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On Karamata’s proof of
the Landau–Ingham Tauberian theorem

Michael Müger

Abstract. �is is a self-contained exposition of (a generalization of) Karamata’s little known
elementary proof of the Landau–Ingham Tauberian theorem, a result in real analysis from
which the Prime Number �eorem follows in a few lines.
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1. Introduction

�e aim of this paper is to give a self-contained, accessible and ‘elementary’
proof of of the following theorem, which we call the Landau-Ingham Tauberian
theorem:

�eorem 1.1. Let f W Œ1;1/ ! R be non-negative and non-decreasing and
assume that
(1.1)
F.x/ WD

X
n�x

f
�x
n

�
satis�es F.x/ D Ax log x C Bx C C

x

log x
C o

�
x

log x

�
:

�en f .x/ D Ax C o.x/ , equivalently f .x/ � Ax .

�e interest of this theorem derives from the fact that, while ostensibly it is a
result �rmly located in classical real analysis, the prime number theorem (PNT)
�.x/ � x

logx can be deduced from it by a few lines of Chebychev-style reasoning
(cf. the Appendix).

Versions of �eorem 1.1 were proven by Landau [Lan, §160] as early as
1909, Ingham [Ing, �eorem 1], Gordon [Gor] and Ellison [Ell, �eorem 3.1],
but none of these proofs was from scratch. Landau used as input the identity
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n
�.n/ logn

n
D �1 . But the latter easily implies M.x/ D

P
n�x �.n/ D o.x/ which

(as also shown by Landau) is equivalent to the PNT. Actually,
P
n
�.n/ logn

n
D �1

is ‘stronger’ than the PNT in the sense that it cannot be deduced from the latter
(other than by elementarily reproving the PNT with a su�ciently strong remainder
estimate). In this sense, Gordon’s version of �eorem 1.1 is an improvement, in
that he uses as input exactly the PNT (in the form  .x/ � x ) and thereby
shows that �eorem 1.1 is not ‘stronger’ than the PNT. Ellison’s version assumes
M.x/ D o.x/ (and an O.xˇ / remainder with ˇ < 1 in (1.1)). It is thus clear that
none of these approaches provides a proof of the PNT. Ingham’s proof, on the
other hand, starts from the information that �.1C i t/ ¤ 0 (which can be deduced
from the PNT, but also be proven ab initio). �us his proof is not ‘elementary’,
but arguably it is one of the nicer and more conceptual deductions of the PNT
from �.1C i t/ ¤ 0 – though certainly not the simplest (which is [Zag]) given
that the proof requires Wiener’s L1 -Tauberian theorem.

Our proof of �eorem 1.1 will essentially follow the elementary Selberg-style
proof given by Karamata 1 [Kar1] under the assumption that f is the summatory
function of an arithmetic function, i.e. constant between successive integers. We
will remove this assumption. For the proof of the PNT, this generality is not
needed, but from an analysis perspective it seems desirable, and it brings us fairly
close to Ingham’s version of the theorem, which di�ered only in having o.x/

instead of C x
logx C o.

x
logx / in the hypothesis.

Unfortunately, Karamata’s paper [Kar1] seems to be essentially forgotten: �ere
are so few references to it that we can discuss them all. It is mentioned in [EI]
by Erdős and Ingham and in the book [Ell] of Ellison and Mendès-France.
(Considering that the latter authors know Karamata’s work, one may �nd it
surprising that for their elementary proof of the PNT they chose the somewhat
roundabout route of giving a Selberg-style proof of M.x/ D o.x/ , using this to
prove a weak version of �eorem 1.1, from which then  .x/ � x is deduced.) Even
the two books [BGT, Kor] on Tauberian theory only brie�y mention Karamata’s
[Kar1] (or just the survey paper [Kar2]) but then discuss in detail only Ingham’s
proof. Finally, [Kar1, Kar2] are cited in the recent historical article [Nik], but
its emphasis is on other matters. We close by noting that Karamata is not even
mentioned in the only other paper pursuing an elementary proof of a Landau-
Ingham theorem, namely Balog’s [Ba], where a version of �eorem 1.1 with a
(fairly weak) error term in the conclusion is proven.

Our reason for advertising Karamata’s approach is that, in our view, it is the
conceptually cleanest and simplest of the Selberg–Erdős style proofs of the PNT,

1Note des éditeurs : Jovan Karamata, né près de Belgrade en 1902 et mort à Genève en 1967, fut
professeur à Genève dès 1951 et directeur de L’Enseignement Mathématique de 1954 à 1967. Voir M.
Tomić, Jovan Karamata (1902-1967), Enseignement Math. (2) 15, 1–20 (1969).
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cf. [Sel, Erd1] and followers, e.g. [PR, Nev, Kal, Lev, Sch, Pol]. For f D  

and f .x/ D M.x/ C bxc , �eorem 1.1 readily implies  .x/ D x C o.x/ and
M.x/ D o.x/ , respectively. Making these substitutions in advance, the proof
simpli�es only marginally, but it becomes less transparent (in particular for
f D  ) due to an abundance of non-linear expressions. By contrast, �eorem 1.1
is linear w.r.t. f and F . To be sure, also the proof given below has a non-linear
core, cf. (3.2) and Proposition 3.14, but by putting the latter into evidence, the
logic of the proof becomes clearer. One is actually led to believe that the non-
linear component of the proof is inevitable, as is also suggested by �eorem 2
in Erdős’ [Erd2], to wit

ak � 0 8k � 1 ^

NX
kD1

kak C
X

kCl�N

akal D N
2
CO.1/)

NX
kD1

ak D N CO.1/;

from which the PNT can be deduced with little e�ort. (Cf. [HT] for more in this
direction.)

Another respect in which [Kar1] is superior to most of the later papers,
including V. Nevanlinna’s [Nev] (whose approach is adopted by several books
[Sch, Pol]), concerns the Tauberian deduction of the �nal result from a Selberg-
style integral inequality. In [Kar1], this is achieved by a theorem (�eorem 2.4
below, attributed to Erdős) with clearly identi�ed, obviously minimal hypotheses
and an elegant proof. �is advantage over other approaches like [Nev], which
tend to use further information about the discontinuities of the function under
consideration, is essential for our generalization to arbitrary non-decreasing
functions. However, we will have to adapt the proof (not least in order to work
around an obscure issue).

In our exposition we make a point of avoiding the explicit summations over
(pairs of) primes littering many elementary proofs, almost obtaining a proof of the
PNT free of primes! �is is achieved by de�ning the Möbius and von Mangoldt
functions � and ƒ in terms of the functional identities they satisfy and using
their explicit computation only to show that they are bounded and non-negative,
respectively. Some of the proofs are formulated in terms of parametric Stieltjes
integrals, typically of the form

R
f .x=t/dg.t/ and integration by parts. We also do

this in situations where f and g may both be discontinuous. Since our functions
will always have bounded variation, thus at most countably many discontinuities,
this can be justi�ed by observing that the resulting identities hold for all x outside
a countable set. Alternatively, we can replace f .x/ at every point of discontinuity
by .f .xC0/Cf .x�0//=2 without changing the asymptotics. For such functions,
integration by parts always holds in the theory of Lebesgue-Stieltjes integration,
cf. [Hew, HS].
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�e author hopes that the proof of �eorem 1.1 given below will help
dispelling the prejudice that the elementary proofs of the PNT are (conceptionally
and/or technically) di�cult. Indeed he thinks that this is the most satisfactory
of the elementary (and in fact of all) proofs of the PNT in that, besides not
invoking complex analysis or Riemann’s � -function, it minimizes number theoretic
reasoning to a very well circumscribed minimum. One may certainly dispute that
this is desirable, but we will argue elsewhere that it is.

�e author is of course aware of the fact that the more direct elementary
proofs of the PNT give better control of the remainder term. (Cf. the review
[Dia] and the very recent paper [Kou], which provides a “a new and largely
elementary proof of the best result known on the counting function of primes in
arithmetic progressions”.) It is not clear whether this is necessarily so.

Acknowledgments. �e author would like to thank the referees for constructive
comments that led to several improvements, in particular a better proof of Corollary
4.3.

2. First steps and strategy

Proposition 2.1. Let f W Œ1;1/ ! R be non-negative and non-decreasing and
assume that F.x/ D

P
n�x f .x=n/ satis�es F.x/ D Ax log xCBxC o.x/ . �en

(i) f .x/ D O.x/ .

(ii)
Z x

1�0

df .t/

t
D A log x CO.1/ .

(iii)
Z x

1

f .t/ � At

t2
dt D O.1/ .

Proof. (i) Following Ingham [Ing], we de�ne f to be 0 on Œ0; 1/ and compute

f .x/ � f
�x
2

�
C f

�x
3

�
� � � � D F.x/ � 2F
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�
D Ax log x C Bx � 2

�
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2

�
C o.x/

D Ax log 2C o.x/:

With positivity and monotonicity of f , this gives f .x/�f .x=2/ � Kx for some
K > 0 . Adding these inequalities for x; x

2
; x
4
; : : : , we �nd f .x/ � 2Kx . Together

with f � 0 , this gives (i).
(ii) We compute

F.x/ D
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f
�x
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�
dbtc
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t

�
D .bxcf .1/ � f .x// �
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df .u/C
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�x
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�
:

In view of 0 � t � btc < 1 and the weak monotonicity of f , the last integral
is bounded by j

R x
1
df .x=t/j D f .x/ � f .1/ , which is O.x/ by (i). Using the

hypothesis about F , we have

Ax log x C Bx C o.x/ D O.x/C x
Z x

1�0

df .t/

t
CO.x/;

and division by x proves the claim.
(iii) Integrating by parts, we haveZ x

1

f .t/ � At

t2
dt D �

f .x/

x
C

Z x

1�0

df .t/

t
�

Z x

1

A

t
dt

D O.1/C .A log x CO.1// � A log x D O.1/;

where we used (i) and (ii).

Remark 2.2. 1. �e proposition can be proven under the weaker assumption
F.x/ D Ax log x C O.x/ , but we don’t bother since later we will need the
stronger hypothesis anyway.

2. �eorem 1.1, which we ultimately want to prove, implies a strong form of
(iii):

R1
1

f .t/�At

t2
dt D B�
A , cf. [Ing]. Conversely, existence of the improper

integral already implies f .x/ � Ax , cf. [Zag].
3. Putting f D  and using (A.1), the above proofs of (i) and (ii) reduce to

those of Chebychev and Mertens, respectively. �

�e following two theorems will be proven in Sections 3 and 4, respectively:

�eorem 2.3. Let f; F be as in �eorem 1.1. �en g.x/ D f .x/ � Ax satis�es

(2.1)
jg.x/j

x
�

1

log x

Z x

1

jg.t/j

t2
dt C o.1/ as x !1:

�eorem 2.4. For g W Œ1;1/! R , assume that there are M;M 0 � 0 such that

(2.2) x 7! g.x/CMx is non-decreasing;
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(2.3)
ˇ̌̌̌Z x

1

g.t/

t2
dt

ˇ̌̌̌
�M 0 8x � 1:

�en

(2.4) S WD lim sup
x!1

jg.x/j

x
<1;

and when S > 0 we have

(2.5) lim sup
x!1

1

log x

Z x

1

jg.t/j

t2
dt < S:

Remark 2.5. 1. Note that (2.2) implies that g is Riemann integrable over �nite
intervals.

2. In our application, (2.4) already follows from Proposition 2.1 so that we do
not need the corresponding part of the proof of �eorem 2.4. It will be
proven nevertheless in order to give �eorem 2.4 an independent existence.

�

Proof of �eorem 1.1 assuming �eorems 2.3 and 2.4. Since f is nondecreasing,
it is clear that g.x/ D f .x/�Ax satis�es (2.2) with M D A , and (2.3) is implied
by Proposition 2.1(iii). Now S D lim sup jg.x/j=x is �nite, by either Proposition
2.1(i) or the �rst conclusion of �eorem 2.4. Furthermore, S > 0 would imply
(2.5). But combining this with the result (2.1) of �eorem 2.3, we would have
the absurdity

S D lim sup
x!1

jg.x/j

x
� lim sup

x!1

1

log x

Z x

1

jg.t/j

t2
dt < S:

�us S D 0 holds, which is equivalent to g.x/
x
D

f .x/�Ax
x

! 0 , as was to be
proven.

�e next two sections are dedicated to the proofs of �eorems 2.3 and 2.4. �e
statements of both results are free of number theory, and this is also the case
for the proof of the second. �e proof of �eorem 2.3, however, uses a very
modest amount of number theory, but nothing beyond Möbius inversion and the
divisibility theory of N up to the fundamental theorem of arithmetic.

3. Proof of �eorem 2.3

3.1. Arithmetic. �e aim of this subsection is to collect the basic arithmetic
results that will be needed. We note that this is very little.
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We begin by noting that .N; �; 1/ is an abelian monoid. Given n;m 2 N , we
call m a divisor of n if there is an r 2 N such that mr D n , in which case we
write mjn . In view of the additive structure of the semiring N , it is clear that
the monoid N has cancellation (ab D ac ) b D c ), so the quotient r above is
unique, and that the set of divisors of any n is �nite.

Calling a function f W N ! R an arithmetic function, the facts just stated
allow us to de�ne:

De�nition 3.1. If f; g W N ! R are arithmetic functions, their Dirichlet
convolution f ? g denotes the function

.f ? g/.n/ D
X
d jn

f .d/g
� n
d

�
D

X
a;b

abDn

f .a/g.b/:

It is easy to see that Dirichlet convolution is commutative and associative. It
has a unit given by the function ı de�ned by ı.1/ D 1 and ı.n/ D 0 if n ¤ 1 .

By 1 we denote the constant function 1.n/ D 1 . Clearly, .f ? 1/.n/ DP
d jn f .d/ .

Lemma 3.2. �ere is a unique arithmetic function � , called the Möbius function,
such that � ? 1 D ı .

Proof. � must satisfy
P
d jn �.d/ D ı.n/ . Taking n D 1 we see that �.1/ D 1 .

For n > 1 we have
P
d jn �.d/ D 0 , which is equivalent to

�.n/ D �
X
d jn

d<n

�.d/:

�is uniquely determines �.n/ 2 Z inductively in terms of �.m/ with m < n .

Proposition 3.3. (i) � is multiplicative, i.e. �.nm/ D �.n/�.m/ whenever
.n;m/ D 1 .

(ii) If p is a prime then �.p/ D �1 , and �.pk/ D 0 if k � 2 .
(iii) �.n/ D O.1/ , i.e. � is bounded.

Proof. (i) Since �.1/ D 1 , �.nm/ D �.n/�.m/ clearly holds if n D 1 or m D 1 .
Assume, by way of induction, that �.uv/ D �.u/�.v/ holds whenever .u; v/ D 1
and uv < nm , and let n ¤ 1 ¤ m be relatively prime. Since every divisor of
nm is of the form st with sjn; t jm , we have

0 D
X
d jnm

�.d/ D �.nm/C
X

sjn;tjm
st<nm

�.st/ D �.nm/C
X

sjn;tjm
st<nm

�.s/�.t/

D �.nm/C
X
sjn

�.s/
X
t jm

�.t/ � �.n/�.m/ D �.nm/ � �.n/�.m/;
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which is the inductive step. (ii) For k � 1 , we have �.pk/ D �
Pk�1
iD0 �.p

i / ,
inductively implying �.p/ D �1 and �.pk/ D 0 if k � 2 . �us �.pk/ 2 ¹0;�1º ,
which together with multiplicativity (i) gives �.n/ 2 ¹�1; 0; 1º for all n , thus
(iii).

Proposition 3.4. (i) �e arithmetic function ƒ WD log?� is the unique solution
of ƒ ? 1 D log .

(ii) ƒ.n/ D �
P
d jn �.d/ log d . In particular, ƒ.1/ D 0 .

(iii) ƒ.n/ D logp if n D pk where p is prime and k � 1 , and ƒ.n/ D 0

otherwise.
(iv) ƒ.n/ � 0 .

Proof. (i) Existence: log?� ? 1 D log?ı D log. Uniqueness: If ƒ1 ? 1 D log D
ƒ2 ? 1 then ƒ1 D ƒ1 ? ı D ƒ1 ? 1 ? � D ƒ2 ? 1 ? � D ƒ2 ? ı D ƒ2 .

(ii) ƒ.n/ D
P
d jn �.d/ log n

d
D
P
d jn �.d/.logn� log d/ D logn

P
d jn �.d/�P

d jn �.d/ log d . Now use
P
d jn �.d/ D ı.n/ . ƒ.1/ D 0 is obvious.

(iii) Using (ii), we have ƒ.pk/ D �
Pk
lD0 �.p

l /l logp , which together with
Proposition 3.3(ii) implies ƒ.pk/ D logp 8k � 1 . If n;m > 1 and .n;m/ D 1

then by the multiplicativity of � ,

ƒ.nm/ D �
X
sjn

X
t jm

�.st/ log.st/ D �
X
sjn

X
t jm

�.s/�.t/.log s C log t /

D

X
sjn

�.s/ log s
X
t jm

�.t/C
X
t jm

�.t/ log t
X
sjn

�.s/ D 0:

(iv) Obvious consequence of (iii).

Remark 3.5. �e only properties of � and ƒ that will be used in the proof of
�eorem 1.1 are the de�ning ones (�?1 D ı; ƒ?1 D log), the trivial consequence
(ii) in the above proposition, and the boundedness of � and the non-negativity
of ƒ .

In particular, the explicit computations of �.n/ and ƒ.n/ in terms of the
prime factorization of n were only needed to prove the latter two properties. (Of
course, these properties of � and ƒ would be obvious if one de�ned them by
the explicit formulae proven above, but this would be ad hoc and ugly, and one
would still need to use the fundamental theorem of arithmetic for proving that
� ? 1 D ı and ƒ ? 1 D log.)

Note that prime numbers will play no rôle whatsoever before we turn to the
actual proof of the prime number theorem in the Appendix, where the computation
of ƒ.n/ will be used again. �
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3.2. �e (weighted) Möbius transform.

De�nition 3.6. Given a function f W Œ1;1/ ! R , its ‘Möbius transform’ is
de�ned by

F.x/ D
X
n�x

f
�x
n

�
:

Lemma 3.7. �e Möbius transform f 7! F is invertible, the inverse Möbius
transform being given by

f .x/ D
X
n�x

�.n/F
�x
n

�
:

Proof. We computeX
n�x

�.n/F
�x
n

�
D

X
n�x

�.n/
X
m�x=n

f
� x

nm

�
D

X
nm�x

�.n/f
� x

nm

�
D

X
r�x

f
�x
r

�X
sjr

�.s/ D
X
r�x

f
�x
r

�
ı.r/ D f .x/;

where we used the de�ning property
P
d jn �.d/ D ı.n/ of � .

Remark 3.8. Since the point of �eorem 1.1 is to deduce information about f
from information concerning its Möbius transform F , it is tempting to appeal to
Lemma 3.7 directly. However, in order for this to succeed, we would need control
over M.x/ D

P
n�x �.n/ , at least as good as M.x/ D o.x/ . But then one is back

in Ellison’s approach mentioned in the introduction. �e essential idea of the
Selberg–Erdős approach to the PNT, not entirely transparent in the early papers
but clari�ed soon after [TI], is to consider weighted Möbius inversion formulae
as follows. �

Lemma 3.9. Let f W Œ1;1/! R be arbitrary and F.x/ D
P
n�x f .x=n/ . �en

(3.1) f .x/ log x C
X
n�x

ƒ.n/f
�x
n

�
D

X
n�x

�.n/ log
x

n
F
�x
n

�
:

Proof. We computeX
n�x

�.n/ log
x

n
F
�x
n

�
D log x

X
n�x

�.n/F
�x
n

�
�

X
n�x

�.n/ lognF
�x
n

�
:

By Lemma 3.7, the �rst term equals f .x/ log x , whereas for the second we have
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n�x

�.n/ lognF
�x
n

�
D

X
n�x

�.n/ logn
X
m�x=n

f
� x

nm

�
D

X
nm�x

�.n/ lognf
� x

nm

�
D

X
s�x

0@X
njs

�.n/ logn

1A f
�x
s

�
D �

X
s�x

ƒ.s/ f
�x
s

�
;

the last equality being Proposition 3.4(ii). Putting everything together, we obtain
(3.1).

Remark 3.10. 1. Eq. (3.1) is known as the ‘Tatuzawa-Iseki formula’, cf. [TI,
(8)] (and [Kar1, p. 24]).

2. Without the factor log.x=n/ on the right hand side, (3.1) reduces to Möbius
inversion. �us (3.1) is a sort of weighted Möbius inversion formula. �e
presence of the sum involving f .x=n/ is very much wanted, since it will
allow us to obtain the integral inequality (2.1) involving all f .t/; t 2 Œ1; x� .
In order to do so, we must get rid of the explicit appearance of the function
ƒ.n/ , which is very irregular and about which we know little. �is requires
some preparation. �

Lemma 3.11. For any arithmetic function f W N ! R we have

f .n/ lognC
X
d jn

ƒ.d/f
� n
d

�
D

X
d jn

�.d/ log
n

d

X
mj.n=d/

f .m/:

In particular, we have Selberg’s identity:

(3.2) ƒ.n/ lognC
X
d jn

ƒ.d/ƒ
� n
d

�
D

X
d jn

�.d/ log2
n

d
:

Proof. If f is an arithmetic function, i.e. de�ned only on N , we extend it to R

as being 0 on RnN . With this extension,

F.n/ D
X
m�n

f
� n
m

�
D

X
mjn

f
� n
m

�
D

X
mjn

f .m/;

so that (3.1) becomes the claimed identity. Taking f .n/ D ƒ.n/ and usingP
d jnƒ.d/ D logn , Selberg’s formula follows.
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3.3. Preliminary estimates.

Lemma 3.12. �e following elementary estimates hold as x !1:X
n�x

1

n
D log x C 
 CO

�
1

x

�
;(3.3)

X
n�x

logn
n
D

log2 x
2
C c CO

�
1C log x

x

�
;(3.4) X

n�x

logn D x log x � x CO.log x/;(3.5) X
n�x

log
x

n
D x CO.log x/;(3.6) X

n�x

log2 n D x.log2 x � 2 log x C 1/CO.log2 x/;(3.7) X
n�x

log2
x

n
D x CO.log2 x/:(3.8)

Here, 
 is Euler’s constant and c > 0 .

Proof. (3.3): We have

NX
nD1

1

n
�

Z N

1

dt

t
D

Z N

1�0

d.btc � t /

t
D

�
btc � t

t

�N
1

C

Z N

1

t � btc

t2
dt:

Since 0 � t � btc < 1 , the integral on the r.h.s. converges as N ! 1 to some
number 
 (Euler’s constant) strictly between 0 and 1 D

R1
1
dt=t2 . �us

NX
nD1

1

n
D

Z N

1

dt

t
C 
 �

Z 1
N

t � btc

t2
dt D logN C 
 CO

�
1

N

�
:

(3.4): Similarly to the proof of (3.3), we have

NX
nD1

logn
n
�

Z N

1

log t
t
dt D

Z N

1�0

log t
t

d.btc � t /

D

�
.btc � t / log t

t

�N
1

C

Z N

1

.t � btc/ log t
t2

dt:

�e �nal integral converges to some c > 0 as N ! 1 since .log t /=t2 D
O.t�2C"/ . UsingZ x

1

log t
t
dt D

log2 x
2

;

Z 1
N

log t
t2

dt D �

�
log t
t

�1
N

C

Z 1
N

dt

t2
D
1C logN

N
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we have
NX
nD1

logn
n
D

Z x

1

log t
t
dtCc�

Z 1
N

.t � btc/ log t
t2

dt D
log2 x
2
CcCO

�
1C log x

x

�
:

(3.5): By monotonicity, we haveZ x

1

log t dt �
X
n�x

logn �
Z xC1

1

log t dt:

Combining this with
R x
1
log t dt D x log x � x C 1 , (3.5) follows.

(3.6): Using (3.5), we haveX
n�x

log
x

n
D bxc log x �

X
n�x

logn D
�
x CO.1/

�
log x �

�
x log x � x CO.log x/

�
D x CO.log x/:

(3.7): By monotonicity,Z x

1

log2 t dt �
X
n�x

log2 n �
Z xC1

1

log2 t dt:

Now,Z x

1

log2 t dt D
Z logx

0

euu2du D Œeu.u2�2uC1/�
logx
0 D x.log2 x�2 log xC1/�1:

Combining these two facts, (3.7) follows.
(3.8): Using (3.5) and (3.7), we computeX

n�x

log2
x

n
D

X
n�x

.log x � logn/2

D bxc log2 x � 2 log x
�
x log x � x CO.log x/

�
C x.log2 x � 2 log x C 1/CO.log2 x/

D x CO.log2 x/ : �

Proposition 3.13. �e following estimates involving the Möbius function hold:X
n�x

�.n/

n
D O.1/;(3.9)

X
n�x

�.n/

n
log

x

n
D O.1/;(3.10)

X
n�x

�.n/

n
log2

x

n
D 2 log x CO.1/:(3.11)
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Proof. (3.9): If f .x/ D 1 then F.x/ D bxc . Möbius inversion (Lemma 3.7) gives

(3.12) 1 D
X
n�x

�.n/
jx
n

k
D

X
n�x

�.n/
�x
n
CO.1/

�
D x

X
n�x

�.n/

n
C

X
n�x

O.1/;

where we used �.n/ D O.1/ (Proposition 3.3(iii)). In view of
P
n�x O.1/ D O.x/ ,

we have
P
n�x �.n/=n D O.x/=x D O.1/ .

(3.10): If f .x/ D x then F.x/ D
P
n�x x=n D x log x C 
x CO.1/ by (3.3).

By Möbius inversion,

x D
X
n�x

�.n/
�x
n
log

x

n
C 


x

n
CO.1/

�
D x

X
n�x

�.n/

n
log

x

n
C xO.1/CO.x/;

where we used (3.9) and Proposition 3.3(iii). From this we easily read o� (3.10).
(3.11): If f .x/ D x log x then

F.x/ D
X
n�x

x

n
log

x

n
D

X
n�x

x

n
.log x � logn/ D x log x

X
n�x

1

n
� x

X
n�x

logn
n

D x log x
�
log x C 
 CO

�
1

x

��
� x

 
log2 x
2
C c CO

�
1C log x

x

�!
D
1

2
x log2 x C 
x log x � cx CO.1C log x/;

by (3.3) and (3.4). Now Möbius inversion gives

x log x D
X
n�x

�.n/
� x
2n

log2
x

n
C 


x

n
log

x

n
� c

x

n
CO.1C log

x

n
/
�

D
x

2

X
n�x

�.n/

n
log2

x

n
C xO.1/C xO.1/CO.x/;

where we used (3.9), (3.10) and (3.6), and division by x=2 gives (3.11).

Proposition 3.14 (Selberg, Erdős–Karamata [EK]). De�ning

K.1/ D 0; K.n/ D
1

logn
X
d jn

ƒ.d/ƒ
� n
d

�
if n � 2;

we have K.n/ � 0 and

(3.13)
X
n�x

�
ƒ.n/CK.n/

�
D 2x CO

�
x

log x

�
:

Proof. �e �rst claim is obvious in view of Proposition 3.4(iv). We estimate



58 M. Müger

U.x/ WD
X
n�x

X
d jn

�.d/ log2
n

d
D

X
n�x

�.n/
X
m�x=n

log2m

D

X
n�x

�.n/
�x
n

�
log2

x

n
� 2 log

x

n
C 1

�
CO

�
log2

x

n

��
D x

�
2 log x CO.1/

�
� 2xO.1/C xO.1/CO.x/ D 2x log x CO.x/:

Here we used (3.7), (3.11), (3.10), (3.9), the fact �.n/ D O.1/ , and (3.8). Comparing
(3.13) and (3.2), we haveX

n�x

ƒ.n/CK.n/ D
X
2�n�x

1

logn
X
d jn

�.d/ log2
n

d

D

Z x

2�0

dU.t/

log t
D

�
U.t/

log t

�x
2

C

Z x

2

U.t/

t log2 t
dt

D 2x CO

�
x

log x

�
C

Z x

2

dt

log t
CO

�Z x

2

dt

log2 t

�
:

In view of the estimateZ x

2

dt

log t
D

Z px
2

dt

log t
C

Z x

p
x

dt

log t
�

p
x

log 2
C

x

log
p
x
D O

�
x

log x

�
;

we are done.

Remark 3.15. In view of (3.2), the above estimate U.x/ D 2x log x C O.x/ is
equivalent to X

n�x

ƒ.n/ lognC
X
ab�x

ƒ.a/ƒ.b/ D 2x log x CO.x/;

which is used in most Selberg-style proofs. (It would lead to (3.20) with k D 2 .)
�

3.4. Conclusion.

Proposition 3.16. If g W Œ1;1/! R is such that

(3.14) G.x/ D
X
n�x

g
�x
n

�
D Bx C C

x

log x
C o

�
x

log x

�
then

(3.15) g.x/ log x C
X
n�x

ƒ.n/ g
�x
n

�
D o.x log x/:
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Proof. In view of Lemma 3.9, all we have to do is estimateX
n�x

�.n/ log
x

n

�
B
x

n
C C

x

n log x
n

C o

�
x

n log x
n

��
D S1 C S2 C S3:

�e three terms are

S1 D Bx
X
n�x

�.n/

n
log

x

n
D xO.1/ D O.x/;

S2 D Cx
X
n�x

�.n/

n
D xO.1/ D O.x/;

S3 D
X
n�x

�.n/o
�x
n

�
D

X
n�x

o
�x
n

�
D o

�
x
X
n�x

1

n

�
D o.x log x/;

where we used (3.10), (3.9), and �.n/ D O.1/ , respectively.

Proof of �eorem 2.3. In view of g.x/ D f .x/�Ax and Proposition 2.1 (i), (ii),
we immediately have

(3.16) g.x/ D O.x/;

Z x

1

dg.u/

u
D O.1/:

Furthermore, since f satis�es (1.1), and (3.3) gives
P
n�x Ax=n D Ax log x C

A
xCO.1/ , the Möbius transform G of g.x/ D f .x/�Ax satis�es (3.14) (with
a di�erent B ), so that Proposition 3.16 applies and (3.15) holds.

Writing N.x/ D
P
n�x ƒ.n/ C K.n/ , by Proposition 3.14 we have N.x/ D

2x C !.x/ with !.x/ D o.x/ . Now,X
n�x

�
ƒ.n/CK.n/

�
g
�x
n

�
D

Z x

1�0

g
�x
t

�
dN.t/

D

h
N.t/g

�x
t

�ix
1
�

Z x

1

N.t/dg
�x
t

�
D
�
N.x/g.1/ �N.1/g.x/

�
C

Z x

1

N
�x
u

�
dg.u/

D O.x/C

Z x

1

�
2x

u
C o

�
2x

u

��
dg.u/

D O.x/C 2x

Z x

1

dg.u/

u
C o

�
x

Z x

1

dg.u/

u

�
D O.x/CO.x/C o.x/ D O.x/;(3.17)

where we used (3.16). On the other hand,
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n�x

�
ƒ.n/CK.n/

� ˇ̌̌
g
�x
n

�ˇ̌̌
D

Z x

1�0

ˇ̌̌
g
�x
t

�ˇ̌̌
dN.t/

D 2

Z x

1

ˇ̌̌
g
�x
t

�ˇ̌̌
dt C

Z x

1�0

ˇ̌̌
g
�x
t

�ˇ̌̌
d!.t/

D 2x

Z x

1

jg.t/j

t2
dt �

Z x

1�0

!.t/ d
ˇ̌̌
g
�x
t

�ˇ̌̌
C

h
g
�x
t

�
!.t/

itDx
tD1�0

D 2x

Z x

1

jg.t/j

t2
dt C

Z xC0

1

!
�x
t

�
d jg.t/j

C g.1/!.x/ � g.x C 0/!.1 � 0/:(3.18)

In view of g.x/ D O.x/ and !.x/ D o.x/ , the sum of the last two terms is
O.x/ . Furthermore,Z xC0

1

!
�x
t

�
d jg.t/j D o

�
x

Z xC0

1

jd jg.t/jj

t

�
� o

�
x

Z xC0

1

jdg.t/j

t

�
� o

�
x

Z xC0

1

df C Adt

t

�
D o.x log x/;

where we used g.x/ D f .x/ � Ax and df D jdf j (since f is non-decreasing)
to obtain jdgj D jdf � Adt j � jdf j C Adt D df C Adt and Proposition 2.1(ii).
Introducing this into (3.18), we have

(3.19)
X
n�x

.ƒ.n/CK.n//
ˇ̌̌
g
�x
n

�ˇ̌̌
D 2x

Z x

1

jg.t/j

t2
dt C o.x log x/:

After these preparations, we can conclude quickly: Subtracting (3.17) from (3.15)
we obtain

g.x/ log x D
X
n�x

K.n/g
�x
n

�
C o.x log x/:

Taking absolute values of this and of (3.15) while observing that ƒ and K are
non-negative, we have the inequalities

jg.x/j log x �
X
n�x

ƒ.n/
ˇ̌̌
g
�x
n

�ˇ̌̌
C o.x log x/;

jg.x/j log x �
X
n�x

K.n/
ˇ̌̌
g
�x
n

�ˇ̌̌
C o.x log x/:

Adding these inequalities and comparing with (3.19) we have

2jg.x/j log x �
X
n�x

.ƒ.n/CK.n//
ˇ̌̌
g
�x
n

�ˇ̌̌
C o.x log x/

D 2x

Z x

1

jg.t/j

t2
dt C o.x log x/;
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so that (2.1), and with it �eorem 2.3, is obtained on dividing by 2x log x .

Remark 3.17. 1. We did not use the full strength of Proposition 3.14, but only
an o.x/ remainder.

2. Inequality (2.1) is the special case k D 1 of the more general integral
inequality

(3.20)
jg.x/j

x
logk x � k

Z x

1

jg.t/j logk�1 t
t2

dt CO.logk�c x/ 8k 2 N

proven in [Ba], assuming a O
�

x

log2 x

�
in (1.1) instead of C x

logx C o
�

x
logx

�
.

�

4. Proof of �eorem 2.4

�e proof will be based on the following proposition, to be proven later:

Proposition 4.1. If s W Œ0;1/! R satis�es

(4.1) et
0

s.t 0/ � ets.t/ � �M.et
0

� et / 8t 0 � t � 0;

(4.2)
ˇ̌̌̌Z x

0

s.t/dt

ˇ̌̌̌
�M 0 8x � 0;

and S D lim sup js.x/j > 0 then there exist numbers 0 < S1 < S and e; h > 0

such that

(4.3) �.Ex;h;S1
/ � e 8x � 0; where Ex;h;S1

D ¹t 2 Œx; xCh� j js.t/j � S1º;

and � denotes the Lebesgue measure.

Proof of �eorem 2.4 assuming Proposition 4.1. It is convenient to replace
g W Œ1;1/! R by s W Œ0;1/! R; s.t/ D e�tg.et / . Now s is locally integrable,
and the assumptions (2.2) and (2.3) become (4.1) and (4.2), respectively, whereas
the conclusions (2.4) and (2.5) assume the form

(4.4) S D lim sup
t!1

js.t/j <1;

(4.5) S > 0 ) lim sup
x!1

1

x

Z x

0

js.t/jdt < S:
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�e proof of (4.4) is easy: Dividing (4.1) by et 0 and integrating over t 0 2 Œt; tCh� ,
where h > 0 , one obtainsZ tCh

t

s.t 0/dt 0 � s.t/.1 � e�h/ � �MhCM.1 � e�h/;

and using j
R b
a
s.t/dt j � j

R a
0
s.t/dt j C j

R b
0
s.t/dt j � 2M 0 by (4.2), we have the

upper bound

s.t/ �
2M 0 CM.e�h � 1C h/

1 � e�h
:

Similarly, dividing (4.1) by et and integrating over t 2 Œt 0�h; t 0� , one obtains the
lower bound

�
2M 0 CM.eh � 1 � h/

eh � 1
� s.t/;

thus (4.4) holds.
Assuming S > 0 , let S1; h; e be as required by Proposition 4.1. For eachbS > S there is x0 such that x � x0 ) js.x/j � bS . Given x � x0 and putting

N D
�
x�x0

h

˘
, we haveZ x

0

js.t/jdt D

Z x0

0

js.t/jdt C

NX
nD1

Z x0Cnh

x0C.n�1/h

js.t/jdt C

Z x

x0CNh

js.t/jdt

� 2M 0 CNŒbS.h � e/C S1e�C 2M 0
D

�x � x0
h
CO.1/

�
h
h�
1 �

e

h

�bS C e

h
S1

i
C 4M 0

D x
h�
1 �

e

h

�bS C e

h
S1

i
CO.1/:

�us
lim sup
x!1

1

x

Z x

0

js.t/jdt �
�
1 �

e

h

� bS C e

h
S1:

Since S1 < S and since bS > S can be chosen arbitrarily close to S , (4.5) holds
and thus �eorem 2.4.

In order to make plain how the assumptions (4.1) and (4.2) are used to prove
Proposition 4.1, we prove two intermediate results that each use only one of
the assumptions. For the �rst we need a “geometrically obvious” lemma of
isoperimetric character:

Lemma 4.2. Let t1 < t2; C1 > C2 > 0 and k W Œt1; t2� ! R be non-decreasing
with k.t1/ � C1e

t1 and k.t2/ � C2e
t2 . �en

�
�
¹t 2 Œt1; t2� j C2e

t
� k.t/ � C1e

t
º
�
� log

C1

C2
:
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Proof. As a non-decreasing function, k has left and right limits k.t ˙ 0/

everywhere and k.t �0/ � k.t/ � k.tC0/ . �e assumptions imply t1 2 A WD ¹t 2
Œt1; t2� j k.t/ � C1e

tº , thus we can de�ne T1 D sup.A/ . Quite obviously we have
t > T1) k.t/ < C1e

t , which together with the non-decreasing property of k and
the continuity of the exponential function implies k.T1 C 0/ � C1eT1 (provided
T1 < t2 ). We have T1 2 A if and only if k.T1/ � C1eT1 . If T1 62 A then T1 > t1 ,
and every interval .T1� "; T1/ (with 0 < " < T1� t1 ) contains points t such that
k.t/ � C1e

t . �is implies k.T1 � 0/ � C1eT1 . Now assume T1 D t2 . If T1 2 A
then C1eT1 � k.T1/ � C2e

T1 . If T1 62 A then C1eT1 � k.T1�0/ � k.T1/ � C2e
t2 .

In both cases we arrive at a contradiction since C2 < C1 . �us T1 < t2 . If T1 2 A
(in particular if T1 D t1 ) then C1e

T1 � k.T1/ � k.T1 C 0/ � C1e
T1 . �us k is

continuous from the right at T1 and k.T1/ D C1e
T1 . If T1 62 A then T1 > t1

and C1e
T1 � k.T1 � 0/ � k.T1 C 0/ � C1e

T1 . �is implies k.T1/ D C1eT1 , thus
the contradiction T1 2 A . �us we always have T1 2 A , thus k.T1/ D C1eT1 .

Now let B D ¹t 2 ŒT1; t2� j k.t/ � C2etº . We have t2 2 B , thus T2 D inf.B/ is
de�ned and T2 � T1 . Arguing similarly as before we have t < T2) k.t/ > C2e

t ,
implying k.T2�0/ � C2eT2 . And if T2 < t2 and T2 62 B then k.T2C0/ � C2eT2 .
If T2 2 B (in particular if T2 D t2 ) then C2e

T2 � k.T2 � 0/ � k.T2/ � C2e
T2 ,

implying k.T2�0/ D k.T2/ D C2eT2 so that k is continuous from the left at T2 .
If T2 62 B then T2 < t2 and C2e

T2 � k.T2 � 0/ � k.T2 C 0/ � C2e
T2 , implying

k.T2/ D C2e
T2 and thus a contradiction. �us we always have T2 2 B , thus

k.T2/ D C2e
T2 .

By the above results, we have C2et � k.t/ � C1et 8t 2 ŒT1; T2� and thus

(4.6) �
�
¹t 2 Œt1; t2� j C2e

t
� k.t/ � C1e

t
º
�
� T2 � T1:

Using once more that k is non-decreasing, we have

C1e
T1 D k.T1/ � k.T2/ D C2e

T2 ;

implying T2 � T1 � log C1

C2
, and combining this with (4.6) proves the claim.

Corollary 4.3. Assume that s W Œ0;1/! R satis�es (4.1) and s.t1/ � S1 � S2 �

s.t2/ , where S2 CM > 0 . �en

�.¹t 2 Œt1; t2� j s.t/ 2 ŒS2; S1�º/ � log
S1 CM

S2 CM
:

Proof. We note that (4.1) is equivalent to the statement that the function
k W t 7! et .s.t/CM/ is non-decreasing. �e assumption s.t1/ � S1 � S2 � s.t2/

implies k.t1/ � .S1 CM/et1 and k.t2/ � .S2 CM/et2 . Now the claim follows
directly by an application of the preceding lemma.
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Lemma 4.4. Let s W Œ0;1/! R be integrable over bounded intervals, satisfying
(4.2). Let e > 0 and 0 < S2 < S1 be arbitrary, and assume

(4.7) h � 2

�
e C

M 0

S1
C
M 0

S2

�
:

�en every interval Œx; x C h� satis�es at least one of the following conditions:

(i) �.Ex;h;S1
/ � e , where Ex;h;S1

is as in (4.3),
(ii) there exist t1; t2 such that x � t1 < t2 � x C h and s.t1/ � S1 and

s.t2/ � S2 .

Proof. It is enough to show that falsity of (i) implies (ii). De�ne

T D sup¹t 2 Œx; x C h� j s.t/ � S2º;

with the understanding that T D x if s.t/ > S2 for all t 2 Œx; x C h� . �en
s.t/ > S2 8t 2 .T; x C h� , which implies

.x C h � T /S2 �

Z xCh

T

s.t/dt � 2M 0

and therefore

(4.8) x C h � T �
2M 0

S2
:

We observe that (4.8) with T D x would contradict (4.7). �us x < T � x C h ,
so we can indeed �nd a t2 2 Œx; xCh� with s.t2/ � S2 . Since we do not assume
continuity of s , we cannot claim that we may take t2 D T , but by de�nition a
t2 can be found in .T � "; T � for every " > 0 .

Now we claim that there is a point t1 2 Œx; t2� such that s.t1/ � S1 . Otherwise,
we would have s.t/ < S1 for all t 2 Œx; t2� . By de�nition, js.t/j � S1 for
t 2 Ex;h;S1

, thus jsj > S1 on the complement of Ex;h;S1
. Combined with

s.t/ < S1 for t 2 Œx; t2� , this means s.t/ < �S1 whenever t 2 Œx; t2�nEx;h;S1
.

�us Z t2

x

s.t/dt � S1�.Œx; t2� \Ex;h;S1
/ � S1�.Œx; t2�nEx;h;S1

/

D �S1.t2 � x/C 2S1�.Œx; t2� \Ex;h;S1
/

D S1.x � t2 C 2�.Œx; t2� \Ex;h;S1
// :

In view of (4.8) and t2 > T � " (with " > 0 arbitrary), we have x � t2 <

x � T C " � 2M 0=S2 � hC " , thus we continue the preceding inequality as

� � � < S1

�
2M 0

S2
� hC "C 2�.Œx; t2� \Ex;h;S1

/

�
:
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By our assumption that (i) is false, we have �.Œx; t2�\Ex;h;S1
/ � �.Ex;h;S1

/ < e .
�us choosing " such that 0 < " < 2.e � �.Œx; t2� \Ex;h;S1

// , we have

� � � < S1

�
2M 0

S2
� hC 2e

�
:

Combining this with (4.7), we �nally obtain
R t2
x
s.t/dt < �2M 0 , which contradicts

the assumption (4.2). �us there is a point t1 2 Œx; t2� such that s.t1/ � S1 . In
view of s.t1/ � S1 > S2 � s.t2/ , we have t1 ¤ t2 , thus t1 < t2 .

Proof of Proposition 4.1. Assuming that S D lim sup js.x/j > 0 , choose S1; S2

such that 0 < S2 < S1 < S . �en e WD log S1CM
S2CM

> 0 . Let h satisfy (4.7). Assume
that there is an x � 0 such that �.Ex;h;S1

/ < e . �en Lemma 4.4 implies the
existence of t1; t2 such that x � t1 < t2 � x C h and s.t1/ � S1; s.t2/ �

S2 . But then Corollary 4.3 gives �.Œt1; t2� \ s
�1.ŒS2; S1�/ � log S1CM

S2CM
. Since

Œt1; t2� \ s
�1.ŒS2; S1�/ � Ex;h;S1

, we have �.Ex;h;S1
/ � log S1CM

S2CM
D e , which is

a contradiction.

Remark 4.5. �e author did not succeed in making full sense of the proof in
[Kar1] corresponding to that of Corollary 4.3. It seems that there is a logical
mistake in the reasoning, which is why we resorted to the above more topological
approach. �

A. �e Prime Number �eorem

Proposition A.1. De�ning  .x/ WD
P
n�x ƒ.n/ , we have  .x/ � x .

Proof. Since ƒ.x/ � 0 , we have that  is non-negative and non-decreasing.
Furthermore, X

n�x

 
�x
n

�
D

X
n�x

X
m�x=n

ƒ.m/ D
X
r�x

X
sjr

ƒ.s/

D

X
r�x

log r D x log x � x CO.log x/(A.1)

by Proposition 3.4(i) and (3.5). Now �eorem 1.1 implies  .x/ D x C o.x/ , or
 .x/ � x .

Note that we still used only (i) of Proposition 3.4, but we will need now (iii):
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�eorem A.2. Let �.x/ be the number of primes � x and pn the n -th prime.
�en

�.x/ �
x

log x
;

pn � n logn:

Proof. Using Proposition 3.4(iii), we compute

 .x/ D
X
n�x

ƒ.n/ D
X
pk�x

logp D
X
p�x

logp
�
log x
logp

�
� �.x/ log x:

If 1 < y < x then

�.x/ � �.y/ D
X

y<p�x

1 �
X

y<p�x

logp
logy

�
 .x/

logy
:

�us �.x/ � y C  .x/= logy . Taking y D x= log2 x this gives

 .x/

x
�
�.x/ log x

x
�
 .x/

x

log x
log.x= log2 x/

C
1

log x
;

thus  .x/ � �.x/ log x . Together with Proposition A.1, this gives �.x/ � x= log x .
Taking logarithms of �.x/ � x= log x , we have log�.x/ � log x� log log x �

log x and thus �.x/ log�.x/ � x . Taking x D pn and using �.pn/ D n gives
n logn � pn .

Remark A.3. Karamata’s proof of the Landau-Ingham theorem is obviously
modeled on Selberg’s original elementary proof [Sel] of the prime number
theorem. However, Selberg worked with f D  from the beginning. Most later
proofs follow Selberg’s approach, but there are some that work with M instead
of  . Cf. the papers [PR, Kal] and the textbooks [GL, Ell]. As mentioned in the
introduction, the result for M also follows easily from �eorem 1.1: �

Proposition A.4. De�ning M.x/ D
P
n�x �.n/ , we have M.x/ D o.x/ .

Proof. We de�ne f .x/ DM.x/Cbxc , which is non-negative and non-decreasing.
Now

F.x/ D
X
n�x

M
�x
n

�
C

jx
n

k
D

X
n�x

X
m�x=n

.�.m/C 1/

D

X
m�x

.�.m/C 1/
j x
m

k
D 1C

X
m�x

j x
m

k
;
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where the last identity is just the �rst in (3.12). �e remaining sum is known
from Dirichlet’s divisor problem and can be computed in elementary fashion,

(A.2)
X
m�x

j x
m

k
D x log x C .2
 � 1/x CO.

p
x/;

cf. e.g. [TFM]. �us F.x/ D x log x C .2
 � 1/x C O.
p
x/ , and �eorem 1.1

implies f .x/ D x C o.x/ , thus M.x/ D o.x/ .

Remark A.5. Note that we had to de�ne f .x/ DM.x/Cbxc and use (A.2) since
f .x/ D M.x/ C x is non-negative, but not non-decreasing. One can generalize
�eorem 1.1 somewhat so that it applies to functions like f .x/ D M.x/ C x

weakly violating monotonicity. But the additional e�ort would exceed that for the
easy proof of (A.2). �
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