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Basic partitions and combinations of group actions on the
circle: A new approach to a theorem of Kathryn Mann

Shigenori Matsumoto

Abstract. Let …g be the surface group of genus g (g � 2 ), and denote by R…g

the space of the homomorphisms from …g into the group of the orientation preserving
homeomorphisms of S1 . Let 2g � 2 D kl for some positive integers k and l . �en
the subset of R…g

formed by those ' which are semiconjugate to k -fold lifts of some
homomorphisms and which have Euler number eu.'/ D l is shown to be clopen. �is
leads to a new proof of the main result of Kathryn Mann [Man] from a completely di�erent
approach.
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1. Introduction

Let S1 D R=Z and denote the canonical projection by � W R! S1 . Denote
by T W R! R the translation by one: T .x/ D x C 1 .

Notations 1.1. Let H D HomeoC.S1/ denote the group of the orientation
preserving homeomorphisms of S1 , and for any group G , RG D Homo.G;H/
the set of the homomorphisms from G to H .

De�nition 1.2. A map h W S1 ! S1 is called degree one monotone if there is a
nondecreasing (not necessarily continuous) map Qh W R! R such that QhıT D T ı Qh
and � ı Qh D h ı � .

Denote

R�G D ¹' 2 RG j 9x 2 S
1 such that '.g/.x/ D x; 8g 2 Gº:
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De�nition 1.3. Two homomorphisms '1; '2 2 RG are called semiconjugate,
denoted '1 � '2 , if either '1; '2 2 R�G or '1; '2 2 RG n R�G and there is a
degree one monotone map h W S1 ! S1 such that '2.g/ ı h D h ı '1.g/ for any
g 2 G .

�e proof of the following proposition can be found in Appendix A.

Proposition 1.4. �e semiconjugacy is an equivalence relation.

De�nition 1.5. Let F i � S1 be a 'i .G/ -invariant subset ('i 2 RG , i D 1; 2).
A map � W F 1 ! F 2 is called .'1; '2/ -equivariant if � ı '1.g/ D '2.g/ ı � on
F 1 for any g 2 G .

We have the following easy proposition.

Proposition 1.6. Let F i � S1 be a 'i .G/ -invariant subset ('i 2 RG , i D 1; 2),
and assume there is a cyclic order preserving .'1; '2/ -equivariant bijection
� W F 1 ! F 2 . �en we have '1 � '2 .

Proof. Two homomorphisms '1 2 R�G and '2 2 RG nR�G can never satisfy the
condition of the proposition. So one may assume 'i 2 RG n R�G . �ere is an
order preserving bijection e� W ��1.F 1/ ! ��1.F 2/ such that e� ı T D T ı e�
and � ı � D � ı e� . De�ne eh W R! R byeh .ex / D inf

®e� .ey / j ey 2 Œex ;1/ \ ��1.F 1/¯:
�en eh ı T D T ı eh , and there is a monotone degree one map h W S1 ! S1

such that h ı � D � ı eh . Now .'1; '2/ -equivariance of � implies that
h ı '1.g/ D '2.g/ ı h (8g 2 G ).

De�nition 1.7. A homomorphism ' 2 RG is called type 0 if there is a '.G/ -
invariant probability measure on S1 .

If there is a �nite '.G/ -orbit or if the action of '.G/ is free, then ' is type
0. If ' is type 0 and ' � '0 , then '0 is also type 0. If ' is not type 0, then the
minimal set of ' is unique, either a Cantor set or the whole S1 . In the latter
case we say that ' is minimal.

De�nition 1.8. For ' not of type 0, a minimal homomorphism which is
semiconjugate to ' is denoted by '] , and called a minimal model.

A minimal model '] always exists and is unique up to topological conjugacy
for ' not of type 0. For any k � 2 , let �k W S1 ! S1 be the k -fold covering
map, that is, �k.x C Z/ D kx C Z .



Basic partitions and combinations 17

De�nition 1.9. For k 2 N ,  2 RG is called a k -fold lift of ' 2 RG if for any
g 2 G , it holds that '.g/ ı �k D �k ı  .g/ .

De�nition 1.10. For k 2 N , a homomorphism ' 2 RG is called type k if it
satis�es the following conditions.
(1) ' is not type 0 .
(2) A minimal model '] is a k -fold lift of some homomorphism in RG .
(3) k is the maximal among those which satisfy (2).
For k � 0 , the set of type k homomorphisms is denoted by RG.k/ .

�us type 1 homomorphisms are those homomorphisms which are not type 0
and whose minimal model cannot be a k -fold lift for any k � 2 .

�e group H is a topological group with the uniform convergence topology,
de�ned by the metric:

d.f; h/ D sup
x2S1
jf .x/ � h.x/j for f; h 2 H:

�e space RG is equipped with the following topology. Given ' 2 RG , g 2 G
and " > 0 , let

(1.1) U.'Ig; "/ D
®
'0 2 RG j d

�
'0.g/; '.g/

�
< "

¯
:

�e topology with subbase U.'Ig; "/ is called the weak topology. When the
group G is �nitely generated, this coincides with the usual topology of uniform
convergence on generators. �e following proposition will be proven in the next
section.

Proposition 1.11. For any group G and k � 1 , the subset RG.0/ is closed andS
1�i�k RG.i/ is open in RG .

�is is best possible, for example for free groups. However for groups of a
special kind, one can expect that some component of RG.k/ , k � 2 , is also open.
�e purpose of this paper is to consider this problem for the surface group …g ,
g � 2 . �e group …g is the fundamental group of the closed oriented surface
of genus g , and has a presentation:

…g D hA1; B1; : : : ; Ag ; Bg j ŒA1; B1� � � � ŒAg ; Bg � D ei:

Given ' 2 R…g , its Euler number eu.'/ 2 Z is de�ned by

ŒB'.A1/ ; A'.B1/ � � � � ŒB'.Ag/ ;B'.Bg/ � D T eu.'/;
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where for f 2 H , ef denotes an arbitrary lift of f to a homeomorphism of
R . �e map eu W R…g ! Z is continuous, and thus eu�1.i/ is clopen in R…g

for any i 2 Z . We have the following classical theorem [Mil], [Woo], called the
Milnor-Wood inequality.

�eorem 1.12. �e inverse image eu�1.i/ is nonempty if and only if ji j � 2g�2 .

For homomorphisms with the extremal values of Euler number, we have
the following result [Mat2]. (In fact, the pathwise connectedness below is not
mentioned in that paper. But it is an easy consequence of the main theorem.)

�eorem 1.13. �e inverse image EC D eu�1.2g�2/ is pathwise connected, and
if '; '0 2 EC , then ' � '0 . �e same thing holds true for E� D eu�1.�2gC 2/ .

Assume eu.'/ D 2g � 2 and 2g � 2 D kl for some positive integers k; l .
Choose an arbitrary k -fold lift 1'.Aj / (resp. 1'.Bj / ) of '.Aj / (resp. '.Bj / )
for j D 1; : : : ; g . �en we have

Œ2'.A1/ ; 1'.B1/ � : : : Œ2'.Ag/ ;2'.Bg/ � D Id:

In fact, this is obtained by taking a quotient by the action of T l of the formula:

ŒB'.A1/ ; A'.B1/ � � � � ŒB'.Ag/ ;B'.Bg/ � D T 2g�2 D T kl :
�us we have a k -fold lift of ' once we choose k -fold lifts of the generators
arbitrarily. We shall denote the k -fold lifts of ' by  j , 1 � j � k2g . �e
following result is immediate.

Proposition 1.14. We have eu. j / D l .

�e main result of the present paper is the following.

�eorem 1.15. Assume 2g � 2 D kl for some positive integers k and l . �en
the subset eu�1.l/ \R…g .k/ is clopen in R…g .

�e closedness of eu�1.l/\R…g .k/ follows from Proposition 1.11. In fact, we
have

eu�1.l/ \R…g .k/ D eu
�1.l/ n [1�j�k�1R…g .j /;

where eu�1.l/ is closed and [1�j�k�1R…g .j / is open.
For the openness, we use the following concept.

De�nition 1.16. For any group G , a homomorphism ' 2 RG is said to be locally
stable if any homomorphism '0 2 RG su�ciently near to ' is semi-conjugate
to ' .
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�e openness follows from the following theorem.

�eorem 1.17. Any homomorphism of eu�1.l/ \R…g .k/ is locally stable.

Let Zj be the connected component of R…g which contains the above lift
 j , 1 � j � k2g . �en we have the following corollary.

Corollary 1.18. Any two homomorphisms of the same component Zj are mutually
semi-conjugate.

�e same result has been obtained by K. Mann [Man], based upon extensive
use of algorithms in [CW]. �is paper contains a completely di�erent approach.
Also there is a quite simple proof for di�eomorphisms due to J. Bowden [Bow].

We shall prove Proposition 1.11 in Section 2, and �eorem 1.17 in Sections 4–7.
We give an outline of Sections 4 and 5 in Section 3. It seems that our method
provides a new and elementary proof of the main result of [Mat2], but we do
not pursue it in the present paper. �roughout the paper, we use the following
notations.

Notations 1.19. � �e positive cyclic order of S1 is denoted by � .
� Given two distinct points a; b 2 S1 , Œa; b� D ¹x 2 S1; a � x � bº .

For a subset X of S1 , we denote
� C @ X if C is a connected component of X ,
� X] the union of the closures of the connected components of S1 nX ,
� X� D X \X] .
We abbreviate

� BP for “basic partition”, BC for “basic con�guration” and COP for “cyclic
order preserving”.

2. Proximal actions

In this section, G is to be an arbitrary group, countable or not. �is section
is devoted to the proof of Proposition 1.11. Let us begin by showing that RG.0/

is a closed subset of RG . Let ' be any homomorphism from the closure of
RG.0/ . Let us denote by P.S1/ the space of the probability measures on S1 ,
equipped with the weak* topology. In order to show ' admits an invariant proba-
bility measure, it is su�cient to prove that for any �nite subset ¹giº � G , there is a
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probability measure invariant by '.gi /� W P.S1/ ! P.S1/ , thanks to the �nite
intersection property of the compact set P.S1/ . Choose

'n 2
\
i

U.'Igi ; 1=n/ \RG.0/;

where U.�/ is introduced in (1.1), and let �n 2 P.S1/ be a 'n.G/ -invariant
measure. Since the maps 'n.gi /� and '.gi /� are continuous and 'n.gi /�

converges to '.gi /� pointwise, an accumulation point of ¹�nº is the desired
measure.

Now let us turn to show that RG.1/ is an open subset of RG . �e argument
is based upon the following �eorem 2.2 due to É. Ghys ([Ghy, p. 362]), whose
proof is included in Appendix B. To state it, we make a de�nition.

De�nition 2.1. A homomorphism ' 2 RG is called proximal if for any closed
interval I � S1 , infg2G j'.g/I j D 0 , where j�j denotes the diameter.

�eorem 2.2. For any ' 2 RG , ' 2 RG.1/ if and only if a minimal model ']
is proximal.

De�nition 2.3. Given x; y 2 S1 , a sequence ¹fnº � H is called an .x; y/-
sequence if for any " > 0 , there is N such that if n � N , fn maps the
complement of the " -neighbourhood of x into the " -neighbourhood of y .

Lemma 2.4. For any x; y 2 S1 and ' 2 RG.1/ , there is an .x; y/-sequence in
'].G/ .

Proof. For any x 2 S1 , de�ne

Ex D
®
y 2 S1 j 9.x; y/-sequence in '].G/

¯
:

By �eorem 2.2, Ex is nonempty for any x 2 S1 . On the other hand, it is easy
to show that Ex is closed and '].G/ -invariant. �erefore we have Ex D S1 .

�ere is a bounded 2-cocycle c of the group H de�ned by

c.f; h/ D �. ef ı eh / � �. ef / � �.eh /;
where Qf (resp. Qh ) is an arbitrary lift of f (resp. h ) to R , and �.�/ stands for
the translation number. As is well known, its L1 norm satis�es kck D 1 . For
' 2 RG , the pull back cocycle '�c lies in the second bounded cocycle group
Z2
b
.G/ of G and satis�es k'�ck � 1 . It is known [Mat1] that '�c D 0 if and

only if ' 2 RG.0/ . For other RG.k/ , we have the following.
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Lemma 2.5. For any ' 2 RG and k � 1 , ' 2 RG.k/ if and only if k'�ck D 1=k .

Proof. It su�ces to show only the following implication:

(2.1) ' 2 RG.k/) k'
�ck D 1=k; 8k � 1;

since the opposite implication follows from this. First of all, let us show (2.1)
for k D 1 . Let '] be a minimal model of any ' 2 RG.1/ . Choose four points
x � y � z � u � x in S1 . By Lemma 2.4, there are a .y; x/-sequence fn and
an .u; z/-sequence hn in '].G/ . Let ef n and eh n be the lifts of fn and hn

such that �. ef n/ D �.eh n/ D 0 . One can choose lifts of the four points so thatex < ey < ez < eu < T .ex / . See Figure 1 for this and the next argument.
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z̃ ũ T (z̃) T (ũ)

x̃ ỹ T (x̃) T (ỹ)

h̃n

f̃n

T (ũn)

ũn

ũn

h̃n

f̃n

LEMMA 2.4. For any x,y ∈ S1 and ϕ ∈RG(1), there is an (x,y)-sequence in ϕ♯(G).

PROOF. For any x ∈ S1, define

Ex = {y ∈ S1 | ∃(x,y)-sequence in ϕ♯(G)}.

By Theorem 2.2, Ex is nonempty for any x ∈ S1. On the other hand, it is easy to show

that Ex is closed and ϕ♯(G)-invariant. Therefore we have Ex = S1. �

There is a bounded 2-cocycle c of the group H defined by

c( f ,h) = τ( f̃ ◦ h̃)− τ( f̃ )− τ(h̃),

where f̃ (resp. h̃) is an arbitrary lift of f (resp. h) to R, and τ(·) stands for the translation

number. As is well known, its L∞ norm satisfies ‖c‖ = 1. For ϕ ∈ RG, the pull back

cocycle ϕ∗c lies in the second bounded cocycle group Z2
b(G) of G and satisfies ‖ϕ∗c‖ ≤ 1.

It is known [6] that ϕ∗c = 0 if and only if ϕ ∈ RG(0). For other RG(k), we have the

following.

LEMMA 2.5. For any ϕ ∈RG and k ≥ 1, ϕ ∈RG(k) if and only if ‖ϕ∗c‖= 1/k.

PROOF. It suffices to show only the following implication:

(2.1) ϕ ∈RG(k)⇒‖ϕ
∗c‖= 1/k, ∀k ≥ 1,

since the opposite implication follows from this. First of all, let us show (2.1) for k = 1.

Let ϕ♯ be a minimal model of any ϕ ∈RG(1). Choose four points x ≺ y ≺ z ≺ u ≺ x in

S1. By Lemma 2.4, there are a (y,x)-sequence fn and an (u,z)-sequence hn in ϕ♯(G). Let

f̃n and h̃n be the lifts of fn and hn such that τ( f̃n) = τ(h̃n) = 0. One can choose lifts of the

four points so that x̃ < ỹ < z̃ < ũ < T (x̃). See Figure 1 for this and the next argument.

For n large, h̃n admits a fixed point, say ũn, near ũ. Now consider the composite f̃n ◦ h̃n.

Clearly we have ũn < f̃n ◦ h̃n(ũn)< T (ũn). On the other hand, if we choose ũ′ very near to

Figure 1

For n large, eh n admits a �xed point, say Qun , near Qu . Now consider the
composite ef n ı

eh n . Clearly we have eu n < ef n ı
eh n.eu n/ < T .eu n/ . On the

other hand, if we choose eu 0 very near to Qu so that eu 0 > eu . �en for any large
n , we have ef n ı

eh n.u0/ > T .u0/ . (See Figure 1.) �is shows �. ef n ı
eh n/ D 1 .

�erefore c.fn; hn/ D 1 and k'�ck D k'�
]
ck D 1 , as is required. Also it is not

di�cult to show that the above inequalities also show the following.

(2.2) For any '0 2 RG su�ciently near to ' 2 RG.1/ , we have k.'0/�ck D 1 .



22 S. Matsumoto

To show (2.1) for k � 1 , choose any ' 2 RG.k/ , with '] a k -fold lift
of some  2 RG . Clearly  2 RG.1/ . Moreover the cocycle '�c D '�

]
c is

precisely .1=k/ �c . �is shows k'�ck D 1=k .

Now the openness of RG.1/ follows from Lemma 2.5 and (2.2). �e proof
that the set

S
1�i�k RG.i/ is open is left to the reader.

3. Outline

Before getting into a detailed proof of �eorem 1.17, we shall give an outline
of its �rst two steps. �e basic idea is that a homomorphism in eu�1.l/\R…g .k/

of �eorem 1.17 has the following very special property: �ere is a �nite set, say
R , of S1 such that the knowledge about how the generators of the group moves
points of R completely determines the semiconjugacy class of the homomorphism.

First of all, let us explain this phenomenon in a much simpler example. Let
� be the free group on two generators A and B . Let ' 2 R� and denote
a D '.A/ and b D '.B/ . Assume that �.Œea ; eb �/ D 1 , where ea (resp. eb ) is
an arbitrary lift of a (resp. b ). �en one can show that such ' belongs to a
single semiconjugacy class. �is will actually be done in Section 4. But we can
present a rough outline here.

By the assumption �.Œea ; eb �/ D 1 , there is a �xed point x 2 S1 of Œa; b�
such that

x � b�1.x/ � a�1b�1.x/ � ba�1b�1.x/ � Œa; b�.x/ D x:

See Figure 2 left.
�e homeomorphism a maps the long interval Œba�1b�1.x/; a�1b�1.x/� onto

a subinterval Œx; b�1.x/� . �erefore there is a �xed point of a in the open
interval .x; b�1.x// . �ere is also a �xed point in .a�1b�1.x/; ba�1b�1.x// .
Likewise b admits at least two �xed points, one in .b�1.x/; a�1b�1.x// , another
in .ba�1b�1.x/; x/ .

Let R be the set of four points in Figure 2 left, and set S D ¹A;A�1; B; B�1º .
Let R2 D

S
s2S '.s/R . �en R2 contains R , and has 8 more points. �e

con�guration of R2 in S1 is determined uniquely. Likewise if we set R3 DS
s2S '.s/R

2 , then its con�guration is also unique. See Figure 3.
�e left depicts R2 and the right a part of R3 . �is way, we can determine

the con�guration of the whole orbit '.�/x , which, according to Proposition 1.6,
implies that the semiconjugacy class of ' is uniquely determined. �e actual
proof can be organized as an induction.

Here is another example of this kind. See Figure 2 right. �is is also a
homomorphism ' from the free group on two generators A and B , and we
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x = [a,b](x)

b−1(x)

ba−1b−1(x)

a−1b−1(x)
x = a(x)

y = ab(y)

z = b(z)

b(y)

a

a

b

b

ba

a

b

ũ so that ũ′ > ũ. Then for any large n, we have f̃n ◦ h̃n(u
′) > T (u′). (See Figure 1.) This

shows τ( f̃n ◦ h̃n) = 1. Therefore c( fn,hn) = 1 and ‖ϕ∗c‖= ‖ϕ∗♯ c‖= 1, as is required. Also

it is not difficult to show that the above inequalities also show the following.

(2.2) For any ϕ ′ ∈RG sufficiently near to ϕ ∈RG(1), we have ‖(ϕ ′)∗c‖= 1.

To show (2.1) for k≥ 1, choose any ϕ ∈RG(k), with ϕ♯ a k-fold lift of some ψ ∈RG.

Clearly ψ ∈RG(1). Moreover the cocycle ϕ∗c = ϕ∗♯ c is precisely (1/k)ψ∗c. This shows

‖ϕ∗c‖= 1/k. �

Now the openness of RG(1) follows from Lemma 2.5 and (2.2). The proof that the set⋃
1≤i≤k RG(i) is open is left to the reader.

3. Outline

Before getting into a detailed proof of Theorem 1.17, we shall give an outline of its first

two steps. The basic idea is that a homomorphism in eu−1(l)∩RΠg(k) of Theorem 1.17

has the following very special property: There is a finite set, say R, of S1 such that the

knowledge about how the generators of the group moves points of R completely determines

the semiconjugacy class of the homomorphism.

First of all, let us explain this phenomenon in a much simpler example. Let Γ be the

free group on two generators A and B. Let ϕ ∈RΓ and denote a = ϕ(A) and b = ϕ(B).

Assume that τ([ã, b̃]) = 1, where ã (resp. b̃) is an arbitrary lift of a (resp. b). Then one can

show that such ϕ belongs to a single semiconjugacy class. This will actually be done in

Section 4. But we can present a rough outline here.

By the assumption τ([ã, b̃]) = 1, there is a fixed point x ∈ S1 of [a,b] such that

x≺ b−1(x)≺ a−1b−1(x)≺ ba−1b−1(x)≺ [a,b](x) = x.

See Figure 2 left.

The homeomorphism a maps the long interval [ba−1b−1(x),a−1b−1(x)] onto a subin-

terval [x,b−1(x)]. Therefore there is a fixed point of a in the open interval (x,b−1(x)).
There is also a fixed point in (a−1b−1(x),ba−1b−1(x)). Likewise b admits at least two

fixed points, one in (b−1(x),a−1b−1(x)), another in (ba−1b−1(x),x).

Figure 2
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Let R be the set of four points in Figure 2 left, and set S = {A,A−1,B,B−1}. Let

R2 =
⋃

s∈S ϕ(s)R. Then R2 contains R, and has 8 more points. The configuration of R2 in

S1 is determined uniquely. Likewise if we set R3 =
⋃

s∈S ϕ(s)R2, then its configuration is

also unique. See Figure 3. The left depicts R2 and the right a part of R3. This way, we can

determine the configuration of the whole orbit ϕ(Γ)x, which, according to Proposition 1.6,

implies that the semiconjugacy class of ϕ is uniquely determined. The actual proof can be

organized as an induction.

Here is another example of this kind. See Figure 2 right. This is also a homomorphism

ϕ from the free group on two generators A and B, and we denote a = ϕ(A) and b = ϕ(B).
The homeomorphism a (resp. b) has a fixed point x (resp. z), and we have y = ab(y) for

the point y in the figure. Clearly c(a,b) = 1 and any homomorphism with c(a,b) = 1 has

a configuration as in Figure 2 right. Again one can show that such ϕ belongs to a single

semiconjugacy class. That is, if we let R be the set of four points x, y, z and b(y), then the

same thing holds with this R.

What is good about these partitions R is the following. Let ψ be any k-fold lift of ϕ .

Then the pull back image π−1
k (R) has the same property: it determines the semiconjugacy

class of the homomorphism ψ .

What is not good is that partitions of this kind are difficult to find. To show Theo-

rem 1.17, we need something more.

Let us consider a Fuchsian representation ϕ ∈RΠ2
of the surface group Π2 of genus 2

such that eu(ϕ) = 2. One can assume the elements aν = ϕ(Aν) and bν = ϕ(Bν) (ν = 1,2)

are the hyperbolic motions in Figure 4 left. The axes of aν , bν and [a1,b1] = [b2,a2] are

depicted in Figure 4 right. Let x and y be the fixed points of [a1,b1]. See Figure 5 for parts

of orbits of x and y.

The set R of fourteen points there is enough to determine the semiconjugacy class of

the homomorphism ϕ . In fact, the configuration of R immediately implies that eu(ϕ) = 2,

and by [7], the semiconjugacy class is unique. However when we consider a 2-fold lift

ψ of ϕ , it is not clear if the inverse image π−1
2 (R) actually determines the semiconjugacy

class or not. To cope with the problem, we need an algorithm to determine the orbits of x

and y, which can be inherited to a k-fold cover. But this is not according to the word length

of the elements of Π2.

Figure 3

denote a D '.A/ and b D '.B/ . �e homeomorphism a (resp. b ) has a �xed
point x (resp. z ), and we have y D ab.y/ for the point y in the �gure. Clearly
c.a; b/ D 1 and any homomorphism with c.a; b/ D 1 has a con�guration as in
Figure 2 right. Again one can show that such ' belongs to a single semiconjugacy
class. �at is, if we let R be the set of four points x , y , z and b.y/ , then the
same thing holds with this R .
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What is good about these partitions R is the following. Let  be any k -fold
lift of ' . �en the pull back image ��1

k
.R/ has the same property: it determines

the semiconjugacy class of the homomorphism  .
What is not good is that partitions of this kind are di�cult to �nd. To show

�eorem 1.17, we need something more.
Let us consider a Fuchsian representation ' 2 R…2 of the surface group …2

of genus 2 such that eu.'/ D 2 . One can assume the elements a� D '.A�/ and
b� D '.B�/ (� D 1; 2) are the hyperbolic motions in Figure 4 left.
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Figure 4

�e axes of a� , b� and Œa1; b1� D Œb2; a2� are depicted in Figure 4 right. Let
x and y be the �xed points of Œa1; b1� . See Figure 5 for parts of orbits of x
and y .

�e set R of fourteen points there is enough to determine the semiconjugacy
class of the homomorphism ' . In fact, the con�guration of R immediately implies
that eu.'/ D 2 , and by [Mat2], the semiconjugacy class is unique. However when
we consider a 2 -fold lift  of ' , it is not clear if the inverse image ��12 .R/

actually determines the semiconjugacy class or not. To cope with the problem,
we need an algorithm to determine the orbits of x and y , which can be inherited
to a k -fold cover. But this is not according to the word length of the elements
of …2 .

Consider the amalgamated product

…2 D �1 �ƒ �2;

where �� is the subgroup generated by A� and B� and ƒ generated by
ŒA1; B1� D ŒB2; A2� . First we consider the homomorphism '� D 'j�� . �is
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is a homomorphism from the free group �� on two generators such that
�.Œea � ; eb � �/ D 1 , and the previous observation works. However notice that one
can de�ne the set R of four points in Figure 2 in two di�erent ways: one from
the orbit of x , the other y . It is more natural and more convenient to consider
disjoint four intervals (instead of points). For �1 , they are E1 D Œy; x� and its
iterates in Figure 6. �e complement of the four intervals is denoted by P1 . �e
stabilizer (in �1 ) of E1 is ƒ , and the limit set of the Fuchsian group �1 is
contained in P1 . Likewise in the right �gure, the four intervals are E2 D Œx; y�
and its iterates. �e complement is denoted by P2 .
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y x y x

P1

P2

E1

E2

Consider the amalgamated product

Π2 = Γ1 ∗Λ Γ2,

where Γν is the subgroup generated by Aν and Bν and Λ generated by [A1,B1] = [B2,A2].
First we consider the homomorphism ϕν = ϕ |Γν . This is a homomorphism from the free

group Γν on two generators such that τ([ãν , b̃ν ]) = 1, and the previous observation works.

However notice that one can define the set R of four points in Figure 2 in two different

ways: one from the orbit of x, the other y. It is more natural and more convenient to

consider disjoint four intervals (instead of points). For Γ1, they are E1 = [y,x] and its

iterates in Figure 6. The complement of the four intervals is denoted by P1. The stabilizer

(in Γ1) of E1 is Λ, and the limit set of the Fuchsian group Γ1 is contained in P1. Likewise

in the right figure, the four intervals are E2 = [x,y] and its iterates. The complement is

denoted by P2.

For γν ∈ Γν , the configuration of the orbits ϕν(γν )(x) and ϕν(γν )(y) is determined just

by the data in Figure 6 inductively on the word length of γν , as we have explained. They

are contained in Pν . The actual proof is given in Section 4, where we call such subsets Pν

basic partitions. The complementary intervals Eν is called the entrance of Λ to Pν . As we

explained, the stabilizer of Eν (in Γν ) is Λ. The entrances E1 and E2 satisfy the conditions;

E1∪E2 = S1 and IntE1∩ IntE2 = /0. They are said to be combinable. Now the whole orbits

ϕ(g)(x) and ϕ(g)(y) for g ∈ Π2 can be determined just by this combinability condition.

This part, reminiscent of the Maskit combination theorem [5] in Kleinian groups, is shown

in Section 5. What is good for this construction is that the whole process can be passed to

a 2-fold lift of ϕ .

Moreover the set R of fourteen points in Figure 5 are robust, in the sense that any

homomorphism near to ϕ has the same configuration as R. Furthermore, if we consider

a 2-fold lift ψ of ϕ , the set π−1
2 (R) is also robust for ψ . This part, shown in Section 7,

concludes the proof of the local stability (Theorem 1.17) for g = 2.

For g ≥ 3, the group Πg is represented as the fundamental group of a tree of groups.

Each vertex of the tree has valency either 1 or 3. For a valency 3 vertex, we have a ho-

momorphism ϕ ∈ RΓ, where Γ is the free group on two generators A and B. The home-

omorphism a = ϕ(A) and b = ϕ(B) has the property that c(a,b) = 1. This implies that

Figure 6

For � 2 �� , the con�guration of the orbits '�.�/.x/ and '�.�/.y/ is
determined just by the data in Figure 6 inductively on the word length of � , as
we have explained. �ey are contained in P� .

�e actual proof is given in Section 4, where we call such subsets P� basic
partitions. �e complementary intervals E� is called the entrance of ƒ to P� .
As we explained, the stabilizer of E� (in �� ) is ƒ . �e entrances E1 and E2

satisfy the conditions; E1 [ E2 D S1 and IntE1 \ IntE2 D ¿ . �ey are said
to be combinable. Now the whole orbits '.g/.x/ and '.g/.y/ for g 2 …2 can
be determined just by this combinability condition. �is part, reminiscent of the
Maskit combination theorem [Mas] in Kleinian groups, is shown in Section 5.
What is good for this construction is that the whole process can be passed to a
2-fold lift of ' .

Moreover the set R of fourteen points in Figure 5 are robust, in the sense that
any homomorphism near to ' has the same con�guration as R . Furthermore, if
we consider a 2-fold lift  of ' , the set ��12 .R/ is also robust for  . �is part,
shown in Section 7, concludes the proof of the local stability (�eorem 1.17) for
g D 2 .

For g � 3 , the group …g is represented as the fundamental group of a tree
of groups. Each vertex of the tree has valency either 1 or 3. For a valency 3
vertex, we have a homomorphism ' 2 R� , where � is the free group on two
generators A and B . �e homeomorphism a D '.A/ and b D '.B/ has the
property that c.a; b/ D 1 . �is implies that ' admits a con�guration in Figure 2
right. For this we consider a basic partition P as in Figure 7.
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FIGURE 7

E1 = a(E1)

E2 = a(E4) = ab(E2)

E3 = b(E3)

E4 = b(E2) = ba(E4)

P

ϕ admits a configuration in Figure 2 right. For this we consider a basic partition P as in

Figure 7. The complementary region consists of four intervals E1–E4. The stabilizer of E1

is the subgroup 〈a〉, and we say that E1 is the entrance of 〈a〉 to P. Likewise E2, E3 and E4

are entraces to P of the subgroups 〈ab〉, 〈b〉 and 〈ba〉, respectively. Compare with Figure 2

right.

4. Basic partitions

Let Γ be a group with a prescribed finite symmetric generating set S.

DEFINITION 4.1. A subset P of S1 is called a basic partition (BP) for ϕ ∈RΓ, if it

satisfies the following conditions.

(1) P is a union of finitely many disjoint closed intervals.

(2) For any I ⊏ P, there exists a unique element sI ∈ S such that

ϕ(sI)I =
l⋃

i=1

Ii∪
l−1⋃

i=1

Ji,

where Ii ⊏ P,Ji ⊏ P♯ are distinct intervals and l ≥ 2. (See Notations 1.19.)

(3) For any I ⊏ P and s ∈ S \ {sI}, ϕ(s)(I) is a proper subset of some I′ ⊏ P.

(4) For any J ⊏ P♯ and s ∈ S, either ϕ(s)J ⊏ P♯ or ϕ(s)J ⊂ Int(P).

EXAMPLE 4.2. The set Pν (ν = 1,2) in Figure 6 is an example of BP for homomor-

phisms ϕν = ϕ |Γν . The set P in Figure 7 is also a BP.

DEFINITION 4.3. For a BP P for ϕ ∈RΓ and l≥ 2, define inductively Pl =
⋂

s∈S∪{e}ϕ(s)Pl−1,

where P1 = P. Also define P∞ =
⋂

l∈N Pl .

Thus {Pl}l∈N is a decreasing sequence of compact subsets, each consisting of finitely

many closed intervals. In Example 4.2, if the corresponding homomorphism is onto a

Shottky group, then P∞ coincides with the limit set. In general, P∞ is a closed perfect set.

Figure 7

�e complementary region consists of four intervals E1–E4 . �e stabilizer
of E1 is the subgroup hai , and we say that E1 is the entrance of hai to P .
Likewise E2 , E3 and E4 are entraces to P of the subgroups habi , hbi and
hbai , respectively. Compare with Figure 2 right.

4. Basic partitions

Let � be a group with a prescribed �nite symmetric generating set S .

De�nition 4.1. A subset P of S1 is called a basic partition (BP) for ' 2 R� ,
if it satis�es the following conditions.

(1) P is a union of �nitely many disjoint closed intervals.
(2) For any I @ P , there exists a unique element sI 2 S such that

'.sI /I D

l[
iD1

Ii [

l�1[
iD1

Ji ;

where Ii @ P; Ji @ P] are distinct intervals and l � 2 . (See Notations 1.19.)
(3) For any I @ P and s 2 S n¹sI º , '.s/.I / is a proper subset of some I 0 @ P .
(4) For any J @ P] and s 2 S , either '.s/J @ P] or '.s/J � Int.P / .
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Example 4.2. �e set P� (� D 1; 2) in Figure 6 is an example of BP for
homomorphisms '� D 'j�� . �e set P in Figure 7 is also a BP.

De�nition 4.3. For a BP P for ' 2 R� and l � 2 , de�ne inductively
P l D

T
s2S[¹eº '.s/P

l�1 , where P 1 D P . Also de�ne P1 D
T
l2N P

l .

�us ¹P lºl2N is a decreasing sequence of compact subsets, each consisting
of �nitely many closed intervals. In Example 4.2, if the corresponding homomor-
phism is onto a Shottky group, then P1 coincides with the limit set. In general,
P1 is a closed perfect set.

Let us see how P 2 is obtained from P . By (2) and (3) of De�nition 4.1, we
have

P 2 D
[
I@P

'.sI /
�1
�
P \ sI .I /

�
:

�at is, any interval I @ P is divided uniquely as:

I D

l[
iD1

'.sI /
�1.Ii / [

l�1[
iD1

'.sI /
�1.Ji /;

where '.s�1I /.Ii / @ P 2; '.s�1I /.Ji / @ P 2
]
D .P 2/] . Any I 0 @ P 2 is of the above

form I 0 D '.sI /
�1.Ii / , and '.sI / maps I 0 onto Ii @ P . For any other s , '.s/

maps I 0 onto a proper subset of some I 00 @ P 2 . On the other hand, P 2
]

is
obtained from P] by adding new intervals of the above form '.sI /

�1.Ji / . A
component of P 2

]
is called level 1 if it is contained in P] , and level 2 otherwise.

Any level 1 component is mapped by any '.s/ onto a component of P 2
]
, either

to level 1 or to level 2. As for a level 2 component, we have the following.

(1) A level 2 component '.sI /
�1.Ji / is mapped by '.sI / onto a level 1

component Ji , and is mapped by any other '.s/ onto an interval contained
in the interior of P 2 . Especially no level 2 component is mapped onto a
level 2 component.

By these considerations, we have the following lemma.

Lemma 4.4. For a BP P for ' 2 R� and l � 2 , P l is a BP for ' .

Let P (resp. P 0 ) be a BP for ' 2 R� (resp. '0 ). Recall that P� D P \ P]
from Notation 1.19.

De�nition 4.5. A COP (cyclic order preserving) bijection � W P� ! P 0� is called
a BP equivalence if for any x; y 2 P� and s 2 S , we have
� Œx; y� @ P if and only if Œ�.x/; �.y/� @ P 0 and
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� y D '.s/x if and only if �.y/ D '0.s/�.x/ .

Lemma 4.6. Let P (resp. P 0 ) be a BP for ' 2 R� (resp. '0 ). �en a BP
equivalence � W P� ! P 0� extends uniquely to a BP equivalence �2 W P 2� ! P 02� .

Proof. For any x 2 P 2� n P� , there exists a unique element s 2 S such that
'.s/x 2 P� . De�ne �2.x/ D '0.s/�1 ı � ı '.s/.x/ . It is easy to show that �2 is
in fact a BP equivalence.

Notice that P1 D
T
l2N P

l is a perfect closed set, P1
]
D .P1/] consists of

countably many disjoint closed intervals, and P1� D P1 \ P1
]

is a countable
set. All three sets are '.�/ -invariant.

�e next theorem says that if P is a BP for ' 2 R� , then the semiconjugacy
class of the homomorphism ' is determined by the simple dynamics of S on
P . A semiconjugacy class is in fact determined by how one or several orbits are
located in S1 (Proposition 1.6).

�eorem 4.7. Let P and P 0 be BP’s for ' 2 R� and '0 2 R� . �en a BP
equivalence � W P� ! P 0� extends uniquely to a .'; '0/ -equivariant COP bijection
�1 W P1� ! .P 0/1� .

Proof. �is follows from inductive applications of Lemma 4.6.

�e next lemma plays a key role when we study a k -fold lift of a
homomorphism. �e easy proof is omitted.

Lemma 4.8. Let P be a BP for ' 2 R� and  a k -fold lift of ' . �en ��1
k
.P /

is a BP for  .

�e lemma joined with �eorem 4.7 says that if  is a k -fold lift of '
which admits a BP P , then the semiconjugacy class of  is determined by the
dynamics of  .S/ on ��1

k
.P / .

For future purpose, we need to continue to study more about BP’s. Especially
we have to show that the stabilizer (de�ned later) of an interval J @ P] can be
determined by a simple algorithm for a certain class of BP’s.

De�nition 4.9. For any J @ P1
]

, de�ne the level of J , lev.J / 2 N , by
lev.J / D l if and only if J � P l

]
n P l�1

]
.

Lemma 4.10. Let P be a BP for ' 2 R� . If J @ P1
]

satis�es lev.J / D l for
some l � 2 , then there is a unique element s 2 S such that lev.'.s/J / D l � 1 ,
and for any other s 2 S , lev.'.s/J / D l C 1 .



30 S. Matsumoto

Proof. For l D 2 , this follows from (1) placed just before Lemma 4.4. �e general
case can be shown by an easy induction.

De�nition 4.11. A labelled directed graph G.P / associated with a BP P for
' 2 R� is de�ned as follows. �e vertices of G.P / are components of P] . �ere
is a directed edge from J1 to J2 with label s 2 S (written J1

s
! J2 ) if s D sI ,

where I is the component of P right adjacent to J1 , and '.s/.J1/ D J2 .

Example 4.12. �e graph G.P1/ and G.P2/ of the BP’s in Figure 6 consists of
one cycle, while the graph G.P / for Figure 7 consists of 3 cycles.

Notice that for any vertex J of G.P / , there is exactly one edge leaving J .
However there may be a vertex at which no edges arrive.

De�nition 4.13. A BP P for ' 2 R� is called pure, if the graph G.P / consists
of disjoint cycles. We allow a period one cycle formed by one vertex and one
edge.

In fact, the pureness does not change if we replace “right adjacent” by “left
adjacent” in De�nition 4.11, although the direction or labelling of the graph may
change. For any BP P , P 2 can never be pure. �e BP’s in Examples 4.12 are pure.

De�nition 4.14. For ' 2 R� and a subset A of S1 , the stabilizer of A with
respect to ' , denoted by Stab'.A/ , is de�ned by

Stab'.A/ D
®
 2 � j './.A/ D A

¯
:

Lemma 4.15. Let P be a pure BP for ' 2 R� . �en we have the following.

(1) �e group � is free with symmetrized free generating set S and ' is
injective.

(2) For any J @ P] , the stabilizer Stab'.J / is generated by an element written
as a cyclically reduced word of S .

(3) For any J @ P1
]

with lev.J / D l ( l � 2 ), Stab'.J / is generated by an
element which has a nonreducing representation ˛ˇ˛�1 by reduced words
of S such that the word length of ˛ is l � 1 and ˇ is cyclically reduced.

Proof. For any J @ P] , assume './.J / D J for some  2 � n¹eº . Write  as a
reduced word in S :  D sm � � � s2s1 . For any 1 � i � m , let Ji D '.si � � � s1/.J / .
�en we have lev.Ji / D 1 for any i , that is, Ji is a vertex of G.P / . In fact, if
lev.Ji / would take the maximal value l � 2 at some i , then by Lemma 4.10, we
have lev.Ji�1/ D lev.JiC1/ D l � 1 and siC1 D s

�1
i , contrary to the assumption
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that the word is reduced. Again since the word is reduced and P is pure, we
have either of the following.

J
s1
! J1

s2
! � � �

sm
! Jm D J or J

s1
 J1

s2
 � � �

sm
 Jm D J:

Let Ii @ P be an interval right adjacent to Ji . �en in the former case '.siC1/
is always expanding on Ii , that is, siC1 D sIi . �is shows that './ cannot be
the identity. �e same is true in the latter case. Points (1) and (2) follow from
this, while it is easy to derive (3) from (2).

Finally we shall prepare some terminologies and facts needed for the next
section. Let ƒ be an in�nite cyclic subgroup of � and ' 2 R� .

De�nition 4.16. Given a closed subset X of S1 , the set

Eƒ' .X/ D
[®

J @ X] j ¹eº ¤ Stab'.J / � ƒ
¯
;

is called the entrance of ƒ to X with respect to ' .

De�nition 4.17. A pair of closed subsets .Q;E/ is called a .�;ƒ/-pair for ' if
Q is a '.�/ -invariant closed perfect set, E D Eƒ' .Q/ , and E is a �nite disjoint
union of closed intervals.

Lemma 4.18. Let P be a pure BP for ' 2 R� and ƒ an in�nite cyclic subgroup
of � . Assume Eƒ' .P / is nonempty. �en .P1; Eƒ' .P // is a .�;ƒ/-pair.

Proof. We only need to show that Eƒ' .P / D Eƒ' .P1/ . �at is, if J @ P1
]

and
Stab'.J / � ƒ , then lev.J / D 1 . But this is clear from Lemma 4.15.

5. Combinations

�is section is divided into three subsections. In the �rst, we are concerned
with a single homomorphism, while in the second, with a pair of homomorphisms.
1. �roughout this subsection, we make the following.

Assumption 5.1. (a) �e group G is written as an amalgamated product

G D �1 �ƒ �2;

where ƒ is an in�nite cyclic subgroup.
(b) ' 2 RG , and '� D 'j�� is injective for � D 1; 2 .
(c) .Q� ; E�/ is a .�� ; ƒ/-pair for '� , � D 1; 2 .
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Denote ��� D �� nƒ . We make extensive use of the following partition of the
group G .

G D
G
k�0

Gk;

where

G0 D ƒ; G1 D ��1 t �
�
2 ;

G2 D ��1�
�
2 t �

�
2�
�
1 ;

G3 D ��1�
�
2�
�
1 t �

�
2�
�
1�
�
2 ; � � � :

(5.1)

De�nition 5.2. �e pairs .Q1; E1/ and .Q2; E2/ are called combinable for ' if
E1 and E2 alternate in S1 , that is, E1 [E2 D S1 and Int .E1/\ Int .E2/ D ¿ .
In this case we denote E� D @E1 D @E2 .

We also assume the following in this subsection.

Assumption 5.3. Q D
�
.Q1; E1/; .Q2; E2/

�
is a combinable pair for ' .

We de�ne an (undirected) graph
�
V .Q/;E.Q/

�
of the combinable pair Q as

follows.

V .Q/ D
®
'.g/Q� j g 2 G; � D 1; 2

¯
;

E.Q/ D
®
¹v; v0º j v; v0 2 V .Q/; v ¤ v0; v \ v0 ¤ ¿

¯
:

�e group G acts naturally on the graph .V .Q/;E.Q// as graph automorphisms
via the homomorphism ' . �e rest of this subsection is devoted to the study
of properties of the graph .V .Q/;E.Q// . Especially we show that the graph
.V .Q/;E.Q// is in fact a tree. (It is isomorphic to the Bass-Serre tree associated
to the amalgamated product G D �1 �ƒ �2 .)

For v;w 2 V .Q/ , we denote v � w if ¹v;wº 2 E.Q/ , and say that v and
w are adjacent. �e indexing set for Q� is the group Z=2Z , thus for example
Q3 D Q1 , while the indexing set for a group element is Z , thus in general
3 ¤ 1 .

Lemma 5.4. We have Q� � Q�C1 and Q� � '.�/Q�C1 for any � 2 �
�
� .

Conversely if Q� � v , then either v D Q�C1 or v D '.�/Q�C1 for some
� 2 �

�
� .

Proof. Since Q1 \Q2 D E� ¤ ¿ , we have Q1 � Q2 . Since Q� is invariant by
'.��/ . we have Q� \ '.�/Q�C1 D '.�/.Q1 \Q2/ ¤ ¿ for � 2 ��� . �at is,
Q� � '.�/Q�C1 .
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In the sequel, we shall show that all the other vertices are not adjacent to
Q� . First we prepare some fundamental facts. See Figure 8.

Q� � E�C1 and Q� \ IntE� D ¿;(5.2)
'.�/E� � IntE�C1 and Int'.�/E� \Q� D ¿ for any � 2 ��� :(5.3)

For (5.3), recall that Q� is assumed to be perfect.
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FIGURE 8. The subsets Qν should have countably many complementary inter-

vals. Only some of them are drawn in the figure.

Qν+1 Qν

Eν Eν+1

ϕ(γν+1)(Eν+1) ϕ(γν )(Eν)

We define an (undirected) graph (V(Q),E(Q)) of the combinable pair Q as follows.

V(Q) = {ϕ(g)Qν | g ∈G, ν = 1,2},

E(Q) = {{v,v′} | v,v′ ∈ V(Q), v 6= v′, v∩ v′ 6= /0}.

The group G acts naturally on the graph (V(Q),E(Q)) as graph automorphisms via the

homomorphism ϕ . The rest of this subsection is devoted to the study of properties of the

graph (V(Q),E(Q)). Especially we show that the graph (V(Q),E(Q)) is in fact a tree. (It

is isomorphic to the Bass-Serre tree associated to the amalgamated product G = Γ1 ∗Λ Γ2.)

For v,w ∈V(Q), we denote v∼w if {v,w} ∈ E(Q), and say that v and w are adjacent.

The indexing set for Qν is the group Z/2Z, thus for example Q3 = Q1, while the indexing

set for a group element is Z, thus in general γ3 6= γ1.

LEMMA 5.4. We have Qν ∼Qν+1 and Qν ∼ ϕ(γν)Qν+1 for any γν ∈ Γ∗ν . Conversely

if Qν ∼ v, then either v = Qν+1 or v = ϕ(γν )Qν+1 for some γν ∈ Γ∗ν .

PROOF. Since Q1∩Q2 = E∗ 6= /0, we have Q1 ∼ Q2. Since Qν is invariant by ϕ(Γν).
we have Qν ∩ϕ(γν)Qν+1 = ϕ(γν )(Q1∩Q2) 6= /0 for γν ∈ Γ∗ν . That is, Qν ∼ ϕ(γν)Qν+1.

In the sequel, we shall show that all the other vertices are not adjacent to Qν . First we

prepare some fundamental facts. See Figure 8.

Qν ⊂ Eν+1 and Qν ∩ IntEν = /0,(5.2)

ϕ(γν )Eν ⊂ IntEν+1 and Intϕ(γν )Eν ∩Qν = /0 for any γν ∈ Γ∗ν .(5.3)

For (5.3), recall that Qν is assumed to be perfect.

Now for γν+1 ∈ Γ∗ν+1, the vertex ϕ(γν+1)Qν is not adjacent to Qν , since

ϕ(γν+1)Qν ⊂ ϕ(γν+1)Eν+1 ⊂ IntEν .

We shall show by induction on k that if k≥ 2 and γν+i ∈ Γ∗ν+i (1≤ i≤ k), then

(5.4) ϕ(γν+k · · ·γν+1)Qν ⊂ Intϕ(γν+k)Eν+k.

This shows that ϕ(γν+k · · ·γν+1)Qν is adjacent neither to Q1 nor to Q2, by virtue of (5.3).

To show (5.4) for k = 2, notice by (5.2)

ϕ(γν+2γν+1)Qν ⊂ ϕ(γν+2γν+1)Eν+1 ⊂ Intϕ(γν+2)Eν+2.

For the inductive step,

ϕ(γν+k+1γν+k · · ·γν+1)Qν ⊂ ϕ(γν+k+1)Intϕ(γν+k)Eν+k ⊂ Intϕ(γν+k+1)Eν+k+1.

�

Figure 8
�e subsets Q� should have countably many complementary

intervals. Only some of them are drawn in the �gure.

Now for �C1 2 ���C1 , the vertex '.�C1/Q� is not adjacent to Q� , since

'.�C1/Q� � '.�C1/E�C1 � IntE� :

We shall show by induction on k that if k � 2 and �Ci 2 �
�
�Ci (1 � i � k ),

then

(5.4) '.�Ck � � � �C1/Q� � Int'.�Ck/E�Ck :

�is shows that '.�Ck � � � �C1/Q� is adjacent neither to Q1 nor to Q2 , by
virtue of (5.3).

To show (5.4) for k D 2 , notice by (5.2)

'.�C2�C1/Q� � '.�C2�C1/E�C1 � Int'.�C2/E�C2:

For the inductive step,

'.�CkC1�Ck � � � �C1/Q� � '.�CkC1/Int'.�Ck/E�Ck � Int'.�CkC1/E�CkC1:

Remark 5.5. �e above proof shows that any vertex '.g/Q� is distinct from Q�

unless g 2 �� .

See Figure 9 for the graph .V .Q/;E.Q// .
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FIGURE 9. The vertices a–d are a = Q2, b = Q1, c = γ1Q2 and d = γ1γ2Q1.

The actual set Q1 is depicted on the circle.

Q1
Q1

a

b

c

d

REMARK 5.5. The above proof shows that any vertex ϕ(g)Qν is distinct from Qν

unless g ∈ Γν .

See Figure 9 for the graph (V(Q),E(Q)).

LEMMA 5.6. For any interval J ⊏ (Qν )♯ which is distinct from ϕ(γν )Eν for any γν ∈
Γν , we have IntJ∩ v = /0 for any v ∈V(Q) and Stabϕ (J) = Stabϕν (J).

PROOF. Any vertex other than Qν contained in Eν+1 is contained in ϕ(γν )Eν for some

γν ∈ Γ∗ν , by virtue of (5.4), showing the first statement. For the last statement, choose an

arbitrary element g ∈ Stabϕ(J). Then g leaves ∂J invariant. The set ∂J is contained in Qν

and disjoint from any other vertex of V(Q). Therefore g stabilizes the vertex Qν in the

action of G on the graph. This shows g ∈ Γν by Remark 5.5. �

Let us continue the study of the graph (V(Q),E(Q)).

LEMMA 5.7. Let v,w ∈ V(Q). If v ∼ w and v = ϕ(γν+k · · ·γν+1)Qν for some k ≥ 1

and γν+i ∈ Γ∗ν+i, then either w = ϕ(γν+k · · ·γν+2)Qν+1 or w = ϕ(γν+k · · ·γν+1γν )Qν−1 for

some γν ∈ Γ∗ν , and moreover v∩w is contained in the ϕ(G)-orbit of E∗.

PROOF. Recall that the group G acts on the graph (V(Q),E(Q)) as graph auto-

morphisms. Thus if w ∼ ϕ(γν+k · · ·γν+1)Qν , then ϕ(γν+k · · ·γν+1)
−1w ∼ Qν . There-

fore either ϕ(γν+k · · ·γν+1)
−1w is equal to Qν+1 or ϕ(γν )Qν−1 for some γν ∈ Γ∗ν . Since

ϕ(γν+1)Qν+1 = Qν+1, this shows the first part. An immediate consequence is that G acts

transitively on the set of edges E(Q). That is, there is g ∈ G which maps E∗ = Q1 ∩Q2

onto v∩w, showing the second part. �

DEFINITION 5.8. Any vertex v of the graph is written as v = ϕ(γν+k · · ·γν+1)Qν for

γν+i ∈ Γ∗ν+i. The number k is unique, and is called the distance of v.

LEMMA 5.9. (1) We have Stabϕ(Qν ) = Γν .

(2) The graph (V(Q),E(Q)) is a tree and ϕ is injective.

(3) For g ∈ G, we have ϕ(g)E∗∩E∗ 6= /0 if and only if g ∈ Λ.

Figure 9
�e vertices a–d are a D Q2 , b D Q1 , c D 1Q2 and
d D 12Q1 . �e actual set Q1 is depicted on the circle.

Lemma 5.6. For any interval J @ .Q�/] which is distinct from '.�/E� for any
� 2 �� , we have Int J \ v D ¿ for any v 2 V .Q/ and Stab'.J / D Stab'� .J / .

Proof. Any vertex other than Q� contained in E�C1 is contained in '.�/E�

for some � 2 �
�
� , by virtue of (5.4), showing the �rst statement. For the last

statement, choose an arbitrary element g 2 Stab'.J / . �en g leaves @J invariant.
�e set @J is contained in Q� and disjoint from any other vertex of V .Q/ .
�erefore g stabilizes the vertex Q� in the action of G on the graph. �is shows
g 2 �� by Remark 5.5.

Let us continue the study of the graph .V .Q/;E.Q// .

Lemma 5.7. Let v;w 2 V .Q/ . If v � w and v D '.�Ck � � � �C1/Q� for
some k � 1 and �Ci 2 ���Ci , then either w D '.�Ck � � � �C2/Q�C1 or
w D '.�Ck � � � �C1�/Q��1 for some � 2 ��� , and moreover v\w is contained
in the '.G/ -orbit of E� .

Proof. Recall that the group G acts on the graph .V .Q/;E.Q// as graph
automorphisms. �us if w � '.�Ck � � � �C1/Q� , then '.�Ck � � � �C1/

�1w �

Q� . �erefore either '.�Ck � � � �C1/�1w is equal to Q�C1 or '.�/Q��1 for
some � 2 ��� . Since '.�C1/Q�C1 D Q�C1 , this shows the �rst part. An
immediate consequence is that G acts transitively on the set of edges E.Q/ . �at
is, there is g 2 G which maps E� D Q1 \Q2 onto v \w , showing the second
part.

De�nition 5.8. Any vertex v of the graph is written as v D '.�Ck � � � �C1/Q�
for �Ci 2 ���Ci . �e number k is unique, and is called the distance of v .
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Lemma 5.9. (1) We have Stab'.Q�/ D �� .
(2) �e graph .V .Q/;E.Q// is a tree and ' is injective.
(3) For g 2 G , we have '.g/E� \E� ¤ ¿ if and only if g 2 ƒ .

Proof. Point (1) is a rephrasing of Remark 5.5. Lemma 5.7 says that any vertex of
distance k (k � 1 ) is only adjacent to vertices of distance k � 1 and kC 1 , and
the vertex of distance k � 1 is unique. �is shows that the graph .V .Q/;E.Q//
is a tree. To show that ' is injective, assume '.g/ D id for some g 2 G .
�en g acts trivially on the graph. Especially g leaves the vertex Q� invariant.
�at is, g 2 �� by (1). By the assumption that '� D 'j�� is injective, we get
g D e , as is required. �e if part of (3) is clear. To show the converse, notice
that E� D Q1 \Q2 . By Lemma 5.4, if '.g/Q� \Q�C1 ¤ ¿ , then g 2 ��C1 .
�is holds for each � D 1; 2 , and thus g 2 �1 \ �2 D ƒ .

Further discussions are necessary for the development of the next subsection.

De�nition 5.10. Let J0 be the family of connected components of E1 and E2 ,
and for n � 1 , let

Jn D
®
'.�Cn�1 � � � �/I j �Ci 2 �

�
�Ci ; I @ E� ; � D 1; 2

¯
:

Lemma 5.11. (1) For any J 2 Jn (n � 2 ), there are Ji 2 Ji (1 � i � n � 1 )
and � such that

J � Int Jn�1 � Jn�1 � � � � � Int J1 � J1 @ .Q�/];

(2) Any two intervals J; J 0 2 Jn , n � 1 , satisfy either J D J 0 or J \ J 0 D ¿ .

Proof. Point (1) is shown inductively using (5.3). Point (2) is clear for n D 1 .
(See Figure 8.) �e general case can be shown by an induction on n based
upon (1).

For a subset K of G and X of S1 , denote '.K/X D [g2K'.g/X .

De�nition 5.12. De�ne a subset Xn of S1 by X0 D E� and for n � 1 ,
Xn D '.G

n/X0 . Let X D
S
nXn . (For the de�nition of Gn , see (5.1).)

�e following easy lemma is useful to clarify an argument in the next
subsection.

Lemma 5.13. (1) Xn D
S
I2Jn @I .

(2) Xn \Xm D ¿ if n ¤ m .
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(3) X D '.G/E� .
(4) For any v 2 V .Q/ of distance n (n � 0 ), v\Xm ¤ ¿ if and only if m D n

or m D nC 1 .

�e following lemma will be used in Section 6 where we consider successive
combinations.

Lemma 5.14. Assume there is a subset E 0 � .Q1/] such that .Q1; E 0/ is a
.�1; ƒ

0/ -pair for '1 , where ƒ0 is an in�nite cyclic subgroup of �1 such that
ƒ0\1ƒ

�1
1 D ¹eº for any 1 2 �1 . �en .Cl.'.G/.Q1[Q2//; E 0/ is a .G;ƒ0/ -

pair for ' .

Proof. It is clear that

Z WD Cl
�
'.G/.Q1 [Q2/

�
D Cl

� [
v2V .Q/

v
�

is a '.G/ -invariant closed perfect set. So what is left is to show that E 0 D Eƒ0' .Z/ ,
where by de�nition E 0 D Eƒ

0

'1
.Q1/ . �e assumption on ƒ0 implies that

E 0\'.�/E� D ¿ for any � and � 2 ��� . By Lemma 5.6, we have E 0 � Eƒ0' .Z/ .
To show the converse, assume J @ Eƒ

0

' .Z/ . If J @ .Q1 [Q2/] , then clearly
we have J @ E 0 . Otherwise J must be contained in '.�/I� 2 J1 for some
I� @ E� and � 2 �

�
� . Since J @ Eƒ

0

' .Z/ , there is g 2 ƒ0 n ¹eº � ��1 such that
'.g/J D J . �en '.g/'.�/I� \ '.�/I� ¤ ¿ . If � D 2 , then '.2/I2 � IntE1 ,
while '.g/'.2/I2 � IntE2 . A contradiction. If � D 1 , '.g/'.1/I1 2 J1 since
g 2 ��1 . �en by Lemma 5.11 (2), '.g1/I1 D '.1/I1 , and �11 g1 2 ƒ by
Lemma 5.9 (3). But this is contrary to the assumption on ƒ0 .

2. In this section, we assume the following.

Assumption 5.15. Let � D 1; 2 and i D 1; 2 .
(a) �e group G is just as in Assumption 5.1.
(b) Let 'i 2 RG , and assume 'i� D 'i j�� is injective.
(c) Let .Qi

� ; E
i
�/ be a .�� ; ƒ/-pair for 'i� .

(d) �e pair Qi D ..Qi
1; E

i
1/; .Q

i
2; E

i
2// is combinable for 'i .

(e) �ere is a COP bijection � W Q1
1;� [ Q

1
2;� ! Q2

1;� [ Q
2
2;� such that

�.Q1
�;�/ D Q

2
�;� and the restrictions �� D �jQ1�;� W Q

1
�;� ! Q2

�;� is .'1� ; '2� / -
equivariant.

Our purpose is to show that � extends to a .'1; '2/ -equivariant COP bijection
from the saturation '1.G/.Q1

1;� [Q
1
2;�/ to '2.G/.Q2

1;� [Q
2
2;�/ (�eorem 5.17).
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�e proof is in two steps: the �rst step is the following Lemma. Let J i
n , X in and

X i be de�ned as in De�nitions 5.10 and 5.12 for 'i .

Lemma 5.16. �e map � extends to a COP bijection

O� W Q1
1;� [Q

1
2;� [X

1
! Q2

1;� [Q
2
2;� [X

2

which is .'1; '2/ -equivariant as a map from X1 to X2 .

Proof. Recall that X i D 'i .G/E
i
� . �e map � extends to X1 by the .'1; '2/ -

equivariance. Namely, given x 2 X1 , choose g 2 G and x0 2 E
1
� such that

x D '1.g/x0 , and de�ne O�.x/ D '2.g/�.x0/ . �e map O� is a well de�ned
bijection since by Lemma 5.9 (3), Stab'i .Ei�/ � ƒ , and �jE1�

is .'1jƒ; '2jƒ/ -
equivariant. Notice also that O� coincides with the original � on X11 � Q1

1;�[Q
1
2:�

by the .'1� ; '2� / -equivariance of �� , and X1n (n � 2 ) is disjoint from Q1
1;�[Q

1
2:� .

�erefore we only need to show that O� is COP.
We shall prove that O� is COP on Q1

1;�[Q
1
2;�[

S
0�i�nX

1
i by an induction on

n . �is is su�cient since X1 D
S
nX

1
n . For n D 1 , this is true by the assumption

since X11 � Q1
1;� [Q

1
2;� . To show it for nC 1 , choose an arbitrary open interval

Int I @ S1 n
�
Q1
1;� [Q

1
2;� [

[
0�i�n

X1i

�
such that Int I \X1nC1 ¤ ¿: Clearly we only have to show that O� is COP on

I \
�
Q1
1;� [Q

1
2;� [

[
0�i�nC1

X1i

�
;

where I is the closure of Int I . Now any point of Int I \X1nC1 is an endpoint
of some interval of J 1

nC1 , and by Lemma 5.11, we have I 2 J 1
n . �is shows

I \
�
Q1
1;� [Q

1
2;� [

[
0�i�nC1

X1i

�
D I \ .X1n [X

1
nC1/:

Furthermore I D '1.g/J for some J 2 J 1
0 and g 2 Gn .

Finally since we have de�ned

O�jI\.X1n[X1nC1/
D
�
'2.g/j�.J /\.X2

0
[X2

1
/

�
ı

�
�jJ\.X1

0
[X1

1
/ ı
�
'1.g�1/jI\.X1n[X1nC1/

��
;

and all the maps on the RHS is COP, the map O�jI\.X1n[X1nC1/ is COP, as is
required.
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�eorem 5.17. Under Assumption 5.15, the COP bijection

� W Q1
1;� [Q

1
2;� ! Q2

1;� [Q
2
2;�

extends uniquely to a .'1; '2/ -equivariant COP bijection

O� W '1.G/.Q1
1;� [Q

1
2;�/! '2.G/.Q2

1;� [Q
2
2;�/:

Proof. Recall that

'1.G/.Q1
1 [Q

1
2/ D

[®
v j v 2 V .Q1/

¯
;

where v D '1.g/Q1
� for some g 2 G and � . Denote v� D '1.g/Q1

�;� . De�ne
O� on each v� by the .'1; '2/ -equivariance. �is is well de�ned because � is
.'1� ; '

2
� / -equivariant on Q1

�;� and Stab'i .Qi
�/ D �� by Lemma 5.9 (1). Of course

the map O� is COP on each v� . �e map O� coincides with the one de�ned in
Lemma 5.16 on v� \X

1 . �e proof is complete by Lemma 5.16.

3. Let � D 1; 2 and i D 1; 2 . Assume the following.
(a) �e group G is just as in Assumption 5.1.
(b) Let 'i 2 RG , and denote 'i� D 'i j�� .
(c) Let P i� is a pure BP for 'i� , with Ei� the entrance of ƒ to P i� .
(d) �e pairs .P i1 ; Ei1/ and .P i2 ; E

i
2/ are combinable in the sense that Ei1 and

Ei2 are alternating in S1 .
(e) �ere is a COP bijection � W P 11;� [ P

1
2;� ! P 21;� [ P

2
2;� such that �jP 1�;� is

a BP equivalence from P 1�;� onto P 2�;� .
Joining �eorems 4.7 and 5.17, we get the following.

�eorem 5.18. Under the above assumption, '1 and '2 are semiconjugate.

Notice that the set R of fourteen points in Figure 5 is equal to P 11;�[P 12;� for
the homomorphism (here denoted '1 ) in R…2 with eu.'1/ D 2 . �us the above
theorem says that any homomorphisms which admit the same con�guration R

are mutually semiconjugate. �is, together with the robustness of R (discussed
in Section 7), implies the local stability of '1 . Furthermore a 2 -fold lift of '1
is also shown to be locally stable.
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6. Trees of groups

De�nition 6.1. A tree of groups is a �nite tree T D .V; E/ such that

(1) to each vertex v 2 V (resp. edge e 2 E ) is associated a group �v (resp.
ƒe ),

(2) and if v 2 V is an end point of e 2 E , then a monomorphism �e;v W ƒe ! �v

is assigned.

�e fundamental group G.T / of a tree T of groups is the group generated
by �v and ƒe (v 2 V; e 2 E ) subject to the relation � D  whenever � 2 ƒe ,
 2 �v , v is an end point of e , and �e;v.�/ D  .

Example 6.2. Consider the closed oriented surface †g of genus g . Divide †g
by circles into once punctured tori and pairs of pants. Embed a tree in †g as
in Figure 10 top. �en the fundamental groups �i of subsurfaces †i and the
fundamental groups ƒj of circles Cj are considered to be subgroups of the
fundamental group …g of the total surface, the base points being taken on the
tree. �is yields a tree of groups as in Figure 10 bottom whose fundamental group
is isomorphic to …g . BASIC PARTITIONS AND COMBINATIONS 19

FIGURE 10
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Throughout this section we work under the following assumption.

ASSUMPTION 6.3. (a) The group G = G(T ) is the fundamental group of a tree T =
(V ,E ) of groups.

(b) The vertex group Γv admits a finite symmetric generating set Sv, and the edge group Λe

is infinite cyclic.

(c) If e and e′ are distinct edges starting at a vertex v, then Λe ∩λvΛe′λ
−1
v = {e} for any

λv ∈ Γv.

(d) There are two homomorphisms ϕ i ∈RG, i = 1,2. We denote ϕ i
v the restriction of ϕ i to

the vertex group Γv.

(e) For each vertex group Γv, there is a pure BP Pi
v for ϕ i

v with repect to the generating set

Sv.

(f) If v is an end point of e, then there is an entrance, denoted E i
v,e, of Λe to Pi

v with respect

to ϕ i
v. Put Qi

v = P
i,∞
v .

Then (Qi
v,E

i
v,e) is a (Γv,Λe)-pair for ϕ i

v by Lemma 4.18.

(g) If v and v′ are two end points of e, then (Qi
v,E

i
v,e) and (Qi

v′
,E i

v′,e) form a combinable

pair. Denote the finite set E i
e,∗ = E i

v,e ∩E i
v′,e.

The set Pi
∗ =

⋃
v∈V Pi

v,∗ is called the basic configuration (abbreviated

BC) of G = G(T ) for ϕ i. A COP bijection ξ : P1
∗ → P2

∗ is called a BC

equivalence if ξ (P1
v,∗) = P2

v,∗ and ξ |P1
v,∗

is a BP equivalence from P1
v,∗ to

P2
v,∗ for each v ∈ V .

(h) There is a BC equivalence ξ : P1
∗ → P2

∗ .

Figure 10

�roughout this section we work under the following assumption.
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Assumption 6.3. (a) �e group G D G.T / is the fundamental group of a tree
T D .V; E/ of groups.

(b) �e vertex group �v admits a �nite symmetric generating set Sv , and the
edge group ƒe is in�nite cyclic.

(c) If e and e0 are distinct edges starting at a vertex v , then ƒe\�vƒe0��1v D ¹eº
for any �v 2 �v .

(d) �ere are two homomorphisms 'i 2 RG , i D 1; 2 . We denote 'iv the
restriction of 'i to the vertex group �v .

(e) For each vertex group �v , there is a pure BP P iv for 'iv with respect to
the generating set Sv .

(f) If v is an end point of e , then there is an entrance, denoted Eiv;e , of ƒe
to P iv with respect to 'iv . Put Qi

v D P
i;1
v .

�en .Qi
v; E

i
v;e/ is a .�v; ƒe/ -pair for 'iv by Lemma 4.18.

(g) If v and v0 are two end points of e , then .Qi
v; E

i
v;e/ and .Qi

v0 ; E
i
v0;e/ form

a combinable pair. Denote the �nite set Eie;� D Eiv;e \Eiv0;e .
�e set P i� D

S
v2V P

i
v;� is called the basic con�guration

(abbreviated BC) of G D G.T / for 'i . A COP bijection
� W P 1� ! P 2� is called a BC equivalence if �.P 1v;�/ D P 2v;� and
�jP 1v;�

is a BP equivalence from P 1v;� to P 2v;� for each v 2 V .

(h) �ere is a BC equivalence � W P 1� ! P 2� .

For our purpose, the following example of BC is the most important.

Example 6.4. Consider a Fuchsian representation of the surface group …5 in
Figure 10. Choose a lift eT of the tree T embedded in the surface to the universal
covering space D . See Figure 11. �e lift of the curve Cj to D which intersectseT is denoted by eC j . �e edge group ƒj is the stabilizer of eC j . As for the
vertex group �i , its convex core (of the limit set) is contained in the region †0i
depicted in Figure 11.

For a vertex of valency 1, the vertex group is generated by two hyperbolic
motions a and b such that �.Œea ; eb �/ D 1 . So it has a BP as in Figure 6. For
a vertex of valency 3, generators a; b of the vertex group satis�es c.a; b/ D 1 ,
and it has a BP as in Figure 7. �e BP P1 (resp. P3 ) corresponding to the
vertex group �1 (resp. �3 ) is depicted in Figure 12. �e BC of …5 consists of
50 points and satis�es all the conditions of De�nition 6.3.

�e following lemma is straightforward.
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P3

P4

P6

C̃1

C̃3

C̃2

Σ′3

Σ′1

For our purpose, the following example of BC is the most important.

EXAMPLE 6.4. Consider a Fuchsian representation of the surface group Π5 in Fig-

ure 10. Choose a lift T̃ of the tree T embedded in the surface to the universal covering

space D. See Figure 11. The lift of the curve C j to D which intersects T̃ is denoted by C̃ j.

The edge group Λ j is the stabilizer of C̃ j. As for the vertex group Γi, its convex core (of

the limit set) is contained in the region Σ′i depicted in Figure 11.

For a vertex of valency 1, the vertex group is generated by two hyperbolic motions

a and b such that τ([ã, b̃]) = 1. So it has a BP as in Figure 6. For a vertex of valency 3,

generators a,b of the vertex group satisfies c(a,b) = 1, and it has a BP as in Figure 7. The

BP P1 (resp. P3) corresponding to the vertex group Γ1 (resp. Γ3) is depicted in Figure 12.

The BC of Π5 consists of 50 points and satisfies all the conditions of Definition 6.3.

The following lemma is straightforward.

LEMMA 6.5. If P1
∗ is a BC for ϕ1 ∈RG, where G=G(T ) is the fundamental group of

a tree T , and if ψ1 is a k-fold lift of ϕ1 for some k ≥ 2, then π−1
k (P1

∗ ) is a BC for ψ1. �

Figure 11

Lemma 6.5. If P 1� is a BC for '1 2 RG , where G D G.T / is the fundamental
group of a tree T , and if  1 is a k -fold lift of '1 for some k � 2 , then
��1
k
.P 1� / is a BC for  1 .

Before stating the main theorem of this section, we prepare a lemma. By
�eorem 4.7, the BP equivalence �jP 1v;�

W P 1v;� ! P 2v;� extends to a .'1v ; '
2
v / -

equivariant COP bijection O�v W Q1
v;� ! Q2

v;� for each vertex v . Notice that
Qi
v;� D '

i .�v/P
i
v;� .

Lemma 6.6. �ere is a COP bijection O� W
S
vQ

1
v;� !

S
vQ

2
v;� such that

O�jQ1v;�
D O�v .
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Σ′3

P1

P3

Σ′1

Before stating the main theorem of this section, we prepare a lemma. By Theorem 4.7,

the BP equivalence ξ |P1
v,∗

: P1
v,∗→ P2

v,∗ extends to a (ϕ1
v ,ϕ

2
v )-equivariant COP bijection ξ̂v :

Q1
v,∗→Q2

v,∗ for each vertex v. Notice that Qi
v,∗ = ϕ i(Γv)P

i
v,∗.

LEMMA 6.6. There is a COP bijection ξ̂ :
⋃

v Q1
v,∗→

⋃
v Q2

v,∗ such that ξ̂ |Q1
v,∗

= ξ̂v.

PROOF. If v,v′ are distinct vertices, then Pi
v∩Pi

v′
⊂ Pi

∗. In fact, if v,v′ are adjacent, this

follows from (g). If not, Pi
v′

is contained in IntE i
v,e, where e is the edge that starts at v and

tends toward the direction of v′, which implies Pi
v ∩Pi

v′
= /0. Since Qi

v,∗ ⊂ Pi
v, the lemma

follows from the fact that both ξ : P1
∗ → P2

∗ and ξ̂v : Q1
v,∗→Q2

v,∗ are COP bijections. �

THEOREM 6.7. The BC-equivalence ξ : P1
∗ → P2

∗ extends to a (ϕ1,ϕ2)-equivariant

COP bijection ξ̂ : ϕ1(G)P1
∗ → ϕ2(G)P2

∗ .

PROOF. The proof is by an induction on the number n of vertices of T . If n = 2, this

is just Theorem 5.17. Given T , delete a vertex v of valency 1 and the edge e which starts

at v. Denote the resultant subtree by T ′ and the other end point of e by v′. Then the group

G = G(T ) can be written as an amalgamated product:

G = G(T ′)∗Λe Γv.

Let

Q′i = ϕ i(G(T ′))(
⋃

v∈T ′

Qi
v).

Then (Q′i,E i
v′,e) is shown to be a (G(T ′),Λe)-pair by virtue of Assumption 6.3 (c) and

successive use of Lemma 5.14. Clearly the pair (Q′i,E i
v′,e) is combinable with the (Γv,Λe)-

pair (Qi
v,E

i
v,e). On the other hand, by the induction hypothesis, ξ has an G(T ′)-equivariant

extension ξ ′ : Q′1∗ → Q′2∗ . Moreover ξ ′ and ξv satisfy point (e) of Assumption 5.15. The

proof is complete by Theorem 5.17. �

Figure 12

Proof. If v; v0 are distinct vertices, then P iv \ P
i
v0 � P i� . In fact, if v; v0 are

adjacent, this follows from (g). If not, P iv0 is contained in IntEiv;e , where e is
the edge that starts at v and tends toward the direction of v0 , which implies
P iv \ P

i
v0 D ¿ . Since Qi

v;� � P iv , the lemma follows from the fact that both
� W P 1� ! P 2� and O�v W Q1

v;� ! Q2
v;� are COP bijections.

�eorem 6.7. �e BC-equivalence � W P 1� ! P 2� extends to a .'1; '2/ -equivariant
COP bijection O� W '1.G/P 1� ! '2.G/P 2� .

Proof. �e proof is by an induction on the number n of vertices of T . If n D 2 ,
this is just �eorem 5.17. Given T , delete a vertex v of valency 1 and the edge e
which starts at v . Denote the resultant subtree by T 0 and the other end point of
e by v0 . �en the group G D G.T / can be written as an amalgamated product:

G D G.T 0/ �ƒe �v:

Let
Q0i D 'i

�
G.T 0/

�� [
v2T 0

Qi
v

�
:

�en .Q0i ; Eiv0;e/ is shown to be a .G.T 0/;ƒe/ -pair by virtue of Assumption 6.3
(c) and successive use of Lemma 5.14. Clearly the pair .Q0i ; Eiv0;e/ is combinable
with the .�v; ƒe/ -pair .Qi

v; E
i
v;e/ . On the other hand, by the induction hypothesis,
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� has an G.T 0/ -equivariant extension � 0 W Q01� ! Q02� . Moreover � 0 and �v satisfy
point (e) of Assumption 5.15. �e proof is complete by �eorem 5.17.

7. Robust basic con�gurations

Again let G D G.T / be the fundamental group of a tree T of groups. Assume
that '1 2 RG satis�es Assumption 6.3 for � D 1 , and let P 1� be the associated
BC. Recall that for each vertex v of T and l � 2 , .P 1v /l is the BP for �v
derived from the BP P 1v . (De�nition 4.3). Denote .P 1/l� D

S
v.P

1
v /
l
� .

For each point x 2 P 1� , the stabilizer Stab'1.x/ is in�nite cyclic by
Lemma 4.15, Lemma 5.9 and a repeated use of Lemma 5.6. Denote by xC

l

(resp. x�
l
) the point in .P 1/l� right (resp. left) adjacent to x .

De�nition 7.1. �e BC P 1� is called robust if for any point x 2 P 1� and any
big l , one of the generators of '1.Stab'1.x// maps the interval Œx�

l
; xC
l
� into a

proper subinterval of it.

Lemma 7.2. For a homomorphism '1 2 R…g with eu.'1/ D 2g � 2 (g � 2 ),
the BC given by Examples 6.2 and 6.4 is robust.

Proof. If we choose a Fuchsian representation as a model of '1 , then any point
of the BC is a �xed point of a hyperbolic motion. Any representation '1 with
eu.'1/ D 2g � 2 is semiconjugate to the Fuchsian representation by [Mat2],
showing the lemma.

Finally we have the following theorem.

�eorem 7.3. Assume that '1 admits a robust BC P 1� . �en there is a
neighbourhood U of '1 in RG such that if '2 2 U , '2 admits a BC P 2�
and a BC equivalence � W P 1� ! P 2� .

Proof. Choose l large enough so that the condition of De�nition 7.1 is met by
all the points x in P 1� and that the intervals Œx�

l
; xC
l
� ’s are disjoint. Let gx be

the generator of Stab'1.x/ such that

'1.gx/Œx
�
l ; x

C

l
� � Int Œx�l ; x

C

l
�:

Choose a neighbourhood U of '1 so that for any '2 2 U and x 2 P 1� , we have

'2.gx/Œx
�
l ; x

C

l
� � Int Œx�l ; x

C

l
�:
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Let �.x/ be the leftmost point in Fix.'2.gx// \ Œx�l ; x
C

l
� . �en the set

P 2� D
®
�.x/ j x 2 P 1�

¯
forms a BC for '2 , and the map � is a BC equivalence. In fact, it is easy to
see that for any vertex v ,

P 2v;� D
®
�.x/ j x 2 P 1v;�

¯
is a BP for '2j�v , because we have assumed that P 1v;� is a pure BP.

Joining this theorem with Lemma 6.5 and �eorem 6.7, we get the following
corollary, which conclude the proof of �eorem 1.17.

Corollary 7.4. If '1 2 RG admits a robust BC, and  1 2 RG is a k -fold lift
of '1 (k � 1 ), then  1 is locally stable.

Proof. Let P 1� be a robust BC for '1 . �en clearly ��1
k
.P 1� / is a robust BC for

 1 . By �eorem 7.3, there is a BC eP 2
� for any  2 su�ciently near to  1 and

a BC equivalence � W ��1
k
.P 1� / !

eP 2
� . By �eorem 6.7, the BC equivalence �

extends to a . 1;  2/ -equivariant COP map O� W  1.G/.��1
k
.P 1� //!  2.G/. eP 2

�/ .
�e map O� extends to a . 1;  2/ -equivariant semiconjugacy.

Appendix A: �e proof of Proposition 1.4

We shall show that the semiconjugacy as de�ned in De�nition 1.3 is an
equivalence relation in RG nR�G . All that needs proof is the re�exiveness. Let
'1; '2 2 RG nR�G . Assume there is a degree one monotone map h W S1 ! S1

such that

(7.1) '2.g/ ı h D h ı '1.g/; 8g 2 G:

Since 'i 2 RG nR�G , h is not a constant map. Let eh W R ! R be a lift of h
as in De�nition 1.2. Notice that such a lift Qh is unique up to the composition
with T n , since the map h is nonconstant. (�is is why we divide the de�nition
of semiconjugacy into two parts.) De�ne eh ˘ W R! R by

eh ˘.y/ D inf
®
x 2 R j Qh.x/ D y

¯
:

Clearly eh ˘ commutes with T , and there is a degree one monotone map
h˘ W S1 ! S1 such that h˘ı� D �ıeh ˘ . �e well-de�nedness of h˘ is guaranteed
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by the uniqueness of eh . Moreover if h , h0 and h0 ıh are nonconstant monotone
degree one maps, then we have

.h0 ı h/˘ D h˘ ı .h0/˘:

�us (7.1) implies that

h˘ ı '2.g�1/ D '1.g�1/ ı h˘;

completing the proof.

Appendix B: �e proof of �eorem 2.2

We assume that ' 2 RG is type 1 and minimal, and will show that ' is
proximal, the other implication being obvious. Call a closed interval I � S1

' -contractible if infg2G j'.g/I j D 0 . First of all we have the following easy fact.
(1) For any g 2 G and any closed interval I , I is ' -contractible if
and only if '.g/I is ' -contractible.

Next let us show:
(2) �ere is ı > 0 such that if jI j < ı , then I is ' -contractible.

Proof. Since ' is not type 0, there is a nontrivial homeomorphism '.g/ which
admits a �xed point. �is shows that there is a ' -contractible interval J . Since
' is minimal, the family

J D
®
'.g/Int J j g 2 G

¯
must cover S1 . Now the Lebesgue number ı of the open covering J works.

De�ne a map eU W R! R byeU .ex / D sup¹ey 2 .ex ;1/ j �.Œex ; ey �/ is ' -contractibleº:

We have the following easy properties.
(3) ex C ı � eU .ex / � ex C 1 .
(4) eU is monotone nondecreasing.

Also (1) implies the following.
(5) For any g 2 G and a lift A'.g/ of '.g/ to R ,

A'.g/ ı eU D eU ıA'.g/ :
Especially, eU ı T D T ı eU .

(6) �e map eU is injective.
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Proof. Assume on the contrary that there is ey 2 R such that Cl. eU �1.ey // D
Œex 0; ex 1� is an interval. By the minimality of ' , there is a lift A'.g/ such that
A'.g/ .ex 1/ 2 .ex 0; ex 1/ . �en there is ex 2 2 .ex 0; ex 1/ such that A'.g/ .ex 2/ 2
.ex 0; ex 1/ and A'.g/ �1.ex 2/ 2 .ex 1;1/ . Now

A'.g/ .ey / D A'.g/ ı eU .ex 2/ D eU ıA'.g/ .ex 2/ D ey :
�is showseU ıA'.g/ �1.ex 2/ D A'.g/ �1 ı eU .ex 2/ D A'.g/ �1.ey / D ey :
�is contradicts the fact that A'.g/ �1.ex 2/ 62 Œex 0; ex 1� D Cl. eU �1.ey // .

(7) eU is bijective.

Proof. De�ne eV W R! R byeV .ex / D inf
®ey 2 .�1; ex / j �.Œey ; ex �/ is ' -contractible

¯
:

For any point ex 2 R , and any point ex 1 in .ex ; eU .ex // , (6) implies thateU .ex / < eU .ex 1/ . �is shows that the interval �.Œex 1; eU .ex /�/ is ' -contractible.
Since ex 1 is an arbitrary point of .ex ; eU .ex // , this shows that eV . eU .ex // � ex .
Again by (6), we have in fact eV � eU .ex /� D ex :
�e same argument shows that eU ı eV D Id .

By (4) and (7), eU is a homeomorphism. By (5), there is U 2 H such that
� ı eU D U ı � . Also by (5), U commutes with any element of '.G/ . Finally
let us show:

(8) �ere is k 2 N such that U k D Id .

Proof. If Fix.U k/ is nonempty for some k 2 N , then Fix.U k/ must be invariant
by '.G/ , since U k commutes with any element of '.G/ . �at is, Fix.U k/ D S1 ,
showing (8). If not, the rotation number of U must be irrational, and there is a
unique minimal set X of U . Since X is unique and since U commutes with
any element of '.G/ , X must be left invariant by any element of '.G/ . Since
' is minimal, this implies X D S1 . �at is, U is topologically conjugate to an
irrational rotation. But then '.G/ must be abelian, and ' must be of type 0. A
contradiction.

To conclude, since ' is assumed to be of type 1, we have k D 1 . But by (3),
this implies eU D T . �at is, ' is proximal.
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