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Basic partitions and combinations of group actions on the
circle: A new approach to a theorem of Kathryn Mann

Shigenori MatsumoTo

Abstract. Let Il be the surface group of genus g (g > 2), and denote by Rp,
the space of the homomorphisms from Il, into the group of the orientation preserving
homeomorphisms of S'. Let 2g —2 = kI for some positive integers k and /. Then
the subset of Ry, formed by those ¢ which are semiconjugate to k-fold lifts of some
homomorphisms and which have Euler number eu(¢) = / is shown to be clopen. This
leads to a new proof of the main result of Kathryn Mann [Man] from a completely different
approach.
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1. Introduction

Let S' =R/Z and denote the canonical projection by 7 : R — S!. Denote
by T :R — R the translation by one: T(x) = x + 1.

Notations 1.1. Let H = Homeo,(S') denote the group of the orientation
preserving homeomorphisms of S!, and for any group G, Rg = Homo(G, H)
the set of the homomorphisms from G to H.

Definition 1.2. A map 4 :S! — S! is called degree one monotone if there is a
nondecreasing (not necessarily continuous) map h:R — R such that hoT = Toh
and Toh=hon.

Denote

Re =1{p € Rg | Ix € S! such that ¢(g)(x) = x, Vg € G}.
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Definition 1.3. Two homomorphisms ¢!, ¢? € Rg are called semiconjugate,
denoted ' ~ ¢?, if either ¢!, ¢ € RE or ¢! ¢? € Rg \ RE and there is a
degree one monotone map & : S! — S! such that ¢?(g)oh = ho¢'(g) for any
geG.

The proof of the following proposition can be found in Appendix A.
Proposition 1.4. The semiconjugacy is an equivalence relation.

Definition 1.5. Let F' C S' be a ¢'(G)-invariant subset (¢’ € Rg, i = 1,2).
A map £: F!' — F? is called (¢!, ¢?)-equivariant if & o ¢'(g) = ¢?(g) o & on
F! for any g€ G.

We have the following easy proposition.

Proposition 1.6. Let F' C S' be a ¢ (G)-invariant subset (¢' € Rg, i =1,2),
and assume there is a cyclic order preserving (', ¢?)-equivariant bijection
£:F! — F2. Then we have ¢' ~ ¢2.

Proof. Two homomorphisms ¢; € Rf; and ¢, € Rg \ R can never satisfy the
condition of the proposition. So one may assume ¢’ € Rg \ Ry;. There is an

order preserving bijection & : 7 !(F!) — n~!(F?) such that £ oT =T o &
and Eoxr =mo & . Define 7 : R — R by

h(T)=inf{E(F)| T €[X,00) N~ (FH)}.

Then 7 oT =T o E, and there is a monotone degree one map h : S! — S!
such that hom = mo h. Now (¢!, ¢?)-equivariance of £ implies that
hoy'(g) =¢*(g)oh (Vg € G). O

Definition 1.7. A homomorphism ¢ € R¢g is called type 0 if there is a ¢(G)-
invariant probability measure on S!.

If there is a finite ¢(G)-orbit or if the action of ¢(G) is free, then ¢ is type
0. If ¢ is type 0 and ¢ ~ ¢’, then ¢’ is also type O. If ¢ is not type 0, then the
minimal set of ¢ is unique, either a Cantor set or the whole S!. In the latter
case we say that ¢ is minimal.

Definition 1.8. For ¢ not of type 0, a minimal homomorphism which is
semiconjugate to ¢ is denoted by ¢y, and called a minimal model.

A minimal model ¢y always exists and is unique up to topological conjugacy
for ¢ not of type 0. For any k > 2, let m; : S — S! be the k-fold covering
map, that is, 7y (x + Z) = kx + Z.
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Definition 1.9. For k € N, v € Rg is called a k-fold lift of ¢ € R¢g if for any
g € G, it holds that ¢(g) o mx = ;o ¥ (g).

Definition 1.10. For k¥ € N, a homomorphism ¢ € R¢g is called type k if it
satisfies the following conditions.

(1) ¢ is not type O.

(2) A minimal model ¢y is a k-fold lift of some homomorphism in Rg.

(3) k is the maximal among those which satisfy (2).

For k > 0, the set of type k homomorphisms is denoted by Rg (k).

Thus type 1 homomorphisms are those homomorphisms which are not type 0
and whose minimal model cannot be a k-fold lift for any k > 2.

The group H is a topological group with the uniform convergence topology,
defined by the metric:

d(f,h) = sup | f(x)—h(x)| for fiheH.
xeS1
The space R¢g is equipped with the following topology. Given ¢ € Rg, g € G
and ¢ > 0, let

(1.1) Ug;g.6) = {¢’ € Rg | d(¢'(2). 0(g)) < &}.

The topology with subbase U(gp;g,¢) is called the weak fopology. When the
group G is finitely generated, this coincides with the usual topology of uniform
convergence on generators. The following proposition will be proven in the next
section.

Proposition 1.11. For any group G and k > 1, the subset Rg(0) is closed and
Ui<i<k R (i) is open in Rg.

This is best possible, for example for free groups. However for groups of a
special kind, one can expect that some component of Rg(k), k > 2, is also open.
The purpose of this paper is to consider this problem for the surface group I,
g = 2. The group Il is the fundamental group of the closed oriented surface
of genus g, and has a presentation:

O, = (A1, B1,...,Ag, Bg | [A1, B1]--+[Ag, Bg] = e).
Given ¢ € Rn,, its Euler number eu(y) € Z is defined by

[o(4D) . ¢(B1)] -+ [0(Ag) . 9(Bp)] = T,
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where for f € H, ? denotes an arbitrary lift of f to a homeomorphism of
R. The map eu : Rp, — Z is continuous, and thus eu~!(i) is clopen in Rn,
for any i € Z. We have the following classical theorem [Mil], [Woo], called the
Milnor-Wood inequality.

Theorem 1.12. The inverse image eu='(i) is nonempty if and only if |i| < 2g—2.

For homomorphisms with the extremal values of Euler number, we have
the following result [Mat2]. (In fact, the pathwise connectedness below is not
mentioned in that paper. But it is an easy consequence of the main theorem.)

Theorem 1.13. The inverse image E, = eu™'(2g —2) is pathwise connected, and
if 0.¢' € E4, then ¢ ~ ¢'. The same thing holds true for E_ = eu='(—2g +2).

Assume eu(p) = 2g —2 and 2g-2= kl for some positive integers k,!.
Choose an arbitrary k -fold lift go(A ) (resp. go(B,)) of @(A4;) (resp. ¢(B;))
for j =1,...,g. Then we have

[¢(41)., ¢(BD)]...[9(4g) . 9(Bg)] = Id.

In fact, this is obtained by taking a quotient by the action of T of the formula:

[o(A1) . (B1)]---[9(Ag), 9(By) | = T2 =Tk,

Thus we have a k-fold lift of ¢ once we choose k-fold lifts of the generators
arbitrarily. We shall denote the k-fold lifts of ¢ by v;, 1 < j < k%€ . The
following result is immediate.

Proposition 1.14. We have eu(y;) =1. O
The main result of the present paper is the following.

Theorem 1.15. Assume 2g — 2 = kl for some positive integers k and [. Then
the subset eu™'(I) N Rn, (k) is clopen in Ry, .

The closedness of eu™'(/) R, (k) follows from Proposition L.11. In fact, we
have
eu” () N R, (k) = e (1) \ Ur<j<k—1Rm, (/)

where eu~1(/) is closed and Ui<j<k—1Rm,(j) is open.
For the openness, we use the following concept.

Definition 1.16. For any group G, a homomorphism ¢ € Rg is said to be locally
stable if any homomorphism ¢’ € Rg sufficiently near to ¢ is semi-conjugate
to @.
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The openness follows from the following theorem.
Theorem 1.17. Any homomorphism of eu™(I) N R, (k) is locally stable.

Let Z; be the connected component of Rp, which contains the above lift
Vi, 1 < j <k?%. Then we have the following corollary.

Corollary 1.18. Any two homomorphisms of the same component Z; are mutually
semi-conjugate. O

The same result has been obtained by K. Mann [Man], based upon extensive
use of algorithms in [CW]. This paper contains a completely different approach.
Also there is a quite simple proof for diffeomorphisms due to J. Bowden [Bow].

We shall prove Proposition 1.11 in Section 2, and Theorem 1.17 in Sections 4-7.
We give an outline of Sections 4 and 5 in Section 3. It seems that our method
provides a new and elementary proof of the main result of [Mat2], but we do
not pursue it in the present paper. Throughout the paper, we use the following
notations.

Notations 1.19. e The positive cyclic order of S! is denoted by <.
e Given two distinct points a,b € S, [a,b] = {x € S',a < x < b}.
For a subset X of S!, we denote
e CLC X if C is a connected component of X,
e X the union of the closures of the connected components of S'\ X,
e X.=XnNXy.
We abbreviate

e BP for “basic partition”, BC for “basic configuration” and COP for “cyclic
order preserving”.

2. Proximal actions

In this section, G is to be an arbitrary group, countable or not. This section
is devoted to the proof of Proposition 1.11. Let us begin by showing that R (0)
is a closed subset of Rg. Let ¢ be any homomorphism from the closure of
R (0). Let us denote by P(S') the space of the probability measures on S!,
equipped with the weak™* topology. In order to show ¢ admits an invariant proba-
bility measure, it is sufficient to prove that for any finite subset {g;} C G, there is a
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probability measure invariant by ¢(g;)« : P(S!) — P(S!), thanks to the finite
intersection property of the compact set P(S!). Choose

¢n € [ \U(g:gi.1/n) N RG(0),
1

where U(-) is introduced in (1.1), and let u, € P(S!) be a ¢,(G)-invariant
measure. Since the maps ¢,(gi)« and @(g;)« are continuous and ¢,(g;)«
converges to ¢(gi)« pointwise, an accumulation point of {u,} is the desired
measure.

Now let us turn to show that Rg (1) is an open subset of R¢ . The argument
is based upon the following Theorem 2.2 due to E. Ghys ([Ghy, p. 362]), whose
proof is included in Appendix B. To state it, we make a definition.

Definition 2.1. A homomorphism ¢ € Rg is called proximal if for any closed
interval 1 C S!, infzegle(g)I| = 0, where |-| denotes the diameter.

Theorem 2.2. For any ¢ € Rg, ¢ € Rg(1) if and only if a minimal model ¢y
is proximal.

Definition 2.3. Given x,y € S!, a sequence {f,} C H is called an (x,y)-
sequence if for any ¢ > 0, there is N such that if » > N, f, maps the
complement of the e-neighbourhood of x into the e-neighbourhood of y.

Lemma 2.4. For any x,y € S' and ¢ € Rg(1), there is an (x,y)-sequence in
24(G).

Proof. For any x € S!, define
Ey={y € S"|3(x,y)-sequence in ¢4(G)}.

By Theorem 2.2, E, is nonempty for any x € S!. On the other hand, it is easy
to show that E is closed and ¢4(G)-invariant. Therefore we have E, = St O

There is a bounded 2-cocycle ¢ of the group H defined by
c(fhy=7(f o h)—t(f)—z(h),

where f (resp. /) is an arbitrary lift of f (resp. h) to R, and 7(-) stands for
the translation number. As is well known, its L° norm satisfies |c|| = 1. For
¢ € Rg, the pull back cocycle ¢*c lies in the second bounded cocycle group
ZZ(G) of G and satisfies ||¢*c| < 1. It is known [Matl] that ¢*c = 0 if and
only if ¢ € Rg(0). For other Rg(k), we have the following.
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Lemma 2.5. Forany ¢ € Rg and k > 1, ¢ € Rg (k) if and only if ||p*c|| = 1/k.

Proof. 1t suffices to show only the following implication:
@1 ¢ € Ro(k) = lo*cl = 1/k. Vk=1,

since the opposite implication follows from this. First of all, let us show (2.1)
for k = 1. Let ¢4 be a minimal model of any ¢ € Rg(1). Choose four points
x<y<z=<u=<xin S'. By Lemma 2.4, there are a (y, x)-sequence f, and
an (u,z)- -sequence hp in @4(G). Let f » and h be the lifts of f, and 4,
such that ( f n) = r(h n) = 0. One can choose lifts of the four points so that
X <7 <Z <u <T(X). See Figure 1 for this and the next argument.

- 7 ou Tz) T
hy, . <
N ¥ T TO)
i . i
Up
I
Ja
Uy T(ﬁn)
FicurE 1

For n large h,, admits a fixed point, say U, near u. Now consider the
composite fn ohn Clearly we have W, < f,, oh n(Uy) <T(Uuy). On the
other hand, if we choose u’ very near to # so that #’ > u . Then for any large
n, we have fn oh 2() > T(u'). (See Figure 1.) This shows r(f,, o hn) =1.
Therefore c¢(fy,h,) =1 and |¢*c|| = ||<pﬂc|| =1, as is required. Also it is not
difficult to show that the above inequalities also show the following.

(2.2) For any ¢’ € Rg sufficiently near to ¢ € Rg(1), we have |(¢)*c|| = 1.
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To show (2.1) for k > 1, choose any ¢ € Rg(k), with ¢4 a k-fold lift
of some ¥ € Rg. Clearly v € Rg(1). Moreover the cocycle ¢*c = (p;‘c is
precisely (1/k)y*c. This shows |p*c|| =1/k. O

Now the openness of Rg(1) follows from Lemma 2.5 and (2.2). The proof
that the set |J;<;<x R (i) is open is left to the reader.

3. Outline

Before getting into a detailed proof of Theorem 1.17, we shall give an outline
of its first two steps. The basic idea is that a homomorphism in eu™!(l) NRm, (k)
of Theorem 1.17 has the following very special property: There is a finite set, say
R, of S such that the knowledge about how the generators of the group moves
points of R completely determines the semiconjugacy class of the homomorphism.

First of all, let us explain this phenomenon in a much simpler example. Let
I' be the free group on two generators A and B. Let ¢ € Rr and denote
a = @(A) and b = ¢(B). Assume that t([d, 5]) =1, where a@ (resp. b)) is
an arbitrary lift of a (resp. b). Then one can show that such ¢ belongs to a
single semiconjugacy class. This will actually be done in Section 4. But we can
present a rough outline here.

By the assumption z([a, Z]) = 1, there is a fixed point x € S' of [a,b]
such that

x<b7'x)<a b (x) < ba" b7 (x) < [a,b](x) = x.

See Figure 2 left.

The homeomorphism a maps the long interval [ba='h~1(x),a='h~1(x)] onto
a subinterval [x,bh~!(x)]. Therefore there is a fixed point of a in the open
interval (x,bh~1'(x)). There is also a fixed point in (a='h~1(x),ba='h~1(x)).
Likewise b admits at least two fixed points, one in (h~!(x),a"'b~!(x)), another
in (ba='h71(x),x).

Let R be the set of four points in Figure 2 left, and set S = {4, A™!, B, B~!}.
Let R? = J,cs¢(s)R. Then R? contains R, and has 8 more points. The
configuration of R? in S! is determined uniquely. Likewise if we set R3 =
Uses ¢(s)R?, then its configuration is also unique. See Figure 3.

The left depicts R? and the right a part of R3. This way, we can determine
the configuration of the whole orbit ¢(I")x, which, according to Proposition 1.6,
implies that the semiconjugacy class of ¢ is uniquely determined. The actual
proof can be organized as an induction.

Here is another example of this kind. See Figure 2 right. This is also a
homomorphism ¢ from the free group on two generators A and B, and we
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FiGure 2

Sh

FiGure 3

denote a = ¢(A) and b = ¢(B). The homeomorphism a (resp. ) has a fixed
point x (resp. z), and we have y = ab(y) for the point y in the figure. Clearly
c¢(a,b) =1 and any homomorphism with c(a,b) = 1 has a configuration as in
Figure 2 right. Again one can show that such ¢ belongs to a single semiconjugacy
class. That is, if we let R be the set of four points x, y, z and b(y), then the
same thing holds with this R.



24 S. MATsumoTO

What is good about these partitions R is the following. Let i be any k-fold
lift of ¢. Then the pull back image 7, 1(R) has the same property: it determines
the semiconjugacy class of the homomorphism .

What is not good is that partitions of this kind are difficult to find. To show
Theorem 1.17, we need something more.

Let us consider a Fuchsian representation ¢ € Ry, of the surface group II,
of genus 2 such that eu(¢) = 2. One can assume the elements a, = ¢(4,) and
b, = ¢(B,) (v =1,2) are the hyperbolic motions in Figure 4 left.

FiGure 4

The axes of a,, b, and [ay,b1] = [b2,az] are depicted in Figure 4 right. Let
x and y be the fixed points of [a;,b1]. See Figure 5 for parts of orbits of x
and y.

The set R of fourteen points there is enough to determine the semiconjugacy
class of the homomorphism ¢. In fact, the configuration of R immediately implies
that eu(p) = 2, and by [Mat2], the semiconjugacy class is unique. However when
we consider a 2-fold lift ¥ of ¢, it is not clear if the inverse image m;'(R)
actually determines the semiconjugacy class or not. To cope with the problem,
we need an algorithm to determine the orbits of x and y, which can be inherited
to a k-fold cover. But this is not according to the word length of the elements
Of Hz.

Consider the amalgamated product

Iy =Ty x4 Iy,

where I, is the subgroup generated by A, and B, and A generated by
[A1, Bi] = [B2,Az]. First we consider the homomorphism ¢, = ¢|r,. This
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ay "oy (y)

[a1,b1](x) =

ay by (x)

FIGURE 5

is a homomorphism from the free group I, on two generators such that
([a,, ZU]) = 1, and the previous observation works. However notice that one
can define the set R of four points in Figure 2 in two different ways: one from
the orbit of x, the other y. It is more natural and more convenient to consider
disjoint four intervals (instead of points). For I'y, they are E; = [y,x] and its
iterates in Figure 6. The complement of the four intervals is denoted by P;. The
stabilizer (in I';) of E; is A, and the limit set of the Fuchsian group I'; is
contained in P;. Likewise in the right figure, the four intervals are E, = [x, y]
and its iterates. The complement is denoted by P,.
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FiGURE 6

For y, € Ty, the configuration of the orbits ¢,(y,)(x) and ¢,(yy)(y) is
determined just by the data in Figure 6 inductively on the word length of y,, as
we have explained. They are contained in P, .

The actual proof is given in Section 4, where we call such subsets P, basic
partitions. The complementary intervals E, is called the entrance of A to P,.
As we explained, the stabilizer of E, (in T',) is A. The entrances E; and E,
satisfy the conditions; E; U E; = S!' and IntE; NIntE;, = @. They are said
to be combinable. Now the whole orbits ¢(g)(x) and ¢(g)(y) for g € TI, can
be determined just by this combinability condition. This part, reminiscent of the
Maskit combination theorem [Mas] in Kleinian groups, is shown in Section 5.
What is good for this construction is that the whole process can be passed to a
2-fold lift of ¢.

Moreover the set R of fourteen points in Figure 5 are robust, in the sense that
any homomorphism near to ¢ has the same configuration as R. Furthermore, if
we consider a 2-fold lift ¥ of ¢, the set 75 '(R) is also robust for y . This part,
shown in Section 7, concludes the proof of the local stability (Theorem 1.17) for
g =2.

For g > 3, the group I, is represented as the fundamental group of a tree
of groups. Each vertex of the tree has valency either 1 or 3. For a valency 3
vertex, we have a homomorphism ¢ € Rr, where I' is the free group on two
generators A and B. The homeomorphism a = ¢(A) and b = ¢(B) has the
property that c(a,b) = 1. This implies that ¢ admits a configuration in Figure 2
right. For this we consider a basic partition P as in Figure 7.
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E> =a(E4) = ab(Ey)

E3 =b(E3)

El = a(El)

E4 = b(Ez) = ba(Es)

Ficure 7

The complementary region consists of four intervals E;—FE4. The stabilizer
of E; is the subgroup (a), and we say that E; is the entrance of (a) to P.
Likewise E,, E3; and E4 are entraces to P of the subgroups (ab), (b) and
(ba), respectively. Compare with Figure 2 right.

4. Basic partitions

Let I be a group with a prescribed finite symmetric generating set S.

Definition 4.1. A subset P of S! is called a basic partition (BP) for ¢ € Rr,
if it satisfies the following conditions.

(1) P is a union of finitely many disjoint closed intervals.

(2) For any I C P, there exists a unique element sy € S such that

I -1
eI = Jnul 7

i=1 i=1
where [; C P,J; C Py are distinct intervals and / > 2. (See Notations 1.19.)

(3) Forany I — P and s € S\{s;}, ¢(s)(I) is a proper subset of some I’ = P.
(4) For any J C Py and s € S, either ¢(s)J C Py or ¢(s)J C Int(P).
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Example 4.2. The set P, (v = 1,2) in Figure 6 is an example of BP for
homomorphisms ¢, = ¢|r, . The set P in Figure 7 is also a BP.

Definition 4.3. For a BP P for ¢ € Rr and [ > 2, define inductively
Pl = MNyesuiey @) P'™1, where P! = P. Also define P =, P'.

Thus {P'};en is a decreasing sequence of compact subsets, each consisting
of finitely many closed intervals. In Example 4.2, if the corresponding homomor-
phism is onto a Shottky group, then P°° coincides with the limit set. In general,
P> is a closed perfect set.

Let us see how P2 is obtained from P. By (2) and (3) of Definition 4.1, we
have

P2 = U (p(sl)_l(P ﬂsl(l)).

IcCP

That is, any interval I C P is divided uniquely as:

l -1
I=JeGn™ U ulJes)™ ).
i=1 i=1
where ¢(s;')(I;) T P2, o(sy")(Ji) C Pﬁ2 = (P?)4. Any I’ C P? is of the above
form I’ = ¢(s;)"'(I;), and ¢(s;) maps I’ onto I; C P. For any other s, ¢(s)
maps I’ onto a proper subset of some I” C P2. On the other hand, Pﬁ2 is
obtained from Py by adding new intervals of the above form ¢(s;)~'(J;). A
component of Pﬂ2 is called level 1if it is contained in Py, and level 2 otherwise.
Any level 1 component is mapped by any ¢(s) onto a component of P2, either
to level 1 or to level 2. As for a level 2 component, we have the following.

(1) A level 2 component ¢(s;)~'(J;) is mapped by ¢(s;) onto a level 1
component J;, and is mapped by any other ¢(s) onto an interval contained
in the interior of P?2. Especially no level 2 component is mapped onto a
level 2 component.

By these considerations, we have the following lemma.
Lemma 4.4. For a BP P for ¢ € Rr and | >2, P! is a BP for ¢. O

Let P (resp. P’) be a BP for ¢ € Rr (resp. ¢’). Recall that P, = P N Py
from Notation 1.19.

Definition 4.5. A COP (cyclic order preserving) bijection £ : P, — P, is called
a BP equivalence if for any x,y € P, and s € S, we have

e [x,y]C P if and only if [£(x),&(y)]C P’ and
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e y =g(s)x if and only if £(y) = ¢'(s)&(x).

Lemma 4.6. Let P (resp. P’) be a BP for ¢ € Rr (resp. ¢'). Then a BP
equivalence & : P« — P] extends uniquely to a BP equivalence £*: P? — PJ*.

Proof. For any x € P2\ Py, there exists a unique element s € S such that
@(s)x € Py. Define £2(x) = ¢'(s)"' o £ 0 (s)(x). It is easy to show that &2 is
in fact a BP equivalence. O

Notice that P® = (),cy P’ is a perfect closed set, P = (P*)y consists of
countably many disjoint closed intervals, and P2° = P N P2 is a countable
set. All three sets are ¢(I")-invariant.

The next theorem says that if P is a BP for ¢ € Rr, then the semiconjugacy
class of the homomorphism ¢ is determined by the simple dynamics of S on
P . A semiconjugacy class is in fact determined by how one or several orbits are
located in S' (Proposition 1.6).

Theorem 4.7. Let P and P’ be BP’s for ¢ € Rr and ¢’ € Rr. Then a BP
equivalence & : P, — P| extends uniquely to a (¢, ¢")-equivariant COP bijection
£ PR — (P

Proof. This follows from inductive applications of Lemma 4.6. O

The next lemma plays a key role when we study a k-fold lift of a
homomorphism. The easy proof is omitted.

Lemma 4.8. Let P be a BP for ¢ € Rr and ¥ a k-fold lift of ¢. Then nk_l(P)
is a BP for . L

The lemma joined with Theorem 4.7 says that if v is a k-fold lift of ¢
which admits a BP P, then the semiconjugacy class of ¥ is determined by the
dynamics of ¥(S) on m; '(P).

For future purpose, we need to continue to study more about BP’s. Especially
we have to show that the stabilizer (defined later) of an interval J C Py can be
determined by a simple algorithm for a certain class of BP’s.

Definition 4.9. For any J C Pﬁ°°, define the level of J, lev(J) € N, by
lev(J) =1/ if and only if J C P/ \ P{7".

Lemma 4.10. Let P be a BP for ¢ € Rr. If J C Pﬁ°° satisfies lev(J) =1 for
some | > 2, then there is a unique element s € S such that lev(p(s)J) =1—1,
and for any other s € S, lev(p(s)J) =1+ 1.
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Proof. For | = 2, this follows from (1) placed just before Lemma 4.4. The general
case can be shown by an easy induction. O

Definition 4.11. A labelled directed graph G(P) associated with a BP P for
@ € Rr is defined as follows. The vertices of G(P) are components of Py. There
is a directed edge from J; to J, with label s € § (written J; 5 Jr)if s =57,
where [ is the component of P right adjacent to Jy, and ¢(s)(J1) = J>.

Example 4.12. The graph G(P;) and G(P,) of the BP’s in Figure 6 consists of
one cycle, while the graph G(P) for Figure 7 consists of 3 cycles.

Notice that for any vertex J of G(P), there is exactly one edge leaving J.
However there may be a vertex at which no edges arrive.

Definition 4.13. A BP P for ¢ € Rr is called pure, if the graph G(P) consists
of disjoint cycles. We allow a period one cycle formed by one vertex and one
edge.

In fact, the pureness does not change if we replace “right adjacent” by “left
adjacent” in Definition 4.11, although the direction or labelling of the graph may
change. For any BP P, P? can never be pure. The BP’s in Examples 4.12 are pure.

Definition 4.14. For ¢ € Rr and a subset A of S!, the stabilizer of A with
respect to ¢, denoted by Stab,(A), is defined by

Staby (A) = {y € T | p(y)(A) = A}.

Lemma 4.15. Let P be a pure BP for ¢ € Rr. Then we have the following.

(1) The group T is free with symmetrized free generating set S and ¢ is
injective.

(2) For any J T Py, the stabilizer Stab,(J) is generated by an element written
as a cyclically reduced word of S.

(3) For any J C Pﬂo" with lev(J) =1 (I > 2), Stab,(J) is generated by an
element which has a nonreducing representation afoa~' by reduced words
of S such that the word length of o is [ — 1 and B is cyclically reduced.

Proof. For any J C Py, assume ¢(y)(J) = J for some y € I'\{e}. Write y as a
reduced word in S: y = s,,---5251. For any 1 <i <m, let J; = ¢(s;j---51)(J).
Then we have lev(J;) =1 for any i, that is, J; is a vertex of G(P). In fact, if
lev(J;) would take the maximal value / > 2 at some i, then by Lemma 4.10, we
have lev(Ji—1) =lev(Jit1) =1 —1 and s;4; = s;', contrary to the assumption
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that the word is reduced. Again since the word is reduced and P is pure, we
have either of the following.

S1 2 Sm 51 52 Sm
J>J == dp=J o J<—Jp <o =Ty =J.

Let I; C P be an interval right adjacent to J;. Then in the former case ¢(sj+1)
is always expanding on /;, that is, s;41 = s, . This shows that ¢(y) cannot be
the identity. The same is true in the latter case. Points (1) and (2) follow from
this, while it is easy to derive (3) from (2). L]

Finally we shall prepare some terminologies and facts needed for the next
section. Let A be an infinite cyclic subgroup of I' and ¢ € Rr.

Definition 4.16. Given a closed subset X of S!, the set

E}(X) = J{J C Xy | {e} # Staby(J) C A},

is called the entrance of A to X with respect to ¢.

Definition 4.17. A pair of closed subsets (Q, E) is called a (I, A)-pair for ¢ if
Q is a ¢(I')-invariant closed perfect set, £ = E;}(Q), and E is a finite disjoint
union of closed intervals.

Lemma 4.18. Let P be a pure BP for ¢ € Rr and A an infinite cyclic subgroup
of T'. Assume E(/‘,\(P) is nonempty. Then (P°°,E£(P)) is a (I, A)-pair.

Proof. We only need to show that Eé\(P) = E;\(P‘X’). That is, if J C PﬁC>o and
Stab,(J) C A, then lev(J) = 1. But this is clear from Lemma 4.15. ]

5. Combinations

This section is divided into three subsections. In the first, we are concerned
with a single homomorphism, while in the second, with a pair of homomorphisms.
1. Throughout this subsection, we make the following.

Assumption 5.1. (a) The group G is written as an amalgamated product
G =T x5 Iz,

where A is an infinite cyclic subgroup.
(b) ¢ € Rg, and ¢, = ¢|r, is injective for v =1,2.
(© (Qy,,Ey) is a (I'y, A)-pair for ¢,, v =1,2.
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Denote Iy =I', \ A. We make extensive use of the following partition of the
group G.
G =| |G~

where

G'=A, G'=T}urTy,
(5.1) G? =T{T; UTY,

G} =TI fuTrirs, -

Definition 5.2. The pairs (Q1, E1) and (Q», E,) are called combinable for ¢ if
E; and E, alternate in S', that is, E; U E, = S! and Int(E;)NInt(E;) = @.
In this case we denote E, = 0E; = 0E,.

We also assume the following in this subsection.
Assumption 5.3. Q = ((Q1, E1),(Q2. E»)) is a combinable pair for ¢.

We define an (undirected) graph (V(Q), E(Q)) of the combinable pair Q as
follows.

V(Q) ={p(g)0v|g€G, v=12}
E(Q) = {{v.v} [v.v € V(Q), v#V, vNu #a}.

The group G acts naturally on the graph (V(Q),[E(Q)) as graph automorphisms
via the homomorphism ¢. The rest of this subsection is devoted to the study
of properties of the graph (V(Q),E(Q)). Especially we show that the graph
(V(9Q),E(Q)) is in fact a tree. (It is isomorphic to the Bass-Serre tree associated
to the amalgamated product G =Ty x5 I'5.)

For v,w € V(Q), we denote v ~ w if {v,w} € E(Q), and say that v and
w are adjacent. The indexing set for Q, is the group Z/2Z, thus for example
Q03 = @1, while the indexing set for a group element is Z, thus in general

Y3 # V1.

Lemma 5.4. We have Q, ~ Qy4+1 and Q, ~ ¢(yy)Qv41 for any y, € I';.
Conversely if Q, ~ v, then either v = Q,41 or v = @(yy)Qv4+1 for some
wel;.

Proof. Since Q1N Q, = E« # &, we have Q; ~ Q5. Since Q, is invariant by
¢(I'y). we have Q, N@(y)Qvs1 = @(n)(Q1 N Q2) # @ for y, € I'). That is,
Oy ~ o) OQv+1-
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In the sequel, we shall show that all the other vertices are not adjacent to
Q, . First we prepare some fundamental facts. See Figure 8.

5.2) 0, CEys1and Q,NIntE, =@
(53) @(w)E, CIntE, 4+ and Inte(y,)E, N Q, = @ for any y, € I';.

For (5.3), recall that Q, is assumed to be perfect.

Ovi1

K /%

O(Yv+1)(Evir)

FIGURE 8
The subsets @, should have countably many complementary
intervals. Only some of them are drawn in the figure.

Now for y,4+1 € 'y, the vertex ¢(yy+1)Q, is not adjacent to Q,, since

O(P+1)0v C (Y1) Evyr CIntE,.

We shall show by induction on k that if £k > 2 and y,4; € F:+i (1<ic<k),
then

(5.4 @Yotk - Vv+1) Oy C Into(yy11) Ey 4k

This shows that @(yy+k - - Yv+1)0Qy is adjacent neither to Q; nor to Q,, by
virtue of (5.3).
To show (5.4) for kK = 2, notice by (5.2)

(Yvr2v+1) Qv C @(Wv+2Vv+1) Evsr CInto(yy12)Eya.
For the inductive step,
Wvak+1Vvtk - Yo+1) Qv C OVvrk+ DIt @(yyik) Evir CInto(yyyrt1) Evikt1

O

Remark 5.5. The above proof shows that any vertex ¢(g)Q, is distinct from Q,
unless g € T,,.

See Figure 9 for the graph (V(Q),E(Q)).
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FiGure 9
The vertices a—d are a = Q2, b= Q1, ¢ =y1 Q> and
d =y1y201. The actual set Q; is depicted on the circle.

Lemma 5.6. For any interval J T (Qy)y which is distinct from ¢(y,)E, for any
vw €Dy, we have IntJ Nv =@ for any v € V(Q) and Stab,(J) = Staby,, (J).

Proof. Any vertex other than @, contained in E,i; is contained in ¢(yy,)E,
for some y, € I';, by virtue of (5.4), showing the first statement. For the last
statement, choose an arbitrary element g € Stab,(J). Then g leaves dJ invariant.
The set dJ is contained in Q, and disjoint from any other vertex of V(Q).
Therefore g stabilizes the vertex @, in the action of G on the graph. This shows
g € I, by Remark 5.5. O

Let us continue the study of the graph (V(Q),E(Q)).

Lemma 5.7. Let v,w € V(Q). If v ~ w and v = @Yy+k - Yv+1)0Qy for
some k > 1 and yy,y; € T[] ;, then either w = @Y1k Yv+2)Ov+1 OF
W = @Vvtk - Yo+1¥v) Qv—1 for some y, € I'Y, and moreover vNw is contained

in the ¢(G)-orbit of E..

Proof. Recall that the group G acts on the graph (V(Q),E(Q)) as graph
automorphisms. Thus if w ~ @(yy4k -~ yv+1)Qv, then @(yyii - yor1) 'w ~
0, . Therefore either @(y,1x---yv+1) 'w is equal to Q41 or ¢(yy)0,—; for
some y, € I'. Since @(yv4+1)Qv+1 = Qv41, this shows the first part. An
immediate consequence is that G acts transitively on the set of edges E(Q). That
is, there is g € G which maps E. = Q; N Q, onto v N w, showing the second
part. O

Definition 5.8. Any vertex v of the graph is written as v = @(Vy4k - Yv+1)Ov
for yy4; € T'),;. The number k is unique, and is called the distance of v.
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Lemma 5.9. (1) We have Stab,(Q,) =T.
(2) The graph (V(Q),E(Q)) is a tree and ¢ is injective.
(3) For g€ G, we have ¢(g)E« N E« # @ if and only if g € A.

Proof. Point (1) is a rephrasing of Remark 5.5. Lemma 5.7 says that any vertex of
distance k (k > 1) is only adjacent to vertices of distance k —1 and k + 1, and
the vertex of distance k — 1 is unique. This shows that the graph (V(Q),E(Q))
is a tree. To show that ¢ is injective, assume ¢(g) = id for some g € G.
Then g acts trivially on the graph. Especially g leaves the vertex @, invariant.
That is, g € I'y by (1). By the assumption that ¢, = ¢|r, is injective, we get
g = e, as is required. The if part of (3) is clear. To show the converse, notice
that Ex = Q1N Q,. By Lemma 5.4, if ¢(g)0Qy, N Qy+1 # &, then g € ['y41.
This holds for each v =1,2, and thus ge I'i NTH, = A. O

Further discussions are necessary for the development of the next subsection.

Definition 5.10. Let [Jp be the family of connected components of E; and E,
and for n > 1, let

In = {Qo(yv—i-n—l oy | yuyi € F:_}_j’ ICE,v= 172}

Lemma 5.11. (1) For any J € J, (n > 2), there are J; € J; (1 <i <n-—1)
and v such that

JCIntJ,_y CJyg C---CIntJy CJi T (Ov)s,

(2) Any two intervals J,J' € J,, n > 1, satisfy either J =J' or JNJ = &.

Proof. Point (1) is shown inductively using (5.3). Point (2) is clear for n = 1.
(See Figure 8.) The general case can be shown by an induction on n based
upon (1). ]

For a subset K of G and X of S!, denote ¢(K)X = Ugekp(g)X .

Definition 5.12. Define a subset X, of S! by Xo = E4 and for n > 1,
X, = @(G")Xy. Let X =J, X,,. (For the definition of G", see (5.1).)

The following easy lemma is useful to clarify an argument in the next
subsection.

Lemma 5.13. (1) X, = ;¢ 9I.
2) XuoNXp =9 if n #m.



36 S. MATsumoTO

() X =9¢(G)Ex.
(4) For any v € V(Q) of distance n (n >0), v X,, # @ if and only if m = n
or m=n+1. O

The following lemma will be used in Section 6 where we consider successive
combinations.

Lemma 5.14. Assume there is a subset E' C (Q1)y such that (Q1,E') is a
(Ty, A')-pair for ¢y, where A’ is an infinite cyclic subgroup of T\ such that
A'NyiAyr!t = {e} for any yy € T1. Then (Cl(p(G)(Q1U Q2)), E') is a (G, A')-
pair for ¢.

Proof. 1t is clear that

Z:=CpG)(1U o)) =al( |J v)

veV(Q)

is a ¢(G)-invariant closed perfect set. So what is left is to show that £’ = E(f,\/(Z ),
where by definition E' = E(;\l/(Ql). The assumption on A’ implies that
E'No(yy)E, = @ for any v and y, € T';. By Lemma 5.6, we have E’ C Eé‘/(Z).
To show the converse, assume J [ E(/‘}/(Z). If J C(Q1UQ2)y, then clearly
we have J C E’. Otherwise J must be contained in ¢(y,)I, € J; for some
I, C E, and y, € T} Since J C E2'(Z), there is g € A"\ {e} C T’} such that
@(g)J = J. Then ¢(g)e(yv)ly N@(yu)ly # @. If v =2, then ¢(y2)l> CIntEy,
while ¢(g)¢(y2)I> C Int E5. A contradiction. If v =1, ¢(g2)e(y1)l1 € J1 since
g € I'f. Then by Lemma 5.11 (2), ¢(gy1)]1 = ¢(y1)I1, and y;'gy; € A by
Lemma 5.9 (3). But this is contrary to the assumption on A’. O]

2. In this section, we assume the following.

Assumption 5.15. Let v=1,2 and i = 1,2.

(a) The group G is just as in Assumption 5.1.

(b) Let ¢’ € Rg, and assume ¢! = ¢'|r, is injective.

(c) Let (Qi,EL) be a (T, A)-pair for ¢i.

(d) The pair Q' = ((Q%, E}), (Q%, E})) is combinable for ¢'.

(e) There is a COP bijection & : O, U Q}, — 0f,U QF, such that

§(01,) = 02, and the restrictions & = £|g1 O}, — 02, is (p}.¢2)-
equivariant.

Our purpose is to show that & extends to a (¢!, ¢?)-equivariant COP bijection
from the saturation ¢'(G)(Q],U Q] ,) to 9*(G)(Q7,U 03,) (Theorem 5.17).
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The proof is in two steps: the first step is the following Lemma. Let 7!, X! and
X! be defined as in Definitions 5.10 and 5.12 for ¢*.

Lemma 5.16. The map & extends to a COP bijection
§:01.V0,UX' - 07,003, UX?

which is (o', ¢?)-equivariant as a map from X' to X?.

Proof. Recall that X = ¢;(G)EL. The map ¢ extends to X! by the (¢!, ¢?)-
equivariance. Namely, given x € X!, choose ¢ € G and xo € E}! such that
x = ¢!(g)xo, and define £(x) = ¢2(g)€(xo). The map £ is a well defined
bijection since by Lemma 5.9 (3), Stab,:(EL) C A, and £[g1 is (¢'[a,¢?[a)-
equivariant. Notice also that £ coincides with the original £ on X I c Q},* uQl.
by the (¢,.¢})-equivariance of £,, and X, (n > 2) is disjoint from Q] ,UQ] ..
Therefore we only need to show that é is COP.

We shall prove that £ is COP on 01,U0; ,UUp<i<n X;' by an induction on
n. This is sufficient since X! = J, X!. For n = 1, this is true by the assumption
since X{ C Q] ,UQj . To show it for n + 1, choose an arbitrary open interval

It/ C S\ (Q}’* vos.u U X,.l)
0<i<n
such that Int/ N X!, # @. Clearly we only have to show that é is COP on
1 1 1
]m(Ql,*UQZ,*U U Xi)’
0<i<n+1

where I is the closure of Int/. Now any point of Int/ N X! 41 is an endpoint
of some interval of jnl 41> and by Lemma 5.11, we have I € jnl. This shows

In (Q%,* U Q%,* U U Xil) =1InN (an U Xr}—i-l)-
0<i<n+1
Furthermore I = ¢'(g)J for some J € J) and g € G".

Finally since we have defined

A 5 1,1
5|m(x,}ux,'+l) = (¢ (g)|g(1)n(xguxl2)) © (5|m(x(;uxll) ° (g )|m(x,},ux,1+l))>»

1

and all the maps on the RHS is COP, the map §|In(X,%UX1+1) is COP, as is
required. O
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Theorem 5.17. Under Assumption 5.15, the COP bijection
§:101,UQ,, > 01, U0,
extends uniquely to a (@', p?)-equivariant COP bijection
§:9'(6)(01. U 03.) — ¢*(G)(QF . U Q3.
Proof. Recall that
0 (G)(Q1 U 0y) = J{vIveV@h),

where v = ¢'(g)Q} for some g € G and v. Denote v« = ¢'(g)Q} . Define
i? on each v by the (¢!, ¢?)-equivariance. This is well defined because & is
(¢).92)-equivariant on Q] , and Stab,; (Q') =T, by Lemma 5.9 (1). Of course
the map £ is COP on each v.. The map & coincides with the one defined in
Lemma 5.16 on v, N X!. The proof is complete by Lemma 5.16. O

3. Let v=1,2 and i = 1,2. Assume the following.

(a) The group G is just as in Assumption 5.1

(b) Let ¢’ € Rg, and denote ¢! = ¢'|r, .

(c) Let P! is a pure BP for ¢!, with E! the entrance of A to P!.

(d) The pairs (P}, E!) and (Pi, EL) are combinable in the sense that Ei and
E} are alternating in S!.

(e) There is a COP bijection & : P! U P, , — P?, U P;, such that &|p1 is
a BP equivalence from P‘},* onto P,i*.

Joining Theorems 4.7 and 5.17, we get the following.
Theorem 5.18. Under the above assumption, ¢' and ¢? are semiconjugate. [

Notice that the set R of fourteen points in Figure 5 is equal to P! U P}, for
the homomorphism (here denoted ¢') in Rp, with eu(p!) = 2. Thus the above
theorem says that any homomorphisms which admit the same configuration R
are mutually semiconjugate. This, together with the robustness of R (discussed
in Section 7), implies the local stability of ¢!. Furthermore a 2-fold lift of ¢!
is also shown to be locally stable.
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6. Trees of groups

Definition 6.1. A tree of groups is a finite tree 7 = (V, &) such that

(1) to each vertex v € V (resp. edge e € £) is associated a group I', (resp.
Ae),

(2) and if v € V is an end point of e € £, then a monomorphism ¢, : A, — T,
is assigned.

The fundamental group G(T) of a tree T of groups is the group generated
by I'y, and A, (v € V,e € &) subject to the relation A = y whenever A € A,,
y € I'y, v is an end point of e, and ¢, (1) = y.

Example 6.2. Consider the closed oriented surface L of genus g. Divide X,
by circles into once punctured tori and pairs of pants. Embed a tree in X, as
in Figure 10 top. Then the fundamental groups I'; of subsurfaces X; and the
fundamental groups A; of circles C; are considered to be subgroups of the
fundamental group Il of the total surface, the base points being taken on the
tree. This yields a tree of groups as in Figure 10 bottom whose fundamental group
is isomorphic to ITg.

Ficure 10

Throughout this section we work under the following assumption.
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Assumption 6.3. (a) The group G = G(7) is the fundamental group of a tree
= (V,&) of groups.

(b) The vertex group I', admits a finite symmetric generating set S,, and the
edge group A, is infinite cyclic.

(c) If e and ¢’ are distinct edges starting at a vertex v, then Aeﬂkvl\eu\v_l = {e}
for any A, € T.

(d) There are two homomorphisms ¢’ € Rg, i = 1,2. We denote ¢! the
restriction of ¢’ to the vertex group Ty .

(e) For each vertex group T, there is a pure BP P} for ¢! with respect to
the generating set S, .

(f) If v is an end point of e, then there is an entrance, denoted E},, of A,
to P! with respect to ¢! . Put Qi = P>,

Then (Q%.E},) is a (T'y, A,)-pair for ¢! by Lemma 4.18.

(g) If v and v’ are two end points of e, then (Q!, ve) and (Qv,, e) form
a combinable pair. Denote the finite set E., = E. ,NE!, .

The set P. = U,cp Pi. is called the basic configuration
(abbreviated BC) of G = G(T) for ¢'. A COP bijection
£: P! — P? is called a BC equivalence if £(P},) = PZ, and
£|p1, is a BP equivalence from P, to P, for each v € V.

(h) There is a BC equivalence & : P! — P2.
For our purpose, the following example of BC is the most important.

Example 6.4. Consider a Fuchsian representation of the surface group Ils5 in
Figure 10. Choose a lift T of the tree T embedded in the surface to the universal
covering space D. See Figure 11. The lift of the curve C; to D which intersects
T is denoted by C . The edge group A; is the stabilizer of C . As for the
vertex group I, its convex core (of the limit set) is contained in the region X
depicted in Figure 11.

For a vertex of valency 1, the vertex group is generated by two hyperbolic
motions a and b such that 7([@, E]) = 1. So it has a BP as in Figure 6. For
a vertex of valency 3, generators a,b of the vertex group satisfies c(a,b) =1,
and it has a BP as in Figure 7. The BP P; (resp. P3) corresponding to the
vertex group I'y (resp. I's) is depicted in Figure 12. The BC of II5 consists of
50 points and satisfies all the conditions of Definition 6.3.

The following lemma is straightforward.
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G
G
@) |
P;
Ps
Py
Ficure 11

Lemma 6.5. If P! is a BC for ¢' € Rg, where G = G(T) is the fundamental
group of a tree T, and if ' is a k-fold lift of ¢! for some k > 2, then
m (PY) is a BC for y'. O

Before stating the main theorem of this section, we prepare a lemma. By
Theorem 4.7, the BP equivalence &|p;  : P}, — P2, extends to a (¢;.¢2)-

equivariant COP bijection &, : 01, — 07, for each vertex v. Notice that
L =@ (TP,
v, % 2 v v, *

Lemma 6.6. There is a COP bijection £ : |, 01, — U, 02, such that
S|Q11)* =&y.
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FiGure 12

Proof. If v,v' are distinct vertices, then P} N Pl, C PL. In fact, if v,v’ are
adjacent, this follows from (g). If not, sz/ is contained in Int El’;,e, where e is
the edge that starts at v and tends toward the direction of v’, which implies

P.NPl, =@. Since QL , C P}, the lemma follows from the fact that both
£: Pl — P2 and &, : 0. . — 03, are COP bijections. O

Theorem 6.7. The BC-equivalence & : P} — P? extends to a (¢!, ¢?)-equivariant
COP bijection & : 9'(G)P} — ¢*(G)P?.

Proof. The proof is by an induction on the number n of vertices of 7. 1If n =2,
this is just Theorem 5.17. Given 7, delete a vertex v of valency 1 and the edge e
which starts at v. Denote the resultant subtree by 7’ and the other end point of
e by v’. Then the group G = G(7) can be written as an amalgamated product:

G = G(T') *a, Ty.

Let
0" =¢'(G)( U 0)-
veT’
Then (Q", E}, ,) is shown to be a (G(T"), A)-pair by virtue of Assumption 6.3
(c) and successive use of Lemma 5.14. Clearly the pair (Q”, E}, ) is combinable
with the (T, A)-pair (Q!, Ef,’e). On the other hand, by the induction hypothesis,
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£ has an G(T”)-equivariant extension £ : Q! — Q’2. Moreover &' and £, satisfy
point (e) of Assumption 5.15. The proof is complete by Theorem 5.17. O

7. Robust basic configurations

Again let G = G(7) be the fundamental group of a tree 7 of groups. Assume
that ¢! € R satisfies Assumption 6.3 for v = 1, and let P! be the associated
BC. Recall that for each vertex v of 7 and [ > 2, (P})! is the BP for T,
derived from the BP P!. (Definition 4.3). Denote (P')L =J,(P})L.

For each point x € P}, the stabilizer Stab,i (x) is infinite cyclic by
Lemma 4.15, Lemma 5.9 and a repeated use of Lemma 5.6. Denote by xl+
(resp. x; ) the point in (PY)! right (resp. left) adjacent to x.

Definition 7.1. The BC P} is called robust if for any point x € P! and any
big /, one of the generators of gol(Stab,pl (x)) maps the interval [xl_,x;' | into a
proper subinterval of it.

Lemma 7.2. For a homomorphism ¢! € Rn, with eu(pl) =2g -2 (g > 2),
the BC given by Examples 6.2 and 6.4 is robust.

Proof. If we choose a Fuchsian representation as a model of ¢!, then any point
of the BC is a fixed point of a hyperbolic motion. Any representation ¢! with
eu(p') = 2g — 2 is semiconjugate to the Fuchsian representation by [Mat2],
showing the lemma. O

Finally we have the following theorem.

Theorem 7.3. Assume that ¢' admits a robust BC Pl. Then there is a
neighbourhood U of ¢' in Rg such that if ¢> € U, ¢ admits a BC P2
and a BC equivalence & : P} — P2.

Proof. Choose [ large enough so that the condition of Definition 7.1 is met by
all the points x in P} and that the intervals [xl_,x;r]’s are disjoint. Let g, be
the generator of Stab,i(x) such that

o (g0 x] C Int[x), ;1.
Choose a neighbourhood U of ¢! so that for any ¢? €U/ and x € P}, we have

0*(g0)lxy . x 1 € Int [x}, x;F.
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Let £(x) be the leftmost point in Fix(p?(gx)) N [x; xl+ ]. Then the set
P?={¢(x) | x e P}

forms a BC for ¢2?, and the map £ is a BC equivalence. In fact, it is easy to
see that for any vertex v,

Pl ={E() | x € P}
is a BP for ¢?|r,, because we have assumed that P, is a pure BP. O

Joining this theorem with Lemma 6.5 and Theorem 6.7, we get the following
corollary, which conclude the proof of Theorem 1.17.

Corollary 7.4. If ¢! € R admits a robust BC, and ¥' € R¢g is a k-fold lift
of o' (k> 1), then ! is locally stable.

Proof. Let P, be a robust BC for ¢'. Then clearly m;"'(P)}) is a robust BC for
y!. By Theorem 7.3, there is a BC P 2 for any y2 sufficiently near to ¥! and
a BC equivalence £ : 7;'(P}) — P 2. By Theorem 6.7, the BC equivalence £
extends to a (y1, ¥2)-equivariant COP map £ : VUG (P)) — ¥2(G)( P2).

~

The map & extends to a (¢!, ¥?)-equivariant semiconjugacy. O

Appendix A: The proof of Proposition 1.4

We shall show that the semiconjugacy as defined in Definition 1.3 is an
equivalence relation in Rg \ Ry . All that needs proof is the reflexiveness. Let
¢'.9? € Rg \ R§. Assume there is a degree one monotone map / : S' — S!
such that

(7.1 (pz(g) oh=h ogol(g), Vg eG.

Since ¢’ € Rg \ RE, h is not a constant map. Let 7 iR — R be a lift of h
as in Definition 1.2. Notice that such a lift /& is unique up to the composition
with 7", since the map % is nonconstant. (This is why we divide the definition
of semiconjugacy into two parts.) Define h°:R—>R by

R°(y) =inf{x € R | h(x) = y}.

Clearly 7 ° commutes with T, and there is a degree one monotone map
h® : S' — S! such that h®om = o h °. The well-definedness of h° is guaranteed
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by the uniqueness of 7 . Moreover if h, h' and h' oh are nonconstant monotone
degree one maps, then we have

(h/ oh)o — h<> o (h/)o.
Thus (7.1) implies that
h®o@?*(g™") = @' (g7 o h°,

completing the proof.

Appendix B: The proof of Theorem 2.2

We assume that ¢ € Rg is type 1 and minimal, and will show that ¢ is
proximal, the other implication being obvious. Call a closed interval I C S!
@-contractible if infgeg|@(g)I| = 0. First of all we have the following easy fact.

(1) For any g € G and any closed interval I, I is ¢-contractible if
and only if ¢(g)l is ¢-contractible. O

Next let us show:

(2) There is 6 > 0 such that if |/| < §, then [ is ¢-contractible.

Proof. Since ¢ is not type 0, there is a nontrivial homeomorphism ¢(g) which
admits a fixed point. This shows that there is a ¢-contractible interval J. Since
¢ is minimal, the family

J ={p(g)ntJ | g € G}
must cover S'. Now the Lebesgue number § of the open covering J works. []
Define a map U : R — R by
U (%)= sup{y € (X,00) | n([X,Y]) is ¢-contractible}.
We have the following easy properties.
B) T+8<U(X)<*x +1. O
@) U is monotone nondecreasing. ]

Also (1) implies the following.
(5) For any g € G and a lift ¢(g) of ¢(g) to R,

9(g) o U = U o ¢(g).
Especially, UoT=ToU. 0

(6) The map U is injective.
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Proof. Assume on the contrary that there is 7 € R such that CI(U ~1(7)) =
[X 0, X'1] is an interval. By the minimality of ¢, there is a lift (p(\g) such that
¢(g) (¥1) € (Xo. ¥1). Then there is ¥, € (¥o. ¥1) such that ¢(g) (¥») €
(X0.X1) and ¢(g) "'(X2) € (X'1.00). Now

(@) (7) = ¢() o U(¥2)= U o p() (¥2)= 7.
This shows
U oo (F2)= 0@ o U(F2)=0(® '(7)=7.
This contradicts the fact that ¢(g) ~'(¥2) € [Xo. X1] = CI(T ~1(7)). O
@) U is bijective.
Proof. Define V :R - R by
V(F) =inf{¥ € (~o0, X) | n([¥,X]) is g-contractible}.

For any point ¥ € R, and any point X; in (X, U (X)), (6) implies that
U (%) < U (%1). This shows that the interval 7([X 1, U (X)]) is ¢-contractible.
Since ¥ ; is an arbitrary point of (¥, U (%)), this shows that V (U (%)) < X .
Again by (6), we have in fact

V(U (X)) =%.
The same argument shows that UoV =1d. O

By (4) and (7), U isa homeomorphism. By (5), there is U € H such that
wolU =Uom. Also by (5), U commutes with any element of ¢(G). Finally
let us show:

(8) There is k € N such that U¥ = Id.

Proof. If Fix(U¥) is nonempty for some k € N, then Fix(U*) must be invariant
by ¢(G), since U¥ commutes with any element of ¢(G). That is, Fix(U¥) = S,
showing (8). If not, the rotation number of U must be irrational, and there is a
unique minimal set X of U. Since X is unique and since U commutes with
any element of ¢(G), X must be left invariant by any element of ¢(G). Since
@ is minimal, this implies X = S!. That is, U is topologically conjugate to an
irrational rotation. But then ¢(G) must be abelian, and ¢ must be of type 0. A
contradiction. O

To conclude, since ¢ is assumed to be of type 1, we have k£ = 1. But by (3),
this implies U = T. That is, ¢ is proximal.
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