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A true relative of Suslin’s normality theorem

Bogdan Nica

Abstract. We prove a normality theorem for the “true” elementary subgroups of SLn.A/

de�ned by the ideals of a commutative unital ring A . Our result is an analogue of a
normality theorem, due to Suslin, for the standard elementary subgroups, and it greatly
generalizes a theorem of Mennicke.
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1. Introduction

Let A be a unital commutative ring, and let n � 2 . �e elementary
subgroup En.A/ is the subgroup of SLn.A/ generated by the elementary matrices
eij .a/ D 1n C aeij , where i ¤ j and a 2 A . Studying the size of En.A/ in
SLn.A/ is fraught with surprises and subtleties, but there is one fact which is
reassuringly general: if n � 3 then En.A/ is normal in SLn.A/ . �is is Suslin’s
Normality �eorem [Sus].

Ideals de�ne relative elementary subgroups. �e normal elementary subgroup
En.�/ corresponding to an ideal � of A is the normal subgroup of En.A/

generated by the elementary matrices with coe�cients in � :

En.�/ D hheij .a/ W a 2 �; i ¤ j iiEn.A/:

In fact, Suslin proved the following relative normality theorem. What we have
referred to as the Normality �eorem is the absolute case � D A .

�eorem 1 (Suslin). Let n � 3 . �en En.�/ is normal in SLn.A/ .

Taking just the subgroup closure of the elementary matrices with coe�cients
in an ideal � gives rise to the true elementary subgroup Fn.�/ :
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Fn.�/ D heij .a/ W a 2 �; i ¤ j i:

�e notation is the one proposed by Tits [Tit], while the terminology is ours. Our
main result is a relative normality theorem for the true elementary subgroups.
Once again, the Normality �eorem appears as the absolute case � D A .

�eorem 2. Let n � 3 . �en Fn.�/ is normal in the subgroup ¹g 2 SLn.A/ W

g mod � is diagonalº .

Warming up the cold truth of the theorem is a short story explaining how we
were led to this result. �e setting is the most familiar case, A D Z . �en the
absolute elementary subgroup En.Z/ exhausts SLn.Z/ . But what becomes of the
relative elementary groups?

In 1965, Mennicke [Men1] proved the following remarkable fact: for n � 3 ,
the normal elementary subgroup En.N / D hheij .N / W i ¤ j ii coincides with the
principal congruence subgroup �n.N / D ¹g 2 SLn.Z/ W g � 1n mod N º . �e
proof is elementary, though somewhat intricate. Using earlier observations of
Brenner, Mennicke was then able to derive the Normal Subgroup �eorem stating
that every normal subgroup of SLn.Z/ , n � 3 , is either central or it contains
a principal congruence subgroup. �e Congruence Subgroup Property, that
every �nite-index subgroup of SLn.Z/ , n � 3 , contains a principal congruence
subgroup, is an immediate consequence.

More than three decades later, in 2000, Mennicke [Men2] published the
following counterpart of his 1965 result: for n � 3 , the true elementary
subgroup Fn.N / D heij .N / W i ¤ j i coincides with the congruence subgroup
�n.N / D ¹g 2 SLn.Z/ W g � 1n mod N; gi i � 1 mod N 2º . Mennicke’s approach
to this more recent - in fact, surprisingly recent - theorem is signi�cantly more
complicated. It is, in a sense, an unnecessary proof: a short and conceptual
argument shows that Mennicke’s two theorems on elementary subgroups - �eorem
E and �eorem F, so to speak - are equivalent. �is equivalence can be formulated
in the generality of commutative rings, the key ingredient being a 1976 theorem
of Tits, stated below. As I have recently learnt from Andrei Rapinchuk, the
equivalence was noted soon after [Men2] was circulated in preprint form. To
the best of my knowledge, the equivalence does not appear in the literature, so
it seems worthwhile to discuss it. As it turns out, �eorem 2 will �t in this
discussion.

Here is Tits’ theorem, the SLn case of a result proved in [Tit] for Chevalley
groups. Incidentally, we expect that our �eorem 2 can be generalized, as well,
in the context of Chevalley groups.

�eorem 3 (Tits). Let n � 3 . �en En.�
2/ is contained in Fn.�/ .
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Mennicke’s complicated proof of the identity Fn.N / D �n.N / can be
circumvented, but there is something worth saving. Most of Mennicke’s argument
in [Men2] goes into proving the weaker statement that Fn.N / is normalized
by �n.N / [Men2, �m.2]. In a subsequent remark, Mennicke adds that such a
normality relation holds, more generally, for arithmetic Dedekind rings. Our main
theorem proves much more: normality holds in any commutative ring, and with
respect to a larger congruence subgroup. �e proof is also much simpler.

2. �e Suslin factorization and applications

Following Suslin [Sus], we factorize conjugates of elementary matrices into
products of elementary matrices and “suspended” SL2 matrices.

Let g 2 SLn.A/ , where n � 2 , let a 2 A , and �x i ¤ j . We start by writing

g�1eij .a/g D 1n C a.g
�1eijg/ D 1n C a � vw

where v is the i -th column of g�1 , and w is the j -th row of g . If we further
let w0 denote the i -th row of g , then it can be veri�ed that

w D
X
k<l

ckl .vlek � vkel /; ckl WD wkw
0
l � wlw

0
k D gjkgil � gjlgik

where ek D .0; : : : ; 1 : : : ; 0/ is the k -th basic row vector. As .vlek � vkel /v D 0 ,
we get

g�1eij .a/g D 1n C

X
k<l

ackl � v.vlek � vkel / D
Y
k<l

�
1n C ackl � v.vlek � vkel /

�
:

Next, we decompose each factor 1n C ackl � v.vlek � vkel / as�
1n C ackl � .vke

k
C vle

l /.vlek � vkel /
� Y

s¤k;l

�
1n C acklvse

s.vlek � vkel /
�

D

 
1C acklvkvl �acklv

2
k

acklv
2
l

1 � acklvkvl

!�kl

Y
s¤k;l

�
1n C acklvsvl � esk

��
1n � acklvsvk � esl

�
:

In the �rst displayed line, ek denotes the k -th basic column vector. In the
second displayed line,

�
x y
z t

��kl
2 SLn.A/ is the .k; l/-suspension of the matrix�

x y
z t

�
2 SL2.A/ , namely the matrix obtained from the identity matrix 1n by

grafting x in the .k; k/-entry, y in the .k; l/-entry, z in the .l; k/-entry,
respectively t in the .l; l/-entry.
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Notation. For x; y; z 2 A , we de�ne the symbol

S.x; yI z/ D

 
1C xyz �x2z

y2z 1 � xyz

!
2 SL2.A/:

�en the above computation can be summarized as the following Suslin
factorization:

g�1eij .a/g D
Y
k<l

�
S.vk; vl I ackl /

�kl
Y

s¤k;l

esk.acklvsvl / esl .�acklvsvk/
�
:

For the remainder of the section, we assume that n � 3 . Recall that � denotes
an ideal of A . Our commutator convention is that Œg; h� D g�1h�1gh .

2.1. Proof of Suslin’s �eorem 1. Row- and column-reductions lead to the
commutator identity0B@1C xyz �x2z 0

y2z 1 � xyz 0

0 0 1

1CA D
264
0B@1 0 xz

0 1 yz

0 0 1

1CA ;
0B@1 0 0

0 1 0

y �x 1

1CA
375

which shows that S.x; yI z/� 2 En.�/ whenever z 2 � . Here, the notation
S.x; yI z/� stands for any suspension of S.x; yI z/ . �e Suslin factorization yields
that g�1eij .a/g 2 En.�/ whenever a 2 � .

2.2. Proof of Tits’ �eorem 3. In fact, we will prove the stronger assertion that
En.�

2/ is contained in the commutator subgroup ŒFn.�/;Fn.�/� . We start from
the following commutator identity, generalizing the one of the previous paragraph:0B@1C xyz1z2 �x2z1z2 0

y2z1z2 1 � xyz1z2 0

0 0 1

1CA D
264
0B@1 0 xz1

0 1 yz1

0 0 1

1CA ;
0B@ 1 0 0

0 1 0

yz2 �xz2 1

1CA
375 :

We see that S.x; yI z1z2/
� 2 ŒFn.�/;Fn.�/� for z1; z2 2 � . Observe, on the other

hand, that symbols enjoy the additivity rule S.x; yI zCz0/ D S.x; yI z/S.x; yI z0/ .
�erefore S.x; yI z/� 2 ŒFn.�/;Fn.�/� for z 2 �2 . We also have that eij .z/ 2

ŒFn.�/;Fn.�/� for z 2 �2 (and i ¤ j , as usual). �is follows from the relations
eij .uCv/ D eij .u/eij .v/ , respectively eij .uv/ D Œeik.u/; ekj .v/

�
for distinct i; j; k .

And so, by the Suslin factorization, we �nd that g�1eij .a/g 2 ŒFn.�/;Fn.�/�

whenever a 2 �2 .
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2.3. Proof of �eorem 2. We claim that S.x; yI z/� 2 Fn.�/ whenever y; z 2 �
(or, symmetrically, x; z 2 � ). Indeed, row and column operations over �

(indicated by r , respectively c ) allow for the following transition:0B@1C xyz �x2z 0

y2z 1 � xyz 0

0 0 1

1CA c 

0B@1C xyz �x2z 0

y2z 1 � xyz 0

�y 0 1

1CA
r;r 

0B@ 1 �x2z xz

0 1 � xyz yz

�y 0 1

1CA r 

0B@1 �x2z xz

0 1 � xyz yz

0 �x2yz 1C xyz

1CA
c;c 

0B@1 0 0

0 1 � xyz yz

0 �x2yz 1C xyz

1CA :
�e last matrix is a suspension of S.1; xI �yz/ , hence in Fn.�/ by what we have
learned in the proof of Tits’ theorem. We conclude from the Suslin factorization
that g�1eij .a/g 2 Fn.�/ whenever a 2 � and g 2 SLn.A/ has all o�-diagonal
entries in � .

3. Congruence subgroups versus elementary subgroups

�e elementary subgroups En.�/ and Fn.�/ , corresponding to an ideal � of
A , are relative versions of the absolute elementary subgroup En.A/ . We will now
introduce two subgroups which play a similar role with respect to SLn.A/ . In the
particular case of A D Z , we have already encountered them in the Introduction.

�e principal congruence subgroup is the subgroup

�n.�/ D ¹g 2 SLn.A/ W g � 1n mod �º;

that is the kernel of the reduction homomorphism SLn.A/ ! SLn.A=�/ . Its
elementary counterpart is the normal elementary subgroup En.�/ . �e relation
between En.�/ and �n.�/ has been investigated since the 1960s, and it is crucial
for understanding the subgroup structure of SLn.A/ , as well as for the purposes
of lower algebraic K -theory.

�e congruence analogue of the true elementary subgroup Fn.�/ is the
subgroup

�n.�/ D ¹g 2 SLn.A/ W g � 1n mod �; gi i � 1 mod �2
º:

It seems quite suggestive to think of �n.�/ as the secondary congruence
subgroup.
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Suslin’s �eorem 1 says that a normality feature, which is obviously enjoyed
by �n.�/ for n � 2 , turns out to be satis�ed by En.�/ as soon as n � 3 .
�is intuition, that visible congruence facts have hidden elementary analogues in
“higher rank”, is what guided us towards �eorem 2. Indeed, it is easy to check
that �n.�/ is normal in

�n.�/ D ¹g 2 SLn.A/ W g mod � is diagonalº

for n � 2 , by using the diagonal multiplicativity .gh/i i D gi i hi i mod
�2 for g; h 2 �n.�/ . In more detail, Suslin’s theorem hinges on having
S.x; yI z/� 2 En.�/ for z 2 � , a higher rank re�nement of the obvious fact
that S.x; yI z/ 2 �2.�/ for z 2 � . In the proof of �eorem 2, the claim
that S.x; yI z/� 2 Fn.�/ for y; z 2 � is suggested by the obvious fact that
S.x; yI z/ 2 �2.�/ for y; z 2 � .

We may gather the elementary and the congruence subgroups we have de�ned
in the following diagram. �e arrows denote inclusions, all being obvious except
for the dashed one which is the content of Tits’ theorem, and which in addition
requires the “higher rank” assumption n � 3 .

�n.�/

�n.�/

OO

�n.�/

::

En.�/

dd

Fn.�/

dd ::

�n.�
2/

::

En.�
2/

dd

::

Consider the reduction homomorphism r W �n.�/ ! gln.�=�
2/ , given by

g 7! g � 1n mod �2 . Here gln.�=�
2/ denotes the additive group of n � n

matrices over �=�2 . As

1 �
Y

gi i � 1C
X

.gi i � 1/ mod �2

for each g 2 �n.�/ , the range of r lies within the zero-trace subgroup
sln.�=�

2/ . Now sln.�=�
2/ is generated by ¹ Naeij W i ¤ j; a 2 �º together
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with ¹ NaeiC1 iC1 � Naei i W i ¤ n; a 2 �º . �e o�-diagonal generators are visibly in
the range of r , as 1n C aeij 7! Naeij . Given a 2 � , note that 

1 1

0 1

! 
1 0

a 1

! 
1 �1

0 1

!
D

 
1C a �a

a 1 � a

!
2 �2.�/

r
�!

 
Na �Na

Na �Na

!
:

Taking the .i; iC1/ -suspension, and keeping in mind that Naei iC1 and NaeiC1 i are
already in the image of r , we see that the diagonal di�erences are in the range
of r . To conclude, the reduction homomorphism r W �n.�/! sln.�=�

2/ is onto,
with kernel �n.�

2/ . (As an aside, let us point out that �n.�/ is the preimage
of the zero-diagonal subgroup of sln.�=�

2/ , so �n.�/=�n.�/ ' .�=�2;C/n�1

and �n.�/=�n.�
2/ ' .�=�2;C/n

2�n . �is relative position of �n.�/ explains
the longer arrows in our diagram. We leave it to the interested reader to check
that �n.�/=�n.�/ ' .GL1.A=�//

n�1 .)
As the previous argument shows, r.En.�// D r.�n.�// and r.Fn.�// D

r.�n.�// . �us the elementary subgroups are �rst-order approximants of the
congruence subgroups, in the sense that

�n.�/ D En.�/ � �n.�
2/; �n.�/ D Fn.�/ � �n.�

2/:

We infer that the natural homomorphism �n.�
2/=En.�

2/ ! �n.�/=En.�/ is
onto for n � 2 . When n � 3 , Tits’ theorem allows us to insert the coset space
�n.�/=Fn.�/ in between, so that we have the following:

�eorem 4. Let n � 3 . �en the inclusions �n.�
2/ � �n.�/ � �n.�/ induce

surjections

�n.�
2/=En.�

2/� �n.�/=Fn.�/� �n.�/=En.�/:

In particular, for n � 3 , the property that En.�/ D �n.�/ for every ideal �
is equivalent to the property that Fn.�/ D �n.�/ for every ideal � . �is is the
conceptual explanation, promised in the Introduction, for the equivalence between
Mennicke’s two theorems.

So far, the discussion did not involve �eorem 2. But our theorem does have
something to add to �eorem 4, namely the fact that �n.�/=Fn.�/ is actually a
quotient group, and not just a coset space.

�eorem 4 can be applied, for instance, when A is the ring of integers in a
number �eld K . �e Bass - Milnor - Serre solution [BMS] to the Congruence
Subgroup Problem for SLn , n � 3 , establishes that each quotient �n.�/=En.�/

is a �nite cyclic group whose order divides the number of roots of unity in K ,
and which is furthermore trivial if K admits a real embedding. �e same is then
true for the quotient �n.�/=Fn.�/ .
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4. �e case of SL2

For n D 2 , both �eorem 3 and �eorem 2 fail in general. However, there is
some occasional truth to them.

We illustrate the �rst point in the familiar case A D Z .

Proposition 5. In SL2.Z/ , the following hold for N � 4 :
� F2.N / is not normal in �2.N / ,
� E2.N

2/ is not contained in F2.N / .

Proof. Let

˛ D

 
1 1

0 1

!
; ˇ D

 
1 0

N 1

!
and note that ˛ and ˇ generate a free group of rank 2 , since they can be
simultaneously conjugated into

�
1
p

N
0 1

�
and

�
1 0p
N 1

�
. Put

! D

 
1 1

0 1

! 
1 0

N 2 1

! 
1 �1

0 1

!
D

 
1CN 2 �N 2

N 2 1 �N 2

!
:

�en ! 2 E2.N
2/ but ! … F2.N / , as ˛ˇN˛�1 is not a word in ˛N and ˇ .

Also ! 2 �2.N / while !�1˛N! … F2.N / since ˛ˇ�N˛NˇN˛�1 is not a word
in ˛N and ˇ .

On the other hand, we have the following:

�eorem 6 (Vaserstein). Let A be the ring of integers in a number �eld K which
is neither the rational �eld Q , nor an imaginary quadratic �eld Q.

p
�D/ , and

let � be an ideal in A . �en:
� F2.�/ is normal in �2.�/ ,
� E2.�

2/ is contained in F2.�/ ,
� the natural homomorphism �2.�

2/=E2.�
2/ ! �2.�/=F2.�/ is an isomor-

phism.

�is is taken from [Vas]. A gap in Vaserstein’s paper was later corrected by
Liehl [Lie].

Vaserstein’s theorem conforms with the principle that, over an arithmetic ring
with in�nitely many units, SL2 should behave like SLn with n � 3 . �is principle
was born with Serre’s solution [Ser] to the Congruence Subgroup Problem for
SL2 . In the case of a ring of integers A as in �eorem 6, Serre’s results say
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that each quotient �2.�/=E2.�/ is a �nite cyclic group whose order divides the
number of roots of unity in K , and which is furthermore trivial if K admits
a real embedding. By Vaserstein’s theorem, the same statement applies to the
quotient �2.�/=F2.�/ .

Acknowledgements.. Constructive suggestions from Andrei Rapinchuk, feedback
and the occasional espresso from Laurent Bartholdi, respectively the support of
the Alexander von Humboldt Foundation are all gratefully acknowledged.

References

[BMS] H. Bass, J. Milnor and J.-P. Serre, Solution of the congruence subgroup
problem for SLn .n � 3/ and Sp2n .n � 2/ . Inst. Hautes Études Sci. Publ.
Math. 33 (1967), 59–137. Zbl 0174.05203 MR 0244257

[Lie] B. Liehl, On the group SL2 over orders of arithmetic type. J. Reine Angew.
Math. 323 (1981), 153–171. Zbl 0447.20035 MR 0611449

[Men1] J. Mennicke, Finite factor groups of the unimodular group. Ann. of Math. 81
(1965), 31–37. Zbl 0135.06504 MR 0171856

[Men2] J. Mennicke, A remark on the congruence subgroup problem. Math. Scand. 86
(2000), 206–222. Zbl 0966.20023 MR 1754994

[Ser] J.-P. Serre, Le problème des groupes de congruence pour SL2 . Ann. of Math.
92 (1970), 489–527. Zbl 0239.20063 MR 0272790

[Sus] A. A. Suslin, On the structure of the special linear group over polynomial rings.
Math. USSR Izv. 11 (1977), 221–238. Zbl 0378.13002

[Tit] J. Tits, Systèmes générateurs de groupes de congruence. C. R. Acad. Sci. Paris
Sér. A 283 (1976), 693–695. Zbl 0381.14005 MR 0424966

[Vas] L. N. Vaserstein, On the group SL2 over Dedekind rings of arithmetic type.
Math. USSR Sb. 18 (1972), 321–332. Zbl 0359.20027

(Reçu le 19 april 2014)

Bogdan Nica, Mathematisches Institut, Georg-August Universität Göttingen, Germany

e-mail: bogdan.nica@gmail.com

© Fondation L’Enseignement Mathématique

http://zbmath.org/?q=an:0174.05203
http://www.ams.org/mathscinet-getitem?mr=0244257
http://zbmath.org/?q=an:0447.20035
http://www.ams.org/mathscinet-getitem?mr=0611449
http://zbmath.org/?q=an:0135.06504
http://www.ams.org/mathscinet-getitem?mr=0171856
http://zbmath.org/?q=an:0966.20023
http://www.ams.org/mathscinet-getitem?mr=1754994
http://zbmath.org/?q=an:0239.20063
http://www.ams.org/mathscinet-getitem?mr=0272790
http://zbmath.org/?q=an:0378.13002
http://zbmath.org/?q=an:0381.14005
http://www.ams.org/mathscinet-getitem?mr=0424966
http://zbmath.org/?q=an:0359.20027
mailto:bogdan.nica@gmail.com

	Introduction
	The Suslin factorization and applications
	Congruence subgroups versus elementary subgroups
	The case of SL_2
	References

