Basic partitions and combinations of group actions on the circle: A new approach to a theorem of Kathryn Mann

Shigenori MATSUMOTO

Abstract. Let Π_g be the surface group of genus g ($g \ge 2$), and denote by \mathcal{R}_{Π_g} the space of the homomorphisms from Π_g into the group of the orientation preserving homeomorphisms of S^1 . Let $2g - 2 = kl$ for some positive integers k and l. Then the subset of \mathcal{R}_{Π_g} formed by those φ which are semiconjugate to k-fold lifts of some homomorphisms and which have Euler number $eu(\varphi) = l$ is shown to be clopen. This leads to a new proof of the main result of Kathryn Mann [\[Man\]](#page-32-1) from a completely different approach.

Mathematics Subject Classification (2010). Primary: 37E10.

Keywords. Basic partition, combination, surface group, Euler number.

1. Introduction

Let $S^1 = \mathbb{R}/\mathbb{Z}$ and denote the canonical projection by $\pi : \mathbb{R} \to S^1$. Denote by $T : \mathbb{R} \to \mathbb{R}$ the translation by one: $T(x) = x + 1$.

Notations 1.1. Let $\mathcal{H} = \text{Homeo}_+(S^1)$ denote the group of the orientation preserving homeomorphisms of S^1 , and for any group G, $\mathcal{R}_G = \text{Homeo}(G, \mathcal{H})$ the set of the homomorphisms from G to H .

Definition 1.2. A map $h: S^1 \to S^1$ is called *degree one monotone* if there is a nondecreasing (not necessarily continuous) map \tilde{h} : $\mathbb{R} \to \mathbb{R}$ such that $\tilde{h} \circ T = T \circ \tilde{h}$ and $\pi \circ \tilde{h} = h \circ \pi$.

Denote

$$
\mathcal{R}_G^* = \{ \varphi \in \mathcal{R}_G \mid \exists x \in S^1 \text{ such that } \varphi(g)(x) = x, \ \forall g \in G \}.
$$

Definition 1.3. Two homomorphisms $\varphi^1, \varphi^2 \in \mathcal{R}_G$ are called *semiconjugate*, denoted $\varphi^1 \sim \varphi^2$, if either $\varphi^1, \varphi^2 \in \mathcal{R}_G^*$ or $\varphi^1, \varphi^2 \in \mathcal{R}_G \setminus \mathcal{R}_G^*$ and there is a degree one monotone map $h: S^1 \to S^1$ such that $\varphi^2(g) \circ h = h \circ \varphi^1(g)$ for any $g \in G$.

The proof of the following proposition can be found in Appendix A.

Proposition 1.4. *The semiconjugacy is an equivalence relation.*

Definition 1.5. Let $F^i \subset S^1$ be a $\varphi^i(G)$ -invariant subset $(\varphi^i \in \mathcal{R}_G, i = 1, 2)$. A map $\xi : F^1 \to F^2$ is called (φ^1, φ^2) -equivariant if $\xi \circ \varphi^1(g) = \varphi^2(g) \circ \xi$ on F^1 for any $g \in G$.

We have the following easy proposition.

Proposition 1.6. Let $F^i \subset S^1$ be a $\varphi^i(G)$ -invariant subset $(\varphi^i \in \mathcal{R}_G, i = 1, 2)$, and assume there is a cyclic order preserving (φ^1,φ^2) -equivariant bijection $\xi : F^1 \to F^2$. Then we have $\varphi^1 \sim \varphi^2$.

Proof. Two homomorphisms $\varphi_1 \in \mathcal{R}_G^*$ and $\varphi_2 \in \mathcal{R}_G \setminus \mathcal{R}_G^*$ can never satisfy the condition of the proposition. So one may assume $\varphi^i \in \mathcal{R}_G \setminus \mathcal{R}_{\mathcal{G}}^*$. There is an order preserving bijection $\widetilde{\xi}$: $\pi^{-1}(F^1) \to \pi^{-1}(F^2)$ such that $\widetilde{\xi} \circ T = T \circ \widetilde{\xi}$ and $\xi \circ \pi = \pi \circ \widetilde{\xi}$. Define $\widetilde{h}: \mathbb{R} \to \mathbb{R}$ by

$$
\widetilde{h}(\widetilde{x}) = \inf \{ \widetilde{\xi}(\widetilde{y}) \mid \widetilde{y} \in [\widetilde{x}, \infty) \cap \pi^{-1}(F^1) \}.
$$

Then $\widetilde{h} \circ T = T \circ \widetilde{h}$, and there is a monotone degree one map $h : S^1 \to S^1$ such that $h \circ \pi = \pi \circ \widetilde{h}$. Now (φ^1, φ^2) -equivariance of ξ implies that $h \circ \varphi^1(g) = \varphi^2(g) \circ h \, (\forall g \in G).$ \Box

Definition 1.7. A homomorphism $\varphi \in \mathcal{R}_G$ is called *type 0* if there is a $\varphi(G)$ invariant probability measure on S^1 .

If there is a finite $\varphi(G)$ -orbit or if the action of $\varphi(G)$ is free, then φ is type 0. If φ is type 0 and $\varphi \sim \varphi'$, then φ' is also type 0. If φ is not type 0, then the minimal set of φ is unique, either a Cantor set or the whole S^1 . In the latter case we say that φ is minimal.

Definition 1.8. For φ not of type 0, a minimal homomorphism which is semiconjugate to φ is denoted by φ_{\sharp} , and called a *minimal model*.

A minimal model φ_{\sharp} always exists and is unique up to topological conjugacy for φ not of type 0. For any $k \ge 2$, let $\pi_k : S^1 \to S^1$ be the k-fold covering map, that is, $\pi_k(x + \mathbb{Z}) = kx + \mathbb{Z}$.

Definition 1.9. For $k \in \mathbb{N}$, $\psi \in \mathcal{R}_G$ is called a k-fold lift of $\varphi \in \mathcal{R}_G$ if for any $g \in G$, it holds that $\varphi(g) \circ \pi_k = \pi_k \circ \psi(g)$.

Definition 1.10. For $k \in \mathbb{N}$, a homomorphism $\varphi \in \mathcal{R}_G$ is called *type* k if it satisfies the following conditions.

- (1) φ is not type 0.
- (2) A minimal model φ_{\sharp} is a k-fold lift of some homomorphism in \mathcal{R}_G .
- (3) k is the maximal among those which satisfy (2).

For $k \geq 0$, the set of type k homomorphisms is denoted by $\mathcal{R}_G(k)$.

Thus type 1 homomorphisms are those homomorphisms which are not type 0 and whose minimal model cannot be a k-fold lift for any $k \ge 2$.

The group H is a topological group with the uniform convergence topology, defined by the metric:

$$
d(f, h) = \sup_{x \in S^1} |f(x) - h(x)| \text{ for } f, h \in \mathcal{H}.
$$

The space \mathcal{R}_G is equipped with the following topology. Given $\varphi \in \mathcal{R}_G$, $g \in G$ and $\varepsilon > 0$, let

(1.1)
$$
U(\varphi; g, \varepsilon) = \{ \varphi' \in \mathcal{R}_G \mid d(\varphi'(g), \varphi(g)) < \varepsilon \}.
$$

The topology with subbase $U(\varphi; g, \varepsilon)$ is called the *weak topology*. When the group G is finitely generated, this coincides with the usual topology of uniform convergence on generators. The following proposition will be proven in the next section.

Proposition 1.11. For any group G and $k \ge 1$, the subset $\mathcal{R}_G(0)$ is closed and $\bigcup_{1 \leq i \leq k} \mathcal{R}_G(i)$ is open in \mathcal{R}_G .

This is best possible, for example for free groups. However for groups of a special kind, one can expect that some component of $\mathcal{R}_G(k)$, $k \ge 2$, is also open. The purpose of this paper is to consider this problem for the surface group Π_{ϱ} , $g \ge 2$. The group Π_g is the fundamental group of the closed oriented surface of genus g , and has a presentation:

$$
\Pi_g = \langle A_1, B_1, \dots, A_g, B_g \mid [A_1, B_1] \cdots [A_g, B_g] = e \rangle.
$$

Given $\varphi \in \mathcal{R}_{\Pi_g}$, its *Euler number* $eu(\varphi) \in \mathbb{Z}$ is defined by

$$
[\widetilde{\varphi(A_1)}, \widetilde{\varphi(B_1)}] \cdots [\widetilde{\varphi(A_g)}, \widetilde{\varphi(B_g)}] = T^{eu(\varphi)},
$$

where for $f \in \mathcal{H}$, \widetilde{f} denotes an arbitrary lift of f to a homeomorphism of R. The map $eu: \mathcal{R}_{\Pi_g} \to \mathbb{Z}$ is continuous, and thus $eu^{-1}(i)$ is clopen in \mathcal{R}_{Π_g} for any $i \in \mathbb{Z}$. We have the following classical theorem [\[Mil\]](#page-32-2), [\[Woo\]](#page-32-3), called the Milnor-Wood inequality.

Theorem 1.12. The inverse image $eu^{-1}(i)$ is nonempty if and only if $|i| \leq 2g-2$.

For homomorphisms with the extremal values of Euler number, we have the following result $[Mat2]$. (In fact, the pathwise connectedness below is not mentioned in that paper. But it is an easy consequence of the main theorem.)

Theorem 1.13. The inverse image $E_+ = eu^{-1}(2g-2)$ is pathwise connected, and *if* $\varphi, \varphi' \in E_+$, then $\varphi \sim \varphi'$. The same thing holds true for $E_- = e^{\alpha-1}(-2g+2)$.

Assume $eu(\varphi) = 2g - 2$ and $2g - 2 = kl$ for some positive integers k, l. Choose an arbitrary k-fold lift $\varphi(A_i)$ (resp. $\varphi(B_i)$) of $\varphi(A_i)$ (resp. $\varphi(B_i)$) for $j = 1, \ldots, g$. Then we have

$$
[\widehat{\varphi(A_1)}, \widehat{\varphi(B_1)}] \dots [\widehat{\varphi(A_g)}, \widehat{\varphi(B_g)}] = \text{Id}.
$$

 $[\widehat{\varphi(A_1)}, \widehat{\varphi(B_1)}] \dots [\widehat{\varphi(A_g)}, \widehat{\varphi(B_g)}] = \text{Id}.$
In fact, this is obtained by taking a quotient by the action of T^l of the formula:

$$
[\widetilde{\varphi(A_1)}, \widetilde{\varphi(B_1)}] \cdots [\widetilde{\varphi(A_g)}, \widetilde{\varphi(B_g)}] = T^{2g-2} = T^{kl}.
$$

Thus we have a *k*-fold lift of φ once we choose *k*-fold lifts of the generators

arbitrarily. We shall denote the k-fold lifts of φ by ψ_j , $1 \le j \le k^{2g}$. The following result is immediate.

Proposition 1.14. We have $eu(\psi_i) = l$.

The main result of the present paper is the following.

Theorem 1.15. Assume $2g - 2 = kl$ *for some positive integers* k and l. Then the subset $eu^{-1}(l) \cap \mathcal{R}_{\Pi_{\mathcal{S}}}(k)$ is clopen in $\mathcal{R}_{\Pi_{\mathcal{S}}}$.

The closedness of $eu^{-1}(l) \cap \mathcal{R}_{\Pi_g}(k)$ follows from Proposition [1.11.](#page-2-0) In fact, we have

$$
eu^{-1}(l) \cap \mathcal{R}_{\Pi_g}(k) = eu^{-1}(l) \setminus \cup_{1 \leq j \leq k-1} \mathcal{R}_{\Pi_g}(j),
$$

where $eu^{-1}(l)$ is closed and $\bigcup_{1 \leq j \leq k-1} \mathcal{R}_{\Pi_g}(j)$ is open.

For the openness, we use the following concept.

Definition 1.16. For any group G, a homomorphism $\varphi \in \mathcal{R}_G$ is said to be *locally stable* if any homomorphism $\varphi' \in \mathcal{R}_G$ sufficiently near to φ is semi-conjugate to φ .

 \Box

The openness follows from the following theorem.

Theorem 1.17. Any homomorphism of $eu^{-1}(l) \cap \mathcal{R}_{\Pi_g}(k)$ is locally stable.

Let Z_j be the connected component of \mathcal{R}_{Π_g} which contains the above lift ψ_j , $1 \leq j \leq k^{2g}$. Then we have the following corollary.

Corollary 1.18. Any two homomorphisms of the same component Z_i are mutually *semi-conjugate.* \Box

The same result has been obtained by K. Mann $[Man]$, based upon extensive use of algorithms in $[CW]$. This paper contains a completely different approach. Also there is a quite simple proof for diffeomorphisms due to J. Bowden $[Box]$.

We shall prove Proposition [1.11](#page-2-0) in Section [2,](#page-4-0) and Theorem [1.17](#page-4-1) in Sections $4-7$. We give an outline of Sections [4](#page-12-0) and [5](#page-16-0) in Section [3.](#page-7-0) It seems that our method provides a new and elementary proof of the main result of [\[Mat2\]](#page-32-4), but we do not pursue it in the present paper. Throughout the paper, we use the following notations.

Notations 1.19. • The positive cyclic order of S^1 is denoted by \prec .

- Given two distinct points $a, b \in S^1$, $[a, b] = \{x \in S^1, a \prec x \prec b\}.$ For a subset X of S^1 , we denote
- $C \subset X$ if C is a connected component of X,
- X_{\sharp} the union of the closures of the connected components of $S^1 \setminus X$,
- $X_* = X \cap X_{\sharp}$. We abbreviate
- BP for "basic partition", BC for "basic configuration" and COP for "cyclic order preserving".

2. Proximal actions

In this section, G is to be an arbitrary group, countable or not. This section is devoted to the proof of Proposition [1.11.](#page-2-0) Let us begin by showing that $\mathcal{R}_G(0)$ is a closed subset of \mathcal{R}_G . Let φ be any homomorphism from the closure of $\mathcal{R}_G(0)$. Let us denote by $\mathcal{P}(S^1)$ the space of the probability measures on S^1 , equipped with the weak* topology. In order to show φ admits an invariant probability measure, it is sufficient to prove that for any finite subset $\{g_i\} \subset G$, there is a

20 S. MATSUMOTO

probability measure invariant by $\varphi(g_i)_* : \mathcal{P}(S^1) \to \mathcal{P}(S^1)$, thanks to the finite intersection property of the compact set $P(S¹)$. Choose

$$
\varphi_n \in \bigcap_i U(\varphi;g_i,1/n) \cap \mathcal{R}_G(0),
$$

where $U(\cdot)$ is introduced in [\(1.1\)](#page-2-1), and let $\mu_n \in \mathcal{P}(S^1)$ be a $\varphi_n(G)$ -invariant measure. Since the maps $\varphi_n(g_i)_*$ and $\varphi(g_i)_*$ are continuous and $\varphi_n(g_i)_*$ converges to $\varphi(g_i)_*$ pointwise, an accumulation point of $\{\mu_n\}$ is the desired measure.

Now let us turn to show that $\mathcal{R}_G(1)$ is an open subset of \mathcal{R}_G . The argument is based upon the following Theorem [2.2](#page-5-0) due to \acute{E} . Ghys ([\[Ghy,](#page-32-7) p. 362]), whose proof is included in Appendix B. To state it, we make a definition.

Definition 2.1. A homomorphism $\varphi \in \mathcal{R}_G$ is called *proximal* if for any closed interval $I \subset S^1$, $\inf_{g \in G} |\varphi(g)| = 0$, where || denotes the diameter.

Theorem 2.2. For any $\varphi \in \mathcal{R}_G$, $\varphi \in \mathcal{R}_G$ (1) if and only if a minimal model φ_\sharp *is proximal.*

Definition 2.3. Given $x, y \in S^1$, a sequence $\{f_n\} \subset \mathcal{H}$ is called an (x, y) sequence if for any $\varepsilon > 0$, there is N such that if $n \geq N$, f_n maps the complement of the ε -neighbourhood of x into the ε -neighbourhood of y.

Lemma 2.4. *For any* $x, y \in S^1$ *and* $\varphi \in \mathcal{R}_G(1)$ *, there is an* (x, y) *-sequence in* $\varphi_{\sharp}(G)$.

Proof. For any $x \in S^1$, define

 $E_x = \{y \in S^1 \mid \exists (x, y) \text{-sequence in } \varphi_\sharp(G) \}.$

By Theorem [2.2,](#page-5-0) E_x is nonempty for any $x \in S^1$. On the other hand, it is easy to show that E_x is closed and $\varphi_\sharp(G)$ -invariant. Therefore we have $E_x = S^1$.

There is a bounded 2-cocycle c of the group H defined by

$$
c(f, h) = \tau(\widetilde{f} \circ \widetilde{h}) - \tau(\widetilde{f}) - \tau(\widetilde{h}),
$$

where \tilde{f} (resp. \tilde{h}) is an arbitrary lift of f (resp. h) to R, and $\tau(\cdot)$ stands for the translation number. As is well known, its L^{∞} norm satisfies $||c|| = 1$. For $\varphi \in \mathcal{R}_G$, the pull back cocycle φ^*c lies in the second bounded cocycle group $Z_b^2(G)$ of G and satisfies $\|\varphi^*c\| \le 1$. It is known [Matl] that $\varphi^*c = 0$ if and only if $\varphi \in \mathcal{R}_G(0)$. For other $\mathcal{R}_G(k)$, we have the following.

Lemma 2.5. *For any* $\varphi \in \mathcal{R}_G$ *and* $k \geq 1$, $\varphi \in \mathcal{R}_G(k)$ *if and only if* $\|\varphi^*c\| = 1/k$.

Proof. It suffices to show only the following implication:

(2.1)
$$
\varphi \in \mathcal{R}_G(k) \Rightarrow \|\varphi^*c\| = 1/k, \quad \forall k \ge 1,
$$

since the opposite implication follows from this. First of all, let us show (2.1) for $k = 1$. Let φ_{\sharp} be a minimal model of any $\varphi \in \mathcal{R}_G(1)$. Choose four points $x \prec y \prec z \prec u \prec x$ in S^1 . By Lemma [2.4,](#page-5-1) there are a (y, x) -sequence f_n and an (u, z) -sequence h_n in $\varphi_\sharp(G)$. Let \widetilde{f}_n and \widetilde{h}_n be the lifts of f_n and h_n such that $\tau(\tilde{f}_n) = \tau(\tilde{h}_n) = 0$. One can choose lifts of the four points so that $\widetilde{\mathfrak{x}} < \widetilde{\mathfrak{y}} < \widetilde{\mathfrak{z}} < \widetilde{\mathfrak{u}} < T(\widetilde{\mathfrak{x}})$. See Figure [1](#page-6-1) for this and the next argument.

¹ *and* ^ϕ ∈ R*G*(1)*, there is an* (*x*,*y*)*-sequence in* ^ϕ♯(*G*)*.* Figure 1

For *n* large, \widetilde{h}_n admits a fixed point, say \widetilde{u}_n , near \widetilde{u} . Now consider the other hand, if we choose \tilde{u}' very near to \tilde{u} so that $\tilde{u}' > \tilde{u}$. Then for any large composite $\widetilde{f}_n \circ \widetilde{h}_n$. Clearly we have $\widetilde{u}_n < \widetilde{f}_n \circ \widetilde{h}_n(\widetilde{u}_n) < T(\widetilde{u}_n)$. On the other hand, if we choose u very hear to u so that $u > u$. Then for any large *n*, we have $\widetilde{f}_n \circ \widetilde{h}_n(u') > T(u')$. (See Figure [1.](#page-6-1)) This shows $\tau(\widetilde{f}_n \circ \widetilde{h}_n) = 1$. Therefore $c(f_n, h_n) = 1$ and $\|\varphi^* c\| = \|\varphi^* f\| = 1$, as is difficult to show that the above inequalities also show the following. $\Vert^* c \Vert = 1$, as is required. Also it is not

(2.2) For any $\varphi' \in \mathcal{R}_{\mathcal{R}}$ sufficiently near to $\varphi \in \mathcal{R}_{\mathcal{R}}(1)$ we have $\| (\varphi')^* c \| - 1$ (2.2) For any $\varphi' \in \mathcal{R}_G$ sufficiently near to $\varphi \in \mathcal{R}_G(1)$, we have $\|(\varphi')^*c\| = 1$.

22 S. MATSUMOTO

To show [\(2.1\)](#page-6-0) for $k \ge 1$, choose any $\varphi \in \mathcal{R}_G(k)$, with φ_{\sharp} a k-fold lift of some $\psi \in \mathcal{R}_G$. Clearly $\psi \in \mathcal{R}_G(1)$. Moreover the cocycle $\varphi^*c = \varphi^*_{\sharp}$ \sharp^*c is precisely $(1/k)\psi^*c$. This shows $\|\varphi^*c\| = 1/k$.

Now the openness of $\mathcal{R}_G(1)$ follows from Lemma [2.5](#page-5-2) and [\(2.2\)](#page-6-2). The proof that the set $\bigcup_{1 \leq i \leq k} \mathcal{R}_G(i)$ is open is left to the reader.

3. Outline

Before getting into a detailed proof of Theorem 1.17 , we shall give an outline of its first two steps. The basic idea is that a homomorphism in $eu^{-1}(l) \cap \mathcal{R}_{\Pi_g}(k)$ of Theorem [1.17](#page-4-1) has the following very special property: There is a finite set, say R , of $S¹$ such that the knowledge about how the generators of the group moves points of R completely determines the semiconjugacy class of the homomorphism.

First of all, let us explain this phenomenon in a much simpler example. Let Γ be the free group on two generators A and B. Let $\varphi \in \mathcal{R}_{\Gamma}$ and denote $a = \varphi(A)$ and $b = \varphi(B)$. Assume that $\tau([\tilde{a}, \tilde{b}]) = 1$, where \tilde{a} (resp. \tilde{b}) is an arbitrary lift of a (resp. b). Then one can show that such φ belongs to a single semiconjugacy class. This will actually be done in Section 4 . But we can present a rough outline here.

By the assumption $\tau([\widetilde{a}, \widetilde{b}]) = 1$, there is a fixed point $x \in S^1$ of $[a, b]$ such that

$$
x \prec b^{-1}(x) \prec a^{-1}b^{-1}(x) \prec ba^{-1}b^{-1}(x) \prec [a, b](x) = x.
$$

See Figure [2](#page-8-0) left.

The homeomorphism a maps the long interval $[ba^{-1}b^{-1}(x), a^{-1}b^{-1}(x)]$ onto a subinterval $[x, b^{-1}(x)]$. Therefore there is a fixed point of a in the open interval $(x, b^{-1}(x))$. There is also a fixed point in $(a^{-1}b^{-1}(x), ba^{-1}b^{-1}(x))$. Likewise b admits at least two fixed points, one in $(b^{-1}(x), a^{-1}b^{-1}(x))$, another in $(ba^{-1}b^{-1}(x),x)$.

Let R be the set of four points in Figure [2](#page-8-0) left, and set $S = \{A, A^{-1}, B, B^{-1}\}.$ Let $R^2 = \bigcup_{s \in S} \varphi(s)R$. Then R^2 contains R, and has 8 more points. The configuration of R^2 in S^1 is determined uniquely. Likewise if we set R^3 = $\bigcup_{s \in S} \varphi(s) R^2$, then its configuration is also unique. See Figure [3.](#page-8-1)

The left depicts R^2 and the right a part of R^3 . This way, we can determine the configuration of the whole orbit $\varphi(\Gamma)x$, which, according to Proposition [1.6,](#page-1-0) implies that the semiconjugacy class of φ is uniquely determined. The actual proof can be organized as an induction.

Here is another example of this kind. See Figure 2 right. This is also a homomorphism φ from the free group on two generators A and B, and we

 Γ IGURE ∠ Figure 2

Figure 3

denote $a = \varphi(A)$ and $b = \varphi(B)$. The homeomorphism a (resp. b) has a fixed point x (resp. z), and we have $y = ab(y)$ for the point y in the figure. Clearly $f(a, b) = 1$ and any homomorphism with $c(a, b) = 1$ has a configuration as in Figu[re](#page-8-0) 2 right. Again one can show that such φ belongs to a single semiconjugacy $\sum_{i=1}^{\infty}$ fight. Again one can show that such ψ belongs to a single semiconjugac class. That is, if we let R be the set of four points x, y, z and $b(y)$, then the $c(a, b) = 1$ and any homomorphism with $c(a, b) = 1$ has a configuration as in same thing holds with this R.

24 S. Matsumoto

What is good about these partitions R is the following. Let ψ be any k-fold lift of φ . Then the pull back image $\pi_k^{-1}(R)$ has the same property: it determines the semiconjugacy class of the homomorphism ψ .

What is not good is that partitions of this kind are difficult to find. To show Theorem [1.17,](#page-4-1) we need something more.

Let us consider a Fuchsian representation $\varphi \in \mathcal{R}_{\Pi_2}$ of the surface group Π_2 of genus 2 such that $eu(\varphi) = 2$. One can assume the elements $a_{\nu} = \varphi(A_{\nu})$ and $b_{\nu} = \varphi(B_{\nu})$ ($\nu = 1, 2$) are the hyperbolic motions in Figure [4](#page-9-0) left.

Figure 4

The axes of a_v , b_v and $[a_1, b_1] = [b_2, a_2]$ are depicted in Figure [4](#page-9-0) right. Let *x* and y be the fixed points of $[a_1, b_1]$. See Figure [5](#page-10-0) for parts of orbits of x and v .

actually determines the semiconjugacy class or not. To cope with the problem, we need an algorithm to determine the orbits of x and y , which can be inherited The set R of fourteen points there is enough to determine the semiconjugacy class of the homomorphism φ . In fact, the configuration of R immediately implies we consider a 2-fold lift ψ of φ , it is not clear if the inverse image $\pi_2^{-1}(R)$ that $eu(\varphi) = 2$, and by [\[Mat2\]](#page-32-4), the semiconjugacy class is unique. However when to a k -fold cover. *But this is not according to the word length of the elements of* Π_2 .

 y Consider the amalgamated product

$$
\Pi_2 = \Gamma_1 *_{\Lambda} \Gamma_2,
$$

 $[A_1, B_1] = [B_2, A_2]$. First we consider the homomorphism $\varphi_v = \varphi|_{\Gamma_v}$. This where Γ_v is the subgroup generated by A_v and B_v and Λ generated by

Figure 5

is a homomorphism from the free group Γ_{ν} on two generators such that $\tau([\tilde{a}_{\nu}, \tilde{b}_{\nu}]) = 1$, and the previous observation works. However notice that one can define the set R of four points in Figure [2](#page-8-0) in two different ways: one from the orbit of x , the other y . It is more natural and more convenient to consider disjoint four intervals (instead of points). For Γ_1 , they are $E_1 = [y, x]$ and its iterates in Figure [6.](#page-11-0) The complement of the four intervals is denoted by P_1 . The stabilizer (in Γ_1) of E_1 is Λ , and the limit set of the Fuchsian group Γ_1 is contained in P_1 . Likewise in the right figure, the four intervals are $E_2 = [x, y]$ and its iterates. The complement is denoted by P_2 .

26 S. MATSUMOTO

Figure 6

For $\gamma_{\nu} \in \Gamma_{\nu}$, the configuration of the orbits $\varphi_{\nu}(\gamma_{\nu})(x)$ and $\varphi_{\nu}(\gamma_{\nu})(y)$ is determined just by the data in Figure [6](#page-11-0) inductively on the word length of γ_{ν} , as we have explained. They are contained in P_v . However notice that one can define the set *R* of four points in Figure 2 in two different

The actual proof is given in Section [4,](#page-12-0) where we call such subsets P_v basic partitions. The complementary intervals E_{ν} is called the entrance of Λ to P_{ν} . As we explained, the stabilizer of E_v (in Γ_v) is Λ . The entrances E_1 and E_2 satisfy the conditions; $E_1 \cup E_2 = S^1$ and $\text{Int } E_1 \cap \text{Int } E_2 = \emptyset$. They are said to be combinable. Now the whole orbits $\varphi(g)(x)$ and $\varphi(g)(y)$ for $g \in \Pi_2$ can re een eensen
be determine be determined just by this combinability condition. This part, reminiscent of the orbital is part, reminiscent of the Maskit combination theorem [\[Mas\]](#page-32-9) in Kleinian groups, is shown in Section [5.](#page-16-0) What is good for this construction is that the whole process can be passed to a $\text{2-fold lift of } \varphi.$

Moreover the set R of fourteen points in Figure [5](#page-10-0) are robust, in the sense that any homomorphism near to φ has the same configuration as R. Furthermore, if $\frac{1}{2}$ (*g*) is another operator $\frac{1}{2}$ for $\frac{$ we consider a 2-fold lift ψ of φ , the set $\pi_2^{-1}(R)$ is also robust for ψ . This part, shown in Section [7,](#page-28-0) concludes the proof of the local stability (Theorem [1.17\)](#page-4-1) for $g = 2.$

For $g \geq 3$, the group Π_g is represented as the fundamental group of a tree of groups. Each vertex of the tree has valency either 1 or 3. For a valency 3 α 2-fold the set α of the set α is the set α is the set α robust for α and α is the set α robust for α is the set α robust α is the set α robust α is the set α robust α is the vertex, we have a homomorphism $\varphi \in \mathcal{R}_{\Gamma}$, where Γ is the free group on two generators A and B. The homeomorphism $a = \varphi(A)$ and $b = \varphi(B)$ has the property that $c(a, b) = 1$. This implies that φ admits a configuration in Figure [2](#page-8-0) right. For this we consider a basic partition P as in Figure [7.](#page-12-1)

right. of E_1 is the subgroup $\langle a \rangle$, and we say that E_1 is the entrance of $\langle a \rangle$ to P. Likewise E_2 , E_3 and E_4 are entraces to P of the subgroups $\langle ab \rangle$, $\langle b \rangle$ and $\langle ba \rangle$, respectively. Compare with Figure [2](#page-8-0) right. The complementary region consists of four intervals $E_1 - E_4$. The stabilizer

4. Basic partitions *l*

i=1 *Iⁱ* ∪ *i*=1 Let Γ be a group with a prescribed finite symmetric generating set S.

Definition 4.1. A subset P of S^1 is called a *basic partition* (BP) for $\varphi \in \mathcal{R}_{\Gamma}$, (4) For any *J* ⊏ *P*[♯] and *s* ∈ *S*, either ^ϕ(*s*)*J* ⊏ *P*[♯] or ^ϕ(*s*)*J* ⊂ Int(*P*). if it satises the following conditions.

- $\sum_{i=1}^{n}$ (1) *is a union of finitely many disjoint closed intervals.*
	- (2) For any $I \subset P$, there exists a unique element $s_I \in S$ such that

$$
\varphi(s_I)I = \bigcup_{i=1}^l I_i \cup \bigcup_{i=1}^{l-1} J_i,
$$

where $I_i \sqsubset P$, $J_i \sqsubset P_{\sharp}$ are distinct intervals and $l \geq 2$. (See Notations [1.19.](#page-4-2))

- (3) For any $I \sqsubset P$ and $s \in S \setminus \{s_I\}, \varphi(s)(I)$ is a proper subset of some $I' \sqsubset P$.
- (4) For any $J \sqsubset P_{\sharp}$ and $s \in S$, either $\varphi(s) J \sqsubset P_{\sharp}$ or $\varphi(s) J \subset \text{Int}(P)$.

Example 4.2. The set P_v ($v = 1, 2$) in Figure [6](#page-11-0) is an example of BP for homomorphisms $\varphi_v = \varphi|_{\Gamma_v}$. The set P in Figure [7](#page-12-1) is also a BP.

Definition 4.3. For a BP P for $\varphi \in \mathcal{R}_{\Gamma}$ and $l > 2$, define inductively $P^l = \bigcap_{s \in S \cup \{e\}} \varphi(s) P^{l-1}$, where $P^1 = P$. Also define $P^{\infty} = \bigcap_{l \in \mathbb{N}} P^l$.

Thus $\{P^l\}_{l \in \mathbb{N}}$ is a decreasing sequence of compact subsets, each consisting of finitely many closed intervals. In Example [4.2,](#page-12-2) if the corresponding homomorphism is onto a Shottky group, then P^{∞} coincides with the limit set. In general, P^{∞} is a closed perfect set.

Let us see how P^2 is obtained from P. By (2) and (3) of Definition [4.1,](#page-12-3) we have

$$
P^2 = \bigcup_{I \sqsubset P} \varphi(s_I)^{-1} (P \cap s_I(I)).
$$

That is, any interval $I \rightharpoonup P$ is divided uniquely as:

$$
I = \bigcup_{i=1}^{l} \varphi(s_I)^{-1}(I_i) \cup \bigcup_{i=1}^{l-1} \varphi(s_I)^{-1}(J_i),
$$

where $\varphi(s_I^{-1})(I_i) \sqsubset P^2$, $\varphi(s_I^{-1})(J_i) \sqsubset P^2_{\sharp} = (P^2)_{\sharp}$. Any $I' \sqsubset P^2$ is of the above form $I' = \varphi(s_I)^{-1}(I_i)$, and $\varphi(s_I)$ maps I' onto $I_i \sqsubset P$. For any other s, $\varphi(s)$ maps I' onto a proper subset of some $I'' \sqsubset P^2$. On the other hand, P_{\sharp}^2 is obtained from P_{\sharp} by adding new intervals of the above form $\varphi(s_I)^{-1}(J_i)$. A component of P_{\sharp}^2 is called *level 1* if it is contained in P_{\sharp} , and *level 2* otherwise. Any level 1 component is mapped by any $\varphi(s)$ onto a component of P_{\sharp}^2 , either to level 1 or to level 2. As for a level 2 component, we have the following.

(1) A level 2 component $\varphi(s_I)^{-1}(J_i)$ is mapped by $\varphi(s_I)$ onto a level 1 component J_i , and is mapped by any other $\varphi(s)$ onto an interval contained in the interior of P^2 . Especially no level 2 component is mapped onto a level 2 component.

By these considerations, we have the following lemma.

Lemma 4.4. For a BP P for $\varphi \in \mathcal{R}_{\Gamma}$ and $l \geq 2$, P^l is a BP for φ . \Box

Let P (resp. P') be a BP for $\varphi \in \mathcal{R}_{\Gamma}$ (resp. φ'). Recall that $P_* = P \cap P_{\sharp}$ from Notation [1.19.](#page-4-2)

Definition 4.5. A COP (cyclic order preserving) bijection $\xi : P_* \to P'_*$ is called a *BP equivalence* if for any $x, y \in P_*$ and $s \in S$, we have

• $[x, y] \sqsubset P$ if and only if $[\xi(x), \xi(y)] \sqsubset P'$ and

• $y = \varphi(s)x$ if and only if $\xi(y) = \varphi'(s)\xi(x)$.

Lemma 4.6. *Let* P *(resp.* P') *be a BP for* $\varphi \in \mathcal{R}_{\Gamma}$ *(resp.* φ' *). Then a BP equivalence* $\xi : P_* \to P'_*$ *extends uniquely to a BP equivalence* $\xi^2 : P_*^2 \to P_*^{\prime 2}$.

Proof. For any $x \in P_*^2 \setminus P_*$, there exists a unique element $s \in S$ such that $\varphi(s)x \in P_*$. Define $\xi^2(x) = \varphi'(s)^{-1} \circ \xi \circ \varphi(s)(x)$. It is easy to show that ξ^2 is in fact a BP equivalence. \Box

Notice that $P^{\infty} = \bigcap_{l \in \mathbb{N}} P^l$ is a perfect closed set, $P^{\infty}_{\sharp} = (P^{\infty})_{\sharp}$ consists of countably many disjoint closed intervals, and $P_*^{\infty} = P^{\infty} \cap P_{\sharp}^{\infty}$ is a countable set. All three sets are $\varphi(\Gamma)$ -invariant.

The next theorem says that if P is a BP for $\varphi \in \mathcal{R}_{\Gamma}$, then the semiconjugacy class of the homomorphism φ is determined by the simple dynamics of S on P . A semiconjugacy class is in fact determined by how one or several orbits are located in $S¹$ (Proposition [1.6\)](#page-1-0).

Theorem 4.7. Let P and P' be BP's for $\varphi \in \mathcal{R}_{\Gamma}$ and $\varphi' \in \mathcal{R}_{\Gamma}$. Then a BP *equivalence* $\xi : P_* \to P'_*$ *extends uniquely to a* (φ, φ') *-equivariant COP bijection* $\xi^{\infty}: P_*^{\infty} \to (P')_*^{\infty}.$

Proof. This follows from inductive applications of Lemma [4.6.](#page-14-0)

The next lemma plays a key role when we study a k -fold lift of a homomorphism. The easy proof is omitted.

Lemma 4.8. Let P be a BP for $\varphi \in \mathcal{R}_{\Gamma}$ and ψ a k-fold lift of φ . Then $\pi_k^{-1}(P)$ *is a BP for* ψ . П

The lemma joined with Theorem [4.7](#page-14-1) says that if ψ is a k-fold lift of φ which admits a BP P, then the semiconjugacy class of ψ is determined by the dynamics of $\psi(S)$ on $\pi_k^{-1}(P)$.

For future purpose, we need to continue to study more about BP's. Especially we have to show that the stabilizer (defined later) of an interval $J \nightharpoonup P_{\text{t}}$ can be determined by a simple algorithm for a certain class of BP's.

Definition 4.9. For any $J \nightharpoonup P^{\infty}_{\sharp}$, define the *level* of J , $lev(J) \in \mathbb{N}$, by $\text{lev}(J) = l$ if and only if $J \subset P_{\sharp}^l \setminus P_{\sharp}^{l-1}$.

Lemma 4.10. Let P be a BP for $\varphi \in \mathcal{R}_{\Gamma}$. If $J \sqsubset P_{\sharp}^{\infty}$ satisfies $lev(J) = l$ for *some* $l \ge 2$ *, then there is a unique element* $s \in S$ *such that* $\text{lev}(\varphi(s)J) = l - 1$ *, and for any other* $s \in S$, $lev(\varphi(s)J) = l + 1$.

 \Box

Proof. For $l = 2$, this follows from (1) placed just before Lemma [4.4.](#page-13-0) The general case can be shown by an easy induction. \Box

Definition 4.11. A labelled directed graph $G(P)$ associated with a BP P for $\varphi \in \mathcal{R}_{\Gamma}$ is defined as follows. The vertices of $G(P)$ are components of P_{\sharp} . There is a directed edge from J_1 to J_2 with label $s \in S$ (written $J_1 \stackrel{s}{\rightarrow} J_2$) if $s = s_I$, where I is the component of P right adjacent to J_1 , and $\varphi(s)(J_1) = J_2$.

Example 4.12. The graph $G(P_1)$ and $G(P_2)$ of the BP's in Figure [6](#page-11-0) consists of one cycle, while the graph $G(P)$ for Figure [7](#page-12-1) consists of 3 cycles.

Notice that for any vertex J of $G(P)$, there is exactly one edge leaving J . However there may be a vertex at which no edges arrive.

Definition 4.13. A BP P for $\varphi \in \mathcal{R}_{\Gamma}$ is called *pure*, if the graph $G(P)$ consists of disjoint cycles. We allow a period one cycle formed by one vertex and one edge.

In fact, the pureness does not change if we replace "right adjacent" by "left adjacent" in Definition 4.11 , although the direction or labelling of the graph may change. For any BP P , $P²$ can never be pure. The BP's in Examples [4.12](#page-15-1) are pure.

Definition 4.14. For $\varphi \in \mathcal{R}_{\Gamma}$ and a subset A of S^1 , the *stabilizer of A with respect to* φ , denoted by Stab_{φ} (A) , is defined by

$$
Stab_{\varphi}(A) = \{ \gamma \in \Gamma \mid \varphi(\gamma)(A) = A \}.
$$

Lemma 4.15. Let P be a pure BP for $\varphi \in \mathcal{R}_{\Gamma}$. Then we have the following.

- (1) The group Γ is free with symmetrized free generating set S and φ is *injective.*
- (2) *For any* $J \nightharpoonup P_{\sharp}$ *, the stabilizer* $\text{Stab}_{\varphi}(J)$ *is generated by an element written as a cyclically reduced word of* S *.*
- (3) *For any* $J \sqsubset P^{\infty}_{\sharp}$ *with* $lev(J) = l$ $(l \ge 2)$, $Stab_{\varphi}(J)$ *is generated by an element which has a nonreducing representation* $\alpha \beta \alpha^{-1}$ *by reduced words of* S such that the word length of α is $l - 1$ and β is cyclically reduced.

Proof. For any $J \nightharpoonup P_{\sharp}$, assume $\varphi(\gamma)(J) = J$ for some $\gamma \in \Gamma \setminus \{e\}$. Write γ as a reduced word in S: $\gamma = s_m \cdots s_2 s_1$. For any $1 \le i \le m$, let $J_i = \varphi(s_i \cdots s_1)(J)$. Then we have $lev(J_i) = 1$ for any i, that is, J_i is a vertex of $G(P)$. In fact, if lev(J_i) would take the maximal value $l \geq 2$ at some i, then by Lemma [4.10,](#page-14-2) we have $lev(J_{i-1}) = lev(J_{i+1}) = l - 1$ and $s_{i+1} = s_i^{-1}$, contrary to the assumption

that the word is reduced. Again since the word is reduced and P is pure, we have either of the following.

$$
J \stackrel{s_1}{\rightarrow} J_1 \stackrel{s_2}{\rightarrow} \cdots \stackrel{s_m}{\rightarrow} J_m = J \quad \text{or} \quad J \stackrel{s_1}{\leftarrow} J_1 \stackrel{s_2}{\leftarrow} \cdots \stackrel{s_m}{\leftarrow} J_m = J.
$$

Let $I_i \subset P$ be an interval right adjacent to J_i . Then in the former case $\varphi(s_{i+1})$ is always expanding on I_i , that is, $s_{i+1} = s_{I_i}$. This shows that $\varphi(\gamma)$ cannot be the identity. The same is true in the latter case. Points (1) and (2) follow from this, while it is easy to derive (3) from (2). П

Finally we shall prepare some terminologies and facts needed for the next section. Let Λ be an infinite cyclic subgroup of Γ and $\varphi \in \mathcal{R}_{\Gamma}$.

Definition 4.16. Given a closed subset X of $S¹$, the set

$$
E_{\varphi}^{\Lambda}(X) = \bigcup \{ J \sqsubset X_{\sharp} \mid \{e\} \neq \text{Stab}_{\varphi}(J) \subset \Lambda \},
$$

is called the *entrance* of Λ to X with respect to φ .

Definition 4.17. A pair of closed subsets (Q, E) is called a (Γ, Λ) -pair for φ if Q is a $\varphi(\Gamma)$ -invariant closed perfect set, $E = E_{\varphi}^{\Lambda}(Q)$, and E is a finite disjoint union of closed intervals.

Lemma 4.18. Let P be a pure BP for $\varphi \in \mathcal{R}_{\Gamma}$ and Λ an infinite cyclic subgroup *of* Γ . Assume $E^{\Lambda}_{\varphi}(P)$ is nonempty. Then $(P^{\infty}, E^{\Lambda}_{\varphi}(P))$ is a (Γ, Λ) -pair.

Proof. We only need to show that $E_{\varphi}^{\Lambda}(P) = E_{\varphi}^{\Lambda}(P^{\infty})$. That is, if $J \subset P_{\sharp}^{\infty}$ and $\text{Stab}_{\omega}(J) \subset \Lambda$, then $\text{lev}(J) = 1$. But this is clear from Lemma [4.15.](#page-15-2) \Box

5. Combinations

This section is divided into three subsections. In the first, we are concerned with a single homomorphism, while in the second, with a pair of homomorphisms. **1.** Throughout this subsection, we make the following.

Assumption 5.1. (a) The group G is written as an amalgamated product

$$
G = \Gamma_1 *_{\Lambda} \Gamma_2,
$$

where Λ is an infinite cyclic subgroup.

- (b) $\varphi \in \mathcal{R}_G$, and $\varphi_\nu = \varphi|_{\Gamma_\nu}$ is injective for $\nu = 1, 2$.
- (c) (Q_v, E_v) is a (Γ_v, Λ) -pair for φ_v , $v = 1, 2$.

32 S. Matsumoto

Denote $\Gamma_{\nu}^{*} = \Gamma_{\nu} \setminus \Lambda$. We make extensive use of the following partition of the group G .

$$
G = \bigsqcup_{k \ge 0} G^k,
$$

where

(5.1)
$$
G^{0} = \Lambda, G^{1} = \Gamma_{1}^{*} \sqcup \Gamma_{2}^{*},
$$

$$
G^{2} = \Gamma_{1}^{*} \Gamma_{2}^{*} \sqcup \Gamma_{2}^{*} \Gamma_{1}^{*},
$$

$$
G^{3} = \Gamma_{1}^{*} \Gamma_{2}^{*} \Gamma_{1}^{*} \sqcup \Gamma_{2}^{*} \Gamma_{1}^{*} \Gamma_{2}^{*}, \cdots.
$$

Definition 5.2. The pairs (Q_1, E_1) and (Q_2, E_2) are called *combinable for* φ if E_1 and E_2 alternate in S^1 , that is, $E_1 \cup E_2 = S^1$ and $\text{Int}(E_1) \cap \text{Int}(E_2) = \emptyset$. In this case we denote $E_* = \partial E_1 = \partial E_2$.

We also assume the following in this subsection.

Assumption 5.3. $\mathcal{Q} = ((Q_1, E_1), (Q_2, E_2))$ is a combinable pair for φ .

We define an (undirected) graph $(\mathbb{V}(\mathcal{Q}), \mathbb{E}(\mathcal{Q}))$ of the combinable pair $\mathcal Q$ as follows.

$$
\mathbb{V}(\mathcal{Q}) = \{ \varphi(g) \mathcal{Q}_{\nu} \mid g \in G, \ \nu = 1, 2 \},
$$

$$
\mathbb{E}(\mathcal{Q}) = \{ \{ v, v' \} \mid v, v' \in \mathbb{V}(\mathcal{Q}), \ \nu \neq v', \ \nu \cap v' \neq \varnothing \}.
$$

The group G acts naturally on the graph $(\mathbb{V}(\mathcal{Q}), \mathbb{E}(\mathcal{Q}))$ as graph automorphisms via the homomorphism φ . The rest of this subsection is devoted to the study of properties of the graph $(\mathbb{V}(\mathcal{Q}), \mathbb{E}(\mathcal{Q}))$. Especially we show that the graph $(\mathbb{V}(\mathcal{Q}), \mathbb{E}(\mathcal{Q}))$ is in fact a tree. (It is isomorphic to the Bass-Serre tree associated to the amalgamated product $G = \Gamma_1 *_{\Lambda} \Gamma_2$.)

For $v, w \in \mathbb{V}(\mathcal{Q})$, we denote $v \sim w$ if $\{v, w\} \in \mathbb{E}(\mathcal{Q})$, and say that v and w are adjacent. The indexing set for Q_{ν} is the group $\mathbb{Z}/2\mathbb{Z}$, thus for example $Q_3 = Q_1$, while the indexing set for a group element is Z, thus in general $\gamma_3 \neq \gamma_1$.

Lemma 5.4. We have $Q_v \sim Q_{v+1}$ and $Q_v \sim \varphi(\gamma_v)Q_{v+1}$ for any $\gamma_v \in \Gamma_v^*$. *Conversely if* $Q_v \sim v$, then either $v = Q_{v+1}$ or $v = \varphi(\gamma_v)Q_{v+1}$ for some $\gamma_{\nu} \in \Gamma_{\nu}^{*}.$

Proof. Since $Q_1 \cap Q_2 = E_* \neq \emptyset$, we have $Q_1 \sim Q_2$. Since Q_{ν} is invariant by $\varphi(\Gamma_{\nu})$. we have $Q_{\nu} \cap \varphi(\gamma_{\nu}) Q_{\nu+1} = \varphi(\gamma_{\nu}) (Q_1 \cap Q_2) \neq \emptyset$ for $\gamma_{\nu} \in \Gamma_{\nu}^{*}$. That is, $Q_{\nu} \sim \varphi(\gamma_{\nu}) Q_{\nu+1}.$

In the sequel, we shall show that all the other vertices are not adjacent to Q_{ν} . First we prepare some fundamental facts. See Figure [8.](#page-18-0)

(5.2) $Q_{\nu} \subset E_{\nu+1}$ and $Q_{\nu} \cap \text{Int } E_{\nu} = \emptyset$,

(5.3) $\varphi(\gamma_v) E_v \subset \text{Int } E_{v+1}$ and $\text{Int } \varphi(\gamma_v) E_v \cap Q_v = \varnothing$ for any $\gamma_v \in \Gamma_v^*$.

For [\(5.3\)](#page-18-1), recall that Q_{ν} is assumed to be perfect.), it can that Q_{ν} is assumed to be performed.

Figure 8

The subsets Q_v should have countably many complementary intervals. Only some of them are drawn in the figure.

 $\in \Gamma^*$ the vertex $\mathcal{L}(v) \cap \Omega$ is not ediacor The group $\gamma_{\nu+1}$ \rightarrow $\gamma_{\nu+1}$, and the graph $\gamma_{\nu+1}$, $\gamma_{\nu+1}$, Now for $\gamma_{\nu+1} \in \Gamma_{\nu+1}^*$, the vertex $\varphi(\gamma_{\nu+1})Q_{\nu}$ is not adjacent to Q_{ν} , since

$$
\varphi(\gamma_{\nu+1})Q_{\nu} \subset \varphi(\gamma_{\nu+1})E_{\nu+1} \subset \text{Int } E_{\nu}.
$$

 $\frac{1}{2}$ (V($\frac{1}{2}$). Especially we show that the graph (V($\frac{1}{2}$) is in fact a tree. (It is in fact a tree. (It is in fact a tree. (It is in fact a tree.) We shall show by induction on k that if $k \ge 2$ and $\gamma_{\nu+i} \in \Gamma_{\nu+i}^*$ ($1 \le i \le k$), For *v*,*w* ∈ V(Q), we denote *v* ∼ *w* if {*v*,*w*} ∈ E(Q), and say that *v* and *w* are adjacent. then

(5.4)
$$
\varphi(\gamma_{\nu+k}\cdots\gamma_{\nu+1})Q_{\nu}\subset\text{Int}\,\varphi(\gamma_{\nu+k})E_{\nu+k}.
$$

s shows that $\varphi(\gamma_{\nu+k} \cdots \gamma_{\nu+1}) Q_{\nu}$ is adjacent neither to Q_1 nor to Q_2 , by φ of (5.3) $\text{virtue of } (5.3)$ $\text{virtue of } (5.3)$. This shows that $\varphi(\gamma_{\nu+k} \cdots \gamma_{\nu+1}) Q_{\nu}$ is adjacent neither to Q_1 nor to Q_2 , by

To show [\(5.4\)](#page-18-2) for $k = 2$, notice by [\(5.2\)](#page-18-1)

$$
\varphi(\gamma_{\nu+2}\gamma_{\nu+1})Q_{\nu}\subset \varphi(\gamma_{\nu+2}\gamma_{\nu+1})E_{\nu+1}\subset\mathrm{Int}\,\varphi(\gamma_{\nu+2})E_{\nu+2}.
$$

For the inductive step,

$$
\varphi(\gamma_{\nu+k+1}\gamma_{\nu+k}\cdots\gamma_{\nu+1})Q_{\nu}\subset \varphi(\gamma_{\nu+k+1})\text{Int}\,\varphi(\gamma_{\nu+k})E_{\nu+k}\subset\text{Int}\,\varphi(\gamma_{\nu+k+1})E_{\nu+k+1}.
$$

Remark 5.5. The above proof shows that any vertex $\varphi(g)Q_v$ is distinct from Q_v δ = ϵ μ ϵ unless $g \in \Gamma_{\nu}$.

See Figure [9](#page-19-0) for the graph $(\mathbb{V}(\mathcal{Q}), \mathbb{E}(\mathcal{Q}))$.

REMARK 5.5. The above proof shows that any vertex ϕ(*g*)*Q*^ν is distinct from *Q*^ν The vertices $a-d$ are $a = Q_2$, $b = Q_1$, $c = \gamma_1 Q_2$ and $d = \gamma_1 \gamma_2 Q_1$. The actual set Q_1 is depicted on the circle.

Lemma 5.6. For any interval $J \sqsubset (Q_v)_\sharp$ which is distinct from $\varphi(\gamma_v)E_v$ for any *Register Let* $I \cap v = \emptyset$ *for any* $v \in V(O)$ *and* $Stab_n(I) = Sta^{i}$ $\gamma_{\nu} \in \Gamma_{\nu}$, we have $\text{Int } J \cap v = \emptyset$ for any $v \in \mathbb{V}(\mathcal{Q})$ and $\text{Stab}_{\varphi}(J) = \text{Stab}_{\varphi_{\nu}}(J)$.

Proof. Any vertex other than Q_v contained in E_{v+1} is contained in $\varphi(\gamma_v)E_v$ for some $\gamma_{\nu} \in \Gamma_{\nu}^{*}$, by virtue of [\(5.4\)](#page-18-2), showing the first statement. For the last statement, choose an arbitrary element $g \in \text{Stab}_{\varphi}(J)$. Then g leaves ∂J invariant. The set ∂J is contained in Q_{ν} and disjoint from any other vertex of $\mathbb{V}(Q)$. Therefore g stabilizes the vertex Q_v in the action of G on the graph. This shows $g \in \Gamma_{\nu}$ by Remark [5.5.](#page-18-3) \Box

 \forall us continue the study of the \forall raph $(\forall$ (*Q*), $\mathbb{E}(Q)$). Let us continue the study of the graph $(\mathbb{V}(\mathcal{Q}), \mathbb{E}(\mathcal{Q}))$.

Lemma 5.7. Let $v, w \in \mathbb{V}(\mathcal{Q})$. If $v \sim w$ and $v = \varphi(\gamma_{v+k} \cdots \gamma_{v+1})Q_v$ for some $k \geq 1$ and $\gamma_{\nu+i} \in \Gamma_{\nu+i}^*$, then either $w = \varphi(\gamma_{\nu+k} \cdots \gamma_{\nu+2}) Q_{\nu+1}$ or $w = \varphi(\gamma_{\nu+k} \cdots \gamma_{\nu+1} \gamma_{\nu}) Q_{\nu-1}$ for some $\gamma_{\nu} \in \Gamma_{\nu}^*$, and moreover $v \cap w$ is contained \int *in the* $\varphi(G)$ -*orbit of* E_* .

Proof. Recall that the group G acts on the graph $(\mathbb{V}(\mathcal{Q}), \mathbb{E}(\mathcal{Q}))$ as graph automorphisms. Thus if $w \sim \varphi(\gamma_{\nu+k} \cdots \gamma_{\nu+1}) Q_{\nu}$, then $\varphi(\gamma_{\nu+k} \cdots \gamma_{\nu+1})^{-1} w \sim$ Q_{ν} . Therefore either $\varphi(\gamma_{\nu+k} \cdots \gamma_{\nu+1})^{-1}w$ is equal to $Q_{\nu+1}$ or $\varphi(\gamma_{\nu})Q_{\nu-1}$ for some $\gamma_v \in \Gamma_v^*$. Since $\varphi(\gamma_{v+1})Q_{v+1} = Q_{v+1}$, this shows the first part. An immediate consequence is that G acts transitively on the set of edges $\mathbb{E}(\mathcal{Q})$. That is, there is $g \in G$ which maps $E_* = Q_1 \cap Q_2$ onto $v \cap w$, showing the second part. \Box

Definition 5.8. Any vertex v of the graph is written as $v = \varphi(\gamma_{\nu+k} \cdots \gamma_{\nu+1}) Q_{\nu}$ for $\gamma_{v+i} \in \Gamma_{v+i}^*$. The number k is unique, and is called the *distance* of v.

Lemma 5.9. (1) *We have* $\text{Stab}_{\varphi}(Q_{\nu}) = \Gamma_{\nu}$. (2) *The graph* $(\mathbb{V}(\mathcal{Q}), \mathbb{E}(\mathcal{Q}))$ *is a tree and* φ *is injective.* (3) For $g \in G$, we have $\varphi(g) E_* \cap E_* \neq \emptyset$ if and only if $g \in \Lambda$.

Proof. Point (1) is a rephrasing of Remark [5.5.](#page-18-3) Lemma [5.7](#page-19-1) says that any vertex of distance k $(k \ge 1)$ is only adjacent to vertices of distance $k - 1$ and $k + 1$, and the vertex of distance $k - 1$ is unique. This shows that the graph $(\mathbb{V}(Q), \mathbb{E}(Q))$ is a tree. To show that φ is injective, assume $\varphi(g) = id$ for some $g \in G$. Then g acts trivially on the graph. Especially g leaves the vertex Q_v invariant. That is, $g \in \Gamma_{\nu}$ by (1). By the assumption that $\varphi_{\nu} = \varphi|_{\Gamma_{\nu}}$ is injective, we get $g = e$, as is required. The if part of (3) is clear. To show the converse, notice that $E_* = Q_1 \cap Q_2$. By Lemma [5.4,](#page-17-0) if $\varphi(g)Q_v \cap Q_{v+1} \neq \emptyset$, then $g \in \Gamma_{v+1}$. This holds for each $\nu = 1, 2$, and thus $g \in \Gamma_1 \cap \Gamma_2 = \Lambda$. \Box

Further discussions are necessary for the development of the next subsection.

Definition 5.10. Let \mathcal{J}_0 be the family of connected components of E_1 and E_2 , and for $n \geq 1$, let

$$
\mathcal{J}_n = \big\{ \varphi(\gamma_{\nu+n-1} \cdots \gamma_{\nu}) I \mid \gamma_{\nu+i} \in \Gamma_{\nu+i}^*, \ I \sqsubset E_{\nu}, \nu = 1, 2 \big\}.
$$

Lemma 5.11. (1) *For any* $J \in \mathcal{J}_n$ $(n \geq 2)$ *, there are* $J_i \in \mathcal{J}_i$ $(1 \leq i \leq n-1)$ *and such that*

 $J \subset \text{Int } J_{n-1} \subset J_{n-1} \subset \cdots \subset \text{Int } J_1 \subset J_1 \subset (Q_{\nu})_{\sharp},$

(2) Any two intervals $J, J' \in \mathcal{J}_n$, $n \geq 1$, satisfy either $J = J'$ or $J \cap J' = \emptyset$.

Proof. Point (1) is shown inductively using (5.3) . Point (2) is clear for $n = 1$. (See Figure [8.](#page-18-0)) The general case can be shown by an induction on n based upon (1). \Box

For a subset K of G and X of S^1 , denote $\varphi(K)X = \bigcup_{g \in K} \varphi(g)X$.

Definition 5.12. Define a subset X_n of S^1 by $X_0 = E_*$ and for $n \ge 1$, $X_n = \varphi(G^n)X_0$. Let $X = \bigcup_n X_n$. (For the definition of G^n , see [\(5.1\)](#page-17-1).)

The following easy lemma is useful to clarify an argument in the next subsection.

Lemma 5.13. (1) $X_n = \bigcup_{I \in \mathcal{J}_n} \partial I$. (2) $X_n \cap X_m = \emptyset$ if $n \neq m$.

- (3) $X = \varphi(G)E_*$.
- (4) *For any* $v \in V(Q)$ *of distance* n $(n \ge 0)$, $v \cap X_m \ne \emptyset$ *if and only if* $m = n$ *or* $m = n + 1$. П

The following lemma will be used in Section 6 where we consider successive combinations.

Lemma 5.14. Assume there is a subset $E' \subset (Q_1)_{\sharp}$ such that (Q_1, E') is a (Γ_1, Λ') -pair for φ_1 , where Λ' is an infinite cyclic subgroup of Γ_1 such that $\Lambda' \cap \gamma_1 \Lambda \gamma_1^{-1} = \{e\}$ for any $\gamma_1 \in \Gamma_1$. Then $(Cl(\varphi(G)(Q_1 \cup Q_2)), E')$ is a (G, Λ') *pair for* φ .

Proof. It is clear that

$$
Z := \text{Cl}(\varphi(G)(Q_1 \cup Q_2)) = \text{Cl}\Big(\bigcup_{v \in \mathbb{V}(\mathcal{Q})} v\Big)
$$

is a $\varphi(G)$ -invariant closed perfect set. So what is left is to show that $E' = E_{\varphi}^{\Lambda'}(Z)$, where by definition $E' = E_{\varphi_1}^{\Lambda'}(Q_1)$. The assumption on Λ' implies that $E' \cap \varphi(\gamma_v) E_v = \varnothing$ for any v and $\gamma_v \in \Gamma_v^*$. By Lemma [5.6,](#page-18-4) we have $E' \subset E_{\varphi}^{\Lambda'}(Z)$. To show the converse, assume $J \nightharpoonup E_{\varphi}^{\Lambda'}(Z)$. If $J \nightharpoonup (Q_1 \cup Q_2)_{\sharp}$, then clearly we have $J \rvert L E'$. Otherwise J must be contained in $\varphi(\gamma_\nu)I_\nu \in \mathcal{J}_1$ for some $I_{\nu} \subset E_{\nu}$ and $\gamma_{\nu} \in \Gamma_{\nu}^{*}$. Since $J \subset E_{\varphi}^{\Lambda'}(Z)$, there is $g \in \Lambda' \setminus \{e\} \subset \Gamma_{1}^{*}$ $i₁[*]$ such that $\varphi(g)J = J$. Then $\varphi(g)\varphi(\gamma_v)I_v \cap \varphi(\gamma_v)I_v \neq \emptyset$. If $v = 2$, then $\varphi(\gamma_2)I_2 \subset \text{Int } E_1$, while $\varphi(g)\varphi(\gamma_2)I_2 \subset \text{Int } E_2$. A contradiction. If $\nu = 1$, $\varphi(g)\varphi(\gamma_1)I_1 \in \mathcal{J}_1$ since $g \in \Gamma_1^*$ ^{*}₁. Then by Lemma [5.11](#page-20-0) (2), $\varphi(g\gamma_1)I_1 = \varphi(\gamma_1)I_1$, and $\gamma_1^{-1}g\gamma_1 \in \Lambda$ by Lemma [5.9](#page-19-2) (3). But this is contrary to the assumption on Λ' . П

2. In this section, we assume the following.

Assumption 5.15. Let $v = 1, 2$ and $i = 1, 2$.

- (a) The group G is just as in Assumption 5.1 .
- (b) Let $\varphi^i \in \mathcal{R}_G$, and assume $\varphi^i_{\nu} = \varphi^i|_{\Gamma_{\nu}}$ is injective.
- (c) Let (Q_v^i, E_v^i) be a (Γ_v, Λ) -pair for φ_v^i .
- (d) The pair $\mathcal{Q}^i = ((Q_1^i, E_1^i), (Q_2^i, E_2^i))$ is combinable for φ^i .
- (e) There is a COP bijection $\xi: Q_{1,*}^1 \cup Q_{2,*}^1 \rightarrow Q_{1,*}^2 \cup Q_{2,*}^2$ such that $\xi(Q_{\nu,*}^1) = Q_{\nu,*}^2$ and the restrictions $\xi_{\nu} = \xi|_{Q_{\nu,*}^1} : Q_{\nu,*}^1 \to Q_{\nu,*}^2$ is $(\varphi_{\nu}^1, \varphi_{\nu}^2)$. equivariant.

Our purpose is to show that ξ extends to a (φ^1, φ^2) -equivariant COP bijection from the saturation $\varphi^1(G)(Q_{1,*}^1 \cup Q_{2,*}^1)$ to $\varphi^2(G)(Q_{1,*}^2 \cup Q_{2,*}^2)$ (Theorem [5.17\)](#page-23-0). The proof is in two steps: the first step is the following Lemma. Let \mathcal{J}_n^i , X_n^i and X^i be defined as in Definitions [5.10](#page-20-1) and [5.12](#page-20-2) for φ^i .

Lemma 5.16. *The map* ξ *extends to a COP bijection*

$$
\hat{\xi}:\mathcal{Q}_{1,*}^1\cup\mathcal{Q}_{2,*}^1\cup X^1\to\mathcal{Q}_{1,*}^2\cup\mathcal{Q}_{2,*}^2\cup X^2
$$

which is (φ^1, φ^2) -equivariant as a map from X^1 to X^2 .

Proof. Recall that $X^i = \varphi_i(G) E^i_*$. The map ξ extends to X^1 by the (φ^1, φ^2) equivariance. Namely, given $x \in X^1$, choose $g \in G$ and $x_0 \in E^1$, such that $x = \varphi^1(g)x_0$, and define $\hat{\xi}(x) = \varphi^2(g)\xi(x_0)$. The map $\hat{\xi}$ is a well defined bijection since by Lemma [5.9](#page-19-2) (3), $\text{Stab}_{\varphi^i}(E^i_*) \subset \Lambda$, and $\xi|_{E^1_*}$ is $(\varphi^1|_{\Lambda}, \varphi^2|_{\Lambda})$ equivariant. Notice also that $\hat{\xi}$ coincides with the original ξ on $X_1^1 \subset Q_{1,*}^1 \cup Q_{2,*}^1$ by the $(\varphi_v^1, \varphi_v^2)$ -equivariance of ξ_v , and X_n^1 $(n \ge 2)$ is disjoint from $Q_{1,*}^1 \cup Q_{2,*}^1$. Therefore we only need to show that $\hat{\xi}$ is COP.

We shall prove that $\hat{\xi}$ is COP on $Q_{1,*}^1 \cup Q_{2,*}^1 \cup \bigcup_{0 \le i \le n} X_i^1$ by an induction on *n*. This is sufficient since $X^1 = \bigcup_n X_n^1$. For $n = 1$, this is true by the assumption since $X_1^1 \subset Q_{1,*}^1 \cup Q_{2,*}^1$. To show it for $n+1$, choose an arbitrary open interval

$$
\text{Int } I \sqsubset S^1 \setminus \left(Q^1_{1,*} \cup Q^1_{2,*} \cup \bigcup_{0 \le i \le n} X^1_i \right)
$$

such that Int $I \cap X_{n+1}^1 \neq \emptyset$. Clearly we only have to show that $\hat{\xi}$ is COP on

$$
I \cap \Big(Q_{1,*}^1 \cup Q_{2,*}^1 \cup \bigcup_{0 \le i \le n+1} X_i^1\Big),
$$

where I is the closure of Int I. Now any point of Int $I \cap X_{n+1}^1$ is an endpoint of some interval of \mathcal{J}_{n+1}^1 , and by Lemma [5.11,](#page-20-0) we have $I \in \mathcal{J}_n^1$. This shows

$$
I \cap \left(Q_{1,*}^1 \cup Q_{2,*}^1 \cup \bigcup_{0 \le i \le n+1} X_i^1\right) = I \cap (X_n^1 \cup X_{n+1}^1).
$$

Furthermore $I = \varphi^1(g) J$ for some $J \in \mathcal{J}_0^1$ and $g \in G^n$.

Finally since we have defined

$$
\hat{\xi}|_{I\cap (X_n^1\cup X_{n+1}^1)} = (\varphi^2(g)|_{\xi(J)\cap (X_0^2\cup X_1^2)}) \circ (\xi|_{J\cap (X_0^1\cup X_1^1)} \circ (\varphi^1(g^{-1})|_{I\cap (X_n^1\cup X_{n+1}^1)})),
$$

and all the maps on the RHS is COP, the map $\hat{\xi}|_{I \cap (X_n^1 \cup X_{n+1}^1)}$ is COP, as is required. \Box **eorem 5.17.** *Under Assumption* [5.15](#page-21-0)*, the COP bijection*

$$
\xi: Q_{1,*}^1\cup Q_{2,*}^1\to Q_{1,*}^2\cup Q_{2,*}^2
$$

 $extends$ uniquely to a (φ^1, φ^2) -equivariant COP bijection

$$
\hat{\xi}: \varphi^1(G)(Q^1_{1,*} \cup Q^1_{2,*}) \to \varphi^2(G)(Q^2_{1,*} \cup Q^2_{2,*}).
$$

Proof. Recall that

$$
\varphi^1(G)(Q_1^1 \cup Q_2^1) = \bigcup \{v \mid v \in \mathbb{V}(\mathcal{Q}^1)\},\
$$

where $v = \varphi^1(g)Q_v^1$ for some $g \in G$ and v. Denote $v_* = \varphi^1(g)Q_{v,*}^1$. Define $\hat{\xi}$ on each v_* by the (φ^1, φ^2) -equivariance. This is well defined because ξ is $(\varphi_v^1, \varphi_v^2)$ -equivariant on $Q_{v,*}^1$ and $\text{Stab}_{\varphi^i}(Q_v^i) = \Gamma_v$ by Lemma [5.9](#page-19-2) (1). Of course the map $\hat{\xi}$ is COP on each v_{*} . The map $\hat{\xi}$ coincides with the one defined in Lemma [5.16](#page-22-0) on $v_* \cap X^1$. The proof is complete by Lemma [5.16.](#page-22-0) \Box

3. Let $v = 1, 2$ and $i = 1, 2$. Assume the following.

- (a) The group G is just as in Assumption [5.1.](#page-16-1)
- (b) Let $\varphi^i \in \mathcal{R}_G$, and denote $\varphi^i_{\nu} = \varphi^i|_{\Gamma_{\nu}}$.
- (c) Let P_v^i is a pure BP for φ_v^i , with E_v^i the entrance of Λ to P_v^i .
- (d) The pairs (P_1^i, E_1^i) and (P_2^i, E_2^i) are combinable in the sense that E_1^i and E_2^i are alternating in S^1 .
- (e) There is a COP bijection $\xi : P_{1,*}^1 \cup P_{2,*}^1 \to P_{1,*}^2 \cup P_{2,*}^2$ such that $\xi|_{P_{1,*}^1}$ is a BP equivalence from $P_{\nu,*}^1$ onto $P_{\nu,*}^2$.

Joining Theorems 4.7 and 5.17 , we get the following.

Theorem 5.18. *Under the above assumption,* φ^1 *and* φ^2 *are semiconjugate.* \Box

Notice that the set R of fourteen points in Figure [5](#page-10-0) is equal to $P_{1,*}^1 \cup P_{2,*}^1$ for the homomorphism (here denoted φ^1) in \mathcal{R}_{Π_2} with $eu(\varphi^1) = 2$. Thus the above theorem says that any homomorphisms which admit the same configuration R are mutually semiconjugate. This, together with the robustness of R (discussed in Section [7\)](#page-28-0), implies the local stability of φ^1 . Furthermore a 2-fold lift of φ^1 is also shown to be locally stable.

6. Trees of groups

Definition 6.1. *A tree of groups* is a finite tree $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ such that

- (1) to each vertex $v \in V$ (resp. edge $e \in \mathcal{E}$) is associated a group Γ_v (resp. Λ_e),
- (2) and if $v \in V$ is an end point of $e \in \mathcal{E}$, then a monomorphism $\iota_{e,v} : \Lambda_e \to \Gamma_v$ is assigned.

The *fundamental group* $G(T)$ of a tree T of groups is the group generated by Γ_v and Λ_e ($v \in V, e \in \mathcal{E}$) subject to the relation $\lambda = \gamma$ whenever $\lambda \in \Lambda_e$, $\gamma \in \Gamma_v$, v is an end point of e, and $\iota_{e,v}(\lambda) = \gamma$.

Example 6.2. Consider the closed oriented surface Σ_g of genus g. Divide Σ_g by circles into once punctured tori and pairs of pants. Embed a tree in Σ_g as in Figure [10](#page-24-1) top. Then the fundamental groups Γ_i of subsurfaces Σ_i and the fundamental groups Λ_i of circles C_i are considered to be subgroups of the fundamental group Π_{g} of the total surface, the base points being taken on the tree. This yields a tree of groups as in Figure [10](#page-24-1) bottom whose fundamental group is isomorphic to Π_{ϱ} .

(b) The vertex group *τ* and the finite sequention Throughout this section we work under the following assumption.

- **Assumption 6.3.** (a) The group $G = G(\mathcal{T})$ is the fundamental group of a tree $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ of groups.
- (b) The vertex group Γ_v admits a finite symmetric generating set S_v , and the edge group Λ_e is infinite cyclic.
- (c) If e and e' are distinct edges starting at a vertex v, then $\Lambda_e \cap \lambda_v \Lambda_{e'} \lambda_v^{-1} = \{e\}$ for any $\lambda_v \in \Gamma_v$.
- (d) There are two homomorphisms $\varphi^i \in \mathcal{R}_G$, $i = 1, 2$. We denote φ^i_v the restriction of φ^i to the vertex group Γ_v .
- (e) For each vertex group Γ_v , there is a pure BP P_v^i for φ_v^i with respect to the generating set S_n .
- (f) If v is an end point of e, then there is an entrance, denoted $E_{v,e}^{i}$, of Λ_e to P_v^i with respect to φ_v^i . Put $Q_v^i = P_v^{i, \infty}$.

Then $(Q_v^i, E_{v,e}^i)$ is a (Γ_v, Λ_e) -pair for φ_v^i by Lemma [4.18.](#page-16-2)

(g) If v and v' are two end points of e, then $(Q_v^i, E_{v,e}^i)$ and $(Q_{v'}^i, E_{v',e}^i)$ form a combinable pair. Denote the finite set $E_{e,*}^i = E_{v,e}^i \cap E_{v',e}^i$.

> The set $P^i_* = \bigcup_{v \in V} P^i_{v,*}$ is called the *basic configuration* (abbreviated BC) of $G = G(\mathcal{T})$ for φ^i . A COP bijection $\xi : P_*^1 \to P_*^2$ is called a *BC equivalence* if $\xi(P_{v,*}^1) = P_{v,*}^2$ and $\xi|_{P_{v,*}^1}$ is a BP equivalence from $P_{v,*}^1$ to $P_{v,*}^2$ for each $v \in V$.

(h) There is a BC equivalence $\xi : P_*^1 \to P_*^2$.

For our purpose, the following example of BC is the most important.

Example 6.4. Consider a Fuchsian representation of the surface group Π_5 in Figure [10.](#page-24-1) Choose a lift \widetilde{T} of the tree T embedded in the surface to the universal covering space $\mathbb D$. See Figure [11.](#page-26-0) The lift of the curve C_i to $\mathbb D$ which intersects \widetilde{T} is denoted by \widetilde{C}_i . The edge group Λ_i is the stabilizer of \widetilde{C}_i . As for the vertex group Γ_i , its convex core (of the limit set) is contained in the region Σ'_i depicted in Figure [11.](#page-26-0)

For a vertex of valency 1, the vertex group is generated by two hyperbolic motions a and b such that $\tau([\tilde{a}, \tilde{b}]) = 1$. So it has a BP as in Figure [6.](#page-11-0) For a vertex of valency 3, generators a, b of the vertex group satisfies $c(a, b) = 1$, and it has a BP as in Figure [7.](#page-12-1) The BP P_1 (resp. P_3) corresponding to the vertex group Γ_1 (resp. Γ_3) is depicted in Figure [12.](#page-27-0) The BC of Π_5 consists of 50 points and satisfies all the conditions of Definition 6.3 .

The following lemma is straightforward.

Figure 11

Lemma 6.5. *If* P^1_* *is a BC for* $\varphi^1 \in \mathcal{R}_G$ *, where* $G = G(\mathcal{T})$ *is the fundamental* **EXHIMA 0.0.** If T_* is a DC for $\psi \in N_G$, where $0 = O(1)$ is the junialmental covering f_* and x^* and if x^* is a legal life of a legal covering $k > 2$, then group of a tree T , and if ψ^1 is a k-fold lift of φ^1 for some $k \ge 2$, then $\pi_k^{-1}(P_*^1)$ is a BC for ψ^1 . , its core (of \sim

the limit set) is contained in the region Σ *i* depicted in Figure 11. Before stating the main theorem of this section, we prepare a lemma. By Theorem 4.7, the BP equivalence $\xi|_{P_{v,*}^1}: P_{v,*}^1 \to P_{v,*}^2$ extends to a $(\varphi_v^1, \varphi_v^2)$ equivariant COP bijection $\hat{\xi}_r \cdot \Omega^1 \rightarrow \Omega^2$ for each vertex *v*. Notice that $\frac{1}{\rho}$ $\frac{1}{\rho}$ $\frac{1}{\rho}$ $\frac{1}{\rho}$ $\frac{1}{\rho}$ $\frac{1}{\rho}$ $\frac{1}{\rho}$ $\frac{1}{\rho}$ is depending 12. $\mathcal{L} v_{i} * - \mathcal{V}^{\dagger} v_{j} v_{j} * \mathcal{V}^{\dagger} v$ equivariant COP bijection $\hat{\xi}_v : Q_{v,*}^1 \to Q_{v,*}^2$ for each vertex v. Notice that $Q_{v,*}^i = \varphi^i(\Gamma_v) P_{v,*}^i$.

Lemma 6.6. *There is a COP bijection* $\hat{\xi}$: $\bigcup_{v} Q_{v,*}^1 \to \bigcup_{v} Q_{v,*}^2$ *such that* $\hat{\xi}|_{Q_{v,*}^1} = \hat{\xi}_v.$

Figure 12

Proof. If v, v' are distinct vertices, then $P_v^i \cap P_{v'}^i \subset P_*^i$. In fact, if v, v' are adjacent, this follows from (g). If not, $P_{v'}^i$ is contained in Int $E_{v,e}^i$, where e is the edge that starts at v and tends toward the direction of v', which implies $P_v^i \cap P_{v'}^i = \emptyset$. Since $Q_{v,*}^i \subset P_v^i$, the lemma follows from the fact that both $\epsilon : P^1 \to P^2$ and $\hat{\epsilon}_n : Q^1 \to Q^2$, are COP bijections. $\xi: P^1_* \to P^2_*$ and $\hat{\xi}_v: Q^1_{v,*} \to Q^2_{v,*}$ are COP bijections. , the lemma $\overline{\mathcal{A}}$

Theorem 6.7. The BC-equivalence $\xi : P_*^1 \to P_*^2$ extends to a (φ^1, φ^2) -equivariant COP bijection $\hat{\xi}: \varphi^1(G)P_*^1 \to \varphi^2(G)P_*^2$.

Proof. The proof is by an induction on the number *n* of vertices of \mathcal{T} . If $n = 2$, this is just Theorem [5.17.](#page-23-0) Given \mathcal{T} , delete a vertex v of valency 1 and the edge e which starts at v. Denote the resultant subtree by \mathcal{T}' and the other end point of which sures at *v*. Denote the resultant subtree by T and the other end point of e by v' . Then the group $C = C(T)$ can be written as an amalgamated product: e by v'. Then the group $G = G(\mathcal{T})$ can be written as an amalgamated product:

$$
G = G(\mathcal{T}') *_{\Lambda_e} \Gamma_v.
$$

Let Let

$$
Q'^i = \varphi^i\big(G(\mathcal{T}')\big)\Big(\bigcup_{v \in \mathcal{T}'} Q_v^i\Big).
$$

Then $(Q^{i}, E_{v',e}^{i})$ is shown to be a $(G(\mathcal{T}'), \Lambda_e)$ -pair by virtue of Assumption [6.3](#page-24-2) (c) and successive use of Lemma [5.14.](#page-21-1) Clearly the pair $(Q^{i}, E_{v',e}^{i})$ is combinable with the (Γ_v, Λ_e) -pair (O^i_v, E^i_v) . On the other hand, by the induction hypothesis, with the (Γ_v, Λ_e) -pair $(Q_v^i, E_{v,e}^i)$. On the other hand, by the induction hypothesis, \sim \sim \sim \sim

 ξ has an $G(\mathcal{T}')$ -equivariant extension $\xi': \mathcal{Q}'^1_* \to \mathcal{Q}'^2_*$. Moreover ξ' and ξ_v satisfy point (e) of Assumption 5.15 . The proof is complete by Theorem 5.17 . П

7. Robust basic configurations

Again let $G = G(\mathcal{T})$ be the fundamental group of a tree \mathcal{T} of groups. Assume that $\varphi^1 \in \mathcal{R}_G$ satisfies Assumption [6.3](#page-24-2) for $\nu = 1$, and let P^1_* be the associated BC. Recall that for each vertex v of \mathcal{T} and $l \geq 2$, $(P_v^1)^l$ is the BP for Γ_v derived from the BP P_v^1 . (Definition [4.3\)](#page-13-1). Denote $(P^1)_*^l = \bigcup_v (P_v^1)_*^l$.

For each point $x \in P^1_*$, the stabilizer $\text{Stab}_{\varphi^1}(x)$ is infinite cyclic by Lemma [4.15,](#page-15-2) Lemma [5.9](#page-19-2) and a repeated use of Lemma [5.6.](#page-18-4) Denote by x_t^+ l (resp. $x_l^ \overline{l}$) the point in $(P^1)^l_*$ right (resp. left) adjacent to x.

Definition 7.1. The BC P_*^1 is called *robust* if for any point $x \in P_*^1$ and any big l, one of the generators of $\varphi^1(\text{Stab}_{\varphi^1}(x))$ maps the interval $[x_l^-, x_l^+]$ into a proper subinterval of it.

Lemma 7.2. For a homomorphism $\varphi^1 \in \mathcal{R}_{\Pi_g}$ with $eu(\varphi^1) = 2g - 2$ ($g \ge 2$), *the BC given by Examples* [6.2](#page-24-3) *and* [6.4](#page-25-0) *is robust.*

Proof. If we choose a Fuchsian representation as a model of φ^1 , then any point of the BC is a fixed point of a hyperbolic motion. Any representation φ^1 with $eu(\varphi^1) = 2g - 2$ is semiconjugate to the Fuchsian representation by [\[Mat2\]](#page-32-4), \Box showing the lemma.

Finally we have the following theorem.

Theorem 7.3. Assume that φ^1 admits a robust BC P_*^1 . Then there is a neighbourhood U of φ^1 in \mathcal{R}_G such that if $\varphi^2 \in \mathcal{U}$, φ^2 admits a BC P_*^2 and a BC equivalence $\xi : P_*^1 \to P_*^2$.

Proof. Choose *l* large enough so that the condition of Definition [7.1](#page-28-1) is met by all the points x in P^1_* and that the intervals $[x_l^-, x_l^+]$'s are disjoint. Let g_x be the generator of $Stab_{\varphi^1}(x)$ such that

$$
\varphi^1(g_x)[x_l^-, x_l^+] \subset \text{Int } [x_l^-, x_l^+].
$$

Choose a neighbourhood U of φ^1 so that for any $\varphi^2 \in U$ and $x \in P_*^1$, we have

$$
\varphi^2(g_x)[x_l^-, x_l^+] \subset \text{Int }[x_l^-, x_l^+].
$$

Let $\xi(x)$ be the leftmost point in $Fix(\varphi^2(g_x)) \cap [x_i^-, x_i^+]$. Then the set

$$
P_*^2 = \{ \xi(x) \mid x \in P_*^1 \}
$$

forms a BC for φ^2 , and the map ξ is a BC equivalence. In fact, it is easy to see that for any vertex v ,

$$
P_{v,*}^2 = \{ \xi(x) \mid x \in P_{v,*}^1 \}
$$

 \Box

is a BP for $\varphi^2|_{\Gamma_v}$, because we have assumed that $P_{v,*}^1$ is a pure BP.

Joining this theorem with Lemma 6.5 and Theorem 6.7 , we get the following corollary, which conclude the proof of Theorem [1.17.](#page-4-1)

Corollary 7.4. If $\varphi^1 \in \mathcal{R}_G$ admits a robust BC, and $\psi^1 \in \mathcal{R}_G$ is a k-fold lift *of* φ^1 ($k \ge 1$), then ψ^1 is locally stable.

Proof. Let P_*^1 be a robust BC for φ^1 . Then clearly $\pi_k^{-1}(P_*^1)$ is a robust BC for ψ^1 . By Theorem [7.3,](#page-28-2) there is a BC \widetilde{P}^2 for any ψ^2 sufficiently near to ψ^1 and a BC equivalence $\xi : \pi_k^{-1}(P^1_*) \to \widetilde{P}^2_*$. By Theorem [6.7,](#page-27-1) the BC equivalence ξ extends to a (ψ^1, ψ^2) -equivariant COP map $\hat{\xi} : \psi^1(G)(\pi_k^{-1}(P^1)) \to \psi^2(G)(\tilde{P}^2_*)$. The map $\hat{\xi}$ extends to a (ψ^1, ψ^2) -equivariant semiconjugacy.

Appendix A: The proof of Proposition [1.4](#page-1-1)

We shall show that the semiconjugacy as defined in Definition 1.3 is an equivalence relation in $\mathcal{R}_G \setminus \mathcal{R}_G^*$. All that needs proof is the reflexiveness. Let $\varphi^1, \varphi^2 \in \mathcal{R}_G \setminus \mathcal{R}_G^*$. Assume there is a degree one monotone map $h: S^1 \to S^1$ such that

(7.1)
$$
\varphi^2(g) \circ h = h \circ \varphi^1(g), \quad \forall g \in G.
$$

Since $\varphi^i \in \mathcal{R}_G \setminus \mathcal{R}_G^*$, h is not a constant map. Let $\widetilde{h} : \mathbb{R} \to \mathbb{R}$ be a lift of h as in Definition [1.2.](#page-0-1) Notice that such a lift \hat{h} is unique up to the composition with $Tⁿ$, since the map h is nonconstant. (This is why we divide the definition of semiconjugacy into two parts.) Define $\widetilde{h}^{\diamond} : \mathbb{R} \to \mathbb{R}$ by

$$
\widetilde{h}^{\diamond}(y) = \inf \{ x \in \mathbb{R} \mid \widetilde{h}(x) = y \}.
$$

Clearly \widetilde{h} ^o commutes with T, and there is a degree one monotone map $h^{\diamond}: S^1 \to S^1$ such that $h^{\diamond} \circ \pi = \pi \circ \widetilde{h}^{\diamond}$. The well-definedness of h^{\diamond} is guaranteed

by the uniqueness of \widetilde{h} . Moreover if h, h' and h' $\circ h$ are nonconstant monotone degree one maps, then we have

$$
(h' \circ h)^{\diamond} = h^{\diamond} \circ (h')^{\diamond}.
$$

Thus (7.1) implies that

$$
h^{\diamond} \circ \varphi^2(g^{-1}) = \varphi^1(g^{-1}) \circ h^{\diamond},
$$

completing the proof.

Appendix B: The proof of Theorem [2.2](#page-5-0)

We assume that $\varphi \in \mathcal{R}_G$ is type 1 and minimal, and will show that φ is proximal, the other implication being obvious. Call a closed interval $I \subset S^1$ φ -*contractible* if $\inf_{g \in G} |\varphi(g)| = 0$. First of all we have the following easy fact.

(1) For any $g \in G$ and any closed interval I, I is φ -contractible if and only if $\varphi(g)I$ is φ -contractible. \Box

Next let us show:

(2) There is $\delta > 0$ such that if $|I| < \delta$, then I is φ -contractible.

Proof. Since φ is not type 0, there is a nontrivial homeomorphism $\varphi(g)$ which admits a fixed point. This shows that there is a φ -contractible interval J. Since φ is minimal, the family

$$
\mathcal{J} = \{ \varphi(g) \text{Int } J \mid g \in G \}
$$

must cover S^1 . Now the Lebesgue number δ of the open covering $\mathcal J$ works.

Define a map $\widetilde{U} : \mathbb{R} \to \mathbb{R}$ by

$$
\widetilde{U}(\widetilde{x}) = \sup \{ \widetilde{y} \in (\widetilde{x}, \infty) \mid \pi([\widetilde{x}, \widetilde{y}]) \text{ is } \varphi \text{-contractible} \}.
$$

We have the following easy properties.

$$
(3) \quad \widetilde{x} + \delta \le \widetilde{U}(\widetilde{x}) \le \widetilde{x} + 1. \qquad \qquad \Box
$$

(4) U is monotone nondecreasing.

Also (1) implies the following.

(5) For any $g \in G$ and a lift $\varphi(g)$ of $\varphi(g)$ to \mathbb{R} ,

$$
\widetilde{\varphi(g)} \circ \widetilde{U} = \widetilde{U} \circ \widetilde{\varphi(g)}.
$$

Especially, $\widetilde{U} \circ T = T \circ \widetilde{U}$.

(6) The map \widetilde{U} is injective.

 \Box

 \Box

Proof. Assume on the contrary that there is $\widetilde{y} \in \mathbb{R}$ such that $Cl(\widetilde{U}^{-1}(\widetilde{y})) = \widetilde{V} \widetilde{Z}^{-1}$ is an interval. By the minimality of α there is a lift $\widehat{q(\alpha)}$ such that $[\tilde{x}_0, \tilde{x}_1]$ is an interval. By the minimality of φ , there is a lift $\widetilde{\varphi(g)}$ such that $\widetilde{\varphi(g)}(\tilde{x}_1) \in (\tilde{x}_0, \tilde{x}_1)$. Then there is $\tilde{x}_2 \in (\tilde{x}_0, \tilde{x}_1)$ such that $\widetilde{\varphi(g)}(\tilde{x}_2) \in$ $(\widetilde{x}_0, \widetilde{x}_1)$ and $\widetilde{\varphi(g)}^{-1}(\widetilde{x}_2) \in (\widetilde{x}_1, \infty)$. Now

$$
\widetilde{\varphi(g)}(\widetilde{y}) = \widetilde{\varphi(g)} \circ \widetilde{U}(\widetilde{x}_2) = \widetilde{U} \circ \widetilde{\varphi(g)}(\widetilde{x}_2) = \widetilde{y}.
$$

This shows

$$
\widetilde{U} \circ \widetilde{\varphi(g)}^{-1}(\widetilde{x}_2) = \widetilde{\varphi(g)}^{-1} \circ \widetilde{U}(\widetilde{x}_2) = \widetilde{\varphi(g)}^{-1}(\widetilde{y}) = \widetilde{y}.
$$

This contradicts the fact that $\widetilde{\varphi(g)}^{-1}(\widetilde{x}_2) \notin [\widetilde{x}_0, \widetilde{x}_1] = \text{Cl}(\widetilde{U}^{-1}(\widetilde{y})).$ \Box

(7) \widetilde{U} is bijective.

Proof. Define $\widetilde{V} : \mathbb{R} \to \mathbb{R}$ by

$$
\widetilde{V}(\widetilde{x}) = \inf \{ \widetilde{y} \in (-\infty, \widetilde{x}) \mid \pi([\widetilde{y}, \widetilde{x}]) \text{ is } \varphi \text{-contractible} \}.
$$

For any point $\widetilde{x} \in \mathbb{R}$, and any point \widetilde{x}_1 in $(\widetilde{x}, \widetilde{U}(\widetilde{x}))$, (6) implies that $\widetilde{U}(\widetilde{x}) < \widetilde{U}(\widetilde{x}_1)$. This shows that the interval $\pi([\widetilde{x}_1, \widetilde{U}(\widetilde{x})])$ is φ -contractible. Since \widetilde{x}_1 is an arbitrary point of $(\widetilde{x}, \widetilde{U}(\widetilde{x}))$, this shows that $\widetilde{V}(\widetilde{U}(\widetilde{x})) \leq \widetilde{x}$. Again by (6), we have in fact

$$
\widetilde{V}(\widetilde{U}(\widetilde{x}))=\widetilde{x}.
$$

The same argument shows that $\widetilde{U} \circ \widetilde{V} = Id$.

By (4) and (7), \tilde{U} is a homeomorphism. By (5), there is $U \in \mathcal{H}$ such that $\pi \circ \widetilde{U} = U \circ \pi$. Also by (5), U commutes with any element of $\varphi(G)$. Finally let us show:

(8) There is $k \in \mathbb{N}$ such that $U^k = \text{Id}$.

Proof. If Fix (U^k) is nonempty for some $k \in \mathbb{N}$, then Fix (U^k) must be invariant by $\varphi(G)$, since U^k commutes with any element of $\varphi(G)$. That is, Fix $(U^k) = S^1$, showing (8) . If not, the rotation number of U must be irrational, and there is a unique minimal set X of U . Since X is unique and since U commutes with any element of $\varphi(G)$, X must be left invariant by any element of $\varphi(G)$. Since φ is minimal, this implies $X = S^1$. That is, U is topologically conjugate to an irrational rotation. But then $\varphi(G)$ must be abelian, and φ must be of type 0. A contradiction. \Box

To conclude, since φ is assumed to be of type 1, we have $k = 1$. But by (3), this implies $\widetilde{U} = T$. That is, φ is proximal.

 \Box

Acknowledgement. The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 25400096. Hearty thanks are due to the referee, whose valuable comments were helpful for the improvement of the paper.

References

- [Bow] J. Bowden, Contact structures, deformations and taut foliations. *Geom. Topol.* **20** (2016), 697–746. [MR 3493095](http://www.ams.org/mathscinet-getitem?mr=3493095)
- [CW] D. Calegari and A. Walker, Ziggurats and rotation numbers. *J. Modern Dynamics* **5** (2011), 711–746. [Zbl 1286.37045](http://zbmath.org/?q=an:1286.37045) [MR 2903755](http://www.ams.org/mathscinet-getitem?mr=2903755)
- [Ghy] É. Ghys, Groups acting on the circle. *l'Ens. Math.* **47** (2001), 329–407. [Zbl 1044.37033](http://zbmath.org/?q=an:1044.37033) [MR 1876932](http://www.ams.org/mathscinet-getitem?mr=1876932)
- [Man] K. MANN, Components of surface group representations. [arXiv:1309.2905](http://arxiv.org/abs/1309.2905)
- [Mas] B. Maskit, On Klein's combination theorem. *Trans. AMS* **120** (1965), 499–509. [Zbl 0138.06803](http://zbmath.org/?q=an:0138.06803) [MR 0192047](http://www.ams.org/mathscinet-getitem?mr=0192047)
- [Mat1] S. Matsumoto, Numerical invarinats for semi-conjugacy of homeomorphisms of the circle. *Proc. AMS* **96** (1986), 163–168. [Zbl 0598.57030](http://zbmath.org/?q=an:0598.57030) [MR 0848896](http://www.ams.org/mathscinet-getitem?mr=0848896)
- [Mat2] S. MATSUMOTO, Some remarks on foliated $S¹$ bundles. *Invent. Math.* **90** (1987), 343–358. [Zbl 0681.58007](http://zbmath.org/?q=an:0681.58007) [MR 0910205](http://www.ams.org/mathscinet-getitem?mr=0910205)
- [Mil] J. Milnor, On the existence of a connection with curvature zero. *Comm. Math. Helv.* **32** (1958), 215–223. [Zbl 0196.25101](http://zbmath.org/?q=an:0196.25101) [MR 0095518](http://www.ams.org/mathscinet-getitem?mr=0095518)
- [Woo] J. Wood, Bundles with totally disconnected structure group. *Comm. Math. Helv.* **46** (1971), 257–273. [Zbl 0217.49202](http://zbmath.org/?q=an:0217.49202) [MR 0293655](http://www.ams.org/mathscinet-getitem?mr=0293655)

(*Reçu le 29 décembre 2014*)

Shigenori Матѕимото, Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda, Surugadai, Chiyoda-ku, Tokyo, 101-8308 Japan

e-mail: matsumo@math.cst.nihon-u.ac.jp