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Bilinear pairings on elliptic curves
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Abstract. We give an elementary and self-contained introduction to pairings on elliptic
curves over �nite �elds. �e three di�erent de�nitions of the Weil pairing that can be found
in the literature are stated and proved to be equivalent using Weil reciprocity. Pairings with
shorter loops, such as the ate, ate i , R-ate and optimal pairings, together with their twisted
variants, are presented with proofs of their bilinearity and non-degeneracy. Finally, we
review di�erent types of pairings in a cryptographic context. �is article can be seen as
an update chapter to A. Enge, Elliptic Curves and �eir Applications to Cryptography –
An Introduction, Kluwer Academic Publishers 1999.
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1. Introduction

Consider three abelian groups G1 , G2 (written additively) and G3 (written
multiplicatively), which can equivalently be seen as Z -modules. A pairing on
G1 and G2 with values in G3 is a Z -bilinear map

e W G1 �G2 ! G3;

so that
e.aP; bQ/ D e.P;Q/ab

for all elements P 2 G1 , Q 2 G2 and integers a and b . In the following, G1
and G2 will be groups related to an elliptic curve E de�ned over some �eld
K : �ey will be subgroups of the elliptic curve group (in the case of the Weil
pairing of §3) or subgroups and quotient groups (in the case of the Tate pairing
of §4 and related pairings presented in §7). �e group G3 will be a subgroup
or a quotient of the multiplicative group K� .
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Elliptic curve cryptosystems are currently among the most e�cient public-key
systems. �eir security relies on the di�culty of computing discrete logarithms
in suitable instances of elliptic curves over �nite �elds, that is, on the di�culty
of computing x given two points P and R D xP on the curve. Pairings then
transport the discrete logarithm problem from the curve into the multiplicative
group of a �nite �eld, where it is potentially easier to solve [Odl]: As
e.R;Q/ D e.P;Q/x , the discrete logarithm of e.R;Q/ with respect to the
basis e.P;Q/ yields x . Consequently, pairings have �rst been suggested as a
means of attacking elliptic curve cryptosystems [MOV, FR]. First constructive
cryptographic applications have been described in [Jou, SOK, BF], and since then,
the number of publications introducing pairing-based cryptographic primitives has
exploded. A new conference series, Pairing, is devoted to the topic [TOOO, GP,
SW, JMO, AL, CZ].

�is document provides a self-contained introduction to pairings and aims at
summarising the state of the art as far as the de�nitions of di�erent pairings
and their cryptographic use are concerned. While being as accessible as possible,
we do not sacri�ce mathematical rigour, in the style of [Eng1], of which the
current article can be seen as an update chapter. While most of the following
holds over arbitrary perfect or even more general �elds, we limit the presentation
to the only case of interest in the cryptographic context, namely K being a
�nite �eld Fq with q elements. Pairings can be de�ned in Jacobians of arbitrary
curves or, more generally, in abelian varieties. However, due to recent progress in
solving the discrete logarithm problem (see the survey [Eng2]), only elliptic curves
and genus 2 hyperelliptic curves appear to be suited for cryptography. For the
latter, the problem of �nding e�ciently implementable instances has not yet been
solved satisfactorily: We need the pairing to have values in a su�ciently small
�nite �eld to be e�ciently computed and represented (see the de�nition of the
embedding degree at the beginning of §3), and we need the size of the subgroup
to be reasonably close to that of the full group to allow for bandwidth-e�cient
protocols. So in the following we consider only elliptic curves.

An excellent survey is given by Galbraith in [Gal]. We complement his
presentation by concentrating on the Weil pairing instead of the Tate pairing and
by reporting on progress made after the publication of [Gal] concerning pairings
with shorter evaluation loops.

2. Elliptic curves and Weil reciprocity

2.1. Divisors and group law. We assume the reader to be familiar with basic
algebra, in particular with �nite �elds. For proofs of the following facts on elliptic
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curves, see [Sil1, Eng1]. Other sources for the use of elliptic curves in cryptography
are [CFA, BSS]. From now on, we assume that K D Fq D Fpm is the �nite
�eld of characteristic p with q elements. (�is is motivated by the cryptologic
applications and meant to ease the exposition. All statements concerning the
Weil pairing hold in fact over arbitrary �elds. �e de�nition given of the Tate
pairing in §4, however, is not valid for all �elds; over �nite �elds, it yields a
non-degenerate pairing.)

In several places, we will consider the algebraic closure K for convenience; this
could be replaced by a su�ciently large extension �eld to contain the coordinates
of all points under consideration. An elliptic curve over K is given by a non-
singular, absolutely irreducible long Weierstraß equation

E W Y 2 C .a1X C a3/Y D X
3
C a2X

2
C a4X C a6

with ai 2 K . If p � 5 , the equation can be transformed into short Weierstraß
form in which all but a4 and a6 vanish. �e points on E are given by the
a�ne points .x; y/ 2 K2 satisfying the equation, together with a projective point
at in�nity O . �e coordinate ring of E is the ring KŒE� D KŒX; Y �=.E/ of
polynomial functions, its function �eld K.E/ D K.X/ŒY �=.E/ D ¹a.X/Cb.X/Y W
a; b 2 K.X/º is the set of rational functions from E to K [ ¹1º ; the value 1
is reached when the function has a pole in a point. It turns out that the points
on E are in a one-to-one correspondence with the discrete valuation rings of
K.E/ , given by the rings OP of functions that do not have a pole in P .

�e set E.K/ of points on E with coordinates in K (including O ) can be
turned into a �nite abelian group via the tangent-and-chord law: O is the neutral
element of the group law, and three points on a line sum to O . �e only delicate
point in proving the group law is associativity; the simplest proof, which also
generalises to other curves, is sketched in the following. It uses divisors, which
are needed anyway to de�ne pairings. So let

Div.E/ D
´X
P

nP ŒP � W P 2 E.K/; nP 2 Z; only �nitely many nP are non-zero
µ

be the free abelian group over the points on E , de�ne the degree of a divisor
as the sum

P
nP of its coe�cients, and let Div0.E/ be the subgroup of

Div.E/ consisting of divisors of degree 0 . To a rational function f 2 K.E/ ,
associate its divisor div.f / D

P
P ordP .f /ŒP � , where ordP .f / is the valuation

of f with respect to OP : If P is a zero of f , then ordP .f / > 0 gives
its multiplicity; if P is a pole of f , then ordP .f / < 0 gives its (negative)
multiplicity; if P is neither a zero nor a pole of f , then ordP .f / D 0 . Let
Prin.E/ D ¹div.f / W f 2 K.E/º � Div0.E/ be the set of principal divisors.
�en the quotient Pic0.E/ D Div0.E/=Prin.E/ is evidently a group, and it can
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be identi�ed with E.K/ via P 7! ŒP � � ŒO� , which maps O to the neutral
element O .

Let � denote equivalence modulo Prin.E/ . �e geometric tangent-and-chord
law is recovered as follows. For a point R D .xR; yR/ , let

(1) vR D X � xR

be the vertical line through R . �en div.vR/ D ŒR� C ŒR� � 2ŒO� � 0 with
R D .xR;�yR � a1xR � a3/ , so that �R D R . For two points P D .xP ; yP /

and Q D .xQ; yQ/ with Q ¤ �P let `P;Q be the chord through P and Q if
P ¤ Q or the tangent at P if P D Q :

(2)
�P;Q D

8<: yQ�yP
xQ�xP

if P ¤ Q
3x2
P
C2a2xPCa4

2yPCa1xPCa3
if P D Q

`P;Q D .Y � yP / � �P;Q.X � xP /

�en `P;Q intersects E in a third point R D .xR; yR/ ¤ O , and div
�
`P;Q
vR

�
D

div.`P;Q/� div.vR/ D
�
ŒP �C ŒQ�C ŒR�� 3ŒO�

�
�
�
ŒR�C ŒR�� 2ŒO�

�
D ŒP �C ŒQ��

ŒR� � ŒO� � 0 implies that P CQ D R .
By induction, this proves the following characterisation of principal divisors,

which is a special case of Abel’s theorem:

�eorem 1. A divisor D D
P
P nP ŒP � is principal if and only if degD D 0 andP

P nPP D O on E . �e function associated to a principal divisor is unique up
to multiplication by constants in K� .

It is often useful to assume the following normalisation.

De�nition 2. �e leading coe�cient of a function f at O is

lc.f / D
 �

X

Y

�� ordO.f /
f

!
.O/:

A function f is monic at O if lc.f / D 1 .

In particular, the lines vR and `P;Q given above for the tangent-and-chord
law are monic at O , and this implies that the functions computed in Algorithm 12
will also be monic at O .

2.2. Rational maps, isogenies and star equations. Let E , E 0 be two elliptic
curves over the same �eld K . A rational map ˛ W E ! E 0 is an element
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of E 0.K.E// . Explicitly, ˛ is given by rational functions in X and Y that
satisfy the Weierstraß equation for E 0 . Unless ˛ is constant, it is surjective. If
˛.O/ D O0 , then ˛ is in fact a group homomorphism, and it is called an isogeny.
If furthermore E D E 0 , then ˛ is called an endomorphism. �e endomorphisms
that are most important in the following are multiplications by an integer n ,
denoted by Œn� .

A non-constant rational map ˛ W E ! E 0 induces an injective homomorphism
of function �elds ˛� W K.E 0/! K.E/ , f 0 7! f 0ı˛ ; the degree of ˛ is the degree
of the function �eld extension ŒK.E/ W ˛�.K.E 0//� . For instance, deg.Œn�/ D n2 .
If ˛ is an isogeny, there is another isogeny Ǫ of the same degree, called its dual,
such that Ǫ ı ˛ D Œdeg˛� .

For a point P 2 E and P 0 D ˛.P / , there is an integer e˛.P / , called
rami�cation index, such that ordP .˛�.f 0// D e˛.P / ordP 0.f 0/ for any f 0 2

K.E 0/ . When ˛ is an isogeny, e˛.P / is independent of P . In this case, we have
deg˛ D e˛ �#.ker˛/ , and two extreme cases can occur: If e˛ D 1 , then ˛ is called
separable; in particular, Œn� is separable if p − n . If #.ker˛/ D 1 , then ˛ is
(up to isomorphisms) a power of the purely inseparable Frobenius endomorphism
.x; y/ 7! .xq; yq/ of degree and rami�cation index q . An arbitrary isogeny can
be decomposed into a separable one and a power of Frobenius, which is often
convenient for proving theorems.

�e rami�cation index allows to de�ne a homomorphism ˛� W Div.E 0/ !
Div.E/ on divisors by

˛�.ŒP 0�/ D
X

P2˛�1.P 0/

e˛.P /ŒP �

in such a way that the maps ˛� on functions and divisors are compatible; the
proof follows immediately from the de�nition of e˛ .

�eorem 3 (Upper star equation). If ˛ W E ! E 0 is a non-constant rational map
and f 0 2 K.E 0/ , then

˛�
�
div.f 0/

�
D div

�
˛�.f 0/

�
:

�e following result is concerned with the composition of rational maps; it
can be proved by a direct computation as in the proof of [Eng1, Proposition 3.15].

Lemma 4. If ˛ W E ! E 0 and ˇ W E 0 ! E 00 are non-constant rational maps
between elliptic curves, then ˇ ı ˛ W E ! E 00 is non-constant, and

.ˇ ı ˛/� D ˛� ı ˇ�

as maps on functions or divisors.
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On the other hand, the map ˛� W Div.E/ ! Div.E 0/ is de�ned by
˛�.ŒP �/ D Œ˛.P /� . A corresponding map on function �elds K.E/ ! K.E 0/

can be de�ned by

˛�.f / D .˛
�/�1

�
NK.E/=˛�.K.E 0//.f /

�
;

where N denotes the norm with respect to the function �eld extension. �e map
˛� is well-de�ned: Since the norm is an element of ˛�.K.E 0// , a preimage
exists; since ˛� is injective, this preimage is unique.

It is shown in [CC, (18)] that

(3) NK.E/=˛�.K.E 0//.f / D
� Y
R2ker˛

.f ı �R/
�e˛

;

where �R is the translation by R ; the product accounts for the separable, the
exponent for the inseparable part of the isogeny. �is can be used to show the
following result:

�eorem 5 (Lower star equation). If ˛ W E ! E 0 is a non-constant isogeny and
f 2 K.E/ , then

˛�
�
div.f /

�
D div

�
˛�.f /

�
:

2.3. Weil reciprocity. �e key to the de�nition of pairings is the evaluation
of rational functions in divisors. For D D

P
P nP ŒP � let its support be

supp.D/ D ¹P W nP ¤ 0º . �e evaluation of a rational function f in points
is extended to a group homomorphism from divisors (with support disjoint from
supp.divf / ) to K� via

f
�X
P

nP ŒP �
�
D

Y
P

f .P /nP :

In order to handle common points in the supports, let the tame symbol of two
functions f and g 2 K.E/ be de�ned as

hf; giP D .�1/
ordP .f / ordP .g/

�f ordP .g/

gordP .f /

�
.P /:

�eorem 6 (Generalised Weil reciprocity). If f , g 2 K.E/ , thenY
P2E.K/

hf; giP D 1:

In particular, if supp.f / \ supp.g/ D ¿ , then

(4) f .divg/ D g.divf /:

For a proof, see [CC, §7].
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3. Weil pairing

Let EŒn� D ¹P 2 E.K/ W nP D Oº D ker.Œn�/ be the set of n -torsion points
of E , which are in general not de�ned over K itself. For future reference, we
denote by E.K/Œn� D EŒn� \ E.K/ the set of points of EŒn� de�ned over K ,
which contains at least O . From now on, we will assume that gcd.n; p/ D 1 ; then
the group EŒn� is �nite and isomorphic to Z=nZ�Z=nZ . �e �eld L obtained
by adjoining to K D Fq all coordinates of n -torsion points is thus a �nite �eld
extension Fqk , and k is called the embedding degree of the n -torsion and Fqk
its embedding �eld. We have L � K.�n/ , where �n is a primitive n -th root of
unity, and equality holds in the case of main cryptographic interest, namely that
n is a prime and n − q � 1 by [BK, �. 1]. �en k is the smallest integer such
that n j qk � 1 .

�eorem 7. �e Weil pairing is a map

en W EŒn� �EŒn�! � � L�;

where � is the set of n -th roots of unity in L , satisfying the following properties:

(a) Bilinearity:

en.P1 C P2;Q/ D en.P1;Q/en.P2;Q/;

en.P;Q1 CQ2/ D en.P;Q1/en.P;Q2/ 8P;P1; P2;Q;Q1;Q2 2 EŒn�I

(b) Identity:
en.P; P / D 1 8P 2 EŒn�I

(c) Alternation:
en.P;Q/ D en.Q;P /

�1
8P;Q 2 EŒn�I

(d) Non-degeneracy: For any P 2 EŒn�n¹Oº , there is a Q 2 EŒn� , and for any
Q 2 EŒn�n¹Oº , there is a P 2 EŒn� such that en.P;Q/ ¤ 1 ;

(e) Compatibility with isogenies:

en.˛.P /; ˛.Q// D en.P;Q/
deg˛;(5)

en.P
0; ˛.Q// D en. Ǫ .P

0/;Q/(6)

for P , Q 2 EŒn� , P 0 2 E 0Œn� , ˛ W E ! E 0 a non-zero isogeny de�ned
over L and Ǫ its dual isogeny. In particular, ˛ may be the Frobenius
endomorphism on E of degree q . (Here and in the following, we use the
same notation en for the Weil pairing independently of the curve, E or E 0 ,
over which it is de�ned.)
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In the literature, there are in fact three equivalent de�nitions of the Weil
pairing, and depending on which one is chosen, the di�erent properties are
more or less easy to prove, the most intricate one being non-degeneracy. In the
following, we show equivalence of these de�nitions, which is also non-trivial and
makes intensive use of Weil reciprocity, and we prove the �ve properties of the
Weil pairing using for each the de�nition that yields the easiest proof.

First de�nition of the Weil pairing ([Sil1, §III.8], [Eng1, §3.7]). For P 2 EŒn� ,
consider D D Œn��.ŒP � � ŒO�/ D

P
R2EŒn�.ŒP0 C R� � ŒR�/ , where P0 is any

point such that nP0 D P . By �eorem 1, D is principal; let gP be such that
divgP D D . Let again �Q W R 7! R CQ denote the translation by Q 2 EŒn� .
�en

(7) en.P;Q/ D
gP ı �Q

gP
:

While gP is de�ned only up to multiplication by non-zero constants, the quotient
is a well-de�ned rational function. Since div.gP ı�Q/ D div.��Q.gP // D ��Q.divgP /
by �eorem 3 and the latter divisor equalsX

R2EŒn�

�
ŒP0 CR �Q� � ŒR �Q�

�
D divgP

for Q 2 EŒn� , the Weil pairing yields indeed a constant in K . �at it yields an
n -th root of unity follows from bilinearity.

Proof of �eorem 7(a): Using (c), proved below, it is su�cient to show linearity
in the second argument, which follows from the de�nition:

en.P;Q1 CQ2/ D
gP ı �Q1CQ2

gP
D

�
gP ı �Q1
gP

ı �Q2

�
gP ı �Q2
gP

D en.P;Q1/en.P;Q2/ since the constant en.P;Q1/
is invariant under �Q2 :

�
Proof of �eorem 7(d): We sketch the approach of [Eng1, Prop. 3.60]. Using
(c), it is su�cient to show non-degeneracy with respect to the �rst argument. For
P 2 EŒn� , suppose that en.P;Q/ D 1 for all Q 2 EŒn� . �is means that gP is
invariant under translations by all Q 2 EŒn� D ker.Œn�/ , so that all conjugates
of gP with respect to the �eld extension K.E/=Œn��.K.E// are gP itself, see
(3). Hence, there is a function fP such that gP D Œn��.fP / . By �eorem 3, this
implies that divfP D ŒP � � ŒO� , which by �eorem 1 implies P D O . �

Proof of �eorem 7(e): We prove (5) as in [Eng1, Prop. 3.60] with a slight
simpli�cation. Consider the function h D

g˛.P/ı˛

g
deg˛
P

and its divisor, which satis�es
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div.h/ D div.˛�.g˛.P /// � deg.˛/ div.gP /
D ˛�.div.g˛.P // � deg.˛/ div.gP / by �eorem 3
D ˛�

�
Œn��.Œ˛P � � ŒO�/

�
� deg.˛/Œn��.ŒP � � ŒO�/

by the de�nitions of gP and g˛.P /
D Œn��

�
˛�.Œ˛P � � ŒO�/ � deg˛.ŒP � � ŒO�/

�
by Lemma 4 and the fact that ˛ commutes with Œn�

D Œn��
�
e˛

X
R2ker.˛/

.ŒP CR� � ŒR�/ � deg.˛/ŒP �C deg.˛/ŒO�
�

D Œn��.div.h0// for some function h0 by �eorem 1, using
deg.˛/ D e˛ � # ker.˛/

D div.h0 ı Œn�/ by �eorem 3:

�us h D h0 ı Œn� after multiplying h0 by a suitable constant. Now we obtain

en
�
˛.P /; ˛.Q/

�
D en.˛.P /; ˛.Q// ı ˛ since the Weil pairing is a constant

D
g˛.P / ı �˛.Q/ ı ˛

g˛.P / ı ˛

D
g˛.P / ı ˛ ı �Q

g
deg.˛/
P ı �Q

�
g
deg.˛/
P

g˛.P / ı ˛
�

�
gP ı �Q

gP

�deg.˛/

D
h ı �Q

h
� en.P;Q/

deg.˛/

D en.P;Q/
deg.˛/;

since h D h0 ı Œn� is invariant under translation by the n -torsion point Q .
Concerning (6), let P be such that ˛.P / D P 0 ; then Ǫ .P 0/ D . Ǫ ı ˛/.P / D

.deg˛/P , and

en. Ǫ .P
0/;Q/ D en.P;Q/

deg˛
D en

�
˛.P /; ˛.Q/

�
D en

�
P 0; ˛.Q/

�
:

�

Second de�nition of the Weil pairing. For P;Q 2 EŒn�n¹Oº , P ¤ Q , let fP
and fQ be such that divfP D nŒP �� nŒO� and divfQ D nŒQ�� nŒO� , which is
possible by �eorem 1. �en

(8) en.P;Q/ D .�1/
n
�
fP .Q/

fQ.P /
�
fQ

fP
.O/I

if fP and fQ are chosen monic at O as in De�nition 2, then

en.P;Q/ D .�1/
n
�
fP .Q/

fQ.P /
:
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For P D Q or one or both of P and Q being O , the de�nition needs to be
completed by en.P;Q/ D 1 .

Remark 8. �is de�nition is the most suited one for computations, see Algo-
rithm 12. �e factor .�1/n is often missing in the literature.

Proof of equivalence of the two de�nitions: We essentially follow [CC, §10].
Assume that en is de�ned as in (7).

Let P0 and Q0 be such that nP0 D P and nQ0 D Q . Let gP be the
function, monic at O , such that

div.gP / D
X

R2EŒn�

�
ŒP0 CR� � ŒR�

�
;

and similarly for gQ .
If P D O , we may take P0 D O , which shows that gO D 1 and en.O;Q/ D 1 .

If Q D O , then �Q D id , and en.P;O/ D 1 . So from now on, P , Q ¤ O .
Let hQ be the function, monic at O , such that

div hQ D .n � 1/ŒQ0�C ŒQ0 �Q� � nŒO�;

which exists by �eorem 1, and let HQ D
Q
R2EŒn�.hQ ı �R/ . By comparing

divisors and leading coe�cients, HQ D lc.HQ/ � gnQ .
By generalised Weil reciprocity of �eorem 6, we haveY

S2supp.divgP /[supp.divhQ/
hgP ; hQiS D 1:

If P ¤ Q , then supp.divgP / \ supp.div hQ/ D ¹Oº , and we easily compute the
di�erent contributions of tame symbols:

hgP ; hQiQ0 D g
n�1
P .Q0/

hgP ; hQiQ0�Q D gP .Q0 �Q/

hgP ; hQiP0CR D h
�1
Q .P0 CR/ for R 2 EŒn�

hgP ; hQiR D hQ.R/ for R 2 EŒn�n¹Oº

hgP ; hQiO D .�1/
n hQ

gnP
.O/ D .�1/n since gP and hQ are monic at O:

Multiplying them together, we �nd that

1 D gnP .Q0/
gP .Q0 �Q/

gP .Q0/„ ƒ‚ …
gP

gP ı�Q
.Q0�Q/Den.P;Q/�1

1

HQ.P0/„ ƒ‚ …
lc.HQ/�1gQ.P0/�n

HQ

hQ
.O/„ ƒ‚ …

lc.HQ/

.�1/n

D .�1/n
gnP .Q0/

gnQ.P0/
�

1

en.P;Q/
:
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Since div.gnP / D nŒn��.ŒP � � ŒO�/ D Œn�� div.fP / , �eorem 3 implies that

gnP D c
�1
� Œn��.fP /

with c D lc.Œn��.fP // D
�
.fP ı Œn�/

Xn

Y n

�
.O/ . An analogous equation holds for

gnQ , so that
gnP .Q0/

gnQ.P0/
D
fP .Q/

fQ.P /
�
fQ

fP
.O/:

If P D Q , then supp.div.hQ// � supp.div.gQ// , and a similar computation
shows that en.P; P / D 1 . �

Proof of �eorem 7(b): �is is part of the second de�nition. (�e only statement
needing proof is that this also holds for the �rst de�nition, as shown above.) �

Proof of �eorem 7(c): �is is immediate from (8). �

�ird de�nition of the Weil pairing. For any degree zero divisor D such
that nD � 0 in Pic0.E/ , we denote by fD the function, monic at O , such that
div.fD/ D nD ; thus fŒP ��ŒO� D fP . Choose DP � ŒP �� ŒO� and DQ � ŒQ�� ŒO�
with disjoint supports. �en

(9) en.P;Q/ D
fDP .DQ/

fDQ.DP /
:

Note the similarity with (8), but also the missing factor .�1/n , due to the common
pole O of fP and fQ .

Remark 9. �e third de�nition corresponds to Weil’s original one in [Wei]. �e
�rst de�nition is given in [Sil1, Eng1] with the roles of P and Q exchanged,
which by the alternation property yields the inverse of the Weil pairing. �e
de�nition with P and Q in the order of this paper is used in the Notes on
Exercises, p. 462 of the second edition of [Sil1], as well as in [Sil3].

One needs to check that (9) is well-de�ned. Let D0Q � ŒQ� � ŒO� be another
possible choice instead of DQ . �en D0Q D DQ C div.h/ for some function h

with support disjoint from DP , and fD0
Q
D fDQh

n , which implies

fDP .D
0
Q/

fD0
Q
.DP /

D
fDP .DQ/fDP .div h/
fDQ.DP /h.DP /

n
D
fDP .DQ/fDP .div h/
fDQ.DP /h.divfDP /

D
fDP .DQ/

fDQ.DP /

by Weil reciprocity (4). By symmetry, the same argument holds when DP is
chosen di�erently.
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Proof of equivalence between the second and third de�nitions: A proof is
given in [Mil, Prop. 8]. �e basic idea is to choose DP D ŒP � R� � Œ�R� and
DQ D ŒQCR� � ŒR� for some point R . �en (9) becomes

fDP .QCR/

fDQ.P �R/
�
fDQ.�R/

fDP .R/
:

Informally, letting R ! O , the �rst factor tends to en.P;Q/ as de�ned in (8),
the second factor tends to .�1/n . �is can be made rigorous using formal groups
or the Deuring lift of E to the �eld of complex numbers.

Alternatively, one may again use generalised Weil reciprocity. Let DP D
ŒP �� ŒO� , so that fDP D fP . Let R be such that DQ D ŒQCR�� ŒR� and DP

have disjoint supports; then DQ D ŒQ� � ŒO�C div.h/ with h monic at O such
that div h D ŒQCR� � ŒQ� � ŒR�C ŒO� , and fDQ D fQh

n .
Assume �rst that P ¤ Q . �en by �eorem 6,

1 D
Y

S2E.K/

hfP ; hiS D
fP .QCR/

fP .R/fP .Q/hn.P /
� .�1/n .fPh

n/.O/„ ƒ‚ …
Dlc.fP /

:

So
fDP .DQ/

fDQ.DP /
D
.fQh

n/.O/
.fQhn/.P /

�
fP .QCR/

fP .R/
D

lc.fQ/fP .Q/
fQ.P /

�
fP .QCR/

fP .Q/hn.P /fP .R/

D .�1/n
fP .Q/

fQ.P /
�
lc.fQ/
lc.fP /

by the previous equation.
If P D Q , a similar computation shows that (9) evaluates to 1 . �

4. Tate pairing

�e Tate pairing has been used in cryptology at �rst as a means of transporting
the discrete logarithm problem from curves to the multiplicative groups of �nite
�elds [FR]. It goes back to Tate, who in [Tat] considers abelian varieties de�ned
over local �elds and de�nes a non-degenerate pairing involving Galois cohomology
groups of the variety and the dual abelian variety. Lichtenbaum de�nes in [Lic]
a pairing in terms of Picard groups of curves de�ned over local �elds and
their Galois cohomology. �is pairing turns out to be a special case of the Tate
pairing and as such is non-degenerate. Its advantage is that it can easily be
computed in terms of divisors and functions on the curve as stated in (10). See
also [Sil2, §§5–8] for an accessible presentation of these Galois cohomology
related pairings. By considering torsion elements in the groups and reducing
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modulo the discrete valuation of the local �eld, Frey and Rück obtain a non-
degenerate pairing for curves de�ned over �nite �elds. It is often called the
Tate–Lichtenbaum pairing [Frey, §3.3],[CFA, §6.4.1], although the name Frey–
Rück–Tate–Lichtenbaum pairing might be more appropriate. In the cryptologic
literature, the shorter term Tate pairing has imposed itself, and we will stick to
this tradition.

Computationally, the Tate pairing can be seen as “half a Weil pairing”; the
idea is to de�ne it directly as fP .Q/ instead of the quotient (8). Its precise
de�nition depends on a �eld extension L of K such that EŒn� is contained
in E.L/ ; usually, but not necessarily, L is chosen minimal with this property.

First de�nition of the Tate pairing. Let P 2 EŒn� , let DP be a degree zero
divisor, de�ned over L , with DP � ŒP �� ŒO� , and let fDP , de�ned over L , be
such that divfDP D nDP . Let Q be another point on E.L/ (not necessarily of
n -torsion) and let DQ � ŒQ� � ŒO� be de�ned over L of support disjoint from
DP . �en the Tate pairing of P and Q is given by

(10) eTn .P;Q/ D fDP .DQ/:

Algorithm 12 shows that fDP may indeed be de�ned over L , so that the pairing
takes values in L . Notice that fDP is de�ned only up to a multiplicative constant,
but that this does not change the pairing value since DQ is of degree 0 . Weil
reciprocity (4) shows that if DQ is replaced by D0Q D DQ C div h � DQ , then
(10) is multiplied by h.DP /n . Replacing DP by D0P D DP Cdiv h changes fDP
to fD0

P
D fDP h

n and thus multiplies the pairing value by an n -th power. So the
pairing value is well de�ned up to n -th powers in L .

Finally, if Q is replaced by QCnR with R 2 E.L/ , the value changes again
by an n -th power. �is leads to adapting the range and domain of eTn as follows.

�eorem 10. For EŒn� � E.L/ , the Tate pairing is a map

eTn W EŒn� �E.L/=nE.L/! L�=.L�/n

satisfying the following properties as de�ned in �eorem 7:
(a) Bilinearity,
(b) Non-degeneracy,
(c) Compatibility with isogenies.

Proof. Bilinearity is immediate from the de�nition using ŒQ1 C Q2� � ŒO� �
ŒQ1� C ŒQ2� � 2ŒO� by �eorem 1, so that DQ1CQ2 D DQ1 C DQ2 and
fP1CP2 D fP1fP2 .
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Non-degeneracy does not hold over arbitrary �elds. In particular, the pairing
becomes completely trivial if every element of L is an n -th power, for instance
if L D K . So the proofs of non-degeneracy use the structure of the groups over
a �nite �eld, see [FR, Hes2, Sch, Bru].

In the following, we will use that for a rational map ˇ W E ! E 0 , a function
f on E 0 and a divisor D on E , we have by de�nition that

(11) f
�
ˇ�.D/

�
D .f ı ˇ/.D/ D ˇ�.f /.D/:

Let ˛ be an isogeny. By �eorem 5 we may choose D˛.P / D ˛�.DP / and
D˛.Q/ D ˛�.DQ/ , and fD˛.P/ D ˛�.fDP / . We may furthermore assume that DP
and DQ are chosen so that all function values encountered during the proof are
de�ned and non-zero. �en

eTn .˛.P /; ˛.Q// D fD˛.P/.D˛.Q// D .˛�.fDP //
�
˛�.DQ/

�
D

�
˛�
�
˛�.fDP /

��
.DQ/ by (11)

D

� Y
R2ker.˛/

.fDP ı �R/.DQ/
�e˛

by (3)

D

� Y
R2ker˛

fDP
�
.�R/�.DQ/

��e˛
by (11):

Now �eorem 1 shows that .�R/�.DQ/ � DQ , so that each factor equals eTn .P;Q/ ,
which �nishes the proof.

Again, an alternative de�nition yields a computationally advantageous form
of the pairing.

Second de�nition of the Tate pairing. For P 2 EŒn� and Q 2 E.L/

(representing a class modulo nE.L/ ), P , Q ¤ O and P ¤ Q , let fP be
monic at O such that div.fP / D nŒP � � nŒO� . �en

(12) eTn .P;Q/ D
fP .Q/

lc.fP /
I

if fP is chosen monic as in De�nition 2,

eTn .P;Q/ D fP .Q/:

For one or both of P and Q equal to O , one has eTn .P;Q/ D 1 . If P D Q ,
one may choose some point R 2 E.L/ such that nR 62 ¹O;�Qº , if it exists, and
replace Q by QC nR .

Proof of equivalence of the two de�nitions: Letting DQ D ŒQ� � ŒO� , so
that fDQ D fQ , and DP D ŒP C R� � ŒR� so that DP and DQ have
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disjoint supports and fDP D fPh
n for the function h , monic at O , with

div.h/ D ŒP CR� � ŒP � � ŒR�C ŒO� , we immediately obtain

fDP .DQ/ D
.fPh

n/.Q/

.fPhn/.O/
D
fP .Q/h

n.Q/

lc.fP /
D
fP .Q/

lc.fP /

up to n -th powers. �
Unlike the Weil pairing, the Tate pairing is neither alternating nor identically 1

on the diagonal (which is hardly surprising given that its two arguments live in
di�erent sets). On single n -torsion points P , it may or may not hold that
eTn .P; P / D 1 .

�e de�nition of the domain of the Tate pairing as a quotient group is unwieldy
in cryptographic applications, where unique representatives of pairing results are
desired. It can be remedied by observing that L� is a cyclic group of order
#L � 1 D qk � 1 , which is divisible by n ; so the map

L�=.L�/n ! �; x 7! x
qk�1
n

is an isomorphism with the n -th roots of unity � , and the reduced Tate pairing

(13) eT
0

n W EŒn� �E.L/=nE.L/! �; .P;Q/ 7! eTn .P;Q/
qk�1
n D fP .Q/

qk�1
n

(for P , Q ¤ O , P ¤ Q ) is an equivalent pairing with the same properties as
the Tate pairing itself.

It is not generically possible to similarly replace the set E.L/=nE.L/ from
which the second argument is taken by EŒn� . As an abelian group, E.L/
is isomorphic to Z=r1Z � Z=r2Z with n j r1 j r2 , and E.L/=nE.L/ '

Z=nZ � Z=nZ . Consider the homomorphism

 W E.L/=nE.L/! EŒn�; Q 7!
r2

n
Q:

�is homomorphism is injective (and thus an isomorphism by cardinality consid-
erations) if and only if gcd

�
r2
r1
; n
�
D 1 . A su�cient (but not necessary) condition

is that gcd
�
r2
n
; n
�
D 1 , or equivalently gcd

�
#E.L/
n2

; n
�
D 1 ; this is often satis�ed

in cryptography, where n is a large prime. �en the function

e W EŒn� �EŒn�! �; .P;Q/ D fP .Q/
qk�1
n

satis�es e.P;Q/ D eT
0

n .P;  
�1.Q//

r2
n , and since powering by r2

n
induces a

permutation on � , it inherits the properties of the reduced Tate pairing.
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5. Computation

�e main ingredients of the Weil and the Tate pairings are functions with
given divisors; an algorithm computing them is published in [Mil] and has become
known as Miller’s algorithm. �e basic idea is to have the tangent-and-chord law
of §2.1 not only reduce a sum of two points to only one point, but at the same
time output the lines that have served for the reduction. Applied iteratively, it thus
reduces a principal divisor to 0 and returns the function having this divisor as a
quotient of products of lines. �e algorithm is applicable to any principal divisor,
but we only present it for the case of nŒP ��nŒO� where P is an n -torsion point,
which can be used for computing the Weil pairing via (8) and the (reduced) Tate
pairing via (10) or (12) and (13).

De�nition 11. For i 2 Z , let fi;P be the function (monic at O ) with divisor
i ŒP � � ŒiP � � .i � 1/ŒO� .

�e function fi;P exists by �eorem 1. Notice that f1;P D 1 and fn;P D fP .
�e tangent-and-chord law, applied to iP and jP , shows that

(14) fiCj;P D fi;Pfj;P
`iP;jP

v.iCj /P

with ` , v de�ned as in (2), (1) for i 6� �j .mod n/ , `iP;.n�i/P D viP and
vO D 1 . Moreover,

f�i;P D
1

fi;P viP
:

�ese observations yield the following algorithm:

Algorithm 12. Input: An integer n and an n -torsion point P
Output: ` and v , products of lines, such that fP D `

v

(a) Compute an addition-negation chain r1; : : : ; rs for n , that is, a sequence of
integers such that r1 D 1 , rs D n and each element ri is either

� the negative of a previously encountered one: �ere is 1 � j.i/ < i

such that ri D �rj.i/ ; or

� the sum of two previously encountered ones: �ere are 1 � j.i/ �

k.i/ < i such that ri D rj.i/ C rk.i/ .

(b) P1  P , L1  1 , V1  1
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(c) for i D 2; : : : ; s
j  j.i/; k  k.i/

if ri D �rj
Pi  �Pj

Li  Vj

Vi  Lj vPi
else

Pi  Pj C Pk
Li  LjLk`Pj.i/;Pk.i/
Vi  VjVkvPi

(d) return ` D Ls , v D Vs

�roughout the loop, we have Pi D r.i/P and Li
Vi
D fr.i/;P , which proves

the correctness of the algorithm. �e numerator ` and the denominator v are
computed separately to avoid costly divisions in a direct computation of fP .
Memory handling of the algorithm is simpli�ed if the standard double-and-add
addition chain is used, in which ri D 2ri�1 or ri D ri�1 C 1 , so that the result
can be accumulated in two variables ` and v , see [Gal, Alg. IX.1].

For a reasonable addition-negation-chain of length s 2 O.logn/ , the algorithm
carries out O.logn/ steps. Unfortunately, the degrees of Li and Vi grow
exponentially to reach O.n/ . �is problem can be solved in two ways: Instead
of storing Li and Vi as dense polynomials, store them in factored form as a
product of lines. �is may make sense if several pairings with the same P are
computed.

Otherwise, if fP .E/ is sought for a divisor E , one may compute directly
Li .E/ and Vi .E/ during the loop, thus manipulating only elements of the �nite
�eld L ; one should then separate again according to the points with positive
or negative multiplicity in E to avoid divisions. �is approach fails when E

contains any of the points Pi D r.i/P encountered during the algorithm, which
will then be zeroes of some of the lines. �e solution given in [Mil] is to work
with the leading coe�cients of the lines with respect to their Laurent series
in local parameters associated to the points in the support of E (analogously
to De�nition 2). Alternatively, one might regroup quotients of consecutive lines
having Pi as zeroes and replace them (by working modulo the curve equation)
by a rational function that is de�ned and non-zero at Pi . Both approaches are
not very practical, since they replace simple arithmetic in a �nite �eld by more
complicated symbolic algebra. A simpler technique is to replace the divisor E by
an equivalent divisor not containing any of the Pi in its support, and using (9)
and (10); the price to pay is that E then contains at least two points instead of only
one in (8) and (12). Concerning the Tate pairing, since the second argument Q
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is de�ned only up to n -th multiples, one may replace it by Q C nR for some
point R . Finally, one may simply use an addition-negation chain avoiding the
support of E . Since any addition chain necessarily passes through 2 , it may be
necessary to use negation if E contains 2P in its support.

�e reduced Tate pairing (13) is usually faster to compute than the Weil
pairing (8): It requires only one instead of two applications of Algorithm 12. On
the other hand, the advantage is partially lost through the �nal exponentiation in
the reduced Tate pairing.

6. Pairings on cyclic subgroups

All supposedly hard problems on which pairing-based cryptographic primitives
rely can be broken by computing discrete logarithms arbitrarily in EŒn� or the
group � of n -th roots of unity in the embedding �eld L . So algorithms using
Chinese remaindering for discrete logarithms imply that n being prime is the best
choice. We then follow a convention often found in the literature on pairings and
use the letter r in the place of n . �en EŒr� is a group of order r2 isomorphic
to Z=rZ�Z=rZ . For the sake of security proofs, it may be desirable to restrict
the Weil and reduced Tate pairings to subgroups, yielding pairings

e W G1 �G2 ! � � L

on cyclic groups Gi � EŒr� of prime order r . In practice, there is no de�nite
need for such a restriction: �e choice of points when executing the protocol (for
instance, by hashing into EŒr� ) implicitly de�nes cyclic subgroups Gi generated
by these points; but the subgroups change with each execution of the algorithm.
Notice, however, that some optimised pairings (see §7) can only be de�ned on
speci�c subgroups, which are reviewed in the following. An exhaustive description
of the cryptographic properties of di�erent subgroups is given by Galbraith,
Paterson and Smart in [GPS]. We retain their classi�cation into type 1, 2 and 3
subgroups and pairings and concentrate on the main characteristics of the di�erent
choices.

For the sake of computational e�ciency in Algorithm 12, it is desirable
that G1 and G2 be de�ned over �elds that are as small as possible. So the
curve E.K/ is chosen such that r j #E.K/ , and G1 is generated by a point
of order r de�ned over K . As usual in cryptography, we assume that k � 2 .
�en G1 is de�ned uniquely as E.K/Œr� , and the pairing types di�er in their
selection of G2 . An important cryptographic property that may or may not
be given is hashing into the di�erent groups, or the (essentially equivalent)
possibility of random sampling from the groups. It is a trivial observation that if
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H W ¹0; 1º� ! ¹0; : : : ; r � 1º is a collision-resistant hash-function and Gi D hPi i ,
then Hi W ¹0; 1º� ! Gi , m 7! H.m/Pi , is also collision-resistant. But Hi reveals
discrete logarithms, which breaks most pairing-based cryptographic primitives. A
comparatively expensive way of hashing into G1 is to �rst hash into a point on
E.K/ (by hashing to its X - or Y -coordinate and solving the resulting equation
for the other coordinate; if no solution exists, one needs to hash the message
concatenated with a counter that is increased upon each unsuccessful trial). One
may then multiply by the cofactor h D #E.K/

r
, which yields a point in G1 . A

similar procedure hashes to arbitrary r -torsion points in E.L/ , but these need
not lie in a �xed subgroup G2 .

6.1. Type 1: G1 D G2 . Most of the early papers on pairing-based cryptography
are formulated only for the case of a symmetric pairing, in which G2 D G1 .
However, it is in fact not possible to simply choose the arguments of the pairings
of §§3 and 4 from G2 D G1 , since then the pairing becomes trivial. �is is
clear for the Weil pairing from �eorem 7(b), but also holds for the reduced Tate
pairing: Algorithm 12 implies that the result lies in the �eld K over which both
arguments are de�ned, but K\� D ¹1º . A symmetric pairing may be obtained for
supersingular curves with a so-called distortion map, an explicit monomorphism
 W E.K/Œr� ! EŒr�nG1 . �e non-degeneracy of the Weil pairing then implies
that

e W G1 �G1 ! �; .P;Q/ 7! er .P;  .Q//

is also a non-degenerate pairing; the same usually holds for the reduced Tate
pairing.

Algebraic distortion maps cannot exist for ordinary elliptic curves, whose
endomorphism rings are abelian. �en  would be an endomorphism and it
would commute with the Frobenius, so the image of G1 � E.K/Œr� would again
lie in E.K/ and thus be equal to G1 .

Conversely, supersingular elliptic curves have a non-abelian endomorphism
ring, and it has been shown by Galbraith and Rotger in [GR, �. 5.2] that they
always admit an algebraic distortion map coming from the theory of complex
multiplication (cf. [Deu]) as long as r � 5 ; the same article describes an algorithm
for explicitly determining such a map. It is well-known that supersingular curves
with k D 2 admit particularly simple distortion maps, namely,

(15)  .x; y/ D .�x; iy/

for E W Y 2 D X3 CX over Fp with p � 3 .mod 4/ and

(16)  .x; y/ D .�3x; y/
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for E W Y 2 D X3 C 1 over Fp with p � 5 and p � 2 .mod 3/ , where �3 and i

are primitive third and fourth roots of unity, respectively, in Fp2 .
If the X -coordinate of  is de�ned over K (for instance, in (15), but not in

(16)), it is observed in [BKLS] that the computation of the reduced Tate pairing

e.P;Q/ D eT
0

n

�
P; .Q/

�
D fP

�
 .Q/

� qk�1
r by (13)

can be simpli�ed by omitting denominators. Indeed, notice that if a pure addition
chain (without subtractions) is used, the denominator v returned by Algorithm 12
is a polynomial in KŒX� not involving Y ; since X. .Q// 2 K , the value v.Q/
disappears through the �nal exponentiation.

�e main drawback of type 1 pairings is the lack of �exibility of the embedding
degree k : Since it is limited to supersingular curves, we have k � 2 for curves
over �elds of characteristic at least 5 , k � 4 over �elds of characteristic 2 and
k � 6 over �elds of characteristic 3 by [Wat, �eorem 4.1].

6.2. Type 2: G2 ,! G1 . �e pairing is of type 2 when there is an e�ciently
computable monomorphism � from G2 to G1 . In some sense, this is the converse
of type 1, where there is a non-trivial monomorphism from G1 into another r -
torsion group. �is case, however, is essentially the generic one and available
in supersingular and ordinary curves alike. Let � W .x; y/ 7! .xq; yq/ be the
Frobenius endomorphism related to the �eld extension L=K D Fqk=Fq . �en
K.E/ is �xed by � or, otherwise said, G1 are the r -torsion points that are
eigenvectors under � with eigenvalue 1 . Hasse’s theorem then implies that the
r -torsion of E is generated by one point P with eigenvalue 1 and another point
Q with eigenvalue q . We now consider the trace de�ned as a map on points by

Tr W E.L/! E.K/; R 7!

k�1X
iD0

R�
i

:

Since the trace of a point is invariant under � , it is indeed a point de�ned over
K . We have Tr.P / D kP ¤ O in a cryptographic context, where r is much
bigger than k , and Tr.Q/ D Q C qQ C � � � C qk�1Q D qk�1

q�1
Q D O since the

order r of Q divides qk � 1 , but not q � 1 . If R is any r -torsion point, then
R D aP C bQ , Tr.R/ D akP and Q0 WD kR � Tr.R/ D kbQ 2 hQi . Unless
R 2 hP i , in which case Q0 D O , the element Q0 is thus a generator of hQi ,
which can be found e�ciently by a randomised algorithm.

Let R be an arbitrary r -torsion point that is a pure multiple of neither P nor
Q (which can be checked using the Weil pairing; in practice, a random r -torsion
point satis�es this restriction with overwhelming probability). Let G2 D hRi , and
� D Tr.
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�e existence of � reduces problems (for instance, the discrete logarithm
problem or the decisional Di�e–Hellman problem) de�ned in terms of G2 into
problems de�ned in terms of G1 , which may be helpful for reductionist security
proofs. But as usual, the existence of additional algebraic structures (here, the map
� ) raises doubts as to the introduction of a security �aw. Furthermore, hashing or
random sampling in G2 appears to be impossible, except for the trivial approach
revealing discrete logarithms. Recent work by Chatterjee and Menezes [CM]
introduces a heuristic construction to transform a cryptographic primitive in the
type 2 setting, together with its security argument, into an equivalent type 3
primitive. �us, type 2 pairings should probably be avoided in practice.

6.3. Type 3. �e remaining case where there is no apparent e�ciently com-
putable monomorphism G2 ! G1 is called type 3. In view of the discussion of
§6.2, this implies that

G2 D
®
R 2 EŒr� W R� D qR

¯
D
®
R 2 EŒr� W Tr.R/ D O

¯
:

�e previous discussion has also shown how to �nd a generator of G2 . Hashing
into G2 may be accomplished in a similar manner: Hash to an arbitrary point
R 2 EŒr� , and de�ne kR � Tr.R/ as the �nal hash value.

7. Loop-shortened pairings

Subsequent work has concentrated on devising pairings with a shorter loop in
Algorithm 12, generally starting from the Tate pairing (12). It turns out that in
certain special cases,

e.P;Q/ D f�;P .Q/ or e.P;Q/ D f�;Q.P /

de�ne non-degenerate, bilinear pairings for �� n with f�;P as in De�nition 11.
�e proof proceeds by showing that the pairing is the M -th power of the original
Tate pairing for some M prime to n . Cryptographic applications may then directly
use the new pairing, or, for the sake of interoperability, the Tate pairing may be
retrieved by an additional exponentiation with M�1 mod n . �e �rst such pairing,
called � pairing, was described by Barreto, Galbraith, Ó’hÉigeartaigh and Scott
in [BGOS]. It was limited to supersingular curves and thus yielded a type 1
pairing (see §6.1). �e examples in [BGOS] show that � �

p
n is achievable in

supersingular curves over �elds of characteristic 2 and 3 .
In the remainder of this section, we �x the same setting as in §6. In particular,

n D r is prime. All pairings will be de�ned on G1 �G2 , where G1 D E.K/Œr�
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and G2 is the set of r -torsion points de�ned over L D Fqk with eigenvalue q
under the Frobenius � W .x; y/ 7! .xq; yq/ . �is is crucial for the proofs, and
incidentally leads to type 3 pairings.

Lemma 13. Let P 2 EŒn� . If N is such that n j N j qk � 1 , then

fN;P D f
N=n
n;P :

If N is such that n j N , then

fNC1;P D fN;P :

Both properties hold by de�nition; the �rst one was used in [GHS, §6] to
speed up the computation by replacing r with a small multiple of low Hamming
weight.

7.1. Ate pairing. �e ate pairing (short for “loop-shortened Tate pairing”) is
de�ned in [HSV, �eorem 1] as

(17) eAr W G1 �G2 ! L�=.L�/r ; .P;Q/ 7! fT;Q.P /

with T D t � 1 , where t is the trace of Frobenius satisfying #E.K/ D qC 1� t .

�eorem 14. eAr is bilinear, and if r2 − T k � 1 , it is non-degenerate. More
precisely, �

eAr .P;Q/
�kqk�1

D eTr .Q;P /
Tk�1
r :

For the ate pairing and all other pairings presented in the following, a reduced
variant with unique values in � � L� is obtained as in (13) by raising to the
power qk�1

r
.

Proof of �eorem 14: �e crucial step is the observation that for any � ,

f�;T iQ ı �
i
D f�;qiQ ı �

i since T � q .mod r/
D f�;�i .Q/ ı �

i since Q 2 G2

D f
qi

�;Q
;(18)

since the coe�cients of the rational function f�;Q can be expressed in the
coe�cients of Q and of the curve, and the latter lie in Fq .

In particular for P 2 G1 and � D T , fT;T iQ.P / D f
qi

T;Q.P / .
�en
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eTr .Q;P /
Tk�1
r D f

Tk�1
r

r;Q .P / D fT k�1;Q.P / by Lemma 13

D fT k ;Q.P / by Lemma 13 since T k � 1 � qk � 1 � 0 .mod r/

D

k�1Y
iD0

f T
k�1�i

T;T iQ
.P / by comparing divisors and collapsing

the telescopic sum

D f
Pk�1
iD0 T

k�1�iqi

T;Q .P / by (18)

D eAr .P;Q/
kqk�1 in L�=.L�/r ; since T � q .mod r/:

�
By Hasse’s theorem, T 2 O.

p
q/ , so that the number of operations in

Algorithm 12 drops generically by a factor of about 2 ; the e�ect can, however, be
much more noticeable for certain curves. For instance, [FST] describes a family
of curves for k D 24 with r 2 ‚.q4=5/ and T 2 O.q1=10/ D O.r1=8/ . Notice
that 8 D �.24/ , cf. §7.3. A price to pay is that the arguments P and Q are
swapped: �e elliptic curve operations need to be carried out over Fqk instead
of Fq . (Algorithm 12 in this context is sometimes called “Miller full”, while the
more favourable situation is called “Miller light”.)

7.2. Twisted ate pairing. �e twisted variant of the ate pairing keeps the usual
order of the arguments, but sacri�ces on the loop length.

Assume charFq � 5 , and let d D gcd.k; #Aut.E// and e D k
d
. �en there

is a twist E 0 of degree d of E , that is, a curve E 0 de�ned over Fq with an
isomorphism  W E 0 ! E , which is de�ned over Fqd . It can be given explicitly
as follows for E W Y 2 D X3CaXCb in short Weierstraß form, see [Sil1, §X.5.4]:

d D 2 W E 0 W Y 2 D X3 CD2aX CD3;  .x; y/ D
�
Dx;
p
D3y

�
I

d D 4 W E 0 W Y 2 D X3 CDaX;  .x; y/ D
�p

Dx;
4
p
D3y

�
I

d 2 ¹3; 6º W E 0 W Y 2 D X3 CDb;  .x; y/ D
�
3
p
Dx;
p
Dy

�
I

where D is a non-square in Fq for d 2 ¹2; 4º , a non-cube and square for d D 3 ,
and a non-cube and non-square for d D 6 . �e formulæ make sense since for
d D 4 , we have b D 0 and q � 1 .mod 4/ , while for d 2 ¹3; 6º , we have
a D 0 and q � 1 .mod 3/ . Up to isomorphism over Fq , the twist is unique
for d D 2 , and there are two di�erent ones for d 2 ¹3; 6º (such that gD or
g2D , respectively, is a cube for g a generator of F�q ) and d D 4 (such that
gD or g3D , respectively, is a fourth power). One can then show, see [HSV,
§§4-5], that besides E itself there is a unique twist E 0 of E , de�ned over Fqe ,
such that r j #E 0.Fqe / . (�is uses that r2 − #E.Fq/ .) If G02 D E 0.Fqe /Œr� , then
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G2 D  .G02/ . In particular, the X -coordinates of the points in G2 lie in Fqk=2
for d even, and the Y -coordinates lie in Fqk=3 for 3 j d .

�e twisted ate pairing of [HSV, §VI] is de�ned by

(19) e
QA
r W G1 �G2 ! L�=.L�/r ; .P;Q/ 7! fT e ;P .Q/:

Let � 0 W .x; y/ 7! .xq; yq/ be the Frobenius of E 0 , and let the endomorphism ˛

of E be de�ned as ˛ D  ı .� 0/e ı �1 . �en ˛jG2 D ˛j .G02/ D id , ˛d jG1 D id ,
and thus ˛.G1/ � G1 . Since  is an isomorphism and deg..� 0/e/ D qe , this
implies that ˛jG1 is multiplication by qe . So ˛ behaves similarly to the Frobenius
endomorphism, but with the roles of G1 and G2 reversed and of degree qe

instead of q : G2 is the eigenspace of eigenvalue 1 , and G1 is the eigenspace
of eigenvalue qe . �e same proof as for �eorem 14 thus carries through after
replacing � by ˛ , q by qe , T by T e and k by d .

�eorem 15. e QAr is bilinear, and if r2 − T k � 1 , it is non-degenerate. More
precisely, �

e
QA
r

�dqe.d�1/
D
�
eTr
�Tk�1

r :

Generically, one has T e D T k=d 2 O
�
qk=.2d/

�
; as soon as k > 2d , so

certainly for k > 12 , the loop becomes larger than for the standard Tate pairing,
which has the same order of arguments.

7.3. Optimal pairings. �e discovery of the ate pairing based on a function
f�;Q , where � D T is not a multiple of the order of Q , raised the question
of further possible values for � , and on the possibility of minimising the loop
length log2 � . (Strictly speaking, the loop length in Algorithm 12 depends on the
addition-negation chain; blog2 �c measures the number of doublings in a standard
double-and-add chain.)

For i D 1; : : : ; k�1 , Zhao, Zhang and Huang de�ne in [ZZH] the ate i pairing
by

(20) eAir W G1 �G2 ! L�=.L�/r ; .P;Q/ 7! fT i mod r;Q.P /:

For a curve with an automorphism of order d j k and e D k
d
, a twisted version

may be de�ned for i D 1; : : : ; d � 1 as

e
QAi
r W G1 �G2 ! L�=.L�/r ; .P;Q/ 7! fT ei mod r;P .Q/:

�eir bilinearity and non-degeneracy (if r2 − T ik0 , where k0 D k
gcd.k;i/ is the

order of T i modulo r ) is proved as in �eorems 14 and 15, after replacing �

by � i or � 0 by .� 0/i , respectively.
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In [LLP], for the �rst time two such pairings were combined: If t1 D t0�1C�0
and ft0;Q and ft1;Q de�ne powers of the Tate pairing eTr .Q;P / , then so does

(21) f�1;t0Qf�0;Q
`t0�1Q;�0Q

vt1Q
;

called the R-ate pairing. �e proof relies on the equation

(22) ft0�1;Q D f
�1
t0;Q

f�1;t0Q;

which is readily veri�ed by comparing divisors, so that (21) equals the pairing-
de�ning function ft1;Q

f
�1
t0;Q

by (14). Non-degeneracy holds as soon as the exponent

with respect to the Tate pairing, readily computed from the previous equation,
is not divisible by r . �e added loop length in the computation of (21) is
log2.�1/Clog2.�0/ . Since the computation of f�1;t0Q and f�0;Q by Algorithm 12
�nishes with t0�1Q and �0Q , the correction factor is obtained as the quotient of
lines from adding these last two points. Additionally, t0Q needs to be computed
(which can be done in parallel with Algorithm 12 for f�0;Q if an addition-negation
sequence passing through both �0 and t0 is used), and an exponentiation with �1
is needed, which will usually be negligible compared to the �nal exponentiation
for obtaining reduced pairings.

Several examples of curve families are given in [LLP] with t0 , t1 a power
of T and �0 , �1 2 O

�
r1=�.k/

�
. �at this is no coincidence has been shown

by Heß in [Hes1] and Vercauteren in [Ver], who de�ned more general pairing
functions, leading to a notion of optimality that reaches this quantity O

�
r1=�.k/

�
.

7.3.1. Heß pairings.

�eorem 16 ([Hes1], �eorem 1). Let t D
Pdeg t
iD0 tiY

i 2 ZŒY � , and let y be a
primitive k -th root of unity modulo r2 such that r j t .y/ . Let ft;y;Q be the
function, monic at O , such that

(23) div.ft;y;Q/ D
deg tX
iD0

ti
�
ŒyiQ� � ŒO�

�
:

�en the Heß pairing

(24) eHr W G1 �G2 ! L�=.L�/r ; .P;Q/ 7! ft;y;Q.P /;

is bilinear and, if r2 − t .y/ , non-degenerate.

Proof. Let t .y/ D rL , and rewrite (23) as
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div.ft;y;Q/ D
deg tX
iD0

tiy
i ŒQ� �

deg tX
iD0

ti
�
yi ŒQ� � ŒyiQ�

�
�

� deg tX
iD0

ti C 1
�
ŒO�;

which implies that

ft;y;Q D f
L
r;Q

deg tY
iD0

�
fyi ;Q

��ti :
Since q is a primitive k -th root of unity modulo r , we have y � qj .mod r/ for
some j , and yi � qij .mod r/ . �e same proof as for the ate (or ate i ) pairing,
with yi in the place of T and � ij in the place of � , shows that

f
kqk�1

yi ;Q
.P / D eTr .Q;P /

yik�1
r D 1 since r2 j yk � 1:

Since r − kqk�1 , we have fyi ;Q.P / D 1 . So eHr D .eTr /
L is bilinear, and

non-degenerate for r − L .

Remark 17. �e condition that y be a primitive k -th root of unity modulo r2 is
clearly not necessary. If y is a root of unity modulo r , then the previous proof
carries through, showing that eHr is bilinear. More precisely, .eHr /kq

k�1
D .eTr /

N

with

N D kqk�1
t .y/

r
�

deg tX
iD0

ti
yik � 1

r
D
1

r

�
kqk�1t .y/ �

�
t .yk/ � t .1/

��
;

so that eHr is non-degenerate if and only if r − kqk�1t .y/ �
�
t .yk/ � t .1/

�
. �is

should hold with overwhelming probability. For instance, one can usually choose
y D T D q mod r .

Since y is a k -th root of unity modulo the order r of Q , any function
as in (23) is realised by a polynomial t of degree at most �.k/ � 1 . �ose
with a root at y modulo r can be seen as elements of the Z -lattice with basis
r; Y � y; Y 2 � .y2 mod r/; : : : ; Y �.k/�1 � .y�.k/�1 mod r/ of dimension �.k/ and
determinant r . For �xed dimension, the Lenstra–Lenstra–Lovász (LLL) lattice
basis reduction algorithm [LLL] �nds an element t of degree at most �.k/ � 1
and with jti j 2 O

�
r1=�.k/

�
.

�ere is a twisted variant of the Heß pairing: If E has a twist of order d j k
and e D k

d
, y is a d -th root of unity modulo r and r j t .y/ , then

e
QH
r W G1 �G2 ! L�=.L�/r ; .P;Q/ 7! ft;y;P .Q/

de�nes a bilinear pairing that is non-degenerate if y is a primitive d -th root
of unity modulo r2 or, more generally, if r2 − dqe.d�1/t .y/ �

�
t .yd / � t .1/

�
.
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Using LLL, one obtains a polynomial of degree less than �.d/ and with
jti j 2 O

�
r1=�.d/

�
. �e only cases of interest are d 2 ¹3; 4; 6º , for which �.d/ D 2 .

Even then, there is only a constant gain in the loop length that does not increase
with k , so that asymptotically, the Heß pairing will be preferred to its twisted
version. Finally, [Hes1] also contains an optimal version of the Weil pairing.

To see whether (24) can be computed e�ciently, let Ri D yiQ , si DPi
jD0 tjy

j and Si D siQ D
Pi
jD0 tjR

j for i � 0 and s�1 D 0 and S�1 D O .
�en (24) can be rewritten as

deg tX
iD0

ti
�
ŒRi � � ŒO�

�
D

deg tX
iD0

div.fti ;Ri /C
deg tX
iD0

.ŒtiRi � � ŒO�/

D

deg tX
iD0

div.fti ;Ri /C
deg tX
iD0

�
ŒSi � � ŒSi�1�C div

�`Si�1;tiRi
vSi

��
and

ft;y;Q D

deg tY
iD0

fti ;Ri

deg tY
iD0

`Si�1;tiRi
vSi

:

�e precomputation of the Ri by deg t � 1 scalar multiplications can already be
rather costly. As tiRi is a sideproduct of the computation of fti ;Ri , each quotient
of two lines comes out of a point addition on E.L/ . But by computing each fti ;Ri
separately via Algorithm 12, the factor �.k/ gained in the loop length is lost
again through the number of evaluations. So while it is shown in [Hes1, Lemma 1]
that the Heß pairing uses a function of relatively low degree in O

�
r1=�.k/

�
, it is

unclear whether this function can always be evaluated in log2.r/
�.k/

steps or a very
small multiple thereof.

7.3.2. Vercauteren pairings. If one removes the condition that y be a primitive
k -th root of unity modulo r2 in the Heß pairing, one may let y D q under the
conditions of Remark 17, a special case considered independently by Vercauteren in
[Ver]. �en the Ri may be computed by successive applications of the Frobenius
map, and moreover,

fti ;Ri .P / D fti ;qiQ.P / D f
qi

ti ;Q
.P / by (18):

�ese functions have the advantage of being computed by Algorithm 12 with
respect to the same base point Q . By choosing an addition-negation sequence that
passes through all the ti , they may thus be obtained at the same time. Currently
known algorithms compute such sequences with log2N C�.k/O

�
logN

log logN

�
steps,
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where N D max jti j , for instance by [Yao]. �is shows that, up to the minor factor
log logN , again the gain of �.k/ in the loop lengths is o�set by the number of
functions. One should notice, however, that better addition sequences can often
be found in practice. Moreover, coe�cients occurring in a pairing context are
far from random, but exhibit arithmetic peculiarities, as illustrated in the next
paragraph.

7.3.3. Optimal pairings on curve families. Elliptic curves suitable for pairing-
based cryptography, that is, with a small embedding degree k , are extremely rare
among all elliptic curves, see [Box]. An excellent survey article on the problem
of �nding good parameter combinations is [FST], so there is no need to give
any details here. Starting with the article by Brezing and Weng [BW], work has
concentrated on �nding families of curves parameterised by polynomials. For
�xed k , these are given by p.X/ , r.X/ and u.X/ 2 ZŒX� satisfying arithmetic
properties so that if x0 2 Z such that p.x0/ is prime, then there is an elliptic
curve over Fp.x0/ with trace of Frobenius u.x0/ and a subgroup of order r.x0/
of embedding degree k . Concrete instances are thus given whenever p.X/ and
r.X/ simultaneously represent primes. In practice, one has deg.p.X// D �.k/

or 2�.k/ , and the polynomials tend to have small and arithmetically meaningful
coe�cients (for instance, they are often divisible by prime factors of k ).

As an example, Freeman gives a family in [Fre, �eorem 3.1] for k D 10 with

p.X/ D 25X4 C 25X3 C 25X2 C 10X C 3;

u.X/ D 10X2 C 5X C 3;

r.X/ D 25X4 C 25X3 C 15X2 C 5X C 1:

To construct optimal pairings, one may now work directly with polynomials
instead of integers, looking for short vectors in the ZŒX� -lattice with basis

r.X/; Y � y.X/; Y 2 �
�
y.X/2 mod r.X/

�
; : : : ; Y �.k/ �

�
y.X/�.k/ mod r.X/

�
:

In Heß’s construction of §7.3.1, y.X/ is hereby a primitive k -th root of unity
modulo r.X/2 ; notice that r.X/ is necessarily irreducible since it represents
primes.

For Vercauteren’s specialisation of §7.3.2, one has y.X/ D p.X/ , and the
above family leads to a short vector (see [Ver, §IV.B])

t .Y / D XY 3 CXY 2 �XY � .X C 1/:

�is means that whenever p.x0/ and r.x0/ are prime for some x0 2 Z , then we
obtain a curve and an optimal pairing in which the computation of the fti .x0/;Q
boils down to fx0;Q . Notice that x0 � r.x0/1= deg r.X/ D r.x0/1=�.10/ , and in this
family, the gain of a factor of �.k/ in each invocation of Algorithm 12 leads
indeed to a corresponding speed-up in the complete function evaluation.
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