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A functorial extension of the abelian Reidemeister torsions
of three-manifolds

Vincent Florens and Gwénaël Massuyeau

Abstract. Let F be a �eld and let G � F n ¹0º be a multiplicative subgroup. We
consider the category CobG of 3 -dimensional cobordisms equipped with a representation
of their fundamental group in G , and the category VectF;˙G of F -linear maps de�ned
up to multiplication by an element of ˙G . Using the elementary theory of Reidemeister
torsions, we construct a “Reidemeister functor” from CobG to VectF;˙G . In particular,
when the group G is free abelian and F is the �eld of fractions of the group ring ZŒG� ,
we obtain a functorial formulation of an Alexander-type invariant introduced by Lescop for
3 -manifolds with boundary; when G is trivial, the Reidemeister functor specializes to the
TQFT developed by Frohman and Nicas to enclose the Alexander polynomial of knots. �e
study of the Reidemeister functor is carried out for any multiplicative subgroup G � F n¹0º .
We obtain a duality result and we show that the resulting projective representation of the
monoid of homology cobordisms is equivalent to the Magnus representation combined with
the relative Reidemeister torsion.

Mathematics Subject Classi�cation (2010). Primary: 57M27, 57Q10.

Keywords. 3-manifold, cobordism, Reidemeister torsion, Alexander polynomial, TQFT

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
2 �e Alexander functor A . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3 Alexander functor and knots . . . . . . . . . . . . . . . . . . . . . . . . 173
4 �e Reidemeister functor R . . . . . . . . . . . . . . . . . . . . . . . . . 176
5 Back to the Alexander functor . . . . . . . . . . . . . . . . . . . . . . . 184
6 Reidemeister functor and knots . . . . . . . . . . . . . . . . . . . . . . . 187
7 �e monoid of homology cobordisms . . . . . . . . . . . . . . . . . . . 191
8 Computations with Heegaard splittings . . . . . . . . . . . . . . . . . . . 195



162 V. Florens and G. Massuyeau

9 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
A A short review of combinatorial torsions . . . . . . . . . . . . . . . . . 205
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

1. Introduction

Let Cob be the category of 3 -dimensional cobordisms introduced by Crane
and Yetter [CY], and whose de�nition we brie�y recall. �e objects of Cob
are integers g � 0 , and correspond to compact connected oriented surfaces Fg
of genus g with one boundary component. Indeed, we �x for every g � 0 a
model surface Fg whose boundary is identi�ed with S1 , and we also �x a
base point ? on @Fg D S

1 . �e morphisms g� ! gC in the category Cob are
the equivalence classes of cobordisms between the surfaces Fg� and FgC . To
be more speci�c, a cobordism from Fg� to FgC is a pair .M;m/ consisting
of a compact connected oriented 3 -manifold M and an orientation-preserving
homeomorphism m W F.g�; gC/! @M where

F.g�; gC/ WD �Fg� [S1�¹�1º
�
S1 � Œ�1; 1�

�
[S1�¹1º FgC I

two such pairs .M;m/ and .M 0; m0/ are equivalent if there exists a home-
omorphism f W M ! M 0 such that m0 D f j@M ı m . We shall denote a pair
.M;m/ simply by the upper-case letter M , with the convention that the boundary-
parametrization is always denoted by the lower-case letter m ; besides, we denote
by m˙ W Fg˙ !M the restriction of m composed with the inclusion of @M into
M . �us the cobordism M “runs” from the bottom surface @�M WD m�.Fg�/

to the top surface @CM WD mC.FgC/ . �e degree of the cobordism M is the
integer gC � g� .

�e composition N ı M of two cobordisms M;N in Cob is de�ned by
identifying @CM to @�N and, for any integer g � 0 , the identity of the object
g is the cylinder Fg � Œ�1; 1� with the obvious boundary-parametrization. Our
model surfaces F0; F1; F2; : : : also come with an identi�cation of the boundary-
connected sum Fg]@Fh with the surface FgCh for any g; h � 0 . �us the category
Cob is enriched with a monoidal structure ˝ : the tensor product g ˝ h of two
integers g; h is the sum gCh , and the tensor product M ˝N of two cobordisms
M;N is their boundary-connected sum M]@N .

Let now G be an abelian group. �e category Cob can be re�ned to
the category CobG of cobordisms equipped with a representation of the �rst
integral homology group in G . To be more speci�c, an object of CobG is
a pair .g; '/ consisting of an integer g � 0 and a group homomorphism
' W H1.Fg IZ/ ! G . A morphism .g�; '�/ ! .gC; 'C/ in the category CobG



A functorial extension of the abelian Reidemeister torsions of three-manifolds 163

is a pair .M; '/ where M 2 Cob.g�; gC/ and ' W H1.M IZ/ ! G is a group
homomorphism such that ' ı m˙;� D '˙ . �e composition of two morphisms
.M; '/ 2 CobG..g�; '�/; .gC; 'C// and .N; / 2 CobG..h�;  �/; .hC;  C// , such
that .gC; 'C/ D .h�;  �/ , is de�ned by

.N; / ı .M; '/ WD .N ıM; C '/

where N ı M is the composition in Cob and  C ' W H1.N ı M IZ/ ! G

is de�ned from ' and  by using the Mayer–Vietoris theorem. �e monoidal
structure of Cob also extends to the category CobG : the tensor product of objects
is

.g; '/˝ .h;  / WD .g C h; ' ˚  /

where H1.FgChIZ/ D H1.Fg]@FhIZ/ is identi�ed with H1.Fg IZ/˚H1.FhIZ/ ,
and the tensor product of morphisms is

.M; '/˝ .N; / WD .M]@N; ' ˚  /

where H1.M]@N IZ/ is identi�ed with H1.M IZ/˚H1.N IZ/ .
Consider now a commutative ring R and �x a subgroup G � R� of its

group of units. Let grModR;˙G be the category whose objects are Z -graded
R -modules and whose morphisms are graded R -linear maps of arbitrary degree,
up to multiplication by an element of ˙G . �e usual tensor product of graded
R -modules de�nes a monoidal structure on the category grModR;˙G : here the
tensor product a˝ b of two graded R -linear maps a W U ! U 0 and b W V ! V 0

is de�ned with Koszul’s rule, i.e : we set .a˝ b/.u˝ v/ WD .�1/jbjjuja.u/˝ b.v/
for any homogeneous elements u 2 U; v 2 V . In this paper, we construct and
study two functors from CobG to grModR;˙G for some speci�c rings R and
speci�c subgroups G � R� .

Our �rst functor is based on the “Alexander function” introduced by Lescop
[Les]. For any compact orientable 3 -manifold M with boundary, this function is
de�ned on an exterior power of the Alexander module of M relative to a bound-
ary point, and it takes values in a ring of Laurent polynomials. Lescop’s de�nition
proceeds in a rather elementary way using a presentation of the Alexander module.

�eorem I. Let G be a �nitely generated free abelian group, and let ZŒG� be
its group ring. �en there is a degree-preserving monoidal functor

A WD AG W CobG �! grModZŒG�;˙G

which, at the level of objects, assigns to any .g; '/ the exterior algebra of the
' -twisted relative homology group of the pair .Fg ; ?/ .

�e ZŒG� -linear map A.M; '/ associated to a morphism .M; '/ of CobG is
de�ned in a very simple way from the Alexander function of M using the
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decomposition of @M into two parts, @�M and @CM . �e fact that the Alexander
function gives rise to a functor on the category of cobordisms is somehow implicit
in [Les], where Lescop studies the behaviour of her invariant under some speci�c
gluing operations. As it contains the Alexander polynomial of knots in a natural
way, we call A the Alexander functor.

Since the works of Milnor [Mil1] and Turaev [Tur1], it is known that the
Alexander polynomial of knots and 3 -manifolds can be interpreted as a special
kind of abelian Reidemeister torsion. We follow this direction to de�ne our sec-
ond functor, which we call the Reidemeister functor. In the sequel, the category
grModR;˙G associated to a �eld R WD F and a subgroup G of F� D F n ¹0º is
denoted by grVectF ;˙G .

�eorem II. Let F be a �eld and let G be a subgroup of F� . �en there is a
degree-preserving monoidal functor

R WD RF ;G W CobG �! grVectF ;˙G

which, at the level of objects, assigns to any .g; '/ the exterior algebra of the
' -twisted relative homology group of the pair .Fg ; ?/ .

�e construction of the functor R uses the elementary theory of Reidemeister
torsions, but note that we need to consider cell chain complexes which are
not necessarily acyclic. When G is a �nitely generated free abelian group and
F WD Q.G/ is the �eld of fractions of ZŒG� , we recover the functor A by
extension of scalars. �us it su�ces to study the functor R and this is done using
basic properties of combinatorial torsions. For instance, we compute its restriction
to the monoid of homology cobordisms (which includes the mapping class group
of a surface): we �nd that the representation induced by R is equivalent to the
Magnus representation combined with the Reidemeister torsion of cobordisms
relative to the top surface. We also give a formula for R in terms of Heegaard
splittings and we show that R satis�es some duality properties, which generalize
the symmetry properties of the Alexander polynomial of knots and 3 -manifolds.

It is expected that Turaev’s re�nements of the Reidemeister torsion [Tur2, Tur3]
can be adapted to re�ne R to a kind of “monoidal” degree-preserving functor from
CobG to the category grVectF of graded F -vector spaces: the sign ambiguity would
presumably be �xed using homological orientations on the manifolds, while the
ambiguity in G would be dispelled by adding Euler structures. (Observe however
that, since we use Koszul’s rule and we allow morphisms in grVectF to have
non-zero degree, this category is not monoidal in the usual sense of the word.)

We now explain how our constructions are related to prior work. Soon after the
emergence of quantum invariants of 3 -manifolds in the late eighties, there were
several works which showed how to interpret the classical Alexander polynomial
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in this new framework. A more general problem was then to extend the Alexander
polynomial to a functor from a category of cobordisms to a category of vector
spaces following, as closely as possible, the axioms of a TQFT [Aty]. �is
problem was solved by Frohman and Nicas who used elementary intersection
theory in U.1/ -representation varieties of surfaces [FN1]. (See also [FN2] for
a much more general construction using PU.N / -representations.) Later, Kerler
showed that the Frohman–Nicas functor is in fact equivalent to a TQFT based
on a certain quasitriangular Hopf algebra [Ker1]. �e Alexander polynomial of a
knot K in an integral homology 3 -sphere N is recovered from this functor by
taking the “graded” trace of the endomorphism associated to the cobordism that
one obtains by “cutting” N nK along a Seifert surface of K . It turns out that,
in the case G D ¹1º , the Alexander functor A is equivalent to the Frohman–
Nicas functor. Note that the way how their functor determines the Alexander
polynomial is somehow extrinsic, in that it goes through the choice of a Seifert
surface. On the contrary, the functor A for G D Z intrinsically contains the
Alexander polynomial of oriented knots in oriented integral homology 3 -spheres
by considering any knot of this type as a “bottom knot” in the manner of [Hab],
i.e : by regarding its exterior as a morphism 1! 0 in CobG . Since this functorial
extension of the Alexander polynomial applies to cobordisms M equipped with
an element of H 1.M IZ/ , it should be regarded as a kind of HQFT with target
K.Z; 1/ – see [Tur6] – rather than a TQFT.

Our constructions are also related to the work of Bigelow, Cattabriga and
the �rst author [BCF], which provides a functorial extension of the Alexander
polynomial to the category of tangles instead of the category of cobordisms.
To describe this relation, let TangCob be the monoidal category whose objects
are pairs of non-negative integers .g; n/ – corresponding to surfaces Fg with n

punctures – and whose morphisms are cobordisms with tangles inside. Clearly
the category TangCob contains the category Cob of [CY] as well as the usual
category Tang of (unoriented) tangles in the standard ball; for any abelian group
G , there is an obvious re�nement TangCobG of the category TangCob . When G
is the in�nite cyclic group generated by t , the usual category TangC of oriented
tangles in the standard ball can be regarded as a subcategory of TangCobG by
only considering those representations of tangle exteriors that send any oriented
meridian to the generator t . �e functors A and R constructed in this paper could
be extended to the category TangCobG using similar methods, but with more
technicality. When G is in�nite cyclic, the restriction of the resulting functor
A W TangCobG ! grModZŒG�;˙G to TangC would coincide with the “Alexander
representation of tangles” constructed in [BCF]. We also mention Archibald’s
extension of the Alexander polynomial [Arc], which is based on diagrammatic
presentations of tangles: her invariant seems to be very close to the invariant
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constructed in [BCF] and is stronger since it is de�ned without ambiguity in ˙G .
Finally, our approach is related to the work of Cimasoni and Turaev on

“Lagrangian representations of tangles” [CT1, CT2]. �ese representations are
functors from the category TangC to the category of “Lagrangian relations”
(which generalizes the category of ZŒt˙1� -modules equipped with non-degenerate
skew-hermitian forms) and, for string links, they are equivalent to the (reduced)
Burau representation [LDi, KLW]. �e constructions of [CT1, CT2] could be
adapted to the case of cobordisms in order to obtain a functor from CobG to the
category of “Lagrangian relations” over the ring ZŒG� . In the case of homology
cobordisms, the resulting functor would be equivalent to the (reduced) Magnus
representation but it would miss the relative Reidemeister torsion: so it would be
weaker than the functor A .

�e paper is organized as follows. A �rst part deals exclusively with the
Alexander functor: §2 gives the construction of the functor A (�eorem I) and
§3 explains how the classical Alexander polynomial of knots is contained in A .
Next, the Reidemeister functor is constructed in §4 (�eorem II) and is proved
to be a generalization of A in §5. (�us, we provide two di�erent proofs of the
functoriality of A .) Starting from there, we focus on the study of R and indicate
the resulting properties for A . �e abelian Reidemeister torsions of knot exteriors
and closed 3 -manifolds are shown to be determined by R in §6. �e functor R
restricts to a projective representation of the monoid of homology cobordisms,
which we fully compute in §7. We also explain in §8 how to calculate R using
Heegaard splittings of cobordisms, and we prove in §9 a duality result for R
which involves the twisted intersection form of surfaces. Finally, the paper ends
with a short appendix recalling the de�nition and basic properties of the torsion
of chain complexes.

Notation and conventions. Let R be a commutative ring. �e exterior algebra
of an R -module N is denoted by

ƒN D
M
i�0

ƒiN where ƒ0N D RI

the multivector v1 ^ � � � ^ vi 2 ƒiN de�ned by a �nite family v D .v1; : : : ; vi /

of elements of N is still denoted by v . If N is free of rank n , a volume form
on N is an isomorphism of R -modules ƒnN ! R .

Let X be a topological space with base point ? . �e maximal abelian cover
of X based at ? is denoted by pX W bX ! X , and the preferred lift of ? is
denoted by b? . (Here we assume the appropriate assumptions on X to have a
universal cover.) For any oriented loop ˛ in X based at ? , the unique lift of ˛
to bX starting at b? is denoted by b̨ .
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Unless otherwise speci�ed, (co)homology groups are taken with coe�cients
in the ring of integers Z ; (co)homology classes are denoted with square brackets
Œ�� . For any subspace Y � X such that ? 2 Y and any ring homomorphism
' W ZŒH1.X/�! R , we denote by H'.X; Y / the ' -twisted homology of the pair
.X; Y / , namely

H'.X; Y / D H.C '.X; Y // where C '.X; Y / WD R˝ZŒH1.X/� C
� bX ;p�1X .Y /

�
:

If .X 0; Y 0/ is another pair of spaces and f W .X 0; Y 0/ ! .X; Y / is a contin-
uous map, the corresponding homomorphism H.X 0/ ! H.X/ is still denoted
by f . If a base point ?0 2 Y 0 is given and f .?0/ D ? , the R -linear map
H'f .X 0; Y 0/! H'.X; Y / induced by f is also denoted by f .

Acknowledgements. �is work was partially supported by the French ANR
research project “Interlow” (ANR-09-JCJC-0097-01). �e authors would like to
thank the referee for some useful comments.

2. �e Alexander functor A

We �rstly review the Alexander function of a 3 -manifold with boundary
following [Les]. (Note that the terminology “Alexander function” has a very
di�erent meaning in [Tur2].) Next, we construct the Alexander functor A . In this
section, we �x a �nitely generated free abelian group G ; the extension of a
group homomorphism ' W A! G to a ring homomorphism ZŒA�! ZŒG� is still
denoted by ' .

2.1. �e Alexander function. Let M be a compact connected orientable 3 -
manifold with connected boundary. We �x a base point ? 2 @M and a
group homomorphism ' W H1.M/ ! G . �e genus of M is the integer
g.M/ WD 1 � �.M/ , i.e : the genus of the surface @M .

Lemma 2.1. �ere exists a presentation of the ZŒG� -module H
'
1 .M; ?/ whose

de�ciency is g.M/ .

Proof. We consider a decomposition of M with a single 0 -handle, s 1-
handles and r 2 -handles. Since the boundary of M has genus g.M/ , we
have s� r D g.M/ . �is handle decomposition de�nes a 2 -dimensional complex
X � M onto which M deformation retracts. �e complex X has a single 0 -
cell (which we assume to be ? ), s 1 -cells and r 2 -cells. �us we obtain a
presentation of the ZŒG� -module H'

1 .M; ?/ ' H
'
1 .X; ?/ with s generators and

r relations.
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We now simplify our notation by setting g WD g.M/ and H WD H
'
1 .M; ?/ .

De�nition 2.2 (Lescop [Les]). Consider a presentation of the ZŒG� -module H

with de�ciency g :

(2.1) H D h1; : : : ; gCr j �1; : : : ; �ri:

Let � be the ZŒG� -module freely generated by the symbols 1; : : : ; gCr , and
regard �1; : : : ; �r as elements of � . �en the Alexander function of M with
coe�cients ' is the ZŒG� -linear map A'M W ƒ

gH ! ZŒG� de�ned by

A'M .u1 ^ � � � ^ ug/ � 1 ^ � � � ^ gCr D �1 ^ � � � ^ �r ^ fu1 ^ � � � ^ fug 2 ƒgCr�

for any u1; : : : ; ug 2 H , which we lift to some fu1 ; : : : ; fug 2 � in an arbitrary
way.

�e map A'M can be concretely computed as follows: if one considers the
r � .gC r/ matrix de�ned by the presentation (2.1) of H , and if one adjoins to
this matrix some row vectors giving u1; : : : ; ug in the generators 1; : : : ; gCr ,
then A'M .u1 ^ � � � ^ ug/ is the determinant of the resulting .g C r/ � .g C r/

matrix. It is shown in [Les, §3.1] that, up to multiplication by a unit of ZŒG�

(i.e., an element of ˙G ), the map A'M does not depend on the choice of the
presentation (2.1).

Let Q.G/ be the �eld of fractions of ZŒG� . �e following lemma, which is
implicit in [Les], shows that either the Alexander function is trivial or it induces
by extension of scalars a volume form on HQ WD Q.G/˝ZŒG� H .

Lemma 2.3. We have dimHQ � g , and A'M ¤ 0 if and only if dimHQ D g .

Proof. Let A be the r� .gCr/ matrix with entries in ZŒG� corresponding to the
presentation (2.1) of the ZŒG� -module H . �e multiplication v 7! vA de�nes a
linear map Q.G/r ! Q.G/gCr whose cokernel is HQ . �erefore

dimHQ D .g C r/ � rankA:

Clearly, we have rankA � r so that dimHQ � g .
Assume that dimHQ > g and let A0 be a matrix obtained by adding g

arbitrary rows to A . �en rankA < r so that all the minors of A of order r
vanish. By expanding the determinant of A0 successively along the last g rows,
we see that detA0 D 0 and deduce that A'M D 0 .

Assume that dimHQ D g . �en rankA D r so that A has a non-zero minor
D of order r . Let 1 � i1 < � � � < ig � g C r be the indices of the columns of
A not pertaining to D . �en A'M .i1 ^ � � � ^ ig / D D ¤ 0 .
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2.2. De�nition of A . In order to de�ne a functor A , we associate to any object
.g; '/ of CobG the exterior algebra

A.g; '/ WD ƒH'
1 .Fg ; ?/

of the ZŒG� -module H'.Fg ; ?/ D H
'
1 .Fg ; ?/ , which is free of rank 2g . Next,

we associate to any morphism .M; '/ 2 CobG
�
.g�; '�/; .gC; 'C/

�
a ZŒG� -linear

map
A.M; '/ W ƒH'�

1 .Fg� ; ?/ �! ƒH
'C
1 .FgC ; ?/

of degree ıg WD gC�g� as follows. We denote by I the interval m.?� Œ�1; 1�/ ,
which connects the base point of the bottom surface @�M to that of the top
surface @CM . We set H WD H'

1 .M; I / , H˙ WD H
'˙
1 .Fg˙ ; ?/ and g WD gCCg� .

�en, for any integer j � 0 , the image A.M; '/.x/ 2 ƒjCıgHC of any x 2 ƒjH�
is de�ned by the following property:

8y 2 ƒg�jHC; A'M
�
ƒjm�.x/ ^ƒ

g�jmC.y/
�
D !

�
A.M; '/.x/ ^ y

�
:

Here ! W ƒ2gCHC ! ZŒG� is an arbitrary volume form on HC . Due to the
choices of ! and of the presentation of H , the map A.M; '/ is only de�ned up
to multiplication by an element of ˙G . Besides, observe that A.M; '/ is trivial
on ƒjH� for any j < max.0;�ıg/ and any j > min.g; 2g�/ .

�e next two lemmas show that the above paragraph de�nes a monoidal functor
A from CobG to grModZŒG�;˙G , which proves �eorem I of the Introduction. �e
�rst lemma is related to Property 6 of the Alexander function in [Les], while the
second lemma seems to be new.

Lemma 2.4. For any morphisms .M; '/ 2 CobG..g�; '�/; .gC; 'C// and .N; / 2
CobG..h�;  �/; .hC;  C// , we have

(2.2) A
�
.M; '/˝ .N; /

�
D A.M; '/˝ A.N; /:

Proof. We set g WD gCC g� , h WD hCC h� , ıg WD gC � g� , ıh WD hC � h� and

HM
˙ WD H

'˙
1 .Fg˙ ; ?/; H

N
˙ WD H

 ˙
1 .Fh˙ ; ?/; H˙ WD H

'˙˚ ˙
1 .Fg˙Ch˙ ; ?/;

HM
WD H

'
1 .M; I /; HN

WD H
 
1 .N; I /; H WD H

'˚ 
1 .M]@N; I /:

In the statement of the lemma and in the proof below, we identify

A
�
.g˙; '˙/˝ .h˙;  ˙/

�
D A.g˙ C h˙; '˙ ˚  ˙/ D ƒH˙ D ƒ

�
HM
˙ ˚H

N
˙

�
in the obvious way with

ƒHM
˙ ˝ƒH

N
˙ D A.g˙; '˙/˝ A.h˙;  ˙/:
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Since the intersection of M and N in M]@N is a 2 -disk which retracts onto
I , the Mayer–Vietoris theorem gives an isomorphism HM ˚ HN '

�! H . If
rankHM > g , then A'M D 0 by Lemma 2.3 so that A.M; '/ D 0 ; the same
lemma applied to N shows that

rankH D rankHM
C rankHN > g C h

so that A
�
.M; '/˝ .N; /

�
D 0 and (2.2) trivially holds true. �erefore, we can

assume in the sequel that rank.HM / D g and rank.HN / D h .
Let x WD xM ˝ xN 2 ƒiHM

� ˝ ƒ
jHN
� � ƒ

iCjH� : we aim at showing that
a WD A

�
.M; '/˝ .N; /

�
.x/ is equal to

a0 WD
�
A.M; '/˝ A.N; /

�
.x/ D .�1/iıhA.M; '/.xM /˝ A.N; /.xN /:

(Recall that we are using Koszul’s rule in the de�nition of the tensor product
of morphisms in the category grModZŒG�;˙G .) It is enough to prove that,
for any integers p; q � 0 such that p C q D .g C h/ � .i C j / and any
y WD yM ˝ yN 2 ƒpHM

C ˝ƒ
qHN
C � ƒ

pCqHC , the identity

(2.3) !.a ^ y/ D !.a0 ^ y/

holds true up to multiplication by an element of ˙G independent of x; y (and,
in particular, independent of i; j; p; q ). In the sequel, we �x some volume forms
!M and !N on HM

C and HN
C respectively, and we assume that the volume

form ! on HC D H
M
C ˚H

N
C is de�ned by

(2.4) !.u ^ v/ D !M .u/ � !N .v/

for any u 2 ƒ2gCHM
C and v 2 ƒ2hCHN

C . By de�nition of A , we have

(2.5) !.a^y/ D A'˚ 
M]@N

�
ƒim�.x

M / ^ƒjn�.x
N / ^ƒpmC.y

M / ^ƒqnC.y
N /
�
:

If p > g � i , then i C p > rank.HM / by our assumptions, so that
ƒim�.x

M / ^ƒpmC.y
M / 2 ƒiCpHM is torsion; we deduce that !.a ^ y/ D 0 ;

on the other hand, the degree of A.M; '/.xM /^yM 2 ƒHM
C is iC ıgCp > 2gC

so that !.a0 ^ y/ D 0 as well; thus (2.3) trivially holds true if p > g � i . If
p < g � i , then q > h � j and the same conclusion applies. �erefore, we can
assume in the sequel that p D g � i and q D h � j .

To proceed, we consider a presentation HM D h1; : : : ; gCr j �1; : : : ; �ri

and a presentation HN D h�1; : : : ; �hCs j �1; : : : ; �si . By the above-mentioned
isomorphism between HM ˚HN and H , we obtain a presentation

H D h1; : : : ; gCr ; �1; : : : ; �hCs j �1; : : : ; �r ; �1; : : : ; �si:
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Note that, with these choices of presentations, the matrix corresponding to H is
the direct sum of the matrices corresponding to HM and HN . �erefore, we get

!.a ^ y/
(2.5)
D .�1/isCp.sCj /A'M

�
ƒim�.x

M / ^ƒg�imC.y
M /
�

�A N
�
ƒjn�.x

N / ^ƒh�jnC.y
N /
�

D .�1/isCp.sCj /!M
�
A.M; '/.xM / ^ yM

�
� !N

�
A.N; /.xN / ^ yN

�
(2.4)
D .�1/isCp.sCj /!

�
A.M; '/.xM / ^ yM ^ A.N; /.xN / ^ yN

�
D .�1/isCp.sCj /Cp.jCıh/!

�
A.M; '/.xM / ^ A.N; /.xN / ^ yM ^ yN

�
D .�1/g.sCh/!.a0 ^ y/:

Lemma 2.5. For any morphisms .M; '/ 2 CobG..g�; '�/; .gC; 'C// and .N; / 2
CobG..h�;  �/; .hC;  C// such that .gC; 'C/ D .h�;  �/ , we have

A
�
.N; / ı .M; '/

�
D A.N; / ı A.M; '/:

�e next subsection is devoted to the proof of Lemma 2.5.

2.3. Proof of the functoriality of A . We use the notations of Lemma 2.5 and
we set

g WD g� C gC; h WD h� C hC; f WD g� C hC;

ıg WD gC � g�; ıh WD hC � h�; ıf WD hC � g�;

HM
WD H

'
1 .M; I /; HN

WD H
 
1 .N; I /; H WD H

 C'
1 .N ıM; I/:

Let v D .v1; : : : ; v2gC/ be a basis of H'C
1 .FgC ; ?/ : we set mvi WD mC.vi / and

nvi WD n�.vi / for all i D 1; : : : ; 2gC . We consider presentations of the following
form:

HM
D hmv1; : : : ; mv2gC ; u1; : : : ; ur j �1; : : : ; �rCıgi;

HN
D hnv1; : : : ; nv2h� ; w1; : : : ; ws j �1; : : : ; �s�ıhi:

Applying the Mayer–Vietoris theorem to N ıM , we obtain that the ZŒG� -module
H is generated by

(2.6) mv1; : : : ; mv2gC ; nv1; : : : ; nv2h� ; u1; : : : ; ur ; w1; : : : ; ws

subject to the relations �1; : : : ; �rCıg ; �1; : : : ; �s�ıh; mv1�nv1; : : : ; mv2gC�nv2gC :

In the sequel, we set H� WD H
'�
1 .Fg� ; ?/ and HC WD H

 C
1 .FhC ; ?/ . Let

x 2 ƒjH� and y 2 ƒf �jHC : we wish to compute

A C'NıM

�
ƒjm�.x/ ^ƒ

f �jnC.y/
�
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using the previous presentation of H . For this, we perform some computations
in ƒk� where k WD 4gCC rC s and � denotes the free ZŒG� -module generated
by the k symbols listed at (2.6). Set � WD �1 ^ � � � ^ �rCıg , � WD �1 ^ � � � ^ �s�ıh .
�en, we have

� ^ � ^ .mv1 � nv1/ ^ � � � ^ .mv2gC � nv2gC/ ^
Cƒjm�.x/ ^ E

ƒf �jnC.y/

D

X
P

.�1/jP j"P � � ^ � ^mvP ^ nvP ^
Cƒjm�.x/ ^ E

ƒf �jnC.y/

D

X
P

.�1/jP j.jC1/"P �

�
� ^mvP ^

Cƒjm�.x/
�

^

�
� ^ nvP ^

E
ƒf �jnC.y/

�
2 ƒk�:

Here the sums are taken over all parts P � ¹1; : : : ; 2gCº , P denotes the
complement of P , mvP is the wedge of the mvi for i 2 P , nvP is the
wedge of the nvi for i 2 P and "P is the signature of the permutation PP

(where the elements of P in increasing order are followed by the elements of P
in increasing order). A sign .�1/.s�ıh/.jCjP j/ is missing in the second sum but,
since the presentation of HN is arbitrary of de�ciency h , we can assume that
its number of relations .s � ıh/ is even.

In the sequel, we omit the “tilde” notation to distinguish elements of ƒH from
their lifts to ƒ� . Note that, in the above sums, the multivector �^mvP ^ƒjm�.x/
has degree .r C ıg/ C jP j C j which is greater than 2gC C r as soon as
jP j > g � j ; similarly, the multivector � ^ nvP ^ ƒ

f �jnC.y/ has degree
.s � ıh/ C .2gC � jP j/ C .f � j / which is greater than 2h� C s as soon as
jP j < g�j ; since 2gCCr and 2h�Cs are respectively the numbers of generators
of HM and HN in the above presentations, the summand corresponding to P

vanishes for jP j > g � j and for jP j < g � j . �erefore the above sums are
actually indexed by the subsets P � ¹1; : : : ; 2gCº having cardinality g � j , and
we get

� ^ � ^ .mv1 � nv1/ ^ � � � ^ .mv2gC � nv2gC/ ^ƒ
jm�.x/ ^ƒ

f �jnC.y/

D

X
jP jDg�j

"0P �
�
� ^mvP ^ƒ

jm�.x/
�
^
�
� ^ nvP ^ƒ

f �jnC.y/
�

where we have set "0P WD .�1/jP j.jC1/"P . �e summand is here equal to

"0P �
�
� ^mvP ^ƒ

jm�.x/
�
^
�
� ^ nvP ^ƒ

f �jnC.y/
�

D "0P �
�
A'M .mvP ^ƒ

jm�.x//�.mv ^ u/
�

^
�
A N .nvP ^ƒ

f �jnC.y//�.nv ^ w/
�

D "0P �A
'
M

�
mvP ^ƒ

jm�.x/
�
A N

�
nvP ^ƒ

f �jnC.y/
�
� .mv ^ nv ^ u ^ w/ :
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We deduce that

A C'NıM

�
ƒjm�.x/ ^ƒ

f �jnC.y/
�

D

X
jP jDg�j

"0P �A
'
M

�
mvP ^ƒ

jm�.x/
�
�A N

�
nvP ^ƒ

f �jnC.y/
�

D A N
� X
jP jDg�j

"0P �A
'
M

�
mvP ^ƒ

jm�.x/
�
� nvP ^ƒ

f �jnC.y/
�

D A N
� X
jP jDg�j

.�1/jP j"P � !
�
A.M; '/.x/ ^ vP

�
� nvP ^ƒ

f �jnC.y/
�
:

We can assume that the basis v of H'C
1 .FgC ; ?/ is compatible with the chosen

volume form ! , in the sense that !.v1 ^ � � � ^ v2gC/ D 1 . Observe that, for all
z 2 ƒjCıgH

'C
1 .FgC ; ?/ , we have the identities

z D
X

jP jDg�j

"P � !.z ^ vP / � vP D
X

jP jDg�j

.�1/jP j � "P � !.z ^ vP / � vP

where the sums range over all subsets P � ¹1; : : : ; 2gCº of cardinality g � j .
Hence

A C'NıM

�
ƒjm�.x/ ^ƒ

f �jnC.y/
�
D A N

�
ƒjCıgn�A.M; '/.x/ ^ƒf �jnC.y/

�
D !

�
A.N; /

�
A.M; '/.x/

�
^ y

�
:

It follows that !
�
A
�
.N; / ı .M; '/

�
.x/ ^ y

�
D !

�
A.N; /

�
A.M; '/.x/

�
^ y

�
,

which concludes the proof of Lemma 2.5.

3. Alexander functor and knots

In this section, we relate the functor A to the classical Alexander polynomial
of knots. We �x a �nitely generated free abelian group G ; the extension of a
group homomorphism ' W A! G to a ring homomorphism ZŒA�! ZŒG� is still
denoted by ' .

3.1. �e Alexander polynomial of a topological pair. Given a �nitely generated
ZŒG� -module N and an integer i � 0 , the i -th Alexander polynomial of N is
the greatest common divisor of all minors of order n� i in an m�n presentation
matrix of N . �is algebraic invariant is denoted by �iN 2 ZŒG�=˙G .

Let .X; Y / be a pair of topological spaces, and assume that they have
the homotopy type of �nite CW-complexes. Consider a group homomorphism
' W H1.X/! G . �e Alexander polynomial of .X; Y / with coe�cients ' is

�'.X; Y / WD �0H
'
1 .X; Y / 2 ZŒG�=˙G:

If Y is empty, we set �'.X/ WD �0H'
1 .X/ .
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3.2. �e Alexander function in genus one. Let M be a compact connected
orientable 3 -manifold with connected boundary, and �x a base point ? 2 @M . Let
also ' W H1.M/ ! G be a group homomorphism. �e next lemma generalizes
Property 1 of the Alexander function given in [Les].

Lemma 3.1. Assume that g.M/ D 1 and that ' is not trivial. �en, for any
h 2 H WD H

'
1 .M; ?/ , we have

A'M .h/ D

8<: �'.M/ � @�.h/ if rank '.H1.M// � 2;

�'.M/ �
@�.h/

t � 1
if rank '.H1.M// D 1 and t is a generator.

Here @� W H ! ZŒG� is the connecting homomorphism H
'
1 .M; ?/ ! H

'
0 .?/ in

the long exact sequence of the pair .M; ?/ , followed by the canonical isomorphism
H
'
0 .?/ ' ZŒG� .

We shall deduce Lemma 3.1 from the following.

Lemma 3.2. If ' is not trivial, then �'.M/ D �1H
'
1 .M; ?/ .

Proof. �e long exact sequence in ' -twisted homology for the pair .M; ?/ gives

0 �! H
'
1 .M/ �! H

'
1 .M; ?/ �! H

'
0 .?/ �! H

'
0 .M/ �! 0:

Since the ZŒG� -module H'
0 .?/ ' ZŒG� is torsion-free, we deduce that

(3.1) TorsH'
1 .M/ ' TorsH'

1 .M; ?/:

Besides, the above exact sequence implies that

rankH'
1 .M/ � rankH'

1 .M; ?/C 1 � rankH'
0 .M/ D 0:

We now show that rankH'
0 .M/ D 0 . By considering a cell decomposition of M

with ? as a single 0 -cell and some 1 -cells e1; : : : ; er , we see that

H
'
0 .M/ ' ZŒG�

ı˝
.g1 � 1/; : : : ; .gr � 1/

˛
ideal

where gi WD '.Œei �/ 2 G . �us we have the short exact sequence of modules

0 �! I' �! ZŒG� �! H
'
0 .M/ �! 0;

where I' is the ideal generated by the '.h/�1 for all h 2 H1.M/ . By tensoring
with the �eld of fractions Q.G/ , we obtain

0 �! Q.G/˝ZŒG� I' �! Q.G/ �! Q.G/˝ZŒG� H
'
0 .M/ �! 0:

Since ' is not trivial, Q.G/ ˝ZŒG� I' ¤ 0 so that Q.G/ ˝ZŒG� H
'
0 .M/ D 0 .

Hence

(3.2) rankH'
1 .M; ?/ D rankH'

1 .M/C 1:

We conclude thanks to (3.1) and (3.2) using the following:
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Fact. [Bla, Lemma 4.10]. Let N be a �nitely generated ZŒG� -module.
�en

�i .N / D

´
0 if i < rank.N /;
�i�rankN .TorsN/ if i � rank.N /:

Proof of Lemma 3.1. Observe that, for any oriented loop � in M based at ? ,
we have @�.Œb� �/ D '.Œ��/ � 1 . �us, the greatest common divisor of @�.H/ is

gcd @�.H/ D gcd
®
'.x/ � 1 j x 2 H1.M/

¯
2 ZŒG�=˙G:

Since ' is assumed to be non-trivial, we deduce that

gcd @�.H/ D
´
1 if rank '.H1.M// � 2;

t � 1 if rank '.H1.M// D 1 and t is a generator.

�erefore, we have to prove that

(3.3) A'M .h/ D �
'.M/ �

@�.h/

gcd @�.H/
:

For this, we consider a presentation H D h1; : : : ; rC1 j �1; : : : ; �ri and let A be
the associated r � .r C 1/ matrix. We have

8z1; : : : ; zrC1 2 ZŒG�; A'M .z11 C � � � C zrC1rC1/ D
rC1X
iD1

.�1/iCrC1 det.Ai /zi

where Ai is the matrix A with the i -th column removed. �en Lemma 3.2 gives

(3.4) �'.M/ D �1H D gcdA'M .H/:

It follows that �'.M/ D 0 if and only if A'M D 0 . In that case (3.3) trivially
holds true: thus we assume in the sequel that A'M ¤ 0 . Lemma 2.3 implies that
rankH D 1 : it follows that any two Q.G/ -linear maps Q.G/˝ZŒG� H ! Q.G/

are linearly dependent. Since A'M ¤ 0 and @� ¤ 0 , we deduce that there exist
non-zero elements D;E 2 ZŒG� such that

(3.5) 8h 2 H; A'M .h/ D
D

E
� @�.h/

or, equivalently, D@�.h/ D EA'M .h/ for all h 2 H . Hence
D gcd @�.H/ D E gcdA'M .H/ and we deduce from (3.4) that

(3.6)
D

E
D

�'.M/

gcd @�.H/
:

�e identity (3.3) is then deduced from (3.5) and (3.6).
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3.3. �e functor A on knot exteriors. Let K be an oriented knot in an oriented
homology 3 -sphere N . �e Alexander polynomial of K is classically de�ned as

�.K/ WD �'K .MK/ D �0H
'K
1 .MK/ 2 ZŒG�=˙G

where MK is the complement of an open tubular neighborhood of K in N , G is
the in�nite cyclic group spanned by t , and 'K W H1.MK/! G is the isomorphism
mapping an oriented meridian � � @MK of K to t . Note that �.K/ is a Laurent
polynomial in the variable t , which is de�ned up to multiplication by a monomial
˙tk for k 2 Z .

We make MK a morphism 1! 0 in the category Cob by choosing a boundary-
parametrization m W F.1; 0/! @MK such that �� WD m�1.�/ is contained in the
bottom surface F1 and goes through the base point ? . Set H� WD H'Km�

1 .F1; ?/ .
�e following proposition shows that the knot invariants �.K/ and A.MK ; 'K/

carry the same topological information. �is is deduced from Lemma 3.1 applied
to M WDMK .

Proposition 3.3. With the above notation and for any h 2 ƒiH� , we have

A.MK ; 'K/.h/ D

´
�.K/ � @�.h/=.t � 1/ if i D 1;
0 otherwise;

where @� W H� ! ZŒG� is the connecting homomorphism for the pair .F1; ?/ . In
particular, we have �.K/ D A.MK ; 'K/.Œb� ��/ .

4. �e Reidemeister functor R

In this section, we construct the Reidemeister functor R . We �x a �eld F and
a subgroup G of F� . In this section, the extension of a group homomorphism
' W A! G to a ring homomorphism ZŒA�! F is still denoted by ' .

4.1. �e Reidemeister function. We use the elementary theory of abelian Rei-
demeister torsions to construct an analogue of the Alexander function considered
in §2.1. Let M be a compact connected orientable 3 -manifold with connected
boundary, and let ' W H1.M/ ! G be a group homomorphism. We �x a base
point ? 2 @M and we set g WD g.M/ D 1 � �.M/ .

Lemma 4.1. We have H'
i .M; ?/ D 0 if i D 0 or i > 2 . Moreover, we have

dimH'
1 .M; ?/ D g C dimH'

2 .M; ?/:
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Proof. Since @M is non-empty, M deformation retracts to a connected 2 -
dimensional complex whose only 0 -cell is ? : the �rst assertion follows. Moreover,
we have

�g D �.M/ � 1 D �.M; ?/ D � dimH'
1 .M; ?/C dimH'

2 .M; ?/:

Denote H WD H
'
1 .M; ?/ and assume in this paragraph that dimH D g .

We choose a cell decomposition of M where ? is a 0 -cell: by Lemma 4.1,
the homology of the ' -twisted cell chain complex C '.M; ?/ is concentrated
in degree 1 . For every dimension i 2 ¹0; : : : ; 3º , let ni � 0 be the number of
relative i -cells of .M; ?/ and order them �

.i/
1 ; : : : ; �

.i/
ni in an arbitrary way. For

every cell � of .M; ?/ , we also choose an orientation of � and a lift O� of � to
the maximal abelian cover cM of M . �us, we get a basis c WD .c3; c2; c1; c0/

of the F -chain complex C '.M; ?/ where, for every i 2 ¹0; : : : ; 3º , the basis of
the F -vector space C 'i .M; ?/ is given by ci WD

�
1˝ O�

.i/
1 ; : : : ; 1˝ O�

.i/
ni

�
: �en we

consider the function Hg ! F de�ned by

(4.1) .h1; : : : ; hg/ 7�!

´
�
�
C '.M; ?/I c; .h1; : : : ; hg/

�
if h1 ^ � � � ^ hg ¤ 0,

0 otherwise.

Here � .C I c; h/ denotes the torsion of the �nite F -chain complex C with basis
c and homological basis h : see §A.1. It follows from the de�nition of the torsion
that the map (4.1) is multilinear and alternate: see Lemma A.2.

De�nition 4.2. �e Reidemeister function of M with coe�cients ' is the F -
linear map R'

M W ƒ
gH ! F de�ned by (4.1) if dimH D g and by R'

M WD 0 if
dimH ¤ g .

Because of the choice of the orders, orientations, and lifts of the cells of .M; ?/ ,
the map R'

M is only de�ned up to multiplication by an element of ˙G � F . It
remains to justify that R'

M 2 Hom.ƒgH;F/=˙G de�nes a topological invariant
of M (i.e : , it does not depend on the choice of the cell decomposition). Note that
we do not need Chapman’s result on the topological invariance of the torsion of
CW-complexes [Cha, Coh] since we are considering here manifolds of dimension
3 . Speci�cally, using Whitehead’s theory of smooth triangulations and the fact that
the Reidemeister torsion of CW-complexes is invariant under cellular subdivisions,
we obtain that the above de�nition of R'

M applied to a smooth triangulation of
.M; ?/ produces an invariant of smooth 3 -manifolds. (See [Mil2, §9] or [Tur3,
§3] for similar arguments which are valid in any dimension.) Next, we appeal
to the 3 -dimensional Hauptvermutung to conclude that R'

M is an invariant of
topological 3 -manifolds. �us, we can consider in De�nition 4.2 an arbitrary cell
decomposition of .M; ?/ provided it can be subdivided to a smooth triangulation
of M .
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4.2. De�nition of R . �e de�nition of the functor R from the Reidemeister
function R goes parallel to the de�nition of A from A (see §2.2). �us we
associate to any object .g; '/ of CobG the exterior algebra

R.g; '/ WD ƒH'
1 .Fg ; ?/

of the F -vector space H'.Fg ; ?/ D H
'
1 .Fg ; ?/ , which has dimension 2g . Next,

we associate to any morphism .M; '/ from .g�; '�/ to .gC; 'C/ an F -linear
map

R.M; '/ W ƒH'�
1 .Fg� ; ?/ �! ƒH

'C
1 .FgC ; ?/

of degree ıg WD gC � g� in the following way. We set H WD H
'
1 .M; I / where

I WD m.? � Œ�1; 1�/ , H˙ WD H
'˙
1 .Fg˙ ; ?/ and g WD gC C g� . �en, for any

integer j � 0 , the image R.M; '/.x/ 2 ƒjCıgHC of any x 2 ƒjH� is de�ned
by the following property:

8y 2 ƒg�jHC; R'
M

�
ƒjm�.x/ ^ƒ

g�jmC.y/
�
D !

�
R.M; '/.x/ ^ y

�
:

Here ! W ƒ2gCHC ! F is an arbitrary volume form which is integral in the
following sense: regarding HC as F ˝ZŒH1.FgC /�

H1.FgC ; ?IZŒH1.FgC/�/ , we
assume that ! arises from an arbitrary volume form on the free ZŒH1.FgC/� -
module H1.FgC ; ?IZŒH1.FgC/�/ . Due to the choices of this volume form and of
the ordered/oriented lifts of the cells to cM , the map R.M; '/ is only de�ned
up to multiplication by an element of ˙G � F . Besides, R.M; '/ is trivial on
ƒjH� for any j < max.0;�ıg/ and any j > min.g; 2g�/ .

�e next two lemmas show that the above paragraph de�nes a monoidal
functor R W CobG ! grVectF ;˙G , which proves �eorem II of the Introduction.

Lemma 4.3. For any morphisms .M; '/ 2 CobG..g�; '�/; .gC; 'C// and .N; / 2
CobG..h�;  �/; .hC;  C// , we have

(4.2) R
�
.M; '/˝ .N; /

�
D R.M; '/˝ R.N; /:

Proof. We set g WD gCC g� , h WD hCC h� , ıg WD gC � g� , ıh WD hC � h� and

HM
˙ WD H

'˙
1 .Fg˙ ; ?/; H

N
˙ WD H

 ˙
1 .Fh˙ ; ?/; H˙ WD H

'˙˚ ˙
1 .Fg˙Ch˙ ; ?/;

HM
WD H

'
1 .M; I /; HN

WD H
 
1 .N; I /; H WD H

'˚ 
1 .M]@N; I /:

Since M and N intersect in M]@N along a 2 -disk which retracts onto
I , the Mayer–Vietoris theorem gives an isomorphism HM ˚ HN '

�! H . If
dim.HM / > g , then R'

M D 0 by de�nition, so that R.M; '/ D 0 ; moreover,

dim.H/ D dim.HM /C dim.HN / > g C h
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so that R
�
.M; '/˝ .N; /

�
D 0 as well, and (4.2) trivially holds true in that case.

�erefore, we can assume that dim.HM / D g and dim.HN / D h .
Let xM D .xM1 ; : : : ; x

M
i / be a family of vectors in HM

� and let
xN D .xN1 ; : : : ; x

N
j / be a family of vectors in HN

� . We consider the element

x WD xM ˝ xN 2 ƒiHM
� ˝ƒ

jHN
� � ƒ

iCj
�
HM
� ˚H

N
�

�
D ƒiCjH�:

We aim at showing that r WD R
�
.M; '/˝ .N; /

�
.x/ is equal to

r 0 WD
�
R.M; '/˝ R.N; /

�
.x/ D .�1/iıh � R.M; '/.xM /˝ R.N; /.xN /:

It is enough to prove that, for any integers p; q � 0 such that
pC q D .gC h/� .i C j / and for any families yM D .yM1 ; : : : ; yMp / � HM

C and
yN D .yN1 ; : : : ; y

N
q / � H

N
C , we have

(4.3) !.r ^ y/ D !.r 0 ^ y/

where y WD yM ˝ yN 2 ƒpHM
C ˝ƒ

qHN
C � ƒ

pCqHC . In fact, we only need to
prove (4.3) up to multiplication by an element of ˙G , provided this factor is
independent of i; j; p; q; x and y .

In the sequel, we �x integral volume forms !M and !N on HM
C and HN

C

respectively, and we assume that the volume form ! on HC D HM
C ˚H

N
C is

de�ned by

(4.4) !.u ^ v/ D !M .u/ � !N .v/

for any u 2 ƒ2gCHM
C ; v 2 ƒ

2hCHN
C . (So ! is integral too.) By de�nition of R ,

we have

(4.5) !.r^y/ D R'˚ 

M]@N

�
ƒim�.x

M / ^ƒjn�.x
N / ^ƒpmC.y

M / ^ƒqnC.y
N /
�
:

If p > g � i , then we have i C p > dim.HM / by our assumptions and we
obtain ƒim�.xM /^ƒpmC.yM / D 0 2 ƒiCpHM ; we deduce that !.r ^ y/ D 0 ;
on the other hand, the degree of the multivector R.M; '/.xM / ^ yM 2 ƒHM

C is
i C ıg C p > 2gC so that !.r 0 ^ y/ D 0 as well; thus (4.3) trivially holds true
if p > g � i . If p < g � i , then q > h � j and the same conclusion applies.
�erefore, we can assume that p D g � i and q D h � j in the sequel.

Since HM ˚ HN ' H , k WD
�
m�.x

M /;mC.y
M /; n�.x

N /; nC.y
N /
�

is a
basis of H if, and only if, the families kM WD

�
m�.x

M /;mC.y
M /
�

and
kN WD

�
n�.x

N /; nC.y
N /
�
are bases of HM and HN respectively. If the former

condition is not satis�ed, then !.r^y/ is zero by (4.5) and, if the latter condition
is not satis�ed, then !.r 0 ^ y/ is trivial as well since we have
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!.r 0 ^ y/ D .�1/iıh!
�
R.M; '/.xM / ^ R.N; /.xN / ^ yM ^ yN

�
D .�1/iıhCp.jCıh/!

�
R.M; '/.xM / ^ yM ^ R.N; /.xN / ^ yN

�
(4.4)
D .�1/ghCpj!M

�
R.M; '/.xM / ^ yM

�
� !N

�
R.N; /.xN / ^ yN

�
or, equivalently,

!.r 0 ^ y/ D .�1/ghCpjR'
M

�
ƒim�.x

M / ^ƒg�imC.y
M /
�

(4.6)

�R 
N

�
ƒjn�.x

N / ^ƒh�jnC.y
N /
�
:

�erefore, we can assume in the sequel that k is a basis of H .
Consider next the twisted cell chain complexes C WD C '˚ .M]@N; I / ,

CM WD C '.M; I / and CN WD C .N; I / . �ere is a short exact sequence of
F -chain complexes

(4.7) 0 // D // CM ˚ CN // C // 0

where D is the (un-)twisted cell chain complex of the disk M \ N � M]@N

relatively to I . Clearly, D is acyclic. By the multiplicativity property of torsions
(see �eorem A.3 and Example A.4), we obtain

" � �.C I c; k/ � �.DI d/ � �
�
HI ..kM ; kN /; k/

�
D �

�
CM I cM ; kM

�
� �
�
CN I cN ; kN

�
for some appropriate choices of ordered/oriented lifts of the relative cells, which
result in bases c; d; cM ; cN of the chain complexes. Here " is a sign not depending
on i; j; p; q; x; y , and H is the long exact sequence in homology

0 �! � � � �! 0 �! HM
˚HN

�! H �! 0 �! 0 �! 0

induced by (4.7), which we view as a �nite acyclic F -chain complex concentrated
in degrees 3; 4 and with basis

�
.kM ; kN /; k

�
. By de�nition of k , kM and kN ,

we have �
�
HI ..kM ; kN /; k/

�
D 1 and, since the intersection disk M \N can be

reduced to I by elementary collapses, the scalar T WD �.DI d/ belongs to ˙G .
We conclude that

!.r ^ y/
(4.5)
D .�1/pj � � .C I c; k/

D .�1/pj "T �1 � �
�
CM I cM ; kM

�
� �
�
CN I cN ; kN

�
(4.6)
D .�1/gh"T �1 � !.r 0 ^ y/:

Lemma 4.4. For any morphisms .M; '/ 2 CobG..g�; '�/; .gC; 'C// and .N; / 2
CobG..h�;  �/; .hC;  C// such that .gC; 'C/ D .h�;  �/ , we have

(4.8) R
�
.N; / ı .M; '/

�
D R.N; / ı R.M; '/:

�e next subsection is devoted to the proof of Lemma 4.4.
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4.3. Proof of the functoriality of R . We use the notations of Lemma 4.4 and
we set

g WD g� C gC; h WD h� C hC; f WD g� C hC;

ıg WD gC � g�; ıh WD hC � h�; ıf WD hC � g�;

HM
WD H

'
1 .M; I /; HN

WD H
 
1 .N; I /; H WD H

 C'
1 .N ıM; I/;

KM WD H
'
2 .M; I /; KN WD H

 
2 .N; I /; K WD H

 C'
2 .N ıM; I/;

H� WD H
'�
1 .Fg� ; ?/; V WD H

'C
1 .FgC ; ?/; HC WD H

 C
1 .FhC ; ?/:

Since N ıM is obtained from M and N by identifying @CM to @�N , there
is a short exact sequence of chain complexes
(4.9)

0 �! C 'C.FgC ; ?/„ ƒ‚ …
DWD

�! C .N; I /„ ƒ‚ …
CN WD

˚C '.M; I /„ ƒ‚ …
CM WD

�! C C'.N ıM; I/„ ƒ‚ …
C WD

�! 0:

Let H be the corresponding long exact sequence in homology:

0! � � � ! 0! KN ˚KM! K ! V
.�n�;mC/
�! HN

˚HM
! H ! 0! 0! 0:

If KM ¤ 0 , then dim.HM / > g by Lemma 4.1 so that R'
M D 0 and

R.M; '/ D 0 ; besides, the long exact sequence H implies that K ¤ 0 so
that R..N; / ı .M; '// D 0 ; therefore, (4.8) trivially holds true in that case. If
KN ¤ 0 , the same conclusion applies. So, we can assume that KM D 0 and
KN D 0 or, equivalently, dimHM D g and dimHN D h .

Let j 2 ¹0; : : : ; f º , and let x D .x1; : : : ; xj / and y D .y1; : : : ; yf �j / be
families of vectors in H� and HC respectively. Let v D .v1; : : : ; v2gC/ be an
arbitrary basis of V and let !v W ƒ2gCV ! F be the volume form such that
!v.v1 ^ � � � ^ v2gC/ D 1 ; there exists an ˛v 2 F n ¹0º such that ! D ˛v � !

v

is the integral volume form chosen in the de�nition of the functor R . We have
R.M; '/.x/ 2 ƒjCıgV , hence

R.M; '/.x/ D
X

jP jDg�j

"P � !
v
�
R.M; '/.x/ ^ vP

�
� vP

where the sum is taken over all subsets P � ¹1; : : : ; 2gCº of cardinality g � j ,
P denotes the complement of P , vP (respectively vP ) is the wedge of the vi ’s
for i 2 P (respectively i 2 P ), and "P is the signature of the permutation PP

(where the elements of P in increasing order are followed by the elements of
P in increasing order). We deduce that
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!
�
R.N; /

�
R.M; '/.x/

�
^ y

�(4.10)

D R 
N

�
ƒjCıgn�R.M; '/.x/ ^ƒf �jnC.y/

�
D R 

N

� X
jP jDg�j

"P � !
v
�
R.M; '/.x/ ^ vP

�
�ƒjCıgn�.vP / ^ƒ

f �jnC.y/
�

D ˛�1v R 
N

� X
jP jDg�j

"0P �R
'
M

�
ƒg�jmC.vP / ^ƒ

jm�.x/
�

�ƒjCıgn�.vP / ^ƒ
f �jnC.y/

�
D ˛�1v

X
jP jDg�j

"0P �R
'
M

�
ƒg�jmC.vP / ^ƒ

jm�.x/
�

�R 
N

�
ƒjCıgn�.vP / ^ƒ

f �jnC.y/
�

where "0P WD "P � .�1/
j.g�j / . If K ¤ 0 , then R

�
.N; / ı .M; '/

�
D 0 ; besides,

the long exact sequence in homology H shows that there exists a w 2 V n ¹0º

such that n�.w/ D 0 2 HN and mC.w/ D 0 2 H
M ; since the basis v of V is

arbitrary in (4.10), we can assume that v1 D w . In the last sum indexed by P ,
the vector w appears either in vP or in vP , so that the corresponding summand
is always zero; it follows that R.N; /

�
R.M; '/.x/

�
^ y D 0 for any x 2 ƒjH�

and y 2 ƒf �jHC ; therefore, (4.8) trivially holds true in that case. �us, we can
assume in the sequel that K D 0 or, equivalently, dimH D f .

It now remains to prove using the above assumptions that, for any families of
vectors x D .x1; : : : ; xj / in H� and y D .y1; : : : ; yf �j / in HC ,

(4.11) !
�
R
�
.N; / ı .M; '/

�
.x/ ^ y

�
D ˛�1v

X
jP jDg�j

"0P �R
'
M

�
ƒg�jmC.vP / ^ƒ

jm�.x/
�

�R 
N

�
ƒjCıgn�.vP / ^ƒ

f �jnC.y/
�

where, as in the previous paragraph, v is an arbitrary basis of V . Assume �rstly
that k WD .m�.x/; nC.y// is not a basis of H . �en

R
�
.N; / ı .M; '/

�
.x/ ^ y D R C'

NıM

�
ƒjm�.x/ ^ƒ

f �jnC.y/
�

is zero. Besides, the long exact sequence H implies that there exists w 2 V such
that

mC.w/ D a1m�.x1/C � � � C ajm�.xj / 2 H
M ;

�n�.w/ D b1nC.y1/C � � � C bf �jnC.yf �j / 2 H
N

where a1; : : : ; aj ; b1; : : : ; bf �j 2 F are not all zeros. If w D 0 , then we have
ƒjm�.x/ D 0 2 ƒ

jHM or ƒf �jnC.y/ D 0 2 ƒf �jHN (depending on whether
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we can �nd a non-zero scalar among the ai ’s or among the bi ’s); in both cases,
the second term of (4.11) is trivial. If w ¤ 0 , then we take a basis v of V such
that v1 D w and we easily see that the second term of (4.11) is trivial in that
case too. �erefore, we can assume in the sequel that k D .m�.x/; nC.y// is a
basis of H .

We now �x a basis v D .v1; : : : ; v2gC/ of V such that !.v/ D 1 and we
prove (4.11) with ˛v D 1 . Let also kM and kN be arbitrary bases of HM and
HN , respectively. By the multiplicativity property of torsions (see �eorem A.3
and Example A.4), we deduce from (4.9) that

�.DI d; v/ � �.C I c; k/ � �
�
HI
�
v; .kN ; kM /; k

��
(4.12)

D ˙�.CN I cN ; kN / � �.CM I cM ; kM / 2 F

for some appropriate choices of ordered/oriented lifts of the relative cells, which
result in bases d; c; cM ; cN of the chain complexes. �e sign appearing in
(4.12) depends only on the dimensions of the complexes C;D;CM ; CN and
the dimensions of their homology groups. �e sequence H is viewed here as a
�nite acyclic F -chain complex concentrated in degrees 3; 4; 5 ; its torsion is

�
�
HI
�
v; .kN ; kM /; k

��
D

"�
.�n�; mC/.v/; lift of k to HN ˚HM

�
.kN ; kM /

#�1
D

"
.kN ; kM /�

.�n�; mC/.v/; lift of k to HN ˚HM
�# ;

where the symbol
�
a
b

�
stands for the determinant of the square matrix expressing

a family of vectors a in the basis b of HN ˚HM . We have �.DI d; v/ 2 ˙G
since .FgC ; ?/ has the simple homotopy type of a wedge of circles relative to
its vertex. We deduce from (4.12) that

R C'
NıM

�
ƒjm�.x/ ^ƒ

f �jnC.y/
�
�

"
.kN ; kM /�

.�n�; mC/.v/; lift of k to HN ˚HM
�#

D ˇv �R'
M .k

M / �R 
N .k

N /

where ˇv 2 ˙G does not depend on j; x; y; kM ; kN (but depends on v ). �e
previous identity makes sense, and holds true, when kM is an arbitrary family of
g vectors in HM and kN is an arbitrary family of h vectors in HN . (Indeed,
if kM is not a basis of HM or kN is not a basis of HN , then both sides of
this identity are zero.) In particular, we obtain for any subset P � ¹1; : : : ; 2gCº
of cardinality g � j
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R C'
NıM

�
ƒjm�.x/ ^ƒ

f �jnC.y/
�
�

" �
n�.vP /; nC.y/;mC.vP /;m�.x/

��
.�n�; mC/.v/; lift of k to HN ˚HM

�#
D ˇv �R'

M

�
ƒg�jmC.vP / ^ƒ

jm�.x/
�
�R 

N

�
ƒıgCjn�.vP / ^ƒ

f �jnC.y/
�
:

By multilinearity of the determinant and using the facts that dimHM D g and
dimHN D h , we have

1 D

"�
� n�.v1/CmC.v1/; : : : ;�n�.v2gC/CmC.v2gC/;m�.x/; nC.y/

��
.�n�; mC/.v/; lift of k to HN ˚HM

� #

D

X
jP jDg�j

"P .�1/
jP j

" �
mC.vP /; n�.vP /;m�.x/; nC.y/

��
.�n�; mC/.v/; lift of k to HN ˚HM

�#

D .�1/g.fC1/
X

jP jDg�j

"0P

" �
n�.vP /; nC.y/;mC.vP /;m�.x/

��
.�n�; mC/.v/; lift of k to HN ˚HM

�# :
�us we obtain identity (4.11), up to multiplication by an element of ˙G not
depending on j; x; y . �is concludes the proof of Lemma 4.4.

5. Back to the Alexander functor

We show in this section that the functor A is an instance of the functor R .

5.1. A formula for the Reidemeister function. Let M be a compact connected
orientable 3 -manifold with connected boundary, and �x a base point ? 2 @M . Let
also ' W H1.M/! G be a group homomorphism with values in a multiplicative
subgroup G of a �eld F . We use the same notation as in §4.1, where we have
introduced R'

M .
When it does not vanish, the Reidemeister function R'

M is de�ned as an
alternated product of 4 determinants since the F -chain complex C '.M; ?/ has
length 3 . We now give a recipe to compute it by means of a single determinant
using Fox’s free derivatives. We consider for this purpose a spine XC of M ,
i.e : a 2 -dimensional subcomplex XC of a smooth triangulation of M such that
M retracts to XC by elementary collapses; we also assume that ? is a vertex of
XC . (It is well known that any 3 -manifold with boundary has a spine: see for
instance [Mat, Remark 1.1.5].) Next, we choose a maximal tree in the 1 -skeleton
of XC which contains ? , and let X be the 2 -dimensional CW-complex obtained
from XC by collapsing that tree to the vertex ? . Hence X has a single 0-cell ? .
We denote by 1; : : : ; gCr the 1 -cells of X and we denote by R1; : : : ; Rr the
2 -cells of X ; besides, each of these cells is given an arbitrary orientation. �e
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fundamental group �1.�/ D �1.�; ?/ of the 1 -skeleton � WD 1[� � �[gCr of X
is freely generated by the oriented loops 1; : : : ; gCr , hence the free derivatives
@
@1
; : : : ; @

@gCr
W ZŒ�1.�/�! ZŒ�1.�/� are de�ned. Note that the attaching maps

of the oriented 2 -cells R1; : : : ; Rr de�ne some elements �1; : : : ; �r 2 �1.�/ .

Lemma 5.1. Let �1; : : : ; �g be oriented loops in � based at ? and, for all i 2
¹1; : : : ; gº , let ki 2 H ' H'

1 .X; ?/ be the homology class of 1˝ b� i 2 C '1 .X; ?/ .
�en

(5.1) R'
M .k1 ^ � � � ^ kg/ D det ' i�

0BBBBBBBBBBB@

@�1
@1

� � � � � � � � �
@�1
@gCr

:::
:::

@�r
@1

� � � � � � � � �
@�r
@gCr

@�1
@1

� � � � � � � � �
@�1
@gCr

:::
:::

@�g
@1

� � � � � � � � �
@�g
@gCr

1CCCCCCCCCCCA
:

Here the composition of ' with the isomorphism H1.M/ ' H1.X/ induced
by the homotopy equivalence M ' X is still denoted by ' , and the ring
homomorphism i� W ZŒ�1.�/� ! ZŒ�1.M/� is induced by the map i W � ! M

which is the inclusion � � X composed with the homotopy equivalence X 'M .

Proof. �e lemma is proved in a way similar to Milnor’s result relating the
Reidemeister torsion of a knot exterior to the Alexander polynomial of the knot
[Mil1, �eorem 4]. (See also [Tur5, �eorem II.1.2].) By assumption, the pair
.M; ?/ has the simple homotopy type of .XC; ?/ and, using the multiplicativity
property of torsions (�eorem A.3), it can be checked that the Reidemeister
torsions of .X; ?/ and .XC; ?/ are equal for any choice of homological bases.
�erefore we can safely replace M by X in our computation of R'

M . �us we
now consider the ' -twisted cell chain complex

C WD C '.X; ?/ D F ˝ZŒH1.X/� C
� bX ;p�1X .?/

�
:

�e lifts b 1; : : : ; b gCr of 1; : : : ; gCr de�ne a basis c1 WD .1 ˝ b 1; : : : ;
1 ˝ b gCr / of C in degree 1 . Similarly, the lifts bR 1; : : : ; bR r of R1; : : : ; Rr
that contain b? de�ne a basis c2 WD .1˝ bR 1; : : : ; 1˝ bR r / of C in degree 2 .

Let A0 be the square matrix with entries in F de�ned by the right-hand side
of (5.1), and let A be the r � .g C r/ matrix de�ned by the �rst r rows of
A0 . Observe that A is the matrix of @2 W C2 ! C1 in the bases c2 and c1 .
Since .X; ?/ has no relative cells in degree 0 , H ' H1.C / is the cokernel of
the linear map F r ! FgCr de�ned by the multiplication v 7! vA . Assume that
dimH > g : then the rank of A is less than r , so that all the minors of A of
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order r vanish; by expanding the determinant of A0 successively along its last g
rows, we obtain that detA0 D 0 and the lemma trivially holds true in that case.
�erefore we can assume that dimH D g .

Observe, next, that the last g rows of A0 give the vectors k1; : : : ; kg 2 H
' H

'
1 .X; ?/ as linear combinations of the generators Œ1˝ b 1�; : : : ; Œ1˝ b gCr �

of H'
1 .X; ?/ ' H . If k WD .k1; : : : ; kg/ is not a basis of H , then k1; : : : ; kg are

linearly dependent: since the �rst r rows of A0 give a system of relations for the
previous set of generators, we deduce that detA0 D 0 and the lemma is trivially
true in that case too. �us we can assume that k is a basis of H . Let c be the
basis of C given by c1 in degree 1 and c2 in degree 2 . By Lemma 4.1, the
homology of C is concentrated in degree 1 and, for all i 2 ¹1; : : : ; gº , 1˝ b� i is
a 1 -cycle of C representing ki 2 H ' H1.C / . So, by de�nition of the function
R'
M , we get

R'
M .k1 ^ � � � ^ kg/ D � .C I c; k/(5.2)

D det
�
matrix of

�
@2.c2/; 1˝b�� in the basis c1

�
:

�e conclusion follows from the previous two observations.

Remark 5.2. It follows from Lemma 5.1 that the Reidemeister function has the
following integrality property: for all h1; : : : ; hg 2 H1.M; ?IZŒH1.M/�/ , we have

R'
M

�
'�.h1/ ^ � � � ^ '�.hg/

�
2 '

�
ZŒH1.M/�

�
where '� W H1.M; ?IZŒH1.M/�/! H

'
1 .M; ?/ is the canonical map.

5.2. Specialization of R to A . We now assume that G is a �nitely generated
free abelian group, and we denote by Q.G/ the �eld of fractions of ZŒG� . Let
M be a compact connected orientable 3 -manifold with connected boundary, and
�x a base point ? 2 @M . Let ' W H1.M/! G be a group homomorphism: we
denote by 'Z W ZŒH1.M/�! ZŒG� and by ' W ZŒH1.M/�! Q.G/ the extensions
of ' to ring homomorphisms. Set

g WD g.M/; HZ WD H
'Z
1 .M; ?/; H WD H

'
1 .M; ?/:

Lemma 5.3. We have the following commutative diagram:

ƒgHZ

ƒg�

��

A'
M // ZŒG�� _

��
ƒgH

R'
M

// Q.G/;

where � W HZ ! H ' Q.G/˝ZŒG� HZ denotes the canonical map.



A functorial extension of the abelian Reidemeister torsions of three-manifolds 187

Proof. We proceed as in §5.1: we consider a spine XC of M , and we obtain a
2 -dimensional CW-complex X with a single vertex ? by collapsing a maximal
tree in the 1 -skeleton of XC . �e cells of X are 1; : : : ; gCr in dimension 1 ,
and R1; : : : ; Rr in dimension 2 . Orient 1; : : : ; gCr and R1; : : : ; Rr arbitrarily,
and set

CZ WD C
'Z.X; ?/; C WD C '.X; ?/ D Q.G/˝ZŒG� CZ:

Since M deformation retracts to X , HZ is isomorphic to H
'Z
1 .X; ?/ so that

HZ is the cokernel of @2 W CZ;2 ! CZ;1 . Let b 1; : : : ; b gCr be the preferred
lifts of 1; : : : ; gCr to bX , and let bR 1; : : : ; bR r be the lifts of R1; : : : ; Rr that
contain b? : we denote by A the matrix of @2 in the bases

�
1˝ bR 1; : : : ; 1˝ bR r

�
and

�
1˝ b 1; : : : ; 1˝ b gCr� . �is presentation matrix of the ZŒG� -module HZ

can be used to compute A'M . Speci�cally, let k1; : : : ; kg 2 HZ and assume that
each ki has the form Œ1˝ b� i � where �i is an oriented loop in the 1 -skeleton
of X based at ? : then A'M .k1 ^ � � � ^ kg/ is the determinant of the matrix
obtained from A by adding g rows that express the vectors 1˝ b� 1; : : : ; 1˝ b� g
in the basis .1 ˝ b 1; : : : ; 1 ˝ b gCr / of CZ;1 . We deduce from formula (5.2)
that A'M .k1 ^ � � � ^ kg/ D R'

M

�
�.k1/ ^ � � � ^ �.kg/

�
:

�e next theorem, which compares the Alexander functor to the Reidemeister
functor, is a direct application of Lemma 5.3.

�eorem 5.4. �e following diagram is commutative:

grModZŒG�;˙G

Q.G/˝ZŒG�.�/

||

CobG

A 44

R **
grVectQ.G/;˙G

6. Reidemeister functor and knots

We now compute the functor R on knot exteriors and we consider, next,
the situation of closed 3 -manifolds. In this section, we �x a �eld F and
a multiplicative subgroup G of F . �e extension of a group homomorphism
' W H ! G to a ring homomorphism ZŒH �! F is still denoted by ' .

6.1. �e abelian Reidemeister torsion of a CW-pair. Let .X; Y / be a pair of
�nite CW-complexes, and let ' W ZŒH1.X/�! F be a ring homomorphism. We
consider the ' -twisted cell chain complex C '.X; Y / of the pair .X; Y / , which
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is a �nite F -chain complex of length p WD dimX . For every i 2 ¹0; : : : ; pº , let
ni � 0 be the number of relative i -cells of .X; Y / and order them �

.i/
1 ; : : : ; �

.i/
ni

in an arbitrary way. For every cell � of .X; Y / , we also choose an orientation
of � and a lift O� of � to the maximal abelian cover bX of X . �us, we obtain
a basis c WD .cp; : : : ; c0/ of the F -chain complex C '.X; Y / where, for every
i 2 ¹0; : : : ; pº , the basis of C 'i .X; Y / is ci WD

�
1˝ O�

.i/
1 ; : : : ; 1˝ O�

.i/
ni

�
: Recall that

the Reidemeister torsion of the pair .X; Y / with coe�cients ' is the scalar

�'.X; Y / WD

´
0 if H'.X; Y / ¤ 0;

�
�
C '.X; Y /I c

�
if H'.X; Y / D 0;

where �.C I c/ denotes the torsion of a �nite acyclic F -chain complex C based by
c : see §A.1. �e reader is referred to the monograph [Tur4] for an introduction to
this combinatorial invariant. Without further structure on the CW-pair .X; Y / , the
scalar �'.X; Y / is only de�ned up to multiplication by an element of ˙'.H1.X// .
If Y D ¿ , we denote it by �'.X/ .

6.2. �e Reidemeister function in genus one. We now consider a compact
connected orientable 3 -manifold M with connected boundary and a group
homomorphism ' W H1.M/ ! G . Let ? 2 @M and set H WD H

'
1 .M; ?/ . �e

next lemma relates the Reidemeister function R'
M to the Reidemeister torsion

�'.M/ in genus one.

Lemma 6.1. Assume that g.M/ D 1 and that ' is not trivial. �en, for any
k 2 H ,

(6.1) R'
M .k/ D �

'.M/ � @�.k/:

Here @� W H ! F is the connecting homomorphism H
'
1 .M; ?/! H

'
0 .?/ in the

long exact sequence of the pair .M; ?/ , followed by the canonical isomorphism
H
'
0 .?/ ' F .

Proof. Consider a cell decomposition of M where ? is a 0 -cell. �e short exact
sequence of F -chain complexes

(6.2) 0 �! C '.?/„ƒ‚…
C 0WD

�! C '.M/„ ƒ‚ …
C WD

�! C '.M; ?/„ ƒ‚ …
C 00WD

�! 0

induces the following long exact sequence in homology:

(6.3) 0 �! 0 �! 0 �! 0 �! H
'
2 .M/ �! H

'
2 .M; ?/!

! 0 �! H
'
1 .M/ �! H

'
1 .M; ?/

@�
�! H

'
0 .?/ �! H

'
0 .M/ �! 0 :



A functorial extension of the abelian Reidemeister torsions of three-manifolds 189

We regard (6.3) as an acyclic F -chain complex H of length 12 : let .h0; h; h00/ be
the basis of H obtained by choosing bases h0; h; h00 of H.C 0/;H.C /;H.C 00/ in
each degree. We choose an orientation and a lift to cM for every cell of M and,
for all i 2 ¹0; : : : ; 3º , we order the i -cells in an arbitrary way. �us, we obtain
bases c0; c; c00 of the complexes C 0; C; C 00 , respectively, which are compatible in
the sense of §A.1. By the multiplicativity property of torsions (see �eorem A.3),
we obtain

(6.4) �.C I c; h/ D " � �.C 0I c0; h0/ � �.C 00I c00; h00/ � �
�
HI .h0; h; h00/

�
where " is a sign independent of h; h0; h00 . If H'

2 .M/ ¤ 0 , then �'.M/ D 0

by de�nition, but (6.3) gives H
'
2 .M; ?/ ¤ 0 and Lemma 4.1 implies that

dimH'
1 .M; ?/ > g.M/ : hence R'

M D 0 by de�nition and (6.1) trivially holds
true. �erefore we can assume that H'

2 .M/ D 0 .
Besides H'

0 .M/ D 0 since ' is non-trivial: the fact that �.M/ D 1 � g.M/

is zero implies that H'
1 .M/ D 0 as well. �us the chain complex H de�ned

by (6.3) is concentrated in degrees 2 and 3 . Let k 2 H n ¹0º which de�nes a
basis h00 of H.C 00/ , and let h0 be the basis of H.C 0/ de�ned by the canonical
generator of H'

0 .?/ . �en we obtain

�
�
HI .h0; h; h00/

�
D
�
@�.h

00
1/=h

0
0

�.�1/2C1
D @�.k/

�1:

Besides we have �.C 0I c0; h0/ D 1 by our choices of c0 and h0 . We conclude
using (6.4) that �'.M/ D " �R'

M .k/ � @�.k/
�1:

Remark 6.2. If g.M/ D 0 and ' is not trivial, then R'
M W F D ƒ

0H ! F is the
zero map. Indeed, pick an oriented loop ˛ in M based at ? such that '.Œ˛�/ ¤ 1 ;
then @� W H ! F does not vanish on Œ Ǫ � and it follows that dimH > g.M/ .

6.3. �e functor R on knot exteriors. Let K be an oriented knot in a closed
connected oriented 3 -manifold N , and denote by MK the complement of an
open tubular neighborhood of K in N . We assume given a group homomorphism
'K W MK ! G and an oriented closed curve � � @MK such that 'K.Œ��/ ¤ 1 .
�us the Reidemeister torsion �'K .MK/ 2 F=˙G is de�ned.

We make MK a morphism 1! 0 in the category Cob by choosing a boundary-
parametrization m W F.1; 0/! @MK , such that �� WD m�1.�/ is contained in the
bottom surface F1 and goes through the base point ? . Set H� WD H'Km�

1 .F1; ?/ .
�e following proposition, which is easily deduced from Lemma 6.1, shows that
the topological invariants �'K .MK/ and R.MK ; 'K/ are equivalent.

Proposition 6.3. With the above notation and for any h 2 ƒiH� , we have

R.MK ; 'K/.h/ D

´
�'K .MK/ � @�.h/ if i D 1;
0 otherwise;
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where @� W H� ! F is the connecting homomorphism for the pair .F1; ?/ . In
particular, we have �'K .MK/ D R.MK ; 'K/

�� b� ���=.'K.Œ��/ � 1/ .
Example 6.4. If G is the in�nite cyclic group generated by t , N is a homology
3 -sphere and 'K maps the oriented meridian � of K to t , then we know from
[Mil1] that �'K .MK/ D �.K/=.t � 1/ . �us we recover Proposition 3.3 by taking
� WD � .

6.4. �e situation of closed 3 -manifolds . Let N be a closed connected ori-
entable 3 -manifold, and let ' W H1.N / ! G be a non-trivial group homomor-
phism. We wish to compute the Reidemeister torsion �'.N / with coe�cients
' W ZŒH1.N /�! F from the Reidemeister functor R . For this, we have to trans-
form N into a cobordism. Note that removing an open 3 -ball B from N and
regarding N n B as an element of Cob.0; 0/ is not fruitful, since the functor R
maps this morphism to zero (see Remark 6.2).

We proceed in the following (rather indirect) way. Choose a knot K � N such
that '.ŒK�/ ¤ 1 . Consider the complement MK of an open tubular neighborhood
of K in N , and �x a parallel � � @MK of K . Let 'K W H1.MK/ ! G

be the homomorphism obtained from ' by restriction to MK � N . Make
MK a morphism 1 ! 0 in Cob by choosing a boundary-parametrization
m W F.1; 0/! @MK such that �� WD m�1.�/ is contained in the bottom surface
F1 and ? 2 �� .

Proposition 6.5. With the above notation, we have

�'.N / D
R.MK ; 'K/.Œb� ��/
.'.ŒK�/ � 1/2

2 F=˙G:

Proof. �ere is a formula describing (under certain circumstances) how the abelian
Reidemeister torsion changes when a solid torus is glued along a 3 -manifold with
toroidal boundary: see [Tur5, §VII.1]. �is formula applies to our situation and
gives

�'K .MK/ D .'.ŒK�/ � 1/ � �
'.N /:

We conclude by applying Proposition 6.3 to � WD � .

As an application, we relate the functor A to the Alexander polynomial of
closed 3 -manifolds. �us, we now assume that G is a �nitely generated free
abelian group and we take F WD Q.G/ . We consider the Alexander polynomial
of N with coe�cients ' , namely

�'.N / D �0H
'Z
1 .N / 2 ZŒG�=˙G

where 'Z W ZŒH1.N /�! ZŒG� is the extension of ' W H1.N /! G .
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Proposition 6.6. With the above notation, we have

�'.N / D

8̂̂<̂
:̂

A.MK ; 'K/.Œb���/
.'.ŒK�/ � 1/2

if rank '.H1.N // � 2;
A.MK ; 'K/.Œb���/

.tn�1 C � � � C t C 1/2
if rank '.H1.N // D 1:

In the second case, t 2 '.H1.N // is a generator and n 2 N is such that
'.ŒK�/ D tn .

Proof. Proposition 6.5 and �eorem 5.4 give

(6.5) �'.N / D
R.MK ; 'K/.Œb� ��/
.'.ŒK�/ � 1/2

D
A.MK ; 'K/.Œb� ��/
.'.ŒK�/ � 1/2

2 Q.G/=˙G:

Besides, according to [Tur1], we have

(6.6) �'.N / D

´
�'.N / if rank '.H1.N // � 2;
�'.N /=.t � 1/2 if rank '.H1.N // D 1:

We conclude by combining (6.5) with (6.6).

7. �e monoid of homology cobordisms

In this section, we �x an integer k � 1 , an abelian group G and a group
homomorphism  W H1.Fk/ ! G . We shall compute the functors A and R on
the monoid of homology cobordisms over the surface Fk .

7.1. Homology cobordisms. A homology cobordism over Fk is a morphism
M W k ! k in the category Cob such that m˙ W H1.Fk/ ! H1.M/ is an
isomorphism. �e set of equivalence classes of homology cobordisms de�nes a
submonoid

C.Fk/ � Cob.k; k/:

We restrict ourselves to homology cobordisms M such that the composition

H1.Fk/
m�

'
// H1.M/

m�1
C

'
// H1.Fk/

 // G

coincides with  . �us we obtain a submonoid

C .Fk/ � C.Fk/;

which we also view as a submonoid of CobG
�
.k;  /; .k;  /

�
by equipping every

cobordism M of the above form with the homomorphism
 WD  ım�1� D  ım

�1
C W H1.M/! G .
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Example 7.1. A homology cylinder is a homology cobordism M over Fk such
that m� D mC W H1.Fk/! H1.M/ . Homology cylinders constitute a submonoid
IC.Fk/ of C.Fk/ such that IC.Fk/ � C .Fk/ , whatever  is.

7.2. �e Magnus representation. Assume now that G is a multiplicative
subgroup of a �eld F . �e extension of  W H1.Fk/! G to a ring homomorphism
ZŒH1.Fk/�! F is still denoted by  . We set

H 
WD H

 
1 .Fk; ?/

and, when we are given an M 2 C .Fk/ , we denote H WD H
 
1 .M; I / . �e

fact that the map m˙ W H1.Fk/! H1.M/ is an isomorphism of abelian groups
implies that m˙ W H ! H is an isomorphism of F -vector spaces. (See [KLW,
Proposition 2.1] for a similar statement.) Consequently, we are allowed to set
r .M/ WD m�1C ım� W H

 ! H : �is results in a monoid homomorphism

r W C .Fk/ �! Aut
�
H 

�
;

which is called the Magnus representation. See [Sak3] for a survey of this
invariant.

7.3. �e restriction of R to homology cobordisms. �e Reidemeister functor
restricts to a monoid homomorphism

R W C .Fk/ �! grVectF ;˙G
�
ƒH ; ƒH 

�
:

We now compute this projective representation of the monoid C .Fk/ .

Proposition 7.2. For any M 2 C .Fk/ with top surface @CM , we have

R.M; / D � .M; @CM/ �ƒ
�
r .M/

�
W ƒH 

�! ƒH 

where � .M; @CM/ is the Reidemeister torsion of .M; @CM/ as de�ned in §6.1.

Proof. We shall prove a slightly more general statement: let  ˙ W H1.Fk/ ! G

be any group homomorphisms and assume that M 2 C.Fk/ is a cobordism such
that  � ım�1� D  C ım�1C W H1.M/! G . �en we claim that

(7.1) R.M; / D � .M; @CM/ �ƒ.m�1C ım�/ W ƒH� �! ƒHC

where H˙ WD H
 ˙
1 .Fk; ?/ and  WD  ˙ ım�1˙ . (�e proposition is the particular

case where  C D  � W H1.Fk/! G .)
To prove this claim, we set g WD g.M/ D 2k , H WD H

 
1 .M; I / and let

h D .h1; : : : ; hg/ be a basis of H . In order to compute R 
M .h1 ^ � � � ^ hg/ , we

consider the short exact sequence of F -chain complexes:
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(7.2) 0 �! C C.Fk ; ?/„ ƒ‚ …
C 0WD

mC
�! C .M; ?/„ ƒ‚ …

C WD

�! C .M; @CM/„ ƒ‚ …
C 00WD

�! 0 :

�e complex C 00 is acyclic while C 0 and C have their homology concentrated
in degree 1 . �erefore, the long exact sequence in homology H induced
by (7.2) is concentrated in degrees 4 and 5 where it reduces to the map
mC W HC D H1.C

0/! H1.C / D H .
�ere exists a wedge of circles S1_� � �_Sg based at ? onto which the surface

Fk retracts by elementary collapses. Let h0 D .h01; : : : ; h
0
g/ be the basis of HC

obtained by lifting each of the loops S1; : : : ; Sg to the maximal abelian cover of
Fk . �en we have

�.C 0I c0; h0/ 2 ˙G � F

for any choice of ordered/oriented lifts of the relative cells of .Fk; ?/ inducing a
basis c0 of C 0 . Besides, by the multiplicativity property of torsions (see �eorem
A.3), we have

�.C I c; h/ D " � �.C 0I c0; h0/ � �.C 00I c00/ � �
�
HI .h0; h/

�
2 F n ¹0º

for some appropriate choices of ordered/oriented lifts of the relative cells, which
result in bases c0; c; c00 of the chain complexes. Here " is a sign not depending
on h and H is regarded as an acyclic F -chain complex based by .h0; h/ . We
deduce that

R 
M .h1 ^ � � � ^ hg/ D �.C I c; h/ D �

 .M; @CM/ � ŒmC.h
0/=h�.�1/

4C1

D � .M; @CM/ � Œh=mC.h
0/�:

(Here the identities are up to multiplication by an element of ˙G not depending
on h .)

To proceed, we consider any integer j � 0 and any x 2 ƒjH� . Let
! W ƒgHC ! F be the volume form de�ned by !.h01 ^ � � � ^ h

0
g/ D 1 . (Note that

! is integral.) �en, for any y 2 ƒg�jHC , we have

!
�
R.M; /.x/ ^ y

�
D R 

M

�
ƒjm�.x/ ^ƒ

g�jmC.y/
�

D � .M; @CM/ �
��
ƒjm�.x/ ^ƒ

g�jmC.y/
�ı
mC.h

0/
�

D � .M; @CM/ �
��
ƒj .m�1C m�/.x/ ^ y

�ı
h0
�

D � .M; @CM/ � !
�
ƒj .m�1C m�/.x/ ^ y

�
:

We conclude that R.M; /.x/ D � .M; @CM/ �ƒj .m�1C m�/.x/ up to multiplica-
tion by an element of ˙G not depending on x , which proves (7.1).
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7.4. �e restriction of A to homology cobordisms. Assume now that the abelian
group G is �nitely generated and free, and assume that F WD Q.G/ . We denote
by  Z W ZŒH1.Fk/� ! ZŒG� the extension of  W H1.Fk/ ! G to a ring
homomorphism and we set H 

Z WD H
 Z
1 .Fk; ?/ . �e Alexander functor restricts

to a monoid homomorphism

A W C .Fk/ �! grModZŒG�;˙G

�
ƒH

 
Z ; ƒH

 
Z

�
:

�is projective representation of the monoid C .Fk/ is computed as follows.

Proposition 7.3. For any M 2 C .Fk/ , we have the commutative diagram

ƒH
 
Z

A.M; / //
� _

��

ƒH
 
Z� _

��
ƒH 

� .M;@CM/�ƒr .M/

// ƒH 

where � .M; @CM/ is the Alexander polynomial of the pair .M;@CM/ as de�ned
in §3.1.

Proof. �e proposition can be proved directly from the de�nition of A , using an
appropriate presentation of the ZŒG� -module H

 Z
1 .M; I / . It also follows from

�eorem 5.4, Proposition 7.2 and the fact that

� .M; @CM/ D � .M; @CM/ 2 ZŒG�=˙G:

�e latter identity is shown using the fact that M collapses, relatively to @CM ,
onto a cell complex having only 1 -cells and 2 -cells in equal number. (For
instance, consider the CW-complex resulting from a handle decomposition of M
as discussed in §8.1.) �us, the computation of both invariants � .M; @CM/ and
� .M; @CM/ reduces to the determinant of a same matrix. (See [FJR, Lemma
3.6] for instance.)

Example 7.4. Assume that G WD ¹1º is the trivial group. �en C .Fk/ D C.Fk/ .
Moreover ZŒG� D Z and Q.G/ D Q , so that H 

Z D H1.Fk/ and H D

H1.Fk IQ/ . Note that � .M; @CM/ D 1 since H
 Z
1 .M; @CM/ D H1.M; @CM/

is trivial in that case. It follows from Proposition 7.3 that A.M; / W ƒH1.Fk/
! ƒH1.Fk/ is induced by the isomorphism .mC/

�1m� W H1.Fk/! H1.Fk/ .

Remark 7.5. If two cobordisms M;M 0 2 C .Fk/ are homology cobordant, then
we have r .M/ D r .M 0/ (see [Sak2, �eorem 3.6]), but it may happen that
� .M; @CM/ ¤ � .M 0; @CM

0/ (see [MM, Lemma 3.15] for an example). It
follows from Proposition 7.3 that the restriction of A to C .Fk/ is stronger than
the representation r .
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8. Computations with Heegaard splittings

Let G be a multiplicative subgroup of a �eld F . We give a simple recipe
to compute the functor R D RF ;G using Heegaard splittings of cobordisms. In
this section, the extension of a group homomorphism � W H ! G to a ring
homomorphism ZŒH �! F is still denoted by � .

8.1. Heegaard splittings. In order to obtain concrete formulas for the functor
R , it is convenient to �x compatible systems of “meridians and parallels” on the
model surfaces. Speci�cally, we choose on the model surface F1 a meridian ˛

and a parallel ˇ , which means the following: ˛ and ˇ are oriented simple
closed curves in the interior of F1 meeting transversely at a single point
with homological intersection Œ˛� � Œˇ� D C1 . �en the identi�cation between
F1]@ � � � ]@F1 and Fk induces, for any integer k � 1 , a system of meridians and
parallels .˛1; : : : ; ˛k ; ˇ1; : : : ; ˇk/ on the surface Fk .

For any k � 0 , we denote by C k0 2 Cob.0; k/ the cobordism obtained from
Fk � Œ�1; 1� by attaching k 2 -handles along the curves ˛1�¹�1º; : : : ; ˛k �¹�1º .
Similarly, let C 0

k
2 Cob.k; 0/ be the cobordism obtained from Fk � Œ�1; 1� by

attaching k 2-handles along the curves ˇ1 � ¹1º; : : : ; ˇk � ¹1º . Observe that
C 0
k
ı C k0 D C

0
0 2 Cob.0; 0/ is the 3 -dimensional ball F0 � Œ�1; 1� . �us we shall

refer to C 0
k

and C k0 as the upper and lower handlebodies, respectively. (Clearly,
these notions depend on the above choice of meridians and parallels.)

Let also M.Fk/ be the mapping class group of the surface Fk , which consists
of isotopy classes of (orientation-preserving) homeomorphisms f W Fk ! Fk
�xing @Fk pointwisely. �e mapping cylinder construction, which associates to
any such homeomorphism f the cobordism

c.f / WD
�
Fk � Œ�1; 1�; .f � ¹�1º/ [ .@Fk � Id/ [ .Id�¹1º/

�
;

de�nes an embedding c WM.Fk/! C.Fk/ of the mapping class group into the
monoid of homology cobordisms (see §7.1).

Let M 2 Cob.g�; gC/ be an arbitrary cobordism. By elementary Morse
theory, the 3 -manifold underlying M can be obtained from the trivial cobordism
FgC � Œ�1; 1� by attaching simultaneously some 1 -handles (say, rC � 0 ) along
the “bottom surface” FgC �¹�1º , and by attaching subsequently some 2 -handles
(say, r� � 0 ) along the new “bottom surface.” We obtain in that way a Heegaard
splitting of M , i.e : a decomposition in the monoidal category Cob of the form

(8.1) M D
�
C 0rC ˝ IdgC

�
ı c.f / ı

�
C
r�
0 ˝ Idg�

�
where gC C rC D g� C r� and f 2M.Fg˙Cr˙/ . See [Ker2, �eorem 5].
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8.2. Computation of R with Heegaard splittings. We now assume that the
above cobordism M comes with a group homomorphism ' W H1.M/! G :

.M; '/ 2 CobG
�
.g�; '�/; .gC; 'C/

�
:

�e Heegaard splitting (8.1) of M induces a decomposition in the monoidal
category CobG by endowing each submanifold S of that decomposition with the
group homomorphism N' W H1.S/ ! G obtained by restricting ' to S � M .
Hence we obtain

R.M; '/ D
�
R
�
C 0rC ; N'

�
˝ IdƒHC

�
ı R
�
c.f /; N'

�
ı

�
R
�
C
r�
0 ; N'

�
˝ IdƒH�

�
where H˙ WD H

'˙
1 .Fg˙ ; ?/ and the symbol N' denotes a representation in G

induced by ' . �us the computation of R.M; '/ reduces to three cases: upper
handlebodies, lower handlebodies and mapping cylinders.

To describe the values of R in those three cases, we need to �x further
notation. Let k � 0 be an integer and let  W H1.Fk/ ! G be a group
homomorphism. We assume that, in our model surface F1 , the intersection point
˛ \ ˇ is connected by an arc to the base point ? 2 @F1 : hence the curves
˛1; : : : ; ˛k ; ˇ1; : : : ; ˇk are now viewed as oriented loops based at ? 2 @Fk . We
denote by .a

 
1 ; : : : ; a

 

k
; b
 
1 ; : : : ; b

 

k
/ the basis of H 

1 .Fk ; ?/ obtained by lifting
these loops to the maximal abelian cover:

(8.2) 8i D 1; : : : ; k; a
 
i WD

�
1˝ b̨ i

�
; b

 
i WD

�
1˝ b̌

i

�
:

�en the space ƒH
 
1 .Fk; ?/ can be identi�ed to ƒA

 

k
˝ ƒB

 

k
where A

 

k
WD

ha
 
1 ; : : : ; a

 

k
i and B

 

k
WD hb

 
1 ; : : : ; b

 

k
i are the subspaces of H 

1 .Fk ; ?/ corre-
sponding to meridians and parallels, respectively.

Lemma 8.1. Let  W H1.C
0
k
/ ! G be a group homomorphism and let

 � W H1.Fk/ ! G be the restriction of  to Fk � @C 0
k
. �en the linear

map
R.C 0k ;  / W ƒH

 �
1 .Fk ; ?/ �! F

is trivial on ƒiA
 �
k
˝ƒjB

 �
k

if i ¤ k or j ¤ 0 , and it sends a �1 ^ � � � ^ a
 �
k

to 1 .

Proof. Set N WD C 0
k
2 Cob.k; 0/ . Since R.N; / has degree �k , it must be trivial

on ƒrH
 �
1 .Fk ; ?/ for r ¤ k . It remains to compute

(8.3) R.N; /.x1 ^ � � � ^ xk/ D R 
N

�
n�.x1/ ^ � � � ^ n�.xk/

�
for any x1; : : : ; xk 2 H

 �
1 .Fk ; ?/ . If one of the xi ’s belongs to B

 �
k

, the right-
hand side of (8.3) is zero since, for all j 2 ¹1; : : : ; kº , ǰ bounds a disk in N
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so that n�.b �j / D 0 . So, we can assume that x1^ � � � ^xk D a �1 ^ � � � ^ a
 �
k

. In
this case, we apply Lemma 5.1 to the obvious spine X D XC of N : the spine
X is a wedge of circles whose 1 -cells 1; : : : ; k are obtained by “pushing” the
curves ˛1; : : : ; ˛k in the interior of N . We deduce that the right-hand side of
(8.3) is equal to 1 .

Lemma 8.2. Let  W H1.C
k
0 / ! G be a group homomorphism and let

 C W H1.Fk/ ! G be the restriction of  to Fk � @C k0 . �en the linear
map

R.C k0 ;  / W F �! ƒH
 C
1 .Fk ; ?/

sends the scalar 1 to the multivector a C1 ^ � � � ^ a
 C
k

.

Proof. Set .v1; : : : ; vk; vkC1; : : : ; v2k/ WD .a
 C
1 ; : : : ; a

 C
k
; b
 C
1 ; : : : ; b

 C
k
/ and let !

be the volume form on H C
1 .Fk ; ?/ de�ned by !.v1^ � � � ^v2k/ D 1 . We denote

N WD C k0 2 Cob.0; k/ and write

R.N; /.1/ D
X
P

zP � vP 2 ƒ
kH

 C
1 .Fk ; ?/

where P runs over k -element subsets of ¹1; : : : ; 2kº and vP is the wedge of
the vp ’s for all p 2 P . For any k -element subset P � ¹1; : : : ; 2kº , we have

(8.4) "P � zP D !
�
R.N; /.1/ ^ vP

�
D R 

N

�
ƒknC.vP /

�
where P is the complement of P and "P is the signature of the permutation
PP . To compute the right-hand side of (8.4), we apply Lemma 5.1 to the obvious
spine X D XC of N : the spine X is a wedge of circles whose 1 -cells 1; : : : ; k
are obtained by “pushing” the curves ˇ1; : : : ; ˇk in the interior of N . We obtain
that R 

N

�
ƒknC.vP /

�
is trivial except if P D ¹k C 1; : : : ; 2kº , in which case it

takes the value 1 . We conclude that zP D 1 if P D ¹1; : : : ; kº and zP D 0

otherwise.

Lemma 8.3. Let f 2 M.Fk/ and let  ˙ W H1.Fk/ ! G be group homomor-
phisms such that  � D  C ı f . Denote by  W H1.Fk � Œ�1; 1�/ ! G the
isomorphism  C ı pr , where pr W Fk � Œ�1; 1�! Fk is the cartesian projection.
�en

R
�
c.f /;  

�
W ƒH

 �
1 .Fk ; ?/ �! ƒH

 C
1 .Fk; ?/
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is induced by the isomorphism f W H
 �
1 .Fk; ?/ ! H

 C
1 .Fk ; ?/ . Moreover,

the matrix of this isomorphism in the bases .a
 ˙
1 ; : : : ; a

 ˙
k
; b
 ˙
1 ; : : : ; b

 ˙
k
/ of

H
 ˙
1 .Fk ; ?/ is

 C

0BBBBBBBBBB@

@f�.˛1/
@˛1

� � �
@f�.˛k/
@˛1

@f�.ˇ1/
@˛1

� � �
@f�.ˇk/
@˛1

:::
:::

:::
:::

@f�.˛1/
@˛k

� � �
@f�.˛k/
@˛k

@f�.ˇ1/
@˛k

� � �
@f�.ˇk/
@˛k

@f�.˛1/
@ˇ1

� � �
@f�.˛k/
@ˇ1

@f�.ˇ1/
@ˇ1

� � �
@f�.ˇk/
@ˇ1

:::
:::

:::
:::

@f�.˛1/
@ˇk

� � �
@f�.˛k/
@ˇk

@f�.ˇ1/
@ˇk

� � �
@f�.ˇk/
@ˇk

1CCCCCCCCCCA
where f� W �1.Fk ; ?/! �1.Fk; ?/ is induced by f .

Proof. �e �rst statement follows from (7.1). �e second statement is well
known.

8.3. Computation of A with Heegaard splittings. Assume now that G is a
�nitely generated free abelian group and take F WD Q.G/ . �ere are counterparts
of Lemmas 8.1, 8.2 and 8.3 for the Alexander functor A . �ese counterparts follow
from the same lemmas using �eorem 5.4, or they can be proved independently
using presentations of ZŒG� -modules.

For G D ¹1º , we deduce that the functor A is essentially the same thing as the
TQFT constructed in [FN1]. (Compare the formulas given in [Ker1, §3] with the
above lemmas.) However, there are a few technical di�erences: in particular, we
have considered surfaces with circle boundary, whereas [FN1] works with closed
surfaces.

9. Duality

We prove two duality properties for the Reidemeister functor. In this section,
F is a �eld where a multiplicative subgroup G is �xed, and we assume that F

is equipped with an involutive automorphism f 7! f such that g D g�1 for all
g 2 G .

9.1. Twisted intersection form. �e �rst duality satis�ed by R involves the
“twisted” intersection forms of oriented surfaces with boundary. We start by
recalling this notion.

Let k � 0 be an integer and set � WD �1.Fk; ?/ . �e homotopy intersection
form of Fk is the pairing � W ZŒ�� � ZŒ��! ZŒ�� de�ned by Turaev in [Tur7].



A functorial extension of the abelian Reidemeister torsions of three-manifolds 199

We also refer to Papakyriakopoulos’ work [Pap] where this form is implicit, and
to Perron’s work [Per] where the same form � is re-discovered (and is denoted
there by ! ).

�e twisted homology group H1.Fk ; ?IZŒ��/ is identi�ed (as a left ZŒ�� -
module) to the augmentation ideal I.�/ of ZŒ�� in the following way: for any
oriented loop  � Fk based at ? , let e be the unique lift of  to the universal
cover of Fk starting at the preferred lift e? , and identify Œ1˝e � 2 H1.Fk; ?IZŒ��/
to Œ� � 1 2 I.�/ . �us, by restricting � to I.�/ � I.�/ , we obtain a pairing

h�;�i W H1.Fk; ?IZŒ��/ �H1.Fk; ?IZŒ��/ �! ZŒ��:

�e derivation properties of � given in [Tur7, Per] imply that h�;�i is sesquilinear
in the sense that

hax C y; zi D ahx; zi C hy; zi; hz; ax C yi D hz; xiS.a/C hz; yi

for all a 2 ZŒ�� and x; y; z 2 H1.Fk; ?IZŒ��/ . Here S W ZŒ�� ! ZŒ�� is the
antipode, i.e. the Z -linear map de�ned by S.a/ D a�1 for all a 2 � .

Let now  W H1.Fk/! G be a group homomorphism: this induces a structure
of right ZŒ�� -module on F . By identifying H 

1 .Fk ; ?/ to F˝ZŒ��H1.Fk; ?IZŒ��/ ,
we obtain a pairing

(9.1) h�;�i W H
 
1 .Fk; ?/ �H

 
1 .Fk ; ?/ �! F

de�ned by hf1 ˝ h1; f2 ˝ h2i WD f1f2  .hh1; h2i/ for all f1; f2 2 F and
h1; h2 2 H1.Fk ; ?IZŒ��/ . �is pairing is sesquilinear in the sense that

hf x C y; zi D f hx; zi C hy; zi; hz; f x C yi D f hz; xi C hz; yi

for all f 2 F and x; y; z 2 H
 
1 .Fk; ?/ . �e pairing (9.1) can also be

de�ned using Poincaré duality (with twisted coe�cients) and the fact that
H
 
1 .Fk ; J / ' H

 
1 .Fk; ?/ ' H

 
1 .Fk; J

0/ , where J; J 0 are two closed intervals
such that J [ J 0 D @Fk and J \ J 0 D @J D @J 0 . In particular, the pairing (9.1)
is non-singular in the sense that hx;�i W H 

1 .Fk; ?/! Hom.H 
1 .Fk; ?/;F/ is an

isomorphism for any x 2 H
 
1 .Fk ; ?/ .

For any integer r � 1 , the pairing (9.1) also induces a non-singular sesquilinear
pairing h�;�i W ƒrH 

1 .Fk; ?/ �ƒ
rH

 
1 .Fk; ?/! F de�ned by

hx1 ^ � � � ^ xr ; y1 ^ � � � ^ yri D det

0B@hx1; y1i � � � hx1; yri:::
: : :

:::

hxr ; y1i � � � hxr ; yri

1CA
for all x1; : : : ; xr ; y1; : : : ; yr 2 H 

1 .Fk ; ?/ . For r D 0 , we set hx; yi WD xy for
all x; y 2 F .
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Remark 9.1. �e sesquilinear pairing (9.1) is not skew-hermitian. Instead, we
have

(9.2) 8x; y 2 H
 
1 .Fk ; ?/; hx; yi D �hy; xi C @�.x/ @�.y/

where @� W H
 
1 .Fk; ?/ ! F is the connecting homomorphism in the long exact

sequence of the pair .Fk ; ?/ . �is identity follows from a similar property for
the homotopy intersection form � : see [Tur7, Per].

9.2. First duality. Let g�; gC � 0 be integers. �e dual of an M 2 Cob.g�; gC/
is the cobordism M 2 Cob.gC; g�/ obtained from M by reversing its orientation
and by composing its boundary-parametrization m W F.g�; gC/ ! @M with the
orientation-reversing homeomorphism between

�FgC [S1�¹�1º
�
S1 � Œ�1; 1�

�
[S1�¹1º Fg�„ ƒ‚ …

F.gC;g�/

and
�Fg� [S1�¹�1º

�
S1 � Œ�1; 1�

�
[S1�¹1º FgC„ ƒ‚ …

F.g�;gC/

;

which is given by “time-reversal” .x; t/ 7! .x;�t / on the annulus S1 � Œ�1; 1�
and by the identity on FgC and Fg� .

�eorem 9.2. For any .M; '/ 2 CobG
�
.g�; '�/; .gC; 'C/

�
and for any j � 0 ,

we have

(9.3) 8x 2 ƒjH�; 8y 2 ƒ
jCıgHC;

˝
R.M; '/.x/; y

˛
D
˝
x;R

�
M;'

�
.y/
˛

where ıg WD gC � g� and H˙ WD H
'˙
1 .Fg˙ ; ?/ .

Of course, the identity (9.3) only holds true up to multiplication by a constant in
˙G (independent of x and y ). �e pairing h�;�i denotes the twisted intersection
form of HC (respectively, H� ) on the left-hand side (respectively, the right-hand
side) of (9.3).

Proof of �eorem 9.2. Assume that .M; '/ D .M 0; '0/ı .M 00; '00/ where .M 0; '0/
and .M 00; '00/ are two morphisms in CobG satisfying (9.3). �en the dual of M is
M
00
ıM

0 , and it easily follows that .M; '/ also satis�es (9.3). Consequently, and
following the discussion of §8, it is enough to prove (9.3) in the following three
cases: (i) M is a mapping cylinder; (ii) M is a “stabilized” lower handlebody;
(iii) M is a “stabilized” upper handlebody.
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Case (i). Assume that g� D gC DW k and that M D c.f / is the mapping
cylinder of an f 2M.Fk/ . �en M D c.f �1/ . Since 'Cf D '� W H1.Fk/! G

and since f� W �1.Fk ; ?/! �1.Fk ; ?/ preserves the homotopy intersection form,
the isomorphism f W H� ! HC induced by f W Fk ! Fk preserves the pairings
(9.1). Using the �rst statement of Lemma 8.3, we obtain (9.3) as follows:

8x 2 ƒjH�; 8y 2 ƒ
jHC; hR.M; '/.x/; yi D

˝
ƒjf .x/; y

˛
D
˝
x;ƒjf �1.y/

˛
D
˝
x;R

�
M;'

�
.y/
˛
:

Interlude. In order to deal with cases (ii) and (iii), we need an explicit formula
for the twisted intersection form h�;�i W H 

1 .Fk; ?/�H
 
1 .Fk ; ?/! F de�ned by

a group homomorphism  W H1.Fk/! G . For this, we �x a system of meridians
and parallels .˛1; : : : ; ˛k ; ˇ1; : : : ; ˇk/ on Fk as explained in §8.1, and we denote
by .a 1 ; : : : ; a

 

k
; b
 
1 ; : : : ; b

 

k
/ the corresponding basis of H 

1 .Fk ; ?/ : see (8.2). For
every x; y 2 H1.Fk/ , set P .x; y/ WD .1 �  .x//.1 �  .y// 2 F . �en, for an
appropriate choice of meridians and parallels, the matrix of h�;�i in the basis
.a
 
1 ; : : : ; a

 

k
; b
 
1 ; : : : ; b

 

k
/ is

J D

 
J
 
aa J

 

ab

J
 

ba
J
 

bb

!

where J aa; J ab; J
 

ba
; J

 

bb
are the following lower triangular matrices [Per, Lemma

2.4]:

J aa D

0BBBBBB@
1� .˛1/ 0 0 � � � 0

P .˛2; ˛1/ 1� .˛2/ 0 � � � 0

P .˛3; ˛1/ P .˛3; ˛2/
: : :

: : :
:::

:::
:::

: : :
: : : 0

P .˛k ; ˛1/ P .˛k ; ˛2/ : : : P .˛k ; ˛k�1/ 1� .˛k/

1CCCCCCA ;(9.4)

J
 

ab
D

0BBBBBBB@

 .˛1/ .ˇ1/ 0 0 � � � 0

P .˛2; ˇ1/  .˛2/ .ˇ2/ 0 � � � 0

P .˛3; ˇ1/ P .˛3; ˇ2/
: : :

: : :
:::

:::
:::

: : :
: : : 0

P .˛k ; ˇ1/ P .˛k ; ˇ2/ : : : P .˛k ; ˇk�1/  .˛k/ .ˇk/

1CCCCCCCA ;(9.5)

J
 

ba
D

0BBBBBBB@

1� .˛1/� .ˇ1/ 0 0 � � � 0

P .ˇ2; ˛1/ 1� .˛2/� .ˇ2/ 0 � � � 0

P .ˇ3; ˛1/ P .ˇ3; ˛2/
: : :

: : :
:::

:::
:::

: : :
: : : 0

P .ˇk ; ˛1/ P .ˇk ; ˛2/ : : : P .ˇk ; ˛k�1/ 1� .˛k/� .ˇk/

1CCCCCCCA ;
(9.6)
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J
 

bb
D

0BBBBBBB@

1� .ˇ1/ 0 0 � � � 0

P .ˇ2; ˇ1/ 1� .ˇ2/ 0 � � � 0

P .ˇ3; ˇ1/ P .ˇ3; ˇ2/
: : :

: : :
:::

:::
:::

: : :
: : : 0

P .ˇk ; ˇ1/ P .ˇk ; ˇ2/ : : : P .ˇk ; ˇk�1/ 1� .ˇk/

1CCCCCCCA :(9.7)

Besides, the following notation will be useful in the sequel. Let " 2 ¹C;�º be
a sign. We denote by .v"1; : : : ; v

"
g"
; v"g"C1; : : : ; v

"
2g"
/ WD .a

'"
1 ; : : : ; a

'"
g" ; b

'"
1 ; : : : ; b

'"
g" /

the basis of H" D H'"
1 .Fg" ; ?/ . For any s -element subset P � ¹1; : : : ; 2g"º , let

v"P 2 ƒ
sH" be the wedge of the vectors v"p ’s for all p 2 P and, when this makes

sense, we shall also denote by .v"P /
�" 2 ƒsH�" the multivector obtained from

v"P by the transformations a'"i 7! a
'�"
i�"ıg

and b
'"
i 7! b

'�"
i�"ıg

.

Case (ii). Assume that M D C r0 ˝ Idg� where r D ıg . Note that 'C.˛i / D 1
for all i 2 ¹1; : : : ; rº , so that (9.4) and (9.5) applied to  WD 'C give
(9.8)
8i 2 ¹1; : : : ; rº;8j 2 ¹1; : : : ; r C g�º; ha

'C
i ; a

'C
j i D 0; ha

'C
i ; b

'C
j i D ıij 'C. ǰ /

and, combining this with (9.2), we also obtain
(9.9)
8i 2 ¹1; : : : ; rº;8j 2 ¹1; : : : ; rCg�º; ha

'C
j ; a

'C
i i D 0; hb

'C
j ; a

'C
i i D �ıij 'C. ǰ /:

Let P � ¹1; : : : ; 2g�º with jP j D j and let Q � ¹1; : : : ; 2gCº with
jQj D r C j . It follows from Lemma 8.2 that˝

R.M; '/.v�P /; v
C

Q

˛
D
˝
a
'C
1 ^ � � � ^ a

'C
r ^ .v

�
P /
C; vCQ

˛
:

According to (9.8), this determinant is zero if the subset B WD ¹gCC1; : : : ; gCCrº
is not contained in Q . If B � Q , then we get˝

R.M; '/.v�P /; v
C

Q

˛
D "B

˝
a
'C
1 ^ � � � ^ a

'C
r ^ .v

�
P /
C; vCB ^ v

C

Bc

˛
D "B

˝
a
'C
1 ^ � � � ^ a

'C
r ; vCB

˛ ˝
.v�P /

C; vCBc
˛

D "B 'C.ˇ1 � � �ˇr /
˝
.v�P /

C; vCBc
˛

where Bc WD Q nB and "B is the signature of the permutation BBc (where the
elements of B in increasing order are followed by the elements of Bc in increasing
order). We also deduce from (9.9) that h.v�P /C; v

C

Bc i D 0 if Bc has a non-empty
intersection with A WD ¹1; : : : ; rº , and it follows that

˝
R.M; '/.v�P /; v

C

Q

˛
D 0 if

A \Q ¤ ¿ .
Besides, it follows from Lemma 8.1 that R

�
M;'

�
.vCQ/ is trivial if A\Q ¤ ¿

or B is not contained in Q . If A \Q D ¿ and B � Q , we get˝
v�P ;R

�
M;'

�
.vCQ/

˛
D "B

˝
v�P ;R

�
M;'

�
.vCB ^ v

C

Bc /
˛
D "B

˝
v�P ; .v

C

Bc /
�
˛
:
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We deduce that
˝
R.M; '/.v�P /; v

C

Q

˛
D 'C.ˇ1 � � �ˇr /

˝
v�P ;R

�
M;'

�
.vCQ/

˛
for any

P;Q . Since (9.3) is only required to hold true up to multiplication by a constant
in ˙G , the theorem is proved in case (ii).

Case (iii). Assume now that M D C 0r ˝ IdgC where r D �ıg . Note that
'�.ˇi / D 1 for all i 2 ¹1; : : : ; rº , so that (9.7) and (9.5) applied to  WD '� give
(9.10)
8i 2 ¹1; : : : ; r C gCº;8j 2 ¹1; : : : ; rº; hb

'�
i ; b

'�
j i D 0; ha

'�
i ; b

'�
j i D ıij '�.˛i /

and, combining this with (9.2), we also obtain
(9.11)
8i 2 ¹1; : : : ; rCgCº; j 2 ¹1; : : : ; rº; hb

'�
j ; b

'�
i i D 0; hb

'�
j ; a

'�
i i D �ıij '�.˛i /:

Let P � ¹1; : : : ; 2g�º with jP j D j and let Q � ¹1; : : : ; 2gCº with
jQj D j � r . By Lemma 8.1, R.M; '/.v�P / is trivial if P does not contain
A WD ¹1; : : : ; rº or P has a non-empty intersection with B WD ¹g�C1; : : : ; g�Crº .
If A � P and P \ B D ¿ , we obtain˝

R.M; '/.v�P /; v
C

Q

˛
D "A

˝
R.M; '/.v�A ^ v

�
Ac /; v

C

Q

˛
D "A

˝
.v�Ac /

C; vCQ
˛

where Ac WD P n A and "A is the signature of the permutation AAc .
Besides, Lemma 8.2 gives˝

v�P ;R
�
M;'

�
.vCQ/

˛
D
˝
v�P ; b

'�
1 ^ � � � ^ b

'�
r ^ .v

C

Q/
�
˛

which, according to (9.10), is trivial if P does not contain A . If A � P , we get˝
v�P ;R

�
M;'

�
.vCQ/

˛
D "A

˝
v�A ^ v

�
Ac ; b

'�
1 ^ � � � ^ b

'�
r ^ .v

C

Q/
�
˛

D "A hv
�
A ; b

'�
1 ^ � � � ^ b

'�
r i

˝
v�Ac ; .v

C

Q/
�
˛

D "A '�.˛1 � � �˛r /
˝
v�Ac ; .v

C

Q/
�
˛
:

It follows from (9.11) that
˝
v�Ac ; .v

C

Q/
�
˛
D 0 if Ac has a non-empty intersection

with B , so that
˝
v�P ;R

�
M;'

�
.vCQ/

˛
D 0 if P \ B ¤ ¿ . We deduce that˝

R.M; '/.v�P /; v
C

Q

˛
D '�.˛1 � � �˛r /

˝
v�P ;R

�
M;'

�
.vCQ/

˛
for any P;Q . �is proves

the theorem in case (iii).

Example 9.3. We consider the situation of §7.3: let  W H1.Fk/! G be a group
homomorphism and let M 2 C .Fk/ with k � 1 . According to Proposition
7.2, R.M; / is determined by the relative Reidemeister torsion � .M; @CM/

and the Magnus representation r .M/ W H ! H , where H WD H
 
1 .Fk; ?/ .

Specializing �eorem 9.2 to j WD 0 , we obtain the well-known duality theorem

(9.12) � .M; @CM/ D � .M; @�M/ 2 F=˙G;
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see [Tur2, Appendix 3]. Next, specializing �eorem 9.2 successively to j WD 1

and j WD 2 , we obtain the invariance property

8x; z 2 H ;
˝
r .M/.x/; r .M/.z/

˛
D hx; zi ;

which is already observed in [Sak1, �eorem 2.4].

Example 9.4. We consider the situation of §3.3: let G be the in�nite cyclic
group generated by t and F WD Q.G/ , let MK be the exterior of an oriented
knot K in an oriented homology 3 -sphere and let 'K W H1.MK/ ! G be the
canonical isomorphism. �ere is a system of meridian and parallel .˛; ˇ/ on F1

and a boundary-parametrization m W F.1; 0/! @MK such that
(i) m�.˛/ is the oriented meridian of K and m�.ˇ/ is the parallel of K that

is null-homologous in MK ,
(ii) the matrix of h�;�i W H� �H� ! F in the corresponding basis .a; b/ WD

.a
'Km�
1 ; b

'Km�
1 / of H� WD H'Km�

1 .F1; ?/ is
 
1 � t t

�t�1 0

!
:

According to Proposition 3.3, the map R.MK ; 'K/ is determined by the Alexander
polynomial �.K/ . By applying �eorem 9.2 successively to x WD a and x WD b ,
we get

(9.13) R.MK ; 'K/.1/ D �.K/ b 2 H�:

9.3. Second duality. �e second duality satis�ed by R does not involve the
conjugation f 7! f of the �eld F , and is an immediate consequence of the
de�nitions.

Proposition 9.5. For any .M; '/ 2 CobG..g�; '�/; .gC; 'C// and j � 0 , we have

8x 2 ƒjH�; 8y 2 ƒ
g�jHC; !

�
R.M; '/.x/^y

�
D .�1/jg �!

�
x ^ R.M; '/.y/

�
where g WD gCCg� , H˙ WD H

'˙
1 .Fg˙ ; ?/ and ! W ƒ

2g˙H˙ ! F is an arbitrary
integral volume form.

Despite its simplicity, this proposition turns out to be interesting when it is
combined with �eorem 9.2.

Example 9.6. We use the same notation as in Example 9.3. Let .z1; : : : ; z2k/
be a basis of H arising from of a basis of the free ZŒH1.Fk/� -module
H1.Fk ; ?IZŒH1.Fk/�/ and assume that ! is given by !.z1 ^ � � � ^ z2k/ D 1 . By
applying Proposition 9.5 to x WD z1 ^ � � � ^ z2k , we get � .M; @CM/ � det r .M/

D � .M; @�M/: Combined with (9.12), this relation gives the symmetry

� .M; @CM/ � det r .M/ D � .M; @CM/ 2 F=˙G

which is also observed in [Sak4, �eorem 5.3].
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Example 9.7. We use the same notation as in Example 9.4. Let ! be the volume
form on H� de�ned by !.a ^ b/ D 1 . By applying Proposition 9.5 successively
to x WD a and x WD b , we obtain R.MK ; 'K/.1/ D �.K/ b . Combined with
(9.13), we recover the classical symmetry of the Alexander polynomial:

�.K/ D �.K/ 2 ZŒG�=˙G:

A. A short review of combinatorial torsions

We recall the de�nition and basic properties of the torsions of chain complexes.
�e reader is referred to [Mil2] and [Tur4] for further details and references. In
this appendix, F is a �eld.

A.1. De�nition of the torsion. Given an F -vector space V of �nite dimension
n � 0 , an n -tuple b D .b1; : : : ; bn/ of vectors in V and a basis c D .c1; : : : ; cn/
of V , we denote by Œb=c� 2 F the determinant of the matrix expressing b in the
basis c . Two bases b and c are said to be equivalent if Œb=c� D 1 .

Given a short exact sequence of F -vector spaces 0 ! V 0 ! V ! V 00 ! 0

and some bases c0 and c00 of V 0 and V 00 respectively, we denote by c0c00 the
equivalence class of bases of V obtained by juxtaposing (in this order) the image
of c0 in V and a lift of c00 to V .

By a �nite F -chain complex of length m � 1 , we mean a chain complex C

in the category of �nite-dimensional F -vector spaces and we assume that C is
concentrated in degrees 0; : : : ; m :

C D
�
Cm

@m // Cm�1 // � � �
@1 // C0

�
:

A basis of C is a family c D .cm; : : : ; c0/ where ci is a basis of Ci for all
i 2 ¹0; : : : ; mº . A homological basis of C is a family h D .hm; : : : ; h0/ where hi
is a basis of the i -th homology group Hi .C / for all i 2 ¹0; : : : ; mº . If we have
choosen a basis bj of the space of j -dimensional boundaries Bj .C / WD Im @jC1
for all j 2 ¹0; : : : ; m�1º , then a homological basis h of C induces an equivalence
class of bases of Ci for any i : speci�cally, we consider the basis .bihi /bi�1 of
Ci obtained by juxtaposition in the following short exact sequences where we
denote Zi .C / WD Ker @i :

0 �! Bi .C / �! Zi .C / �! Hi .C / �! 0(A.1)

and 0 �! Zi .C / �! Ci
@i
�! Bi�1.C / �! 0:(A.2)
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De�nition A.1. �e torsion of a �nite F -chain complex C of length m , equipped
with a basis c and a homological basis h , is the scalar

�.C I c; h/ WD

mY
iD0

�
.bihi /bi�1=ci

�.�1/iC1
2 F n ¹0º:

It is easily checked that this de�nition does not depend on the choice of b0; : : : ; bm
and, when C is acyclic, we set �.C I c/ WD �.C I c;¿/ .

�e following lemma, which is well known, is a way of viewing the torsion
as a function in homology.

Lemma A.2. Let C be a �nite F -chain complex of length m � 1 , let
k 2 ¹0; : : : ; mº and set ˇ WD dimHk.C / . Assume given a basis c D .cm; : : : ; c0/
of C and a basis hi of Hi .C / for every i ¤ k . �en there is a unique linear
map ` W ƒˇHk.C /! F such that

`.v1 ^ � � � ^ vˇ / D

´
�
�
C I c; .hm; : : : ; hkC1; v; hk�1; : : : ; h0/

�
if k is odd;

�
�
C I c; .hm; : : : ; hkC1; v; hk�1; : : : ; h0/

��1 if k is even;

for any basis v D .v1; : : : ; vˇ / of Hk.C / .

Proof. �e unicity of ` is obvious and, clearly, we can assume that k is odd.
Let s W Hk.C / ! Zk.C / and t W Bk�1.C / ! Ck be F -linear sections of (A.1)
and (A.2), respectively. For any ˇ -tuple v D .v1; : : : ; vˇ / of elements of Hk.C / ,
we set

`.v/ WD
�
bk s.v/ t.bk�1/=ck

�
�

Y
i¤k

�
.bihi /bi�1=ci

�.�1/iC1
2 F

where bk s.v/ t.bk�1/ denotes the family of vectors of Ck obtained by juxtaposing
(in this order) bk , s.v/ and t .bk�1/ . �e resulting map ` W Hk.C /

ˇ ! F is
multilinear and alternate, hence it induces a map ` W ƒˇHk.C / ! F with the
desired property.

A.2. Multiplicativity of the torsion. Consider a short exact sequence of �nite
F -chain complexes of length m � 1 :

(A.3) 0 // C 0 // C // C 00 // 0:

Let us assume that C 0; C; C 00 are based by c0; c; c00 respectively, and homologically
based by h0; h; h00 respectively. We further assume that the bases c0; c; c00 are
compatible in the sense that ci is equivalent to c0ic

00
i for every i 2 ¹0; : : : ; mº .

�e short exact sequence (A.3) induces a long exact sequence in homology:
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H WD
�
Hm.C

0/! Hm.C /! Hm.C
00/! � � � ! H0.C

0/! H0.C /! H0.C
00/
�
:

We regard H as an acyclic �nite F -chain complex based by

.h0; h; h00/ WD .h0m; hm; h
00
m; : : : ; h

0
0; h0; h

00
0/:

�e following formula is classical in the theory of combinatorial torsions: see
[Mil2, �eorem 3.2] or [Tur2, Lemma 3.4.2].

�eorem A.3. With the above notation, we have

(A.4) �.C I c; h/ D " � �.C 0I c0; h0/ � �.C 00I c00; h00/ � �
�
HI .h0; h; h00/

�
where " is a sign depending only on the dimensions of the F -vector spaces
C 0i ; Ci ; C

00
i and Hi .C

0/;Hi .C /;Hi .C
00/ for all i 2 ¹0; : : : ; mº .

Example A.4. Assume that C D C 0˚C 00 and that the chain maps C 0 ! C and
C ! C 00 in (A.3) are the natural inclusion and projection, respectively. For all
i 2 ¹0; : : : ; mº , let ci be the basis of Ci D C 0i ˚ C 00i obtained by juxtaposing (in
this order) some bases c0i and c00i of C 0i and C 00i , respectively; similarly, let hi
be the basis of Hi .C / D Hi .C 0/˚Hi .C 00/ obtained by juxtaposing some bases
h0i and h00i of Hi .C 0/ and Hi .C

00/ , respectively. We set c WD .cm; : : : ; c0/ and
h WD .hm; : : : ; h0/ . �en �.C I c; h/ D " � �.C 0I c0; h0/ � �.C 00I c00; h00/ .
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