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In search for a perfect shape of polyhedra:
Bu�on transformation

Veronika Schreiber, Alexander P. Veselov and Joseph P. Ward

Abstract. For an arbitrary polygon generate a new one by joining the centres of consecutive
edges. Iteration of this procedure leads to a shape which is a�ne equivalent to a regular
polygon. �is regularisation e�ect is usually ascribed to Count Bu�on (1707–1788). We
discuss a natural analogue of this procedure for 3-dimensional polyhedra, which leads to
a new notion of a�ne B -regular polyhedra. �e main result is the proof of existence
of star-shaped a�ne B -regular polyhedra with prescribed combinatorial structure, under
partial symmetry and simpliciality assumptions. �e proof is based on deep results from
spectral graph theory due to Colin de Verdière and Lovász.
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1. Introduction

According to David Wells [Well] the following puzzle �rst appeared in Edward
Riddle’s edition (1840) of the Recreations in Mathematics and Natural Philosophy
of Jacques Ozanam, where it was attributed to Count Bu�on (1707–1788), a French
naturalist and the translator of Newton’s Principia.

Consider an arbitrary polygon. Generate a second polygon by joining the
centres of consecutive edges. Repeat this construction (see Fig. 1).
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Figure 1
Iterations of Bu�on transformations
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It is easy to see that the process converges to a point – the centroid of the
original vertices (and therefore the centroid of the vertices of any polygon in the
sequence). Bu�on observed a remarkable regularization e�ect of this procedure:
the limiting shape of the polygon is a�ne regular. Here a polygon is called a�ne
regular if it is a�ne equivalent to a regular polygon.

In fact a similar phenomenon was already observed since Roman times. When
creating mosaics Roman craftsmen achieved more regular pieces by breaking the
corners, so e�ectively using the same procedure [Mos]. �e explanation of Bu�on
puzzle is based on simple arguments from linear algebra, see, e.g., [BGS, War1]
and next section.

�e situation here is di�erent from the theory of the pentagram map, initiated
by R. Schwartz in 1990s and extensively studied in recent years, where the
dynamics is nonlinear, quasi-periodic and integrable in Arnold-Liouville sense
(see [KS, OST] and references therein).

In this paper we will study the following natural 3-dimensional version of the
Bu�on procedure [VW]. Let P be a simplicial polyhedron in R3 , which is a
polyhedron having all faces triangular. De�ne its Bu�on transformation B.P / as
the simplicial polyhedron with vertices B.v/ , where for each vertex v of P the
new vertex B.v/ is de�ned as the centroid of the centroids of all edges meeting
at v: �e question is what is the limiting shape of Bn.P / as n goes to in�nity.

Unfortunately, the answer in general is disappointing: the limiting shape will
be one-dimensional. Indeed the same arguments from linear algebra show that this
shape is determined by the subdominant eigenspace of the corresponding operator
on the graph �.P / , which is the 1-skeleton of P (see the details below), and
this eigenspace generically has dimension 1. �is means that in order to have a
sensible limiting shape we need to add some assumptions on the initial polyhedron
P:

Let G � O.3/ be one of the symmetry groups G D T;O; I of the Platonic
solids: tetrahedron, octahedron/cube, icosahedron/dodecahedron respectively. As-
sume that the combinatorial structure of the initial polyhedron P is G -invariant,
which means that G faithfully acts on the graph �.P /:

Our main result is the following theorem.

�eorem 1. Let P be a simplicial polyhedron in R3 with G -invariant combina-
torial structure. �en for a generic P the limiting shape obtained by repeatedly
applying Bu�on procedure to P is a star-shaped polyhedron PB : �e vertices
of PB are explicitly determined by the subdominant eigenspace of the Bu�on
operator, which in this case has dimension 3.

�e proof is based on the deep results from the spectral theory on graphs due
to Colin de Verdière [CdV] and in particular due to Lovász et al [HLS, Lov1, LS],
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who studied the eigenspace realisations of polyhedral graphs. Both assumptions
of the theorem, namely simpliciality and platonic symmetry, are essential.

Recall that the polyhedron P is called star-shaped (not to be mixed with
star polyhedra like Kepler-Poinsot) if there is a point inside it from which one
can see the whole boundary of P , or equivalently, the central projection gives a
homeomorphism of the boundary of P onto a sphere. �e precise meaning of
the term “generic” will be clear from the next section.

Let us call polyhedron P a�ne B -regular if B.P / is a�ne equivalent
to P: In dimension 2 this is equivalent to a�ne regularity (see next section).
�us the Bu�on procedure produces a�ne B -regular version PB from a generic
polyhedron P with the above properties. As far as we know the notion of the
a�ne regularity for polyhedra with non-regular combinatorial structures was not
discussed in the literature before.

For a generic polyhedron P with combinatorial structure of a Platonic solid
the corresponding polyhedron PB is a�ne regular, which means that it is a�ne
equivalent to the corresponding Platonic solid. For the Archimedean and Catalan
solids however, this is no longer true, see the example of pentakis dodecahedron
(dodecahedron with pyramids build on its faces) on Fig. 2 and in the Appendix.

Figure 2
Leonardo da Vinci’s drawing of pentakis dodecahedron from Luca Pacioli’s book “De

divina proportione” and Mathematica image of its Bu�on realisation. Leonardo’s
version is di�erent both from Catalan and Bu�on realisations and probably corresponds

to the so-called cumulated dodecahedron having all the edges of equal length.
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Note that there are plenty of polyhedra P with G -invariant combinatorial
structures, which can be constructed from the Platonic solids using Conway
operations [Con]. In particular, one will have a simplicial polyhedron by applying
to any such P the operation, which Conway called kis and denoted by k ,
consisting of building the pyramids on all the faces. Many examples of the
corresponding combinatorial types can be found in chemistry and physics literature
in relation with the famous �omson problem, see, e.g., [Edm].

For non-simplicial polyhedra the Bu�on transformation usually breaks the
faces, which in general are not recovering even in the limit (see Fig. 8 in
Appendix B).

�e platonic symmetry keeps the limiting shape 3-dimensional, preventing
collapse to lower dimension. �e dihedral symmetry is not enough: one can
check that a polyhedron with prismatic combinatorial structure will collapse to
the corresponding a�ne regular polygon.

�e star-shape property of the limiting shape is probably the strongest we can
claim since the convexity may not hold as the example of the triakis tetrahedron
shows (see Fig. 7 in the Appendix).

�e structure of the paper is as follows. In Section 2 we start with the
(well-known) solution of the Bu�on puzzle for polygons to explain the main
ideas and relation to linear algebra. �en, in Section 3, we de�ne the Bu�on
transformation for polyhedra and review the classical Steinitz theorem which
gives graph-theoretical characterisation of 1-skeletons of convex polyhedra. In
Section 4 we introduce the main tools from spectral graph theory: the Colin
de Verdière invariant and null space realisation for polyhedral graphs studied by
Lovász et al. In Section 5 we use them and representation theory of �nite groups
to prove our main result. In Appendix A we present the character tables for the
polyhedral groups and the corresponding decomposition of the space of functions
on the vertices of Platonic solids into irreducible components. In Appendix B we
give the spectra of the Bu�on operators for some combinatorial types and the
corresponding shapes of a�ne B -regular polyhedra. Appendix B takes almost a
half of the paper, but we thought that it would be instructive to show all the
aspects of the Bu�on approach in various speci�c examples.

2. Bu�on transformation for polygons

Consider an arbitrary n -gon P with vertices described by the column vector

r D Œr1; r2; : : : ; rn� ; ri 2 R2
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(and an integer n � 3 ). Generate a second polygon P
0 by joining the centres

of the consecutive edges of P . �e corresponding transformation acts on the
vertices of P as follows:

r
0

i D
1

2
.ri C riC1/:

In matrix form this can be described as

r
0

D Br

where

B D

266664
1
2

1
2

0 : : : 0

0 1
2

1
2

: : : 0
:::

:::
:::

:::
:::

1
2

0 0 : : : 1
2

377775 :
After k transformations we obtain a polygon with the vertices

rk D Bkr:

Following Bu�on we claim that for generic initial polygons P the limiting shape
of the polygons P k as k increases becomes a�ne regular. Recall that a polygon
is a�ne regular if it is a�ne equivalent to a regular polygon.

To prove this we use the following result from Linear Algebra (see, e.g.,
�eorems 5.1.1, 5.1.2 in [Wat]).

�eorem 2 (Subspace Iteration �eorem). Let A be a real matrix and let
Spec.A/ D ¹�1; �2; : : : ; �nº be the set of its eigenvalues (in general, complex
and with multiplicities) ordered in such a way that

j�1j D j�2j D : : : D j�kj > j�kC1j � : : : � j�nj:

Let W and W 0 be the dominant and complementary invariant subspaces
associated with �1; : : : ; �k and �kC1; : : : ; �n respectively and m D dimW: �en
for any m -dimensional subspace U � Rn such that U \W 0 D ¹0º the image of
U under the iterations of A

An.U / !
n!1

W

tends to the dominant subspace in the Grassmannian Gm.Rn/ .

To apply this to our case �rst note that

B D
1

2
.I C T /;

where the n � n matrix
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T D

266664
0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

:::
:::

1 0 0 : : : 0

377775
has the property T n D I and the eigenvalues are n -th roots of unity. �e spectrum
of B is therefore

Spec.B/ D
°1
2
C
1

2
"j ; "j D e

2�i
n j ; j D 0; 1; : : : ; n � 1

±
:

�e eigenvalues of maximum modulus, other than �0 D 1 , are �1 D 1
2
C
1
2
e
2�i
n

and its complex conjugate �2 D 1
2
C

1
2
e�

2�i
n D �1 .

�e dominant subspace W in this case corresponds to �0 D 1 and is generated
by the corresponding eigenvector v0 D .1; 1; : : : ; 1/ :

W D
®
.r; r; : : : ; r/

¯
:

�e previous result can be interpreted that as n increases Bn.P / converges to
a point. To see the limiting shape we should look at the subdominant invariant
subspace corresponding to �1 and �2 .

Geometrically one can do this by assuming that the centroid of the vertices
is at the origin (centre of mass condition). �is means that we restrict the action
of B on the invariant subspace

VC D
®
.r1; : : : ; rn/ W r1 C � � � C rn D 0

¯
:

�is eliminates the eigenvalue �0 D 1 and the new dominant subspace W

corresponding to �1 D
1
2
C

1
2
"; �2 D �1 is precisely the one describing the

limiting shape. One can easily check that

W D h
0BBBBBBB@

1

"

"2

:

:

"n�1

1CCCCCCCA ;
0BBBBBBB@

1

"

"2

:

:

"n�1

1CCCCCCCA i D
8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
a

0BBBBBBB@

1

cos 2�
n

cos 4�
n

:

:

:

1CCCCCCCAC b
0BBBBBBB@

0

sin2�
n

sin4�
n

:

:

:

1CCCCCCCA

9>>>>>>>=>>>>>>>;
:

Choosing a and b to be orthogonal unit vectors we see that the corresponding
vertices form a regular polygon. In general, the dominant subspace W describes
all a�ne regular polygons. �e other eigenspaces correspond to the a�ne regular
“polygrams”.

For example, when n D 5 we have the eigenvalues
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�1 D
1

2
C
1

2
e
2�i
n ; �2 D �1; �3 D

1

2
C
1

2
e
4�i
5 ; �4 D �3

and the corresponding eigenspaces

W D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
a

0BBBBB@
1

cos 2�
5

cos 4�
5

cos 6�
5

cos 8�
5

1CCCCCAC b
0BBBBB@

0

sin2�
5

sin4�
5

sin6�
5

sin8�
5

1CCCCCA
9>>>>>=>>>>>;
;

W 0 D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
a

0BBBBB@
1

cos 4�
5

cos 8�
5

cos 2�
5

cos 6�
5

1CCCCCAC b
0BBBBB@

0

sin4�
5

sin8�
5

sin2�
5

sin6�
5

1CCCCCA
9>>>>>=>>>>>;

describing the a�ne regular pentagons and pentagrams respectively:

Figure 3
Regular pentagon and pentagram

3. Bu�on transformation for polyhedra

Recall �rst some basic notions of graph theory and the relation with polyhedra.
A graph � D .V; E/ consists of a �nite set V (vertices), together with a subset

E � V �V (edges). We will assume that the graph has no loops Œi; i �; i 2 V and
is undirected which means that for each edge Œi; j � 2 E we also have Œj; i � 2 E .

We say that the vertices i and j are adjacent and write i � j if there is an
edge Œi; j � 2 E connecting them. �e degree di of a vertex i is the number of
the adjacent vertices.

A graph is connected when there is a path between any two vertices. A graph
is called 3-connected if for every pair of vertices i and j there are at least three
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paths from i to j , whose only vertices (or edges) in common are i and j .
Equivalently a graph is 3-connected if it remains connected after removal of less
than 3 vertices.

A graph is called planar if an isomorphic copy of the graph can be drawn in
a plane, so that the edges which join the vertices only meet (intersect) at vertices.

For every polyhedron P one can consider the 1-skeleton �.P / , which is the
graph formed by the vertices and edges of P:

One of the oldest results in polytope theory is a remarkable theorem by Ernst
Steinitz. It is often referred to as the Steinitz’ fundamental theorem of convex
polyhedra and gives a completely combinatorial characterization of the graphs �;
which can be realised as 1-skeletons of 3-dimensional polytopes (see [Gru, Zie]).

�eorem 3 (Steinitz, 1922). A graph � is isomorphic to the 1-skeleton of a
3-dimensional convex polyhedron P if and only if � is planar and 3-connected.

�e proof given by Steinitz uses a combinatorial reduction technique. A
sequence of transformations of � into simpler graphs lead to the tetrahedral
graph K4 . Reversing the order of these operations one obtains a polyhedral
realization of the original graph � .

A graph is called regular when every graph vertex has the same degree.
Let P be a simplicial polyhedron in R3 with vertices r1; : : : ; rn: De�ne the

Bu�on transformation B.P / as a new polyhedron with the vertices being the
centroids of all edges, which meet at a vertex [VW, War2]:

(1) B.ri / D
X
j�i

1

2di
.ri C rj /;

where di is the degree of the vertex ri :

Consider also the linear Bu�on operator B W F.V/! F.V/; where F.V/ is
the vector space of functions on the vertices of the graph � D �.P /; de�ned by
the same formula:

(2) B.f /.i/ D
X
j�i

1

2di

�
f .i/C f .j /

�
; f 2 F.V/:

Remark. One can de�ne the Bu�on transformation BF by taking the centroids
of the centroids of all the faces meeting at a vertex [VW, War2], but for simplicial
polyhedra P we have a simple relation for the corresponding operators

BF D
4

3
B �

1

3
I;

which means that the result of the Bu�on procedure on faces will be the same
as the one on edges.
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�e matrix of the Bu�on transformation in a natural basis in F.V/ has the
form

(3) B D
1

2
.I CD�1A/ D

1

2
.I C P /;

where A is the adjacency matrix: Aij D 1 if i is adjacent to j and 0 otherwise,
D the diagonal matrix with the degrees of vertices di on the diagonal, and P is
the matrix of transition probabilities of the Markov chain describing the random
walk on graph � W Pij D 1=dj when j is adjacent to i and 0 otherwise (see
[Lov2]).

Note that unless � is a regular graph, matrix B is not symmetric. In order
to bring it to a symmetric form we introduce the normalized adjacency matrix

(4) N D D�
1
2AD�

1
2

with matrix elements Nij D 1=
p
didj if i is adjacent to j and 0 otherwise. It

is easy to see that

B D
1

2
.I CD�

1
2ND

1
2 / D

1

2
D�

1
2 .I CN/D

1
2 ;

so B is conjugated to the symmetric matrix QB D 1=2.I CN/:
In particular, this means that all the eigenvalues of B are real. �e maximal

eigenvalue is �0 D 1 and the corresponding eigenvector is .1; : : : ; 1/T :
Now we ask the same question: what is the limiting shape of Bn.P / when

n goes to in�nity?
By the same arguments using the Subspace Iteration �eorem the answer

is given by the subdominant eigenspace of the corresponding Bu�on operator
B: In general it is one-dimensional, which means that the limiting shape is
one-dimensional. However, if we assume additional symmetry we have a three-
dimensional limiting shape. To see this we need some results from spectral graph
theory, which we present in the next section.

4. Colin de Verdière invariant and null space representation

In 1990 Yves Colin de Verdière [CdV] introduced a new spectral graph invariant
�.�/: Roughly speaking, �.�/ is the maximal multiplicity of the second largest
eigenvalue of the matrices C with the property Cij D Cj i > 0 for adjacent i
and j; Cij D 0 for non-adjacent i and j and arbitrary diagonal elements Ci i :
�e precise de�nition is as follows.

Let � be a connected undirected graph with the vertex set ¹1; : : : ; nº . Let
M� denote the set of symmetric matrices M D .Mij / 2 RV�V associated with
� satisfying
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(1) Mij

´
< 0; ij 2 E

D 0; ij … E

(2) M has exactly one (simple) negative eigenvalue.
M is said to satisfy the Strong Arnold Property if the relation MX D 0 with a
symmetric n� n matrix X such that Xij D 0 for any adjacent i and j and for
i D j implies that X D 0 . �is property is a restriction, which excludes some
degenerate choices of the edge weights and the diagonal entries.

�e Colin de Verdière invariant � .�/ is the largest corank of matrices from
the set M� satisfying the Strong Arnold Property. A matrix M 2 M� with
corank � .�/ is called a Colin de Verdière matrix of � .

After the change of sign and shift by a scalar matrix C D cI �M the corank,
which is the dimension of the null space of M becomes the multiplicity of the
second largest eigenvalue of C .

Colin de Verdière characterised all the graphs with parameter � .�/ � 3:
A graph is called outerplanar if it can be drawn in the plane without crossings

in such a way that all of the vertices belong to the unbounded face of the drawing.

�eorem 4 (Colin de Verdière, 1990).

� � .�/ � 1 if and only if � is a path;

� � .�/ � 2 if and only if � is outerplanar;

� � .�/ � 3 if and only if � is planar.

�e planarity characterization is a remarkable result, which will be important
for us. �e “only if” part is relatively simple and follows from Kuratowski’s
characterisation of the planar graphs [Har]. �e original proof of the “if” part
was quite involved. Van der Holst [Hol] substantially simpli�ed it and showed
that for 3-connected planar graphs the Strong Arnold property does not play any
role.

Corollary 4.0.1 (Van der Holst, 1995). For any matrix M from M� the corank
of M can not be larger than 3.

In [Lov1] Lovász found an explicit way of constructing the Colin de Verdière
matrix for any 3-connected planar graph � using the Steinitz realisation of � as
a 1-skeleton of a convex polyhedron P: �is result will be crucial for us, so we
will sketch here the main steps of his construction following [Lov1].

Recall �rst the notion of polarity for polyhedra in R3 , see, e.g., [Zie]. Let
P be any convex polytope in R3 , containing the origin in its interior. �e polar
polyhedron P � is de�ned as
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P � D
®
y 2 R3 W .y; x/ � 1 for al l x 2 P

¯
;

where .; / denotes the scalar product in R3: It is known that P � is also a convex
polyhedron and the 1-skeleton of P � is the planar dual graph �� D .V�; E�/
with vertices corresponding to the faces of P and edges corresponding to edges
of P [Zie].

Now let P � R3 be Steinitz’ realisation of graph �; so that � is isomorphic
to 1-skeleton �.P /: We can always assume that P contains the origin inside it.
Consider its polar polyhedron P � .

Let ui and uj be two adjacent vertices of P , and wf and wg be the
endpoints of the corresponding edge of P � . �en by the de�nition of polarity
we have

.wf ; ui / D .wg ; ui / D 1:

�is implies that wf � wg is perpendicular to ui , and similarly to uj : Hence
the vectors wf �wg and the cross-product ui � uj are parallel and we can �nd
the coe�cients Mij such that

wf � wg DMij .ui � uj /:

We can always choose the labelling of wf and wg in such a way that Mij < 0 .
�is de�nes Mij for adjacent i ¤ j: For non-adjacent i and j we de�ne

Mij to be zero. To de�ne Mi i consider the vector

u
0

i D

X
j�i

Mijuj :

�en
ui � u

0

i D

X
j�i

Mijui � uj D
X

.wf � wg/;

where the last sum is taken over all edges fg of the face of P � corresponding
to i , oriented counterclockwise. Since this sum is zero we have

ui � u
0

i D 0;

which means that ui and u
0

i are parallel. �erefore we can de�ne Mi i by the
relation

u
0

i D �Mi iui :

�eorem 5 (Lovász, 2000). �e matrix M described above is a Colin de Verdière
matrix for the graph � .

Indeed by construction M has the right pattern of zeros and negative elements.
�e condition u

0

i D �Mi iui can be written in the form
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j

Mijuj D 0:

�is means that each coordinate of the ui de�nes a vector in the kernel of M
and hence M has corank at least 3. But by Corollary 4.0.1 it can not be larger
than 3, so the corank is 3 and thus maximal.

To prove that M has exactly one negative eigenvalue one can use the classical
Perron-Frobenius theorem, see e.g. [Gan].

�eorem 6 (Perron-Frobenius, 1912). If a real matrix has non-negative entries
then it has a nonnegative real eigenvalue � which has maximum absolute value
among all eigenvalues. �is eigenvalue � has a real eigenvector with non-
negative coordinates. If the matrix is irreducible, then � has multiplicity 1 and
the corresponding eigenvector can be chosen to be positive.

Choosing su�ciently large c > 0 we have the matrix cI �M; which has
non-negative entries and is irreducible, so we can apply the Perron-Frobenius
�eorem to conclude that the smallest eigenvalue of M has multiplicity 1. It
must be negative since we know that the eigenvalue 0 has multiplicity at least 3.
�e fact that there are no other negative multiplicities requires considerable work
using the connectivity of the space of Steinitz’ realisations, see [Lov1].

Conversely, having a Colin de Verdière matrix M 2 M� one can consider
the following null space representation � W V D ¹1; 2; : : : ; nº ! R3 (see [LS]).

Choose a basis a1; a2; a3 in the kernel of M and consider a 3� n matrix X
with rows being the coordinates of a1; a2; a3: �en the columns ui ; i D 1; : : : ; n
of this matrix give the set of 3-vectors, de�ning the map �: �e problem is that
in general they will not be vertices of a convex polyhedron, but Lovász [Lov1]
showed that after some scaling ui ! �iui this is the case (such a scaling he
called proper). At the level of the Colin de Verdière matrices this corresponds
to the change M ! DMD , where D D diag .�1; : : : ; �n/ is a non-degenerate
diagonal matrix, which obviously preserves the properties of M� :

�eorem 7 (Lovász, 2000). For a 3-connected planar graph � any Colin de
Verdière matrix M 2M� can be properly scaled, so that null space representation
gives a convex polyhedron with 1-skeleton isomorphic to � .

Note that the change of basis in the kernel of M corresponds to a linear
transformation of R3 , so the corresponding polyhedron is de�ned only modulo
a�ne transformation.

Now we are ready to prove our main result.
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5. Proof of the main theorem

Let G be a Platonic group and � a G -invariant planar 3-connected graph.
We know after Steinitz that � can be realized by a 3-dimensional convex

polyhedron P , but in the presence of symmetry Mani [Man] showed that there
is a symmetric realisation PG � R3:

�eorem 8 (Mani, 1971). �ere exists a convex polyhedron PG � R3 with the
group of isometries isomorphic to G and with 1-skeleton isomorphic to �:

Since � is planar and 3-connected, its Colin de Verdière invariant �.�/ must
be 3. Let M be the Colin de Verdière matrix given by Lovász’ construction
applied to Mani’s version of Steinitz realisation PG :

Let N be the normalised adjacency matrix (4). We know that the matrix of
the Bu�on transformation B is related to N by

B D
1

2
D�

1
2 .I CN/D

1
2

and that its largest eigenvalue is �0 D 1: Let �1 be the second largest eigenvalue
of B: We would like to show that it has multiplicity 3.

To do this consider the symmetric matrix

bB D �1
2
N C

�
�1 �

1

2

�
I:

It is easy to see that bB 2 M� and that the corank of bB is precisely the
multiplicity of �1:

De�ne a parameter family of matrices

(5) Mt D .1 � t /M � t bB ; t 2 Œ0; 1�

where M is the Colin de Verdière matrix de�ned above.
Since Mt is G -invariant, the group G acts on the kernel of Mt . When

t D 0 we know that the kernel of M.0/ D M has dimension 3 and by Lovász’
result [Lov1] the corresponding representation of G is standard geometric by the
isometries of PG :

Since this representation is irreducible and the set of 3-dimensional rep-
resentations of G is discrete, by continuity arguments the kernel will remain
3-dimensional geometric representation for all t 2 Œ0; 1� , in particular for t D 1 .

�ese arguments will not work only if 0 collides with another eigenvalue.
But this could not happen with the negative eigenvalue because of the Perron-
Frobenius theorem. In particular, all matrices Mt belong to M� : If this happens
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with a positive eigenvalue we will have the corank of the corresponding Mt to
be at least 4, which contradicts the Colin de Verdière result.

�us we have proved that the kernel of M1 D � bB is 3-dimensional, and hence
the same is true for the subdominant eigenspace of the Bu�on operator B: �e
limiting shape is given essentially by the null space representation construction,
but the proper scaling may not hold. However, the very existence of a proper
scaling [Lov1, LS] and the assumption of simplicity imply that the corresponding
vectors ui are the vertices of a certain star-shaped polyhedron with 1-skeleton
isomorphic to �: �e triakis tetrahedron example below shows that the proper
scaling is indeed not automatic, so the convexity property does not necessary
hold.

�is completes the proof of �eorem 1.

6. Concluding remarks

�e Bu�on regularisation procedure can be interpreted as search of an ideal
shape of a given polyhedron and in that sense can be considered as one of the
earliest examples of the trend, popular in modern di�erential geometry.

For manifolds this usually leads to the solutions of certain nonlinear PDEs
like the mean curvature �ow in the theory of minimal surfaces [Hui] or the
celebrated Ricci �ow in �urston’s geometrization programme [MT]. Our case
is conceptually closer to the description of the minimal submanifolds in the unit
sphere using the eigenfunctions of the Laplace-Beltrami operator, see [KN, Tak].

�e main di�erence with the di�erential case is that the generic graphs are
much less regular objects than manifolds, even under our assumption of Platonic
symmetry. �e crucial thing here is a large multiplicity of the second eigenvalue
of the Bu�on operator. How to guarantee this is a good question.

�e symmetry assumption seems to be natural. In this relation we would
like to mention an interesting result of Mowshowitz [Mow], who showed that if
all eigenvalues of the adjacency matrix A of a graph are di�erent, then every
automorphism of A has order 1 or 2. Some interesting related results for the
graphs with vertex transitive group action can be found in [IP]. Note that in our
case the group action is far from being vertex transitive.

An interesting question concerns the decomposition of F.V/ into the ir-
reducible G -modules with respect to the Bu�on spectrum. We saw that the
geometric representation always appears at the subdominant level, but we do not
know much about higher levels. For the regular polyhedra the answer is given in
Appendix A.
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It would be interesting to understand what our geometric analysis means for
related random walk on the corresponding graphs.

Finally, a natural question is what happens in higher dimension. We believe
that for the simplicial polyhedra we should expect similar result if we assume
the symmetry under an irreducible Coxeter group. Note that in dimension 4 we
have 6 regular polyhedra with the symmetry groups A4 D S5 , B4 , F4 and H4;

while in dimension more than 4 we have only analogues of tetrahedron, cube and
octahedron.

Acknowledgements. We are grateful to Jenya Ferapontov, Steven Kenny, Boris
Khesin and László Lovász for very helpful discussions. Special thanks are to
Graham Kemp, who was part of these discussions for quite a while.

Appendix

A. �e symmetry groups of Platonic solids and their characters

�e symmetry group of a regular tetrahedron is S4 and is isomorphic to the
permutation group of the vertices.

�e full symmetry group of the octahedron is the same as for the cube:
G D S4�Z2 . S4 is the rotation subgroup, which is isomorphic to the permutation
group of the 4 long diagonals, and Z2 corresponds to the central symmetry of
the cube.

For the icosahedron and dodecahedron the full symmetry group is known to
be A5 � Z2; where A5 � S5 is the alternating subgroup of S5 describing the
rotational symmetry and Z2 is again the central symmetry of the solids.

�e irreducible representations of the group G D H � Z2 have the the
form V1 ˝ V2 , where V1 and V2 are irreducible representations of H and Z2
respectively. Note that V2 is either trivial or sign representation of Z2; which
we will denote respectively by 1 and " . �us we need only the character tables
of the groups S4 and A5 , which in the notations of Fulton and Harris [FH] are
given below in Tables 1 and 2.

With these notations the geometric representations are: V for tetrahedral group
G D S4; "V

0 D V 0˝ " for cube/octahedral group G D S4 �Z2 and "Y D Y ˝ "

for icosahedral/dodecahedral group G D A5 � Z2:

�e corresponding decompositions of the space of functions on the vertices
into irreducible G -modules are

(6) F.T / D U ˚ V
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Table 1
�e character table of S4

24 1 6 8 6 3
S4 1 (12) (123) (1234) (12)(34)

U 1 1 1 1 1
U 0 1 �1 1 �1 1
V 3 1 0 �1 �1

V 0 3 �1 0 1 �1

W 2 0 �1 0 2

Table 2
�e character table of A5

60 1 20 15 12 12
A5 1 (123) (12)(34) (12345) (21345)

U 1 1 1 1 1
V 4 1 0 �1 �1

W 5 �1 1 0 0
Y 3 0 �1 1C

p
5

2
1�
p
5

2

Z 3 0 �1 1�
p
5

2
1C
p
5

2

for tetrahedron,

(7) F.O/ D U ˚ "V 0 ˚W

for octahedron,

(8) F.C / D U ˚ "V 0 ˚ V ˚ "U 0

for cube,

(9) F.I / D U ˚ "Y ˚W ˚ "Z

for icosahedron,

(10) F.D/ D U ˚ "Y ˚W ˚ "V ˚ V ˚ "Z

for dodecahedron.
We have ordered them according to the appearance in the spectrum of the

Bu�on operator. It turns out that in all these cases the spectral decomposition
coincides with G -decomposition (see the examples below). Note that the �rst two
are always trivial and geometric representations in agreement with our result.
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B. Examples of Bu�on realizations of polyhedra

For the polyhedra P with combinatorial structure of Platonic solids the Bu�on
procedure leads to the polyhedron PB , which is a�ne equivalent to the regular
realisation of P:

Since in the regular case the Bu�on matrix B can be replaced by the adjacency
matrix A the calculations are essentially the same as in [McC], where one can
�nd a lot more experimental data. �e calculation of spectra of regular polytopes
can be found in [ST].

We present here the most instructive examples of Bu�on realisations of regular,
Archimedean and Catalan solids. All the calculations and pictures were made using
Mathematica. More details with explicit Bu�on realisations can be found in the
Arxiv version of this paper [SVW].

Recall that the Archimedean solids (also referred to as the semi-regular
polyhedra) are the convex polyhedra with faces being regular polygons of two
or more di�erent types arranged in the same way about each vertex. Solids
with a dihedral group of symmetries (e.g., regular prisms and antiprisms) are
not considered to be Archimedean solids. With this restriction there are 13
Archimedean solids. For Archimedean solids the a�ne B -regular version is
in general is not a�ne equivalent to the standard one (see below the example of
truncated cube).

�e Catalan solids are duals of the Archimedean solids. �e Catalan solids
are convex polyhedra with regular vertex �gures (of di�erent types) and with
equal dihedral angles. For Catalan solids the a�ne B -regular versions may not
be convex or, in non-simplicial case, may even not exist (see the examples below).

We start with the regular cases of icosahedron and dodecahedron to show the
relation with G -decomposition and to look at the embeddings related to other
eigenvalues.

Figure 4
�e icosahedron and a�ne great icosahedron
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�e Icosahedron. �e corresponding Bu�on spectrum is:

´
1.1/;

1

10

�
5C
p
5
�.3/

;
2

5

.5/

;
1

10

�
5 �
p
5
�.3/µ

in agreement with (9).

�e eigenspaces corresponding to the eigenvalues 1
10

�
5˙
p
5
�.3/

describe
respectively an a�ne regular icosahedron and a�ne great icosahedron, which is
one of four Kepler-Poinsot regular star polyhedra (see Fig. 4).

�e eigenspace corresponding to the eigenvalue 2
5
describes the 5-dimensional

realisation of an icosahedron as a 5-simplex: 6 pairs of opposite vertices identi�ed
with 6 vertices of the simplex.

�e Dodecahedron. �e corresponding Bu�on spectrum is

´
1.1/;

1

6

�
3C
p
5
�.3/

;
2

3

.5/

;
1

2

.4/

;
1

6

.4/

;
1

6

�
3 �
p
5
�.3/µ

in agreement with (10).

�e eigenspaces corresponding to the second highest eigenvalue �2 D
1
6

�
3C
p
5
�

and to its conjugate �6 D
1
6

�
3 �
p
5
�

describe respectively a�ne
versions of the dodecahedron and the great stellated dodecahedron, which is
another Kepler–Poinsot polyhedron (see Fig. 5).

It is a bit puzzling that the remaining two Kepler-Poinsot polyhedra (small
stellated dodecahedron and great dodecahedron) seem to not appear in the Bu�on
approach.

�e eigenvalue 2
3

leads to the 5-dimensional embedding of dodecahedron
with “broken faces”. It would be interesting to understand the geometry of the 4 -
dimensional embeddings corresponding to 1

2
and 1

6
: Since in the second case the

opposite vertices identi�ed it corresponds to the representation V in agreement
with (10).
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Figure 5
�e dodecahedron and a�ne great stellated dodecahedron

�e Truncated Cube. �is is one of the Archimedean solids, for which Bu�on
realisation is not a�ne equivalent to the standard one.

�e corresponding Bu�on spectrum is:´
1.1/;

1

12

�
7C
p
17
�.3/

;
5

6

.3/

;
2

3

.1/

;
1

2

.5/

;
1

3

.3/

;
1

12

�
7 �
p
17
�.3/

;
1

6

.5/
µ

�e facing octagons of the Bu�on realisation are not a�ne regular: one
can check that .x22 � x14/ D 3C

p
17

4
.x1 � x5/ while for the regular octagon

.x22 � x14/ D .1 C
p
2/.x1 � x5/: �us the a�ne B -regular truncated cube

obtained by the Bu�on procedure is not an a�ne version of the regular truncated
cube (see Fig. 6).

Figure 6
�e truncated cube and a�ne B -regular truncated cube

Triakis Tetrahedron. �is is the Catalan solids dual to the truncated tetrahedron.
�is is the simplest case when convexity does not hold for Bu�on realisation (see
Fig. 7).
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Figure 7
Triakis tetrahedron and its a�ne B -regular version, which is star-shaped but not convex

�e corresponding Bu�on eigenvalues are:´
1.1/;

7

12

.3/

;
1

3

.3/

;
1

4

.1/
µ

In the case of the eigenvalue 1
3

the corresponding vertices coalesce together
pairwise and form a general tetrahedron.

�e Rhombic Dodecahedron. �is is the Catalan solid dual to cuboctahedron.
We will see that it does not admit Bu�on realisation.

�e corresponding eigenvalues are:´
1.1/;

1

6

�
3C
p
3
�.3/

;
1

2

.6/

;
1

6

�
3 �
p
3
�.3/

; 0.1/

µ
�e eigenspaces corresponding to 1

6
.3 ˙

p
3/ fail to give polyhedra with

combinatorial structure of the 1 -skeleton of the rhombic dodecahedron because of

Figure 8
�e rhombic dodecahedron and the corresponding subdominant
eigenspace realisation: all the faces are broken (non-planar)
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the “broken faces”. A particular graph realisation obtained from the subdominant
eigenspace is shown in Fig. 8.

Pentakis Dodecahedron. �is is the Catalan solid dual to the truncated icosa-
hedron, which we mentioned in the Introduction. A version with all edges of
equal length featured on Leonardo’s drawing (see Fig. 2) is called cumulated
dodecahedron.

�e corresponding Bu�on eigenvalues are:

1.1/;
1

120

�
60C 5

p
5C

q
725C 240

p
5

�.3/
;
1

120

�
65C

p
385

�.5/
;

1

24

 
12 �

p
5C

s
29 �

48
p
5

!.3/
;
1

2

.4/

;

1

120

�
65 �

p
385

�.5/
;
1

3

.4/

;
1

120

�
60C 5

p
5 �

q
725C 240

p
5

�.3/
;

1

24

 
12 �

p
5 �

s
29 �

48
p
5

!.3/
;
1

4

.1/

:

�e Bu�on version is convex and looks quite similar to the usual one, but the
pyramids are slightly higher (see Fig. 9). �e ratios of the height of a pyramid to
the distance of its top vertex from the centre in the Catalan and Bu�on cases are
1=3.1� 1=

p
5/ � 0:184 and 1� 1=12.

p
5C

q
29C 48=

p
5/ � 0:222 respectively.

�e self-intersecting realisations corresponding to other multiplicity 3 eigen-
values are shown at Fig. 10.

Figure 9
�e pentakis dodecahedron and its a�ne B -regular version
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Figure 10
Eigenspace realisation corresponding to �8 D .60C 5

p
5 �

p
725C 240

p
5/=120

conjugated to �2 . �e pyramids are built inside and go through the dodecahedron.

Figure 11
Eigenspace realisations corresponding to two remaining multiplicity 3 eigenvalues
�4 and �9 : great icosahedron and great stellated dodecahedron with extra vertices.
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