complex of di�erentiable groupoid cochains. �e inclusion of units
� W M ! G , regarded as a groupoid morphism from M � M to G � M ,
de�nes an injective morphism of simplicial manifolds Mp D BpM ! BpG , with
image the trivial p -arrows. �e complex of germs ��.B�G/M is de�ned to be
the quotient of ��.B�G/ by the ideal of forms vanishing on some neighborhood
of Mp � BpG . Similarly we de�ne C1.B�G/M . Note that these are also de�ned
for local Lie groupoids.

For each of the complexes considered above, there are also the normalized
subcomplexes. �ese will be denoted eC 1.B�G/; e� �.B�G/ , and so on.

Examples 1. (1) Given a manifold M , let Pair.M/ DM �M �M be the pair
groupoid, with source map s.m0; m/ D m and target map t.m0; m/ D m0 .
�e inclusion of units is the diagonal embedding M ,! M � M , and
the groupoid multiplication reads as .m01; m1/.m02; m2/ D .m01; m2/ , de�ned
whenever m1 D m02 . In this example, any p -arrow is uniquely determined
by its base points, and the map taking a p -arrow to its base points de�nes
an isomorphism B�.Pair.M// D M �C1 as simplicial manifolds, where the
simplicial structure on the right hand side comes from the identi�cation of
MpC1 as the set of maps Œp�!M . �us C1.B� Pair.M// D C1.MpC1/ ,
with the di�erential given by the formula

.ıf /.m0; : : : ; mpC1/ D

pC1X
iD0

.�1/if .m0; : : : ; cmi ; : : : ; mpC1/:
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�is complex has trivial cohomology. However, the complex Cp.Pair.M//M

D C1.MpC1/M of germs of functions along the diagonal M � MpC1

is the Alexander-Spanier complex [Spa], which is known to compute the
cohomology of M with coe�cients in R .

(2) More generally, given a foliation F on M , one de�nes a groupoid PairF .M/ ,
consisting of pairs of points in the same leaf. �e complex Cp.PairF .M//M

may be seen as a foliated version of the Alexander-Spanier complex; a
coe�cient system is a bundle with a �berwise �at connection.

(3) Let K be a Lie group, acting on a manifold M , and let G D K ËM . �en
C1.B�G/ computes the group cohomology of K with coe�cients in the
K -module C1.M/ .

Any morphism Of W G1 ! G2 of Lie groupoids (cf. (9)), with underlying map
f W M1 !M2 , extends to a morphism of simplicial manifolds f W B�G1 ! B�G2 ,
giving rise to a morphism of bidi�erential algebras f � W ��.B�G2/! ��.B�G1/ ,
and hence of di�erential algebras f � W C1.B�G2/ ! C1.B�G1/ . For example,
the canonical morphism .t; s/ W G ! Pair.M/ de�nes a morphism of di�erential
graded algebras C1.M �C1/! C1.B�G/ .

2.3. Lie algebroid cohomology. A Lie algebroid is a vector bundle A ! M

with a bundle map a W A! TM (the anchor) and a Lie bracket on the space of
sections �.A/ satisfying

ŒX1; fX2� D f ŒX1; X2�C .a.X1/f /X2;

for all X1; X2 2 �.A/ and f 2 C1.M/ . Morphisms of Lie algebroids

(13) B //

O�

��

N

�

��
A // M

are vector bundle maps such that the di�erential T� W TN ! TM intertwines the
anchor maps, and with a certain compatibility condition1 for the Lie brackets on
sections, due to Higgins-Mackenzie [HM, Mac]. Such a morphism is called an
action of A on N along � if the resulting map B ! ��A is an isomorphism;
in this case B is called the action Lie algebroid and is denoted A Ë N . Given
an A -action, the composition of �� W �.A/! �.AËN/ with the anchor map for

1 If B � A is a subbundle along a submanifold N � M , the condition is that whenever
X1;X2 2 �.A/ extend sections Y1; Y2 2 �.B/ , then ŒX1;X2� extends ŒY1; Y2� . �e general case
may be reduced to this case, by replacing the vector bundle map O� by the inclusion B ! A � B of
the graph of O� . (Cf. [LM].)
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A Ë N de�nes a Lie algebra morphism �.A/ ! �.TN/; X 7! XN , such that
XN �� a.X/ .

�e Chevalley-Eilenberg complex of A is the graded di�erential algebra
C�.A/ D �.^�A�/ , with product the wedge product, and with the di�erential
dCE W C�.A/! C�C1.A/ given as

.dCE�/.X0; : : : ; Xp/ D
pX
iD0

.�1/ia.Xi /�.X0; : : : ;cXi ; : : : ; Xp/
C

X
i<j

.�1/iCj�.ŒXi ; Xj �; X0; : : : ;cXi ; : : : ;cXj ; : : : ; Xp/:
(14)

Examples 2. (1) Given an action of a Lie algebra k on M , let A D k ËM be
the action Lie algebroid. �en C�.A/ D C1.M/ ˝ ^�k� is the Chevalley-
Eilenberg complex of k with coe�cients in C1.M/ .

(2) Given a foliation F on M , let A D TFM � TM be the tangent bundle to
the foliation. �en C�.A/ D ��F .M/ is the de foliated Rham complex (i.e.,
the quotient of �.M/ by forms whose pull-back to leaves are zero).

(3) Given an embedded hypersurface N �M , there is a Lie algebroid A D TNM
whose sections are the vector �elds tangent to N . (For manifolds with
boundary, this is the starting point for Melrose’s b -calculus [Mel].) �e
corresponding complex C�.A/ D ��N .M/ may be regarded as a space
of forms on MnN developing a ‘logarithmic’ singularity along N . More
generally, given a Lie algebroid P ! M and a Lie subalgebroid Q ! N

along a hypersurface, there is a Lie algebroid A D ŒP W Q� whose sections
are the sections � 2 �.P / with the property � jN 2 �.Q/ . See Gualtieri-Li
[GL].

(4) Given a Poisson structure � on M , the cotangent bundle A D T �M acquires
the structure of a Lie algebroid with anchor map a D �] W T �M ! TM ,
and with bracket the Koszul bracket. �e resulting di�erential on the algebra
C�.A/ D X�.M/ of multi-vector �elds is the Koszul di�erential d� D Œ�; �� ;
its cohomology is the Poisson cohomology of M .

Any morphism of Lie algebroids A1 ! A2 , with underlying map f W M1 !

M2 , gives rise to a morphism of di�erential algebras f � W C�.A2/! C�.A1/ . As
a special case, the anchor map a W A! TM of a Lie algebroid gives a morphism

a� W ��.M/ D C�.TM/! C�.A/:

�e in�nitesimal counterpart to the bigraded algebra �.BG/ for a Lie groupoid
is the Weil algebra W.A/ . A geometric model for W.A/ will be described in
Section 4.
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2.4. �e Lie functor. For any Lie groupoid G �M , the normal bundle

Lie.G/ D �.M;G/

of M in G has the structure of a Lie algebroid, with anchor map a W Lie.G/!
TM induced by the di�erence T t � T s W TG ! TM , and with the Lie bracket
on sections de�ned by the identi�cation

�
�
Lie.G/

�
D Lie

�
�.G/

�
with the Lie algebra of the in�nite-dimensional group of bisections �.G/ .
Equivalently, the Lie bracket comes from the identi�cation of sections X 2

�.Lie.G// with the Lie algebra of left-invariant vector �elds XL 2 X.G/ (tangent
to t -�bers). �e de�nition of Lie.G/ also makes sense for local Lie groupoids, and
it is known that any Lie algebroid A arises in this way. �e precise obstructions
for integration to a global Lie groupoid were determined by Crainic-Fernandes
[CMa].

Any G -action on a manifold N gives rise to a Lie.G/ -action, with the action
Lie algebroid Lie.G/ËN D Lie.GËN/ . For a principal G -bundle P as in (10),
the action Lie algebroid has an injective anchor map, and identi�es Lie.G/ Ë P
with the subbundle ker.T �/ � TP where � W P ! B is projection to the base.
We hence have identi�cations

�� Lie.G/ Š Lie.G/ Ë P Š ker.T �/;

and a Lie algebroid morphism from ker.T �/ to Lie.G/ . �ese remarks apply in
particular to the action of G on itself along t , given by multiplication from the
left, as well as to the action along s , given by multiplication from the right. It
identi�es t� Lie.G/ D ker.T s/ and s� Lie.G/ D ker.T t/ . On the level of sections,
t�X D �XR are the generating vector �elds for the left action, while s�X D XL

are the generating vector �elds for the right action. �ese vector �elds satisfy the
commutation relations

ŒXL1 ; X
L
2 � D ŒX1; X2�

L; ŒXR1 ; X
R
2 � D �ŒX1; X2�

R; ŒXL1 ; X
R
2 � D 0:

�e di�erences XL � XR are the generating vector �elds for the conjugation
action of the group �.G/ on G . (�ere is no conjugation action of G on itself
unless M D pt .) �ey are tangent to M , and restrict to the vector �eld a.X/ .

3. �e Van Est map C 1.BG/ ! C.A/

In his proof of the Van Est theorem for Lie groupoids [Cra], Crainic introduced
a double complex with cochain maps from both the Lie algebroid complex and
the Lie groupoid complex. In this section, we will use this double complex to
de�ne the Van Est map itself.
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3.1. �e simplicial principal bundle EG . For any Lie groupoid G �M let

EpG D
®
.a0; : : : ; ap/ 2 G

pC1; s.a0/ D : : : D s.ap/
¯
:

(cf. [Aba, page 53] and Appendix A), and let �p W EpG ! M be the common
source map, �p.a0; : : : ; ap/ D s.a0/ . �e space EpG has the structure of a
principal G -bundle

(15) EpG �p
//

�p

��

BpG

M

for the G -action g:.a0; : : : ; ap/ D .a0 g
�1; : : : ; ap g

�1/ along �p , and with the
quotient map �p.a0; : : : ; ap/ D .a0a�11 ; : : : ; ap�1a

�1
p / . �e collection of the spaces

de�nes a simplicial principal G -bundle E�G ! B�G : Regarding EpG as maps
Œp� ! G whose composition with the source map is constant, the structure
map EpG ! Ep0G for a nondecreasing map f W Œp0� ! Œp� is given by
composition. In particular, the face maps @i W EpG ! Ep�1G drop the i -th
entry, while the degeneracy maps �i W EpG ! EpC1G repeat the i -th entry. Any
groupoid morphism G1 ! G2 de�nes a morphism of simplicial principal bundles
E�G1 ! E�G2 .

Remark 1. �e simplicial manifold E�G may be equivalently de�ned as
EpG D Bp.GËG/ , where GËG is the action groupoid for the action g:a D ag�1 .
Here �p is obtained by applying the functor B� to the groupoid morphism
G ËG ! G . See [Aba, De�nition 3.2.4].

3.2. Retraction of EG onto M . For the trivial groupoid M � M we have
EpM D BpM D M in all degrees. �e inclusion � W M ! G as units is a
groupoid morphism, de�ning a simplicial map

�p W Mp ! EpG; m 7! .m; � � � ; m/

with �p ı �p D idM . In Appendix A.2, we show that there is a canonical simplicial
deformation retraction from E�G onto the submanifold M . In turn, this de�nes
a homotopy operator for the de Rham complex of E�G . For 0 � i � p let

(16) hp;i W EpG ! EpC1G; .a0; : : : ; ap/ 7! .a0; : : : ; ai ; m; : : : ; m/;

with p C 1 � i copies of m D s.a0/ D : : : D s.ap/ . �e homotopy operator is
given by

(17) h D

p�1X
iD0

.�1/iC1.hp�1;i /
�
W �q.EpG/! �q.Ep�1G/:
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�us hıC ıh D id���� ��� . For any morphism of Lie groupoids f W G1 ! G2 , the
pullback map f � W �.E�G2/! �.E�G1/ intertwines the homotopy operators.

Example 1. In particular, the inclusion � W M ! G , viewed as a morphism from
M � M to G � M , satis�es h ı ��� D ��� ı h . Note that the simplicial complex
.�.M�/; ı/ is simply

�.M/
0
�! �.M/

id
�! �.M/

0
�! �.M/ � � � I

i.e., ı is the identity in odd degrees p > 0 and zero otherwise. �e homotopy
operator h on this complex restricts to the identity in odd degrees p > 0 and
zero otherwise.

�ere is also a homotopy operator k for the inclusion of �.M/ ,! �.M�/

as the degree 0 piece, with homotopy inverse the projection. �e operator k is
the identity in even degrees p > 0 and zero otherwise.

Proposition 1. �e homotopy operator h W ��.E�G/ ! ��.E��1G/ has the
following additional properties:

(1) h ı h D 0 .
(2) h is an �.M/ -module morphism, in the sense that

h.˛ ^ ��pˇ/ D h˛ ^ �
�
p�1ˇ

for all ˛ 2 �.EpG/ and ˇ 2 �.M/ .

(3) �e homotopy operator is an R -twisted derivation, for the algebra morphism
R D ��� ı �

�
� . �at is,

h.˛ [ ˛0/ D h˛ [R˛0 C .�1/j˛j˛ [ h˛0

for ˛ 2 �q.EpG/ and ˛0 2 �q
0

.Ep0G/ .

(4) �e homotopy operator preserves the normalized subcomplex e� .E�G/ . �e
composition ��� ı h vanishes on the normalized subcomplex.

Proof. Part (1) is obtained by duality to its homological counterpart ( Proposition
12). Part (2) follows since �p ı hp;i D �p�1 , whence h�p;i .˛ ^ �

�
pˇ/ D h�p;i˛ ^

.�p�1/
�ˇ . For Part (3), note that

.hpCp0�1;i /
�.˛ [ ˛0/ D

´
.hp�1;i /

�˛ [R˛0 i � p � 1;

.�1/q˛ [ .hp0�1;i�.p�1//
�˛0 i > p � 1

where the sign comes from the sign convention for the cup product. Taking sum
of these terms from i D 0 to i D pC p0 � 1 , with alternating sign .�1/iC1 , the
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sum from i D 0 to i D p � 1 gives h˛ [ R˛0 , while the sum from i D p to
i D pCp0� 1 gives .�1/pCq˛[h˛0 . As for Part (4), it is clear that h preserves
the normalized subcomplex e� .E�G/ . �e composition ��p�1 ıh D hı ��p vanishes
on e� .EpG/ with p > 0 since ��p vanishes there, and for p D 0 since h vanishes
there.

3.3. Van Est Double complex. Let TFEpG D ker.T �p/ be the tangent bundle
to the foliation F de�ned by the �bers of the principal bundle �p W EpG ! BpG .
As for any principal groupoid bundle (see Section 2.4), we have isomorphisms

��pA Š A ËEpG Š TFEpG;

and the resulting map AËEpG ! A is a Lie algebroid morphism. In fact, TFE�G
is a simplicial Lie algebroid, and the map to A is a morphism of simplicial Lie
algebroids

O�� W TFE�G ! A�;

where Ap D A for all p (with all simplicial structure maps the identity). Following
[AC, Cra] we de�ne the Van Est double complex

(18) Cr;s.TFEG/ WD Cs.TFErG/;

with the simplicial di�erential ı of bidegree .1; 0/ and the di�erential d D
.�1/rdCE of bidegree .0; 1/ ; the extra sign is introduced so that Œd; ı� D dıCıd D
0 . �e space C�.TFE�G/ is a bidi�erential algebra for the cup product

(19) Cs.TFErG/˝ Cs
0

.TFEr 0G/! CsCs
0

.TFErCr 0G/

de�ned by � [ �0 D .�1/r
0s pr� � .pr0/��0 , with the front face projection

pr W ErCr 0G ! ErG and the back face projection pr0 W ErCr 0G ! Er 0G .

Remark 2. For any �xed r , the complex C�.TFErG/ with di�erential dCE is
the foliated de Rham complex ��F .ErG/ for the �bration �r W ErG ! BrG .

Consider again the simplicial Lie algebroid A� . �e corresponding bidi�eren-
tial algebra has summands Cs.Ar / D Cs.A/ ; the simplicial di�erential ı vanishes
on this summand when r is even and is the identity map if r is odd, while
d D .�1/rdCE as before. �e map �r W ErG !M lifts to a morphism of simpli-
cial Lie algebroids, TFErG ! A . Regard C1.B�G/ as a bidi�erential algebra
concentrated in bidegrees .�; 0/ . We obtain a diagram

C�.TFE�G/ C1.B�G/
���oo

C�.A�/

���

OO

where both maps are morphisms of bidi�erential algebras.
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3.4. De�nition of the Van Est map. �e vector bundle morphism

(20) TFErG // ErG

Ar

OO

// Mr

�r

OO

de�nes a morphism of bigraded spaces

��� W C
�.TFE�G/! C�.A�/;

which is right inverse to ��� . �is morphism intertwines ı , but usually not d
since (20) is not a Lie algebroid morphism, in general. Homological perturbation
theory (Appendix B) modi�es this map, in such a way that it intertwines the total
di�erentials dC ı .

�e construction uses a homotopy operator for the di�erential ı . For any �xed
s , the complex Cs.TFE�G/ is the simplicial complex of E�G with coe�cients
in the simplicial vector bundle

^
sT �FE�G Š �

�
� ^

s A�:

Since the maps hr;i W ErG ! ErC1G lift to vector bundle morphisms TFErG D
��r A ! TFErC1G D ��rC1A , we have a well-de�ned homotopy operator with
respect to the simplicial di�erential ı given once again by the formula (17),
h D

P
i .�1/

i .hr�1;i /
� . On the dense subspace

(21) C1.E�G/˝C1.M/ Cs.A/ � Cs.TFE�G/;

it acts as the given homotopy operator on C1.E�G/ , tensored with the identity
operator on Cs.A/ .

Both dıh and hıd are operators of bidegree .�1; 1/ on C�.TFE�G/ . Hence
they are nilpotent operators of total degree 0 , and 1C d ı h and 1C h ı d are
invertible operators of total degree zero. �e Perturbation Lemma of homological
algebra (cf. Lemma 5 in Appendix B) gives the following statement:

Lemma 1. �e map

��� ı .1C d ı h/�1 W Tot� C.TFEG/! Tot� C.A/

is a cochain map for the total di�erential dC ı , and is a homotopy equivalence,
with homotopy inverse .1C h ı d/�1 ı ��� .

Here Tot� C.A/ indicates the total complex of the double complex C�.A�/ .
�e inclusion C�.A/ � C�.A0/ � Tot� C.A/ is also a homotopy equivalence,
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with homotopy inverse the projection. (�e corresponding homotopy operator
k W Cs.Ar /! Cs.Ar�1/ is the identity map for r > 0 even, and 0 otherwise - cf.
Example 1.) By composing the two homotopy equivalences, and observing that
.1C h ı d/�1 ı ��0 D ��0 (for degree reasons), we obtain:

Proposition 2. �e map

��0 ı .1C d ı h/�1 W Tot� C.TFEG/! C�.A/

intertwines the total di�erential dC ı with the Chevalley-Eilenberg di�erential.
It is a homotopy equivalence, with homotopy inverse the map ��0 .

Here ��0 is regarded as a map on the full double complex, given by 0 on
Cs.TFErG/ with r > 0 , and similarly ��0 is viewed as a map into the full double
complex. Composing with the cochain map

��� W C
1.B�G/! C0.TFE�G/ � Tot� C.TFEG/

we arrive at the following de�nition:

De�nition 1. Let G � M be a Lie groupoid, with Lie algebroid A D Lie.G/ .
�e composition

(22) VE D ��0 ı .1C d ı h/�1 ı ��� W C1.B�G/! C�.A/

is called the Van Est map.

By construction, VE is a cochain map. We will verify in Section 7.2 that it
coincides with Weinstein-Xu’s de�nition of the Van Est map.

Remarks 1. (1) �e map VE is functorial: Let G1 ! G2 be a morphism of
Lie groupoids, and let A1 ! A2 be the corresponding morphism of Lie
algebroids. From the construction of the Van Est map, it is immediate that
the following diagram commutes:

C1.B�G2/ ����! C1.B�G1/

VE
??y ??yVE

C�.A2/ ����! C�.A1/

(2) Since dıh has bidegree .�1; 1/ , the Van Est map has the following ‘zig-zag’
form on elements � 2 C1.BpG/ :

VE.�/ D .�1/p��0 ı .d ı h/p ı ��p�:
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(3) �e Van Est map can also be written

VE D ��0 ı .1C Œh; d�/�1 ı ��

because .1 C Œh; d�/�1 D .1 C dh/�1 C
P1
jD1.hd/j and d ı �� D 0 . �is

alternative form turns out to be easier to work with, since Œh; d� is closer to
being a derivation.

(4) For G a possibly local Lie groupoid, we can consider the di�erential algebra
of germs C1.B�G/M . Using the double complex C�.TFE�G/M of germs
along M � EG one obtains a Van Est map

VEM W C1.B�G/M ! C�.A/:

For a global Lie groupoid, the map VE factors as the natural projection
C1.B�G/! C1.B�G/M followed by VEM .

�e Van Est map on the full complex of groupoid cochains fails to be an
algebra homomorphism, in general. However, it does respect products on the
normalized subcomplex [Meh, Proposition 6.2.3].

�eorem 1. �e Van Est map for the trivial G -module restricts to an algebra
morphism VE W eC 1.B�G/! C�.A/ on the normalized subcomplex.

Proof. �e compatibility of the homological perturbation theory with algebra
structures is addressed in the work of Gugenheim-Lambe-Stashe� [GLS] (see
Appendix B, Lemma 5). To apply their result, we need to verify the side conditions
h ı h D 0; �� ı h D 0 as well as the R0 WD ��0 ��0 -derivation property. But these
follow from Proposition 1, and sinceeC 1.ErG/˝C1.M/ C�.A/ � eC �.TFErG/
is a dense subspace.

3.5. Coe�cients. �e theory described above admits a straightforward general-
ization to the case with coe�cients. A module over a Lie algebroid A ! M

is a vector bundle � W S ! M , equipped with a linear A -action. �e linearity
condition is the requirement that AËS ! S is a VB-algebroid [GM2, Mac] over
A!M (also called LA-vector bundle). Equivalently, S comes equipped with a
�at A -connection r W �.S/! �.A� ˝ S/ , i.e.

rX .f �/ D f rX� C .a.X/f /�; ŒrX ;rY � D rŒX;Y �:

(For example, if F is a foliation on M , then a TFM -module is given by a
vector bundle with a �at connection in the direction of the �bers.) One obtains
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a complex C�.A; S/ D �.^�A� ˝ S/ , with a di�erential dCE given by a similar
formula (14) as before, replacing a.X/ with rX . Given another A -module S 0 ,
the wedge product

C�.AIS/˝ C�.AIS 0/! C�.AIS ˝ S 0/; � ˝ �0 7! � ^ �0

is a morphism of di�erential spaces.
Similarly, a module over a Lie groupoid G �M is a vector bundle � W S !M

with a linear G -action along � , i.e. the action groupoid G Ë S � S is a VB-
groupoid in the sense of Pradines [Mac, Pra, GM1]. Equivalently, for any groupoid
element g 2 G the map Ss.g/ ! St.g/; v 7! g:v is linear. �ere is a similar
de�nition of modules for local Lie groupoids. Any G -module becomes a Lie.G/ -
module for the in�nitesimal action.

Given a G -module S !M , we obtain a simplicial vector bundle B�.GËS/!
B�G . We obtain a cochain complex of sections of this bundle, with the simplicial
di�erential de�ned as before. (One can also consider the bigraded space of bundle-
valued di�erential forms, but in order to de�ne a second di�erential on this space
one needs a G -invariant �at connection on S ; see Section 2.1.)

Remark 3. �e �ber of Bp.G Ë S/ at a p -arrow .g1; : : : ; gp/ (cf. 12) consists
of tuples .v0; : : : ; vp/ of elements vi 2 Smi

, with vi�1 D gi :vi . Any such tuple
is determined by the element vp ; hence Bp.G Ë S/ Š BpG �M S .

Consider the G -equivariant simplicial vector bundle E�.GËS/ . �e common
source map for elements of this bundle de�nes a vector bundle map onto S ,
with underlying map �p . �us Ep.G Ë S/ D ��pS . On the other hand, the total
space of Ep.G ËS/ is a principal bundle over Bp.G ËS/ , and the quotient map
identi�es Ep.G Ë S/ D ��pBp.G Ë S/ .

�e vector bundle ��pS D Ep.G Ë S/ is a TFEpG -module, hence a double
complex C�.TFE�G;��� S/ is de�ned. By repeating the argument from the last
section, we use the homotopy operator on this double complex to de�ne the Van
Est map

VE D ��0 ı .1C h ı d/�1 ı �� W �.B�.G Ë S//! C�.A; S/:

Given two G -modules S; S 0 ! M one obtains a commutative diagram for the
normalized subcomplexese�.B�.G Ë S//˝e�.B�.G Ë S 0// [

����! e�.B�.G Ë .S ˝ S 0///
VE˝VE

??y ??yVE
C�.AIS/˝ C�.AIS 0/

[
����! C�.AIS ˝ S 0/

�e argument is essentially the same as in the case of trivial coe�cients, see
Remark 10.
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4. �e Weil algebroid

As discussed in Section 2.2, the groupoid cochain complex C1.B�G/ D

C1.B�G/ extends to the Bott-Shulman-Stashe� double complex ��.B�G/ . To
extend the Van Est map to this double complex, we need a description of the
in�nitesimal counterpart W�;�.A/ , the Weil algebra of a Lie algebroid A . �e
de�nition of this algebra, and a construction of the corresponding Van Est map,
was given by Mehta [Meh] and Weinstein (unpublished notes) in terms of super
geometry, and by Abad-Crainic [AC] using their theory of representations up to
homotopy. �e geometric model given below, as sections of a ‘Weil algebroid’, may
be seen as a translation of Mehta-Weinstein’s de�nition into ordinary di�erential
geometry.

4.1. Koszul algebroids. Let A ! M be any vector bundle. We will de�ne a
‘Koszul algebroid’ W.A/ as a module of Kähler di�erentials for the bundle of
graded algebras ^A� . Consider ^A� as a bundle of commutative graded algebras,
and let

(23) der.^A�/ D
M
i2Z

deri .^A�/

be the graded vector bundle over M whose sections are the graded derivations
of �.^A�/ . Its �ber der.^A�/m at m 2 M is the space of graded derivations
Dm W �.^A

�/! ^A�m of the graded �.^A�/ -module ^A�m . Since ^A� is graded
commutative, the bundle der.^A�/ is a graded ^A� -module.

Proposition 3. �ere is a short exact sequence of graded ^A� -modules

(24) 0! ^A� ˝ A! der.^A�/! ^A� ˝ TM ! 0:

Here the second factor in ^A� ˝ A has degree �1 , while the second factor in
^A� ˝ TM has degree 0 .

Proof. Any derivation Dm 2 der.^A�/m is determined by its restriction to
the degree 0 and degree 1 components of �.^A�/ . �ere is a bundle map
der.^A�/ ˝ T �M ! ^A� , taking Dm ˝ .df /m to Dm.f / for f 2 C1.M/ .
�is is well-de�ned, since Dm.f / vanishes if f is constant, by the derivation
property. We may also regard this as a map

(25) der.^A�/! ^A� ˝ TM:

By construction, the kernel of (25) at m 2M is the subspace of derivations Dm
such that Dm.f / D 0 for all f 2 C1.M/ D �.^0A�/ . But this subspace is
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exactly ^A�m˝Am D der.^A�m/ � der.^A�/m , where the factor Am corresponds
to ‘contractions’. �is de�nes an injective bundle morphism ^A�˝A! der.^A�/

whose image is the kernel of (25). For surjectivity of the ^A� -module morphism
(25), it is enough to show surjectivity of the map der0.^A�/ ! TM . But any
choice of a vector bundle connection on A de�nes a splitting of this map.

Remark 4. We see in particular that deri .^A�/ vanishes for i < �1 , and for
i D �1 coincides with A , acting by contractions. In degree i D 0 we obtain the
Atiyah algebroid aut.A/ of in�nitesimal vector bundle automorphisms of A (or
equivalently of A� ), and the sequence (24) becomes the usual exact sequence
0! A� ˝ A! aut.A/! TM ! 0 for the Atiyah algebroid.

�inking of der.^A�/ as a generalization of the tangent bundle (to which
it reduces if rank.A/ D 0 ), the corresponding ‘cotangent bundle’ is the graded
^A� -module

(26) �1^A� D Hom^A�
�
der.^A�/;^A�

�
of Kähler di�erentials. Dual to (24), we obtain an exact sequence of graded
^A� -modules

0! ^A� ˝ T �M ! �1^A� ! ^A
�
˝ A� ! 0:

Here the second factor in ^A�˝ T �M has degree 0 while the second factor in
^A� ˝A� has degree 1 . More generally, we de�ne a module of Kähler q-forms
�
q
^A� to be the q -th exterior power (taken over ^A� ). �at is, �q

^A� consists
of graded bundle maps

(27) der.^A�/ � � � � � der.^A�/! ^A�

(with q factors) that are ^A� -linear in each entry and skew-symmetric in the
graded sense. For q D 0 we put �0

^A� D ^A
� . Each �

q
^A� is a graded ^A� -

module, with summands
W p;q.A/ WD .�

q
^A�/

p

the q -linear maps (27) raising the total degree by p . �e ‘wedge product’
^�

q
^A� ˝�

q0

^A� ! �
qCq0

^A� is compatible with these gradings, thus W.A/ D �^A�
is a bundle of bigraded algebras. We will denote by

W�;�.A/ WD �
�
W �;�.A/

�
the bigraded algebra of sections. From its interpretation as ‘di�erential forms’, it
is clear that this algebra has an exterior di�erential:
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Proposition 4. �e algebra W�;�.A/ has a unique derivation dK of bidegree .0; 1/
such that dKıdK D 0 and such that for all � 2 �.^A�/ and all D 2 �.der.^A�// ,

.dK�/.D/ D D.�/:

De�nition 2. �e bigraded algebra W.A/ with the di�erential dK will be called
the Koszul algebra of the vector bundle A!M .

We list some properties and special cases of this construction.
a) Suppose M D pt , so that A D V is a vector space. �en der.^V �/ D

^V � ˝ V , where elements of V D der�1.^V �/ acts as contractions.
Dualizing, �1

^V � D V � ˝ ^V � where the elements of the �rst factor V �
have bidegree .1; 1/ , and more generally �

q
^V � D S

qV � ˝ ^V � where the
elements of SqV � have bidegree .q; q/ . It follows that

W p;q.V / D SqV � ˝^p�qV �:

�e di�erential dK takes generators of ^1V � to the corresponding generators
of S1V � ; it hence coincides with the standard Koszul di�erential.

b) At the other extreme, if A D M � ¹0º is the zero vector bundle over M ,
then der.^A�/ D TM is the tangent bundle, and �

q
^A� D ^

qT �M . Hence
W p;q.A/ is zero for p > 0 , while W 0;q.A/ D ^qT �M .

c) For a direct product of vector bundles A1 !M1 and A2 !M2 , one has

W.A1 � A2/ D W.A1/�W.A2/

(exterior tensor product of graded algebra bundles) with the sum of the
di�erentials on the two factors. As a special case, if A DM �V is a trivial
vector bundle, then

W p;q.M � V / D
M
i

^
iT �M ˝ Sq�iV � ˝^p�qCiV �:

For a general vector bundle A , since W.A/jU D W.AjU / for open subsets
U �M , this gives a description of W.A/ in terms of local trivializations.

d) For any vector bundle A ! M , one has W p;0.A/ D ^pA� while
W 0;q.A/ D ^qT �M . �e space Wp;q.A/ D �.W p;q.A// is spanned by
elements of the form

(28)  0 dK 1 � � � dK q

with sections  i 2 �.^piA�/ satisfying p0 C : : :C pq D p . (�is follows,
e.g., by considering local trivializations as above.)
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e) Any morphism A0 ! A of vector bundles over M induces a morphism
of bigraded algebra bundles W.A/ ! W.A0/ compatible with the ^T �M
module structure. �e map on sections W.A/ ! W.A0/ is a cochain maps
with respect to dK .

g) Let f W N ! M be a smooth map. For any vector bundle A ! M , the
algebra bundles W.f �A/ and f �W.A/ are related by ‘change of coe�cients’:

W.f �A/ D ^T �N f̋ �^T �M f �W.A/:

�us, on the level of sections we have an inclusion �.N/˝�.M/ W.A/ ,!
W.f �A/ with dense image. More generally, for any morphism of vector
bundles A1 ! A2 with underlying map f W M1 !M2 we obtain a morphism
f � W W.A2/! W.A1/ .

�e morphisms

(29) i W �.M/! W.A/; � W W.A/! �.M/;

induced by the projection A!M and the inclusion M ! A , respectively, may be
regarded as the inclusion and projection onto the subcomplex W 0;�.A/ Š ^�T �M .

Proposition 5. �e inclusion and projection (29) are homotopy inverses with
respect to dK . In particular, the cohomology of .Tot�W.A/; dK/ is canonically
isomorphic to the de Rham cohomology of M .

Proof. View A�R as the direct product of A with the zero vector bundle R�¹0º

over R ; thus W.A�R/ D W.A/�^T �R . �e space W.A�R/ D �.W.A�R//

may be regarded as di�erential forms on R with values in W.A/ . For all s 2 R

we have morphisms of bigraded algebras evs W W.A�R/! W.A/ induced by the
bundle map A! A�R; v 7! .v; s/ . Integration over the unit interval Œ0; 1� � R

de�nes a map
J W W�;�.A �R/! W�;��1.A/

with the homotopy property (Stokes’ theorem)

J ı dK C dK ı J D ev1� ev0 :

�e bundle map A � R ! A; .v; t/ 7! tv de�nes a morphism of bigraded
algebras F W W.A/! W.A �R/ , with

ev1 ıF D idW.A/; ev0 ıF D i ı �:

Since F and the maps evs commute with the di�erential dK , it follows that the
composition J ı F W W�;�.A/! W�;��1.A/ is a homotopy operator between these
two maps:

J ı F ı dK C dK ı J ı F D idW.A/�i ı �:
(For a more detailed discussion, see e.g., [Mei, Section 6.3].)
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4.2. Derivations of W.A/ . In addition to the ‘exterior di�erential’ dK , the
algebra W.A/ has ‘Lie derivatives’ l.D/ and ‘contractions’ j.D/ de�ned by
derivations D 2 �.deri .^A�// . Here j.D/ is the derivation of bidegree .i;�1/
given on � 2 �1

^A� (cf. (26)) by j.D/� D �.D/ , while l.D/ is the derivation
of bidegree .i; 0/ , extending D on �.^�A�/ D W�;0.A/ and commuting with dK
in the graded sense. We have the Cartan commutation relations

Œl.D1/; l.D2/� D l.ŒD1;D2�/;

Œl.D1/; j.D2/� D j.ŒD1;D2�/;

Œj.D1/; j.D2/� D 0;

Œl.D/; dK � D 0;
Œj.D/; dK � D l.D/;
ŒdK ; dK � D 0;

for D;D1;D2 2 �.der �.^A�// . �e constructions are natural with respect to
morphisms A1 ! A2 of vector bundles: If the map f � W �.^A�2/ ! �.^A�1/

satis�es f � ı D2 D D1 ı f
� , then the map f � W W.A2/ ! W.A1/ satis�es

f � ı j.D2/ D j.D1/ ı f
� and f � ı l.D2/ D l.D1/ ı f

� .
In particular, the derivations ı.X/ 2 �.der�1.^A�// given by contraction with

X 2 �.A/ give rise to derivations

ıS .X/ WD j
�
ı.X/

�
; ıK.X/ WD l

�
ı.X/

�
of W.A/ , of bidegrees .�1;�1/ and .�1; 0/ respectively. In the special case
A D V , so that W.V / D SV � ˝ ^V � is the standard Koszul algebra, ıK.X/ is
the contraction operator acting on the second factor while ıS .X/ is the contraction
operator on the �rst factor. We have ŒıS .X/; dK � D ıK.X/ and ŒıK.X/; dK � D 0 .
Note also that for f 2 C1.M/ , ıS .fX/ D f ıS .X/ but

(30) ıK.fX/ D f ıK.X/ � df ı ıS .X/

where df 2 �1.M/ D W0;1.A/ acts by multiplication.

Remark 5. �ere is an alternative geometric model for the Koszul algebra of a
vector bundle A ! M , as follows. For p � 0 let A.p/ D A �M � � � �M A be
the p -fold �ber product over M , with the convention A.0/ D M . �inking of
A as a groupoid and of A.p/ as BpA , we have a cup product on C1.A.�// .
We let C1

sk
.A.�// � C1.A.�// denote the subspace of skew-symmetric functions,

endowed with the multiplication given by the skew-symmetrization of the cup
product. �ere is an injective morphism of graded algebras

�.^�A�/! C1sk .A
.�//;
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taking a section of the exterior power ^pA� to the corresponding multi-linear,
skew-symmetric function on A.p/ .

In a similar fashion, let ��
sk
.A.�// � ��.A.�// denote the subspace of forms

which are skew-symmetric (for the action of the symmetric group Sp ), endowed
with the skew-symmetrized cup product. �ere is an injective morphism of
bigraded algebras

W�;�.A/! ��sk.A
.�//;

taking a section of W p;q.A/ to a q-form on A.p/ that is multi-linear (i.e., linear
in each factor). �is morphism intertwines the Koszul di�erential dK with the
de Rham di�erential. In particular, W1;q.A/ is realized as the space of linear
q -forms on A . �is space plays a role in the work of Bursztyn-Cabrera-Ortiz
[BC, BCO] on multiplicative 2-forms.

4.3. �e Weil algebroid of a Lie algebroid. Suppose now that A!M is a Lie
algebroid. �e Chevalley-Eilenberg di�erential dCE on sections of ^A� lifts to
a di�erential l.dCE / on sections of W.A/ . Like all operators of the form l.D/ ,
it commutes with dK in the graded sense. To simplify notation, we will write
l.dCE / D dCE .

De�nition 3. �e bidi�erential algebra .W.A/; dK ; dCE/ is called the Weil algebra
of the Lie algebroid A . �e total di�erential dW D dK C dCE is called the Weil
di�erential.

For any Lie algebroid morphism A1 ! A2 , the resulting map f � W �.^A�2/!
�.^A�1/ intertwines the derivations dCE , hence f � W W.A2/ ! W.A1/ is a
morphism of bidi�erential algebras.

Let A ! M be a Lie algebroid, with Weil algebra W.A/ . For a section
X 2 �.A/ , we obtain a degree zero derivation L.X/ D Œı.X/; dCE � of �.^A�/ ;
its extension to W.A/ will again be denoted by L.X/ . We obtain yet another
contraction operator ıCE .X/ WD j.L.X// , of bidegree .0;�1/ . From the Cartan
commutation relations, we see that

ŒıK.X/; dCE � D L.X/ D ŒıCE .X/; dK �; ŒıCE .X1/; ıK.X2/� D ıS .ŒX1; X2�/:

4.4. Examples.

Example 2. Consider �rst the case that M D pt , so that A D g is a Lie algebra.
Choose dual bases ei 2 g and ei 2 g� , and let ckij D hek; Œei ; ej �i be the structure
constants. �e Chevalley-Eilenberg di�erential on ^g� is given by the formula
dCE D �12

P
ijk c

k
ij e

iej ı.ek/ , with ı.ek/ the contraction operator on ^g� . As we
had seen, W p;q.g/ D Sqg� ˝^p�qg� , with dK the standard Koszul di�erential.
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Letting ei 2 S1g� denote the degree .1; 1/ generators corresponding to the basis
elements, we have dK D

P
i e
i �.ei / . �e operator j.dCE / on the Weil algebra

becomes
j.dCE/ D �

1

2

X
ijk

ckij e
iej ıS .ek/;

hence the di�erential dCE WD l.dCE / D Œj.dCE /; dK � on W.g/ is

dCE D �
1

2

X
ijk

ckij e
iej �.ek/C

X
ijk

ckij e
iej ıS .ek/:

One recognizes .W.g/; dK ; dCE / as the standard Weil algebra. Here ıK.ek/ D �.ek/
is the usual contraction on the ^g� factor, ıS .ek/ is the usual contraction on the
Sg� factor, and ıCE .ek/ D

P
c
j

ik
ei ıS .ej / .

Example 3. (Lie algebroid structures on trivial vector bundles) Let A ! M

be a Lie algebroid, with a trivialization A D M � V as a vector bundle. �us
W.A/ D �.M/˝ SV �˝^V � . Choose dual bases ei 2 V and ei 2 V � . Viewing
the ei as constant sections of A , put ckij D he

k; Œei ; ej �i 2 C1.M/ . By a
calculation similar to that of example 2, we obtain the following formula for the
Chevalley–Eilenberg di�erential on W.A/ ,

dCE D
X
i

ei LM
�
a.ei /

�
�

X
i

ei ıM
�
a.ei /

�
�
1

2

X
ijk

ckij e
iej ı.ek/C

X
ijk

ckij e
iej ıS .ek/:

Here ıM .a.ei // and LM .a.ei // are contraction and Lie derivative with respect
to the vector �eld a.ei / , acting on the �.M/ factor, ı.ek/ is a contraction on
the ^V � factor, ıS .ek/ is contraction on the SV � factor, and the ei ; ei are the
generators of ^V � and SV � , acting by multiplication.

�e special case that the ckij are constant corresponds to an action Lie
algebroid for an action of the Lie algebra V D g on M . Here .C.A/; dCE / is the
Chevalley-Eilenberg complex of g with coe�cients in C1.M/ , and .W.A/; dW /
is isomorphic to W.g/˝ �.M/ with di�erential dW g ˝ 1C 1˝ dM , using the
isomorphism given by a Kalkman twist by the operator exp.

P
i e
i ˝ ıM .ei // . See

Guillemin-Sternberg [GS] and Abad-Crainic [AC].

Example 4. (Tangent bundle) If A D TM , the Chevalley-Eilenberg complex
�.^A�/ D �.M/ is the usual de Rham complex. �us, Wp;q.TM/ comes with
two kinds of de Rham di�erentials, d0 D dCE and d00 D dK . As a bigraded algebra,
the Weil algebra W.TM/ is generated by functions f 2 C1.M/ , .1; 0/-forms
d0f , .0; 1/-forms d00f , and .1; 1/-forms d0d00f . �e bidi�erential algebra

(31) �Œ2�.M/ WD W.TM/
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with di�erentials d0; d00 was introduced by Kochan-Severa [Koc] under the name
of di�erential gorms; it was subsequently studied by Vinogradov–Vitagliano [VV]
under the name of iterated di�erential forms. (Obviously, there are generalizations
to n -di�erential algebras �Œn�.M/ .) Many of the standard constructions for
di�erential forms generalize with minor changes. In particular, iterated di�erential
forms can be pulled back under smooth maps, and given a smooth homotopy
F W Œ0; 1� � M ! N; .t; x/ 7! Ft .x/ one obtains two homotopy operators
h0; h00 W �Œ2�.N /! �Œ2�.M/ , of bidegrees .�1; 0/ and .0;�1/ , such that Œd0; h0� D
Œd00; h00� D F �1 � F

�
0 while Œd0; h00� D Œd00; h0� D 0 . �e homotopy operators are

obtained as pullbacks under the map F , followed by integration over Œ0; 1� with
respect to d0t , respectively d00t .

Example 5. (Foliations) Suppose F is a foliation of M , de�ning a Lie algebroid
A D TFM . �e inclusion TFM ! TM de�nes a surjective map from (31) onto
the Weil algebra W.TFM/ . One can think of elements of W.TFM/ as di�erential
gorms in the direction of the foliation and di�erential forms in the transverse
direction.

Similar to the well-known result for the Weil algebra W.g/ , we have:

Proposition 6. For any Lie algebroid A ! M , there is a canonical homotopy
equivalence between .Tot�W.A/; dW / and the de Rham algebra .��.M/; dM / .

Proof. �e proof is a generalization of the ‘Kalkman trick’. �e derivation
u D j.dCE/ has bidegree .1;�1/ , and satis�es

Œu; dK � D dCE; Œu; dCE� D 0:

Since u has total degree 0 and is nilpotent, its exponential U D u is a well-de�ned
algebra automorphism of W.A/ , preserving the total degree, and with

U ı dK ı U�1 D dK C dCE D dW :

By Proposition 5, the inclusion ��.M/ ,! Tot�W.A/ is a homotopy equivalence
with respect to dK ; hence its composition with U is a homotopy equivalence
with respect to dW .

5. �e Van Est map �.BG/ ! W.A/

We will now continue the discussion from Section 3 to de�ne a Van Est map
for the Weil algebras.
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5.1. �e Van Est triple complex. �e simplicial Lie algebroid TFE�G ! E�G

gives rise to a tridi�erential algebra W.TFEG/ , with summands Wr;p;q.TFEG/ D
Wp;q.TFErG/ , and with commuting di�erentials

ı; d0 D .�1/rdCE ; d00 D .�1/rdK

of tridegrees .1; 0; 0/; .0; 1; 0/ , and .0; 0; 1/ . �e product is a cup product, as
before:

˛ [ ˛0 D .�1/r
0.pCq/ pr� ˛ .pr0/�˛0

for ˛ 2 Wp;q.TFErG/ and ˛0 2;Wp
0;q0.TFEr 0G/ , where the right hand side uses

the multiplication in W�;�.TFErCr 0G/ . We have a diagram, for all r ,

W�;�.TFErG/ ��.BrG/
��roo

W�;�.Ar /

��r

OO :

Both ��� and ��� are morphisms of tridi�erential algebras, where ��.B�G/ is
regarded as a triple complex concentrated in tridegrees .�; 0; �/ . We also have
the maps

��r W W
�;�.TFErG/! W�;�.Ar /

induced by the inclusion �r W Ar ! TFErG . �en ��� is a left inverse to ���
intertwining the simplicial di�erential ı as well as the Koszul di�erential d00 ,
but usually not the di�erential d0 .

5.2. �e Van Est map for the Bott–Shulman–Stashe� complex. Since the
maps hr;i W ErG ! ErC1G lift to vector bundle morphisms TFErG ! TFErC1G ,
we have a well-de�ned homotopy operator h D

P
i .�1/

iC1.hr�1;i /
� W W.Ar / !

W.Ar�1/ with respect to the simplicial di�erential ı . On the dense subspace

�.ErG/˝�.M/ W.A/ � W.TFErG/;

it is the natural extension of the homotopy operator on �.E�G/ . (�is is
well-de�ned, since the latter is a �.M/ -module morphism, cf. Part (2) of
Proposition 1.) Note that h commutes with d00 , but usually not with d0 . Let
Tot�;�12 W.TFEG/ be the bidi�erential algebra with summands Totn;q12 W.TFEG/ DL
rCpDnW

p;q.TFErG/ , and with the di�erentials ı C d0 and d00 . We denote by
Tot�W.TFEG/ the total complex obtained by summing over all three gradings.

Proposition 7. �e composition

��0 ı .1C d0 ı h/�1 W Tot�;�12 W.TFEG/! W�;�.A/
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is a morphism of bidi�erential spaces. In fact, it is a homotopy equivalence with
respect to ıC d0 , with homotopy inverse ��0 . It restricts to an algebra morphism
on the normalized subcomplex Tot�;�12 eW .TFEG/ .
Proof. �e �rst part is a direct consequence of the Perturbation Lemma 4, applied
to Tot�;q12 W.TFEG/ for �xed q . We obtain a similar statement for the total
complex Tot�W.TFEG/ (with the di�erential ıC d where d D d0C d00 ), for the
composition ��0 ı .1C d ı h/�1 . By Lemma 5 (cf. the proof of �eorem 1), the
map ��0 ı .1C d ı h/�1 is an algebra morphism on normalized cochains. But this
map coincides with ��0 ı .1C d0 ı h/�1 , because

.1C d ı h/�1 D .1C d0 ı h � h ı d00/�1 D .1C d0 ı h/�1 C
1X
nD1

.�h ı d00/n

(using that h and d00 commute), and ��0 ı h D 0 .

De�nition 4. �e composition

VE W ��0 ı .1C d0 ı h/�1 ı �� W ��.B�G/! W�;�.A/:

is the Van Est map for the Bott-Shulman-Stashe� double complex.

By construction, the map VE is a morphism of bidi�erential spaces, and it
restricts to an algebra morphism on the normalized cochains. It is an �.M/ -
module morphism, since each of the maps ��0 ; �� , and 1C d0 ı h is an �.M/ -
module morphism.

For local Lie groupoids G , one similarly obtains a Van Est map on the
complex of germs,

VEM W ��.B�G/M ! W�;�.A/:

�e latter is surjective, and as we shall see in the next section, admits a right
inverse which is a morphism of bidi�erential spaces. �e Van Est map for a
global Lie groupoid G factors through the localized Van Est map VEM .

6. Van Est theorems

�e Van Est map can be viewed as a di�erentiation procedure from Lie
groupoid cochains to Lie algebroid cochains. In some situations, it is possible to
obtain an integration procedure in the opposite direction. In our approach, the
Van Est map was constructed using a homotopy operator with respect to ı ; to
obtain a cochain map in the other direction one wants a homotopy operator with
respect to the di�erential d .



120 D. Li-Bland and E. Meinrenken

Note that the principal G -bundles �p W EpG ! BpG are trivial: For any �xed
i � p , the submanifold of elements .a0; : : : ; ap/ 2 EpG with ai 2 M de�nes a
section. Taking i D 0 , the corresponding right inverse to �p is the map

jp W BpG ! EpG; .g1; : : : ; gp/ 7! .t.g1/; g�11 ; : : : ; .g1 � � �gp/
�1/:

As before, we regard ��.B�G/ as a bidi�erential algebra concentrated in bidegrees
.�; 0; �/ . �e morphism of bigraded spaces

j �� W W
�;�.TFE�G/! ��.B�G/

(given by the obvious pullback map in tridegree .�; 0; �/ , and equal to zero in all
other tridegrees) is a left inverse to ��� . It is a cochain map with respect to d0; d00
(in particular, j �� ı d0 D 0 ), but since j� is not a simplicial map it is neither a
cochain map with respect to ı , nor an algebra morphism.

Consider the very special case that the t -�bers of G are contractible, in
the sense that there is a smooth deformation retraction �t W G ! G , depending
smoothly on .t; g/ 2 Œ0; 1� �G , and such that

(32) �t jM D idM ; �0 D idG ; �1 D � ı t; t ı �t D t

for all t 2 Œ0; 1�; g 2 G . One then obtains deformation retractions �p;t W EpG !
EpG with

�p;t jBpG D idBpG ; �p;0 D idEpG ; �p;1 D jp ı �p; �p ı �p;t D �p;

by the formula

�p;t .a0; : : : ; ap/ D
�
�t .a0/; a1a

�1
0 �t .a0/; : : : ; apa

�1
0 �t .a0/

�
:

In turn, these de�ne homotopy operators (cf. Example 4)

k W Wp:q.TFErG/! Wp�1;q.TFErG/

(i.e., kd0 C d0k D id���� j �� ), with kd00 C d00k D 0 .
For a general Lie groupoid G , or even a local Lie groupoid, one can always

choose a germ of a deformation retraction � along the t -�bers. �e properties (32)
are to be understood as equalities of germs along M (or along Œ0; 1� �M ). �e
germ determines a homotopy operator kr W Wp;q.TFErG/M ! Wp�1;q.TFErG/M
for the complex of germs. We obtain:

Proposition 8. For any local Lie groupoid G �M the map VEM W �q.B�G/M !
W�;q.A/ is a homotopy equivalence, for all �xed q . Given a germ of a retraction
of G onto M along t -�bers, the corresponding operator k de�nes a homotopy
inverse:

j �� ı .1C ık/
�1
ı ��0 W W

�;�.A/! ��.B�G/M :

Similar assertions hold for the Van Est map VE of global Lie groupoids with
contractible t -�bers.
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Proof. Reversing the roles of d and ı in the Perturbation Lemma 4, we see that

j �� ı .1C ık/
�1
W Tot�W.TFEG/M ! ��.B�G/M

is a cochain map, and is a homotopy inverse to .1 C kı/�1�� D �� . Here we
used that kı vanishes on the range of �� , for degree reasons. On the other hand,
by Proposition 2, the map ��0 ı .1C d ı h/�1 is homotopy inverse to ��0 .

Remark 6. Once again, we can write this ‘reverse Van Est map’ as a zig-zag:
In bidegree .p; q/ , it reads as

.�1/pj �p ı .ık/
p
ı ��0 W W

p;q.A/! �q.BpG/M :

�e following result is due to Weinstein–Xu [WX] in the case q D 0 , and to
Bursztyn–Cabrera [BC] in the general case.

Proposition 9. Let G � M be a local Lie groupoid. In bidegrees .p; q/ with
p D 0; 1 , the map VEM W �q.BpG/M ! Wp;q.A/ restricts to an isomorphism on
ı -cocycles. Similar assertions hold for global Lie groupoids with 1 -connected
t -�bers.

Proof. On �q.B0G/M D W0;q.A/M D �q.M/ , the map VEM is just the identity
map. �e space ker.ı/ � W0;q.A/M consists of (locally) G -invariant q-forms,
while ker.d0/ consists of q -forms that are A -invariant. But these two spaces
coincide. It follows that VEM restricts to an isomorphism on ı -cocycles in
bidegree .0; q/ , as well as on ı -coboundaries in bidegree .1; q/ . Since VEM
induces an isomorphism in cohomology for the di�erentials ı; d0 , it must then
also restrict to an isomorphism on 1-cocycles. For global Lie groupoids G �M ,
consider the quotient map �q.BpG/! �q.BpG/M . A ı -cocycle in �q.B0G/ is
a (globally) G -invariant form; if G is 0 -connected this is the same as a locally
G -invariant form, i.e. a cocycle in �q.B0G/M . A ı -cocycle in �q.B1G/ is a
multiplicative form on G . Such a form is uniquely determined by its restriction
to an arbitrarily small open neighborhood of M in G , i.e., by its germ. Hence
the map �q.B1G/ ! �q.B1G/M is injective on ı -cocycles. If the t -�bers are
1 -connected, then any germ (along M ) of a multiplicative form extends uniquely
to a global multiplicative form. Hence the map is also surjective in that case.

Remark 7. �e prescription in [WX] is equivalent to the one given here: Any
cocycle ˛ 2 C1.A/ D �.A�/ de�nes a closed left-invariant foliated 1-form
˛L 2 �1F .G/ , for the foliation given by the target map. If the t -�bers are
simply connected, one obtains a well-de�ned function f 2 C1.G/ , such that
f .g/ is the integral of ˛L from t.g/ to g , along any path in the t -�ber. �is
function f is multiplicative.
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For a global Lie groupoid, one has Crainic’s Van Est theorem:

�eorem 2 (Crainic [Cra]). Suppose G �M is a Lie groupoid with n -connected
t -�bers. �en the Van Est map VE W C1.B�G/! C�.A/ induces an isomorphism
in cohomology in degrees p � n . For p D n C 1 the map in cohomology is
injective, with image the classes Œ!� such that for all x 2 M , the integral of !
(regarded as a left-invariant foliated form) over any nC 1 -sphere in t�1.x/ is
zero.

(A generalization to �.BG/ was obtained by Abad–Crainic in [AC].) Using
the homological perturbation theory, one can construct the inverse in degrees
� n on the level of cochains, given a homotopy operator. �e assumption that
the t -�bers are n -connected implies that the �bers of any principal G -bundle
are n -connected. In particular, this applies to �r W ErG ! BrG . It follows that
C�.TFE�G/ has vanishing d-cohomology in bidegree .r; s/ for all s � n . Let

��nC�.TFE�G/

be the truncated foliated de Rham complex for G , given by Cs.TFErG/ in
degree s < n and by Cn.TFErG/\ ker.dn/ in degree n . �e truncated complex
has vanishing d-cohomology in degrees .r; s/ with s > 0 . Hence there exists a
homotopy operator

k W ��nCs.TFErG/! ��nCs�1.TFErG/

with kdC dk D id���r j �r . By the Perturbation Lemma, the composition

j � ı .1C ık/�1 W ��nCs.TFErG/! C1.BrG/

is a cochain map for the total di�erential. It gives the desired cochain map

j � ı .1C ık/�1 ı �� W ��nCp.A/! C1.BpG/:

7. Explicit formulas for the Van Est map

Until now, we expressed the Van Est map in terms of the Van Est double
complex. We will now derive more explicit formulas, thus con�rming that this
de�nition agrees with those of Weinstein–Xu [Wei1] and Abad–Crainic [AC]. We
will directly consider ��.B�G/ ; the results for C1.B�G/ will be special cases.

7.1. �e Lie algebroid TFG . Let G be a Lie groupoid with Lie algebroid
A D Lie.G/ . Let F be the foliation of E0G D G de�ned by the submersion
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�0 D t , and let TFG be the corresponding Lie algebroid. Recall that any X 2 �.A/
induces derivations

ıS .X/; ıK.X/; ıCE .X/; L.X/

on W�;�.A/ . �e left-invariant vector �eld XL 2 �.TFG/ de�nes similar
derivations of W�;�.TFG/ . �e inclusion � W M ! G lifts to a morphism of
vector bundles A ! TFG , de�ning a pullback map �� W W�;�.TFG/ ! W�;�.A/ ,
with

�� ı dK D dK ı ��; �� ı ıS .XL/ D ıS .X/ ı ��; �� ı ıK.XL/ D ıK.X/ ı ��:

On the other hand, since A! TFG is not a Lie algebroid morphism, the map ��
does not intertwine dCE ; L.X/; �CE .X/ (for X 2 �.A/ ) with the corresponding
derivations of W.TFG/ , in general. Instead we have

Lemma 2. For all X 2 �.A/ ,

�� ı ıCE .XL �XR/ D ıCE .X/ ı ��; �� ı L.XL �XR/ D L.X/ ı ��:

To explain the left hand side of these equations, note that any vector �eld
Y 2 X.G/ in the normalizer of �.TFG/ (i.e., such that ŒY; �� preserves �.TFG/ )
de�nes an in�nitesimal automorphism of TFG , giving rise to a derivation L.Y /
of �.^T �FG/ , and hence to derivations ıCE .Y / D j.L.Y // and L.Y / D l.L.Y //
of W�;�.A/ . �is applies to the vector �elds XL as well as to the vector �elds
XR , hence also to the vector �eld Y D XL�XR (generating the adjoint action).
�e Lemma follows since ŒXL � XR; �� on �.TFG/ induces ŒX; �� on �.A/ . It
will be convenient to introduce the operator

(33) D W W�;�.TFG/! W�C1;�.A/; D D dCE ı �� � �� ı dCE ;

measuring the failure of �� to be a cochain map for dCE .

Lemma 3. For all X 2 �.A/ ,

ıK.X/ ıDCD ı ıK.XL/ D �� ı L.�XR/;
ıS .X/ ıD �D ı ıS .XL/ D �� ı ıCE .�XR/:

(34)

Proof. Using the above commutation relations we calculate

ıS .X/ ıD D ıS .X/ ı .dCE ı �� � �� ı dCE /
D .ıCE .X/C dCE ı ıS .X// ı �� � �� ı ıS .XL/ ı dCE
D �� ı ıCE .XL �XR/C dCE ı �� ı ıS .XL/

� �� ı ıCE .XL/ � �� ı dCE ı ıS .XL/
D �� ı ıCE .�XR/CD ı ıS .XL/:
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which proves the second identity. �e �rst follows by taking a commutator with
dK .

On elements � 2 �q.G/ D W0;�.TFG/ , these formulas become (for degree
reasons)

ıK.X/D� D �� ı L.�XR/� 2 �q.M/;

ıS .X/D� D �� ı ı.�XR/� 2 �q�1.M/;

where ı.�XR/ is the usual contraction operator on di�erential forms.

7.2. A formula for the Van Est map. �e vector �elds �X i;R 2 X.ErG/

are invariant under the principal G -action, hence they descend to vector �elds
X i;] 2 X.BrG/ . �e �X i;R generate the G -action on ErG given by left
multiplication on the i -th factor; similarly the X i;] generate the following G -
actions on BrG ,

g:.g1; : : : ; gr / D .g1; : : : ; gi�1; gig
�1; ggiC1; giC2; : : : ; gr /:

�ese de�ne Lie derivatives and contractions on �.BrG/ , with

��r ı ı.X i;]/ D ıK.�X i;R/ ı ��r ; ��r ı L.X
i;]/ D L.�X i;R/ ı ��r :

For elements ˛ 2 Wp;q.A/ , X1; : : : ; Xp 2 �.A/ and all n � p we put

˛.X1; : : : ; Xn; XnC1; : : : ; Xp/

D ıS .Xp/ � � � ıS .XnC1/ıK.Xn/ � � � ıK.X1/˛ 2 �q�n.M/:

�is expression is C1.M/ -linear in X1; : : : ; Xn , but not in XnC1; : : : ; Xp , due
to (30).

�eorem 3. �e Van Est map VE W ��.B�G/! W�;�.A/ is given by the following
formula, for � 2 �q.BpG/ and X1; : : : ; Xp 2 �.A/ ,

VE.�/.X1; : : : ; Xn; XnC1; : : : ; Xp/

D ��
X
s2Sp

�.s/L.X1;]
s.1/
/ � � �L.Xn;]

s.n/
/ı.XnC1;]

s.nC1/
/ � � � ı.Xp;]

s.p/
/�:

Here � W M ! BpG is the inclusion as constant p -arrows, and �.s/ is equal to
C1 if the number of pairs .i; j / with 1 � i < j � n but s.i/ > s.j / is even,
and equal to �1 if that number is odd.

Observe that the formula does not involve the generating vector �elds for the
i D 0 action.
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Remarks 2. (1) �is formula is similar to the expression obtained in Abad–
Crainic [AC, Proposition 4.1]. However, in contrast to the result in [AC], no
recursion procedure is needed.

(2) �e same formula holds true for local Lie groupoids, using the complex
��.B�G/M of germs.

(3) Restricting, we obtain the following formula for the Van Est map C1.B�G/!
C�.A/ :

VE.f /.X1; : : : ; Xr / D
X
s2Sr

sign.s/L.X1;]
s.1/
/ � � �L.X r;]

s.r/
/ f
ˇ̌̌
M

�is is the formula given by Weinstein and Xu [Wei1].
(4) Mehta points out in [Meh, Section 6] that the formula in �eorem 3 can be

obtained from that of Weinstein and Xu [Wei1] (c.f. [Meh, De�nition 6.2.1]),
via an appropriate modi�cation to the signs due to the Koszul sign rule.

�e proof will require some preparation. To simplify notation, denote by
˝ WD ˝�.M/ the (algebraic) tensor product of modules over commutative graded
algebra �.M/ . We will use the pullback s� to regard �.G/ as an �.M/ -module;
there is a natural multiplication map (not to be confused with cup product)

�q0.G/ N̋ � � � N̋ �qr .G/! �q0C:::Cqr .ErG/;

�0 N̋ � � � N̋ �r 7! pr�0 �0 � � � pr�r �r :
(35a)

�e Weil algebra W�;�.A/ is also a module over �.M/ ; the pullback ��r de�nes
an embedding as a subspace of W�;�.TFErG/ . We obtain an injective map, with
dense image

(35b) �q0.G/ N̋ � � � N̋ �qr .G/ N̋ Wp;q.A/! Wp;q0C:::CqrCq.TFErG/

For �i 2 �.G/ and ˛ 2 W.A/ , we will identify �0 N̋ � � � N̋ �r N̋ ˛ with its image
under this map. On the image of this map, the homotopy operator h , the di�erential
d0 D .�1/rdCE , and the homomorphism R� D �

�
� ı �

�
� read as

h
�
�0 N̋ � � � N̋ �r N̋ ˛

�
D

r�1X
iD0

.�1/iC1�0 N̋ � � � N̋ �i N̋ 1 N̋ � � � N̋ 1„ ƒ‚ …
r�i�1

N̋ ��.�iC1 � � ��r /˛;

d0.�0 N̋ � � � N̋ �r N̋ ˛/ D.�1/q0C:::Cqr

rX
jD0

X
�

�0 N̋ � � � N̋ L.XL� /�j N̋ � � � N̋ �r N̋ ˇ
�˛

C .�1/q0C:::CqrCr�0 N̋ � � � N̋ �r N̋ dCE˛
R
�
�0 N̋ � � � N̋ �r N̋ ˛

�
D
�
1 N̋ � � � N̋ 1„ ƒ‚ …

rC1

/ N̋ ��.�0 � � ��r /˛
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Here the second formula is to be understood locally, in terms of a local frame
X1; : : : ; Xk of sections of A , with dual sections ˇ1; : : : ; ˇk of A� . �e last two
formulas imply that

(36) Œd0; R�
�
�0 N̋ � � � N̋ �r N̋ ˛

�
D .�1/r

�
1 N̋ � � � N̋ 1„ ƒ‚ …

rC1

/ N̋ D.�0 � � ��r /˛

�e following formula involves the restriction D W �q.G/! W1;q.A/ of the map
(33).

Proposition 10. We have the following formula, for �i 2 �qi .G/ and ˛ 2 Wp;q.A/

(37) Œd0; h�
�
�0 N̋ � � � N̋ �r N̋ ˛

�
D .�1/r

r�1X
iD0

.�1/iCq0C:::Cqi�0 N̋ � � �

� � � N̋ �i N̋ 1 N̋ � � � N̋ 1„ ƒ‚ …
r�i�1

N̋ .D.�iC1 � � ��r / ˛/:

Proof. Using that h is an R -derivation, one obtains the following property of
Œd0; h� under cup product:

(38) Œd0; h�.x [ y/ D Œd0; h�x [Ry C x [ Œd0; h�y � .�1/jxjhx [ Œd0; R�y:

for x; y 2 W�;�.TFE�G/ . Here jxj denotes the total degree of x . In particular,
take x D �0 N̋ 1 , as in (35a), with �0 2 �

q0.G/ . We have jxj D q0 C 1; hx D

��0; Œd0; h�x D 0 , and
x [ y D .�1/q0m�0 N̋ y

for y 2 W�;�.TFEmG/ . Hence the formula (38) gives

Œd0; h�.�0 N̋ y/ D .�1/q0�0 N̋ Œd0; h�y � .�1/q0.m�1/�0 [ Œd0; R�y:

If y D �1 N̋ � � � N̋ �r N̋ ˛ 2 W.TFEr�1G/ , then we obtain, using (36),

Œd0; R�y D .�1/r�1 1 N̋ � � � N̋ 1„ ƒ‚ …
r

N̋ D.�1 � � ��r /˛:

Hence we �nd

Œd0; h�.�0 N̋ y/ D .�1/q0�0 N̋ Œd0; h�y C .�1/r .�1/q0�0 N̋ 1 N̋ � � � N̋ 1 N̋ D.�1 � � ��r /˛;

which proves the Proposition.

Proposition 11. For �0; : : : ; �r 2 �.G/ and ˛ 2 Wp;q.A/ , we have

��0 ı .1C Œd0; h�/�1
�
�0 N̋ � � � N̋ �r N̋ ˛

�
D .�1/rq0C.r�1/q1C:::Cqr�1.��0�0/.D�1/ � � � .D�r / ˛ 2 W

p;qCq0C:::Cqr .A/:
(39)
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Proof. Using induction on r , we use Proposition 10 to prove
(40)
Œd0; h�r

�
�0 N̋ � � � N̋ �r N̋ ˛

�
D .�1/rCrq0C.r�1/q1C:::Cqr�1�0 N̋ ..D�1/ � � � .D�r / ˛/:

For r D 1 this is just a special case of Proposition 10. For r > 1 , we apply the
induction hypothesis for r 0 D r � 1 to the formula for Œd0; h�

�
�0 N̋ � � � N̋ �r N̋ ˛

�
, as

given in Proposition 10. Only the term with i D r�1 gives a nonzero contribution,
and yields (40).

Remark 8. �e result (39) may also be written

.��0 ˝D˝ � � � ˝D˝ id/.�0 ˝ � � � ˝ �r ˝ ˛/;

followed by the multiplication map W.A/ ˝ � � � ˝ W.A/ ! W.A/ . �e signs
appear naturally here, according to the super-sign rule: �e �rst D moves
past �0 , the second D moves past �0; �1 , and so on. Hence we obtain
q0 C .q0 C q1/ C : : : C .q0 C : : : C qr�1/ D rq0 C .r � 1/q1 C : : : C qr�1 sign
changes.

of �eorem 3. Given X1; : : : ; Xr 2 �.A/ and any n � r we obtain, for all
�0; : : : ; �r 2 �.G/ ,�

��0 ı .1C Œd0; h�/�1.�0 N̋ � � � N̋ �r N̋ 1/
�
.X1; : : : ; Xn; XnC1; : : : ; X r /

D .�1/rq0C:::Cqr�1 ıS .Xr / � � � ıS .XnC1/ıK.Xn/ � � � ıK.X1/
�
���0D�1 � � �D�r

�
D ��r

��
L.�X1;R1 / � � �L.�Xn;Rn /ı.�XnC1;RnC1 / � � � ı.�X r;Rr /C : : :

: : :C s:p:
�
.�0 N̋ � � � N̋ �r /

�
:

here the lower dots signify a signed permutation of the Xi ’s. Consequently, for
� 2 �.BrG/ this gives�
��0 ı .1C Œd0; h�/�1 ı ��r .�/

�
.X1; : : : ; Xn; XnC1; : : : ; X r /

D ��r

X
s2Sr

�.s/L.�X1;R
s.1/
/ � � �L.�Xn;R

s.n/
/ı.�XnC1;R

s.nC1/
/ � � � ı.�X r;R

s.r/
/��r �

Here the sign �.s/ is the sign of the permutation putting s.1/; : : : ; s.n/ � ¹1; : : : ; rº
in order; in other words, it is 1 if the number of pairs 1 � i < j � n with
s.i/ > s.j / is even, and is �1 if that number is odd. �is implies the formula
given in �eorem 3, because �X i;R is �r -related to X i;] .

Example 6. Let us examine these calculations for the case of a pair groupoid
G D Pair.M/ DM �M . Here Lie.G/ D TM , and for X 2 �.TM/ D X.M/ we
have

XL D .0; X/; XR D .�X; 0/:
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�e map D W C1.M �M/! C1.TM/ D �1.M/ is given by

D.u˝ u0/ D �u0du; u; u0 2 C1.M/:

We identify BpG DMpC1 , where the pC 1 -tuple .m0; : : : ; mp/ corresponds
to .g1; : : : ; gp/ with gi D .mi�1; mi / . Similarly, EpG D MpC1 � M , where
.m0; : : : ; mp; m/ corresponds to .a0; : : : ; ap/ with ai D .mi ; m/ . Given u0˝� � �˝
up 2 C

1.MpC1/ with ui 2 C
1.M/ , the pullback to EpG is f0 N̋ � � � N̋ fp with

fi D ui ˝ 1 , with D.fi / D �dui . �us

��0 ı .1C Œd; h�/�1.f0 N̋ � � � N̋ fp/ D .�1/pu0du1 � � � dup:

Hence the Van Est map becomes (up to a sign) the standard map from the
Alexander-Spanier complex to the de Rham complex:

VE W C1.MpC1/! �p.M/; u0 ˝ � � � ˝ up 7! .�1/pu0du1 � � � dup

A. Simplicial manifolds

In this section we give a quick review of simplicial techniques used in this
paper. Standard references include Bott-Mostow-Perchik [MP], Goerss-Jardine
[GJ].

A.1. Basic de�nitions. Let Ord denote the category of ordered sets. �e objects
in Ord are Œ0�; Œ1�; Œ2�; : : : , where Œn� D ¹0; : : : ; nº , and the morphisms in Ord are
the maps f W Œm� ! Œn� such that i � j ) f .i/ � f .j / . Any such morphism
may be written as a composition of face maps @j degeneracy maps �j ,

@j W Œn�! ŒnC 1�; j D 0; : : : ; nC 1; �j W ŒnC 1�! Œn�; j D 0; : : : ; n

given by

@j .i/ D

´
i i < j

i C 1 i � j
; �j .i/ D

´
i i � j

i � 1 i > j:

A simplicial manifold is a contravariant functor from the category Ord to the
category of manifolds. We denote by Xn the image of Œn� D ¹0; : : : ; nº , and
by X.f / W Xn ! Xm the map corresponding to a morphism f W Œm� ! Œn� . We
will write @i WD X.@i / , and �i WD X.�

i / . Associated to any topological category
C is a simplicial space B�C , called its simplicial classifying space (or nerve)
[Seg]. Here B0C is the set of objects of the category, B1C the set of arrows
(morphisms in C ), B2C the set of commutative triangles, and so on.
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Example 7. If G � M is a Lie groupoid (regarded as a category), the space
BpG is the manifold of p -arrows, as in Section 2.2.

Example 8. For any �xed p , the set Œp� D ¹0; : : : ; pº may be regarded as the
objects of a category, with a unique arrow i0  � i1 for any 0 � i0 � i1 � p .
�e corresponding space BnŒp� is the set of n -arrows of this type,

i0  � i1  � � � �  � in

where 0 � i0 � � � � � in � p . Equivalently, BnŒp� is the set of nondecreasing
maps Œn� ! Œp� . Any morphism Œm� ! Œn� in the category Ord determines a
simplicial map BnŒp� ! BmŒp� for the category Œp� , by composition. We will
denote this (discrete) simplicial manifold by ��Œp� WD B�Œp� , since its geometric
realization is the standard p -simplex. Any nondecreasing map Œp�! Œp0� de�nes
a morphism of simplicial manifolds ��Œp�! ��Œp

0� , with geometric realization
the corresponding map of standard simplices.

A.2. Simplicial homotopies. �e two morphisms @0; @1 W Œ0� ! Œ1� give rise to
simplicial maps

@0�; @
1
� W ��Œ0�! ��Œ1�;

corresponding to the inclusions of the end points. A simplicial homotopy between
two morphisms of simplicial manifolds f 0� ; f 1� W X� ! Y� is a morphism

H� W ��Œ1� �X� ! Y�

such that
H� ı .@

0
� � idX�/ D f 0� ; H� ı .@

1
� � idX�/ D f 1� :

Homotopy is an equivalence relation provided X� satis�es the Kan condition
[GJ]; in particular this is the case for the simplicial classifying space of
a groupoid. To spell out the homotopy condition in more detail, note that
�pŒ1� D ¹˛�1; ˛0; : : : ; p̨º with

j̨ W Œp�! Œ1�; j̨ .i/ D

´
0 i � j

1 i > j
;

hence Hp is determined by the maps Hp;j D Hp. j̨ ; �/ for �1 � j � p . �e
condition that H� be a simplicial map becomes

@i ıHp;j D

´
Hp�1;j�1 ı @i i � j

Hp�1;j ı @i i > j
; �i ıHp;j D

´
HpC1;jC1 ı �i i � j

HpC1;j ı �i i > j
;

and the boundary conditions are
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Hp;�1 D f
0
p ; Hp;p D f

1
p :

�e map .@0/p takes the unique element of �pŒ0� to ˛�1 , while .@1/p takes it
to p̨ .

Associated to any simplicial space X is its Moore complex .ZX�; ı/ , where
ZXp are Z -linear combinations of elements in Xp , and

ıp D

pX
jD0

.�1/j @j W ZXp ! ZXp�1:

Any simplicial homotopy gives rise to a homotopy operator for the Moore
complexes, by the formula

(41) hp W ZXp ! ZYpC1; hp D

pX
jD0

.�1/jC1hp;j

with hp;j .x/ D HpC1;j .�j .x// . �at is, h� satis�es hp�1@pC @pC1hp D f 0p �f 1p .
See Goerss-Jardine [GJ, Lemma 2.15].

For the following result, recall that for any foliation F of a manifold M ,
the groupoid PairF .M/ � M consists of pairs .m0; m1/ of elements in the
same leaf, and Bp PairF .M/ consists of p C 1 -tuples .m0; : : : ; mp/ of elements
mi 2 M , all in the same leaf. Any smooth map f W M ! M preserving leaves
extends to a simplicial map

(42) f� W B� PairF .M/! B� PairF .M/

where fp.m0; : : : ; m0/ D .f .m0/; : : : ; f .mp// . �e following result may be
regarded as a special case of [Seg, Proposition 2.1]. �e proof is a straightforward
veri�cation.

Proposition 12. Let F be a foliation of a manifold M , and f W M ! M a
smooth map preserving leaves. �en

(43) Hp;j .m0; : : : ; mp/ D .m0; : : : ; mj ; f .mjC1/; : : : ; f .mp//;

de�nes a a simplicial homotopy H� between (42) and the identity map. �e
corresponding homotopy operator is given by

hp D

pX
jD0

.�1/jC1hp;j W ZBp PairF .M/! ZBpC1 PairF .M/

where (cf. (41))

hp;j .m0; : : : ; mp/ D .m0; : : : ; mj ; f .mj /; f .mjC1/; : : : ; f .mp//:

�us, hp�1 ı@pC@pC1 ıhp D id�fp . If f is a retraction (i.e., f ıf D f ), then
the homotopy operator has the additional property hpC1 ı hp D 0 .
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We will use the following special case: Suppose � W Q ! M is a surjective
submersion admitting a section � W M ! Q . �e submersion de�nes a foliation of
Q , where Bp PairF Q is the pC 1 -fold �ber product Q.pC1/ D Q�M � � � �M Q .
Take f D � ı � W Q! Q . �e proposition shows that the two maps

�� W Q
.�C1/

!M; �� W M ! Q.�C1/

are simplicial homotopy inverses, with an explicit homotopy operator

hp.q0; : : : ; qp/ D

pX
iD0

.�1/i .q0; : : : ; qi ; m; : : : ; m/

where m D �.q0/ D : : : D �.qp/ .

B. Homological perturbation theory

In this paper we used the following two results, Lemmas 4 and 5, which are
special cases of results from homological perturbation theory.

Let .C �;�; d; ı/ be a double complex, with di�erentials ı of bidegree .0; 1/

and d of bidegree .1; 0/ so that Œd; ı� D dı C ıd D 0 . We assume that C r;s is
non-zero only in degrees r; s � 0 . �e corresponding total complex is given by
Tot� C D

L
rCsD� C

r;s with the total di�erential dC ı . Suppose that

i W D�;� ,! C �;�

is a subcomplex for both di�erentials d and ı , and that there exists an operator
h of bidegree .�1; 0/ such that2

Œh; ı� D hı C ıh D 1 � i ı p;

with p W C �;� ! D�;� a left inverse to i . �is equation shows that i is a homotopy
equivalence with respect to ı , with homotopy inverse p . Indeed, pıi D id , while
the projection operator… D i ı p is ı -homotopic to the identity. Note however
that p need not intertwine the di�erential d .

By the following result, one can modify p and i to obtain a homotopy
equivalence for the total di�erential dCı . It is a version of the Basic Perturbation
Lemma [BRO, Gug, GLa, GLS, HK]. See Crainic [Cra] and Johnson-Freyd [Joh]
for some recent applications.

Lemma 4 (Brown [BRO], Gugenheim [Gug]). Put p0 D p.1 C dh/�1; i 0 D

.1C hd/�1i; h0 D h.1C dh/�1 . �en:

2 In what follows, the brackets Œ�; �� indicate graded commutators for the total degree.
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(1) �e map …0 D i 0p0 is a cochain map relative to the total di�erential dC ı .
In fact, it is homotopic to the identity with the homotopy operator h0 :

Œh0; dC ı� D 1 � i 0p0:

(2) If h preserves the subcomplex D , and commutes with d on D , then …0 is
again a projection onto D . Furthermore, in this case p0 is a cochain map
with respect to the total di�erential, and is a homotopy equivalence, with
homotopy inverse i 0 .

Proof. (1) We have .1C hd/h0 D h D h0.1C dh/ , hence

.1Chd/Œh0; dC ı�.1C dh/ D h.dC ı/.1C dh/C .1Chd/.dC ı/h D Œh; dC ı�:

where we used dı C ıd D 0 . On the other hand, Œh; ı� D 1 � ip implies

.1C hd/.1 � i 0p0/.1C dh/ D Œh; dC ı�:

Comparing the two formulas, we see Œh0; dC ı� D 1 � i 0p0 .

(2) We have

p0i 0 D p.1C hd/�1.1C dh/�1i D p.1C Œd; h�/�1i:

Hence, if Œd; h� vanishes on D , then p0i 0 D pi D 1 so that …0 D i 0p0

is again a projection. If h preserves D , so that .1 C hd/ restricts to an
invertible transformation of D , we see that …0 has the same range as … .
Since …0 is a cochain map with respect to dC ı , the same is true of p0 .

Remark 9. �e second part of this Lemma applies in particular if h vanishes
on D . Note also that if h2 D 0 , then D is preserved by h , since Œh;…� D

Œh; 1 � Œh; ı�� D 0 .

Let us now make the additional assumption that the bidi�erential space C �;�
has a compatible algebra structure � ˝  7! � [  , with D�;� a subalgebra.
�us, in particular d and ı are derivations of this algebra structures. We also
assume that the projection p is an algebra morphism and that .C �tot; dC ı/ is a
di�erential algebra.

Lemma 5 (Gugenheim–Lambe–Stashe� [GLS]). Suppose the homotopy operator
h is a … -derivation, that is,

h.� [  / D h� [… C .�1/j�j� [ h :
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Assume furthermore that h satis�es the ‘side conditions’

h ı h D 0; p ı h D 0

�en the map …0 D ….1Cdh/�1 W C �tot ! D�tot � C
�
tot is a morphism of di�erential

algebras.

Proof. Observe that hh D 0 implies that h commutes with … D 1� Œh; ı� . Hence,
ph D 0) …h D 0) h… D 0) hi D 0 . �at is, h vanishes on D . It follows
that i 0 D i , hence …0 D ….1C dh/�1 D ….1C Œd; h�/�1 . With H D Œd; h� , we
obtain

…0 D ….1CH/�1 D

1X
kD0

.�1/k…H k :

�e … -derivation property of h implies the following property of H :

H.� [  / D H� [… C � [H C .�1/j�jC1h� [ Œd;…� :

Iteration of this formula, using H… D 0 and ŒH; h� D 0 , gives

H k.� [  / D

kX
jD0

H k�j� […k�jH j C
X
�

h�.k/� [  
.k/
�

with certain elements �.k/� ;  
.k/
� . Now apply the projection … . Since … is an

algebra morphism, and …h D 0 and H… D 0 , we obtain

…H k.� [  / D

kX
jD0

…H k�j� […H j ;

which gives …0.� [  / D …0� […0 as desired.

Remark 10. �e same proof also gives the following more general statement,
applicable to bilinear maps of bidi�erential spaces. We will again write this
bilinear map as a ‘cup’ product, although it might be for example a module
action, a Lie bracket, etc. �us suppose

[W C1 ˝ C2 ! C3

is a morphism of bidi�erential spaces. Suppose that [ restricts to a bilinear map
on subcomplexes i� W D� ,! C� , that p� W D� ! C� are compatible with [ in
the sense that p3.� [  / D p1.�/ [ p2. / , and that we are given homotopy
operators h� for the ı -di�erentials, i.e.,

Œh� ; ı� D 1 � i�p� :
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If h� have the ‘derivation property’

h3.� [  / D h1� […2 C .�1/
j�j� [ h2 

for � 2 C1;  2 C2 , and if the side conditions h2� D 0 and p�h� D 0 are
satis�ed, then …0� D …�.1C dh�/�1 are cochain maps for the total di�erentials,
with

…03.� [  / D …
0
1.�/ […

0
2. /:
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