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Isometries of two dimensional Hilbert geometries

Vladimir S. Matveev and Marc Troyanov

Abstract. We prove that every isometry between two dimensional Hilbert geometries is a
projective transformation unless the domains are interiors of triangles.
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1. Introduction

�e Hilbert distance between two points x and y in a bounded convex domain
� of Rn is de�ned as

(1.1) d.x; y/ WD ln
�
.x; yI Nx; Ny/

�
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�
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j Ny � yj
W
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�
;

where ju � vj denotes the usual Euclidean length between two points u and v

in Rn , and Nx and Ny are as Fig 1. It is well known that the distance function d

satis�es the standard requirements of a distance function, the only nontrivial point
to check being the triangle inequality, see for example [Hil] or [Har, §1]. �is
distance was introduced by Hilbert in [Hil] and we refer to [H] for a presentation
of both classic and contemporary aspects of Hilbert geometry1.

Recall that straight lines, convexity, and the cross ratio of four aligned points
are invariant under projective transformations, this implies immediately that if
f W RP n

! RP n is a projective transformation, then its restriction to � de�nes
an isometry f W �! f .�/ with respect to the Hilbert distances in � and f .�/ .
(We consider Rn as a subset of RP n by identifying it with an a�ne chart, the

1More generally, the Hilbert distance is well-de�ned for a domain � in RP n , that is convex and
bounded in an appropriate a�ne chart of RP n .
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Figure 1
�e points Nx and Ny

Hilbert metric inside � does not depend on the choice of the a�ne chart.) �e
converse to this statement is not always true: some special Hilbert geometries
admit isometries which are not projective transformations. �e simplest example
is given by the simplex and is discussed in detail in dimension 2 by Pierre de la
Harpe in [Har]. �is author asked for a full description of all isometries in Hilbert
geometry and a complete answer in �nite dimension has recently been obtained
by Cormac Walsh in [Wal]. Note also that the same author, together with Bas
Lemmens, previously described all isometries of polyhedral Hilbert geometries in
[LW], while Bas Lemmens, Mark Roelands and Marten Wortel gave some partial
results in in�nite dimension in [LRW].

Our goal in this paper is to give a short proof of the following two dimensional
result:

�eorem 1.1. Let �1 and �2 be two bounded convex domains in the plane
R2 and d1; d2 be the corresponding Hilbert metrics. Suppose that �1 is not
the interior of a triangle, then every isometry f W .�1; d1/ ! .�2; d2/ is the
restriction of a projective transformation of RP 2 .

As mentioned above, this result is false if �1 is the interior of a triangle. In
that case .�1; d1/ is isometric to a Minkowski plane whose unit ball is a regular
hexagon and its group of isometries is not di�cult to describe, see [Har]. Recall
also that the above theorem is a special case of the result of C. Walsh [Wal,
�eorem 1.3]. For the case of quadrilaterals, the result is also proved by P. de la
Harpe in [Har, Proposition 4].

Our proof uses methods completely di�erent from those in Walsh’s paper. It
is quite direct and only based on the description of metric geodesics in Hilbert
geometry, together with a quite old and nontrivial result from line geometry due
to Walter Prenowitz.
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2. �e case of strictly convex domains

It will be convenient to start with the case of a strictly convex domain. In
fact we will prove the following result:

Proposition 2.1. Assume that �1 and �2 are bounded convex domains in Rn .
If �1 is strictly convex, then every isometry f W .�1; d1/ ! .�2; d2/ is the
restriction of a projective transformation of RP n .

�is result is proved in [Har, Proposition 3], but we shall give a slightly more
direct proof. �e result has recently been extended in in�nite dimension in [LRW,
�eorem 1.2].

�e proof is based on the structure of geodesics for the Hilbert distance. It
is easy to check from the de�nition of the Hilbert distance that if three points
x; y; z 2 �1 are aligned and z 2 Œx; y� , then d1.x; y/ D d1.x; z/C d1.z; y/ . In
other words the intersection of Euclidean straight lines with �1 are geodesics
for the Hilbert metric. Furthermore, the following fact is classical (see [Har,
Proposition 2] or [PT, �eorem 12.5]):

Lemma 2.2. Let p and q be two points on the boundary of �1 , and suppose
that at least one of them is an extreme point of �1 . �en the open interval .p; q/

is the unique geodesic between any pair of its points, that is if x; y 2 .p; q/ and
z 2 �1 , then d1.x; y/ D d1.x; z/C d1.z; y/ if and only if z 2 Œx; y� .

Proof of Proposition 2.1. It is easy to prove the proposition for one dimensional
Hilbert geometries; we therefore assume n � 2 . Let f W �1 ! �2 be an
isometry for the Hilbert distances between bounded convex domains in Rn ,
where �1 � Rn is strictly convex. From the previous Lemma, it then follows that
the a�ne segment Œx; y� between two points x; y 2 �1 is the unique geodesic
joining these two points. Since f is an isometry, there is also a unique geodesic
joining the images f .x/ and f .y/ in �2 and because the Euclidean segment
Œf .x/; f .y/� � �2 is known to be geodesic we conclude that f maps the segment
Œx; y� � �1 to the segment Œf .x/; f .y/� � �2 . Since x and y are arbitrary points
in �1 , we conclude that f is a local collineation, that is a mapping sending
Euclidean segments to Euclidean segments. �e conclusion now follows from
the local version of the fundamental theorem of projective geometry (see, e.g.,
[Shi, Lemma 4]), which states that any local collineation de�ned in some open
connected set of the real projective space RP n is the restriction of a projective
transformation.
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3. Proof of the main �eorem

�e proof of �eorem 1.1 will be based on a 1935 result of Prenowitz [Pre]
which generalizes the fundamental theorem of projective geometry in dimension 2.
We will need the following de�nitions.

De�nitions 3.1. Let U be a plane domain, that is an open connected nonempty
subset of R2 . By a line in U we mean a connected component of the intersection
of a Euclidean straight line with U . A family of lines in U is a partition of
U by lines, that is a collection of lines in U such that each point of U lies
on exactly one line of the collection. If all lines in a family extend to Euclidean
straight lines passing through a common point A , the family is called a pencil
with pole A . A (linear) n -web in U is a set of n families of lines on U such
that no two families have a common line.

Figure 2 shows a pencil with pole A in the domain U . By taking the pencils
through n pairwise distinct poles A1; : : : ; An 62 U we obtain an n -web in any
subdomain U 0 � U disjoint from any line through a pair of distinct points Ai ; Aj .

A

Figure 2
A pencil of lines covering a plane domain.

�eorem 3.2 (Prenowitz 1935). A one to one continuous map de�ned in a plane
domain that carries a 4-web into a 4-web is the restriction of a projective
transformation.

Recall that, by Brouwer’s theorem, an injective continuous map de�ned in
a domain of Rn is a homeomorphism onto its image. �e above result is
proved in [Pre]; a much simpler proof is given in [Kas] assuming the map
is a di�eomorphism. Some generalizations in higher dimensions are given in
[AAS].

�e following corollary will be useful in the proof of �eorem 1.1:
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Corollary 3.3. Let f W U ! R2 be a one to one continuous map de�ned in a
domain U � R2 and let A1; � � � ; A5 2 R2 be �ve pairwise distinct points. Assume
that f maps the intersection of every line through Aj with U to a straight line
(1 � j � 5 ). �en f is the restriction of a projective transformation.

U

A1

A2

A3

A4

A5

Figure 3
A polygonal region U covered by 5 pencils. Corollary 3.3 states that a homeomorphism

de�ned in U carrying all those lines into lines is a projective transformation.

Proof. �ere are 10 lines through any pair of the points Aj and the pairwise
intersections of those 10 lines determine (at most) 20 points2. Let us denote this
set by I and call it the set of intersection points. For any point X 2 U n I , at
least four of the directions ��!XAj are mutually distinct and this property holds in
a neighborhood V of X . �e pencils with the corresponding four points Aj as
poles form a 4-web in V , see Figure 3, which is mapped by f to a 4-web in
f .V / . By �eorem 3.2, we know that the restriction of f to V is the restriction

2 10 distinct lines in a projective plane de�ne
�

10

2

�
D 45 intersection points counted with multiplicity,

the 5 points Aj have multiplicity 6 .
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of a projective transformation. By real analyticity, two projective transformations
that coincide on an open subset coincide everywhere. Since U n I is connected
the restriction of f to U n I is a projective transformation and since I is �nite,
f is a projective transformation on the whole domain U by continuity.

Proof of �eorem 1.1. Recall that we assumed that the bounded convex
domain �1 2 R2 is not the interior of a triangle. We �rst assume that �1

is also not a quadrilateral. �en, �1 has at least �ve distinct extreme points
A1; A2; A3; A4; A5 2 @�1 . Because the points Aj are extreme points of �1 ,
Lemma 2.2 implies that each line through one of the points Aj intersects �1 on
a unique geodesic (for the Hilbert distance) between any of its pairs of points.
Since f is an isometry, it sends each line from the �ve pencils into a straight line
in �2 and it follows from Corollary 3.3 that f is the restriction of a projective
transformation.

Suppose now that �1 is a quadrilateral with vertices ABCD . �e vertices
are extreme points of �1 , therefore, by Lemma 2.2, any line through a vertex
de�nes a unique geodesic for the Hilbert distance and it is thus mapped on a line
by the isometry f . �e pencils with the four vertices as poles form a 4-web in
each connected component of the complement of the diagonals. �ese connected
components are the interior of the triangles ABM; BCM; CDM; DAM , where
M is the intersection of the diagonals, and from Prenowitz’ �eorem 3.2, we
conclude that the restriction of f to each of those triangles is a projective
transformation.

Consider two adjacent such triangles, and consider the f -image of their union,
see Fig 4. Since the restriction of f to each of these triangles is a projective
transformation, the image of its union is the union of two triangles. By continuity
they have a common edge. Since the image of the line AC is a straight line, the

A B

CD

M

Figure 4
�e restriction of f to the “dark-gray” triangles ABM and BCM is a projective
transformation, and f sends AC to a straight line. �en, the image of ABC is a

triangle and the restriction of f to it is a projective transformation.
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closure of the image of the union of these triangles is a triangle. Furthermore,
the map f sends any line through A or B to a line, we thus conclude that
f restricted to the triangle ABC is a projective transformation (see also the
Corollary in [Pre] page 567). Similarly, the restrictions of f to BCD , ABD

and to CDA are projective transformations, which implies that the map f on
the whole quadrilateral ABCD is the restriction of a projective transformation
as desired.
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