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Kodaira–Saito vanishing and applications
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Abstract. �e �rst part of the paper contains a detailed proof of M. Saito’s generalization of
the Kodaira vanishing theorem, following the original argument and with ample background.
�e second part contains some recent applications, and a Kawamata–Viehweg-type statement
in the setting of mixed Hodge modules.
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1. Introduction

�is article was originally the outcome of a lecture delivered at the Clay
workshop on mixed Hodge modules, held at Oxford University in August 2013.
�e main goal was to explain in detail the proof of Morihiko Saito’s extension of
the Kodaira–Nakano vanishing theorem to mixed Hodge modules, discuss various
special cases, and give a guide to recent applications. �is is done in the �rst
and main part of the paper, Sections 2–9, which also includes ample background.
Since then I have also included some new applications. One is a proof of weak
positivity for the lowest graded piece of a Hodge module obtained jointly with
C. Schnell (which also appears in [Sch3]). Another is a Hodge module version
of the Kawamata–Viehweg vanishing theorem, likely not in its �nal form.1

M. Saito’s vanishing theorem is stated and proved as �eorem 28 below. It was
obtained in [Sai1, §2.g]; the proof provided here is a detailed account of Saito’s
original argument, which in turn is a generalization of Ramanujam’s topological
approach to vanishing. C. Schnell [Sch4] has recently found a di�erent proof of
the theorem, this time extending the Esnault–Viehweg approach to vanishing via
the degeneration of the Hodge-to-de Rham spectral sequence on cyclic covers.

1Added during revision: in the meanwhile, in the case of Cartier divisors a stronger Kawamata–
Viehweg-type vanishing theorem was indeed proved by Suh [Suh] and Wu [Wu].
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In order to make the underlying approach of Saito clear, I will �rst recall the
proof of the Kodaira–Nakano vanishing theorem based on the weak Lefschetz
theorem, the Hodge decomposition, and cyclic covering constructions. In the proof
of �eorem 28, the corresponding roles will be played by the Artin-Grothendieck
vanishing theorem for constructible sheaves and by M. Saito’s generalization of
the standard results of Hodge theory to the setting of mixed Hodge modules.
�ere are however signi�cant new di�culties that are resolved with the use of the
interaction between the Hodge �ltration and the Kashiwara-Malgrange V -�ltration
established in [Sai1], recalled in the preliminaries; the background discussion will
survey this and other facts about �ltered D -modules in Hodge theory, with
references for all the statements needed in the paper.

Many of the standard vanishing theorems involving ample line bundles are
special cases of Saito vanishing. �is will be reviewed in Section 9, where I will
also mention its use to generic vanishing theory. When passing to big and nef line
Q -divisors however, the situation is more complicated. In Section 11 I prove a �rst
version of Kawamata–Viehweg for mixed Hodge modules – roughly speaking,
it assumes that the Hodge module is a variation of mixed Hodge structure over
the augmented base locus of a nef and big line bundle. Another application,
provided in Section 10, is a proof together with Schnell of an extension of a weak
positivity theorem of Viehweg to the lowest graded piece of the Hodge �ltration
on a Hodge D -module. Arguing along the lines of Kollár’s approach to weak
positivity provides a very quick argument, once Kodaira vanishing and adjunction
have been extended to setting of mixed Hodge modules.

As a good part of the paper is expository, my main goal is to make these
very useful statements and techniques more accessible to algebraic geometers; the
viewpoint is that of cohomological methods in birational geometry. �e reader
interested in a more general overview of the theory of mixed Hodge modules is
encouraged to consult the recent [Sch2], besides of course the original [Sai1] and
[Sai2].

2. �e topological/Hodge theoretic approach to Kodaira vanishing

In this section I will recall the approach to the Kodaira vanishing theorem
based on topological and Hodge theoretic methods, which also gives the more
general Nakano vanishing. It was �rst observed by Ramanujam that one can use
such methods, Kodaira’s original proof being of a di�erential geometric nature.
I will follow the treatment in [Laz, §4.2]; this is intended to be an introduction
to the strategy used by Saito in order to prove the more general result for Hodge
modules.
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�eorem 1 (Kodaira–Nakano Vanishing �eorem). Let X be a smooth complex
projective variety, and L an ample line bundle on X . �en

H q.X;�
p
X ˝ L/ D 0 for p C q > n;

or equivalently
H q.X;�

p
X ˝ L

�1/ D 0 for p C q < n:

Before proving the theorem, let’s review some useful technical tools. First,
recall the following well-known cyclic covering construction, needed in order to
“take m -th roots" of divisors D 2 jmLj , with L some line bundle. For a proof
of this and other covering constructions see [Laz, §4.1.B].

Proposition 2. Let X be a variety over an algebraically closed �eld k , and let
L be a line bundle on X . Let 0 ¤ s 2 H 0.X;L˝m/ for some m � 1 , with
D D Z.s/ 2 jmLj . �en there exists a �nite �at morphism f W Y ! X , where Y
is a scheme over k such that if L0 D f �L , there is a section

s0 2 H 0.Y; L0/ satisfying .s0/m D f �s:

Moreover:

� if X and D are smooth, then so are Y and D0 D Z.s0/ .

� the divisor D0 maps isomorphically onto D .

� there is a canonical isomorphism f�OY ' OX ˚ L
�1 ˚ � � � ˚ L�.m�1/ .

Furthermore, recall that if X is a smooth variety, and D is a smooth e�ective
divisor on X , then the sheaf of 1 -forms on X with log-poles along D is

�1X .log D/ D �1X <
df

f
>; f local equation for D:

Concretely, if z1; : : : ; zn are local coordinates on X , chosen such that D D .zn D
0/ , then �1X .log D/ is locally generated by dz1; : : : ; dzn�1;

dzn

zn
. �is is a free

system of generators, so �1X .log D/ is locally free of rank n . For any integer
p , we de�ne

�
p
X .log D/ WD

p^�
�1X .log D/

�
:

Using local calculations and the residue map, it is standard to verify the following
statements (see [EV, §2] or [Laz, Lemma 4.2.4]):

Lemma 3. �ere are short exact sequences:

(i) 0 �! �
p
X �! �

p
X .log D/ �! �

p�1
D �! 0 .

(ii) 0 �! �
p
X .log D/.�D/ �! �

p
X �! �

p
D �! 0 .
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Lemma 4. Let f W Y ! X be the m -fold cyclic cover branched along D , as
in Proposition 2. Let D0 be the divisor in Y such that f �D D mD0 , mapping
isomorphically onto D . �en

f ��
p
X .log D/ ' �

p
Y .log D

0/:

Sketch of proof of �eorem 1. By Serre duality it su�ces to show the second part
of the statement. For m� 0 , let D 2 jmLj be a smooth divisor. One can assume
by induction on n D dim X that we already know Kodaira–Nakano vanishing on
D , so that

H q
�
D;�

p�1
D ˝ L�1

jD

�
D 0 for p C q < n:

Using this and passing to cohomology in the sequence in Lemma 3(i), it su�ces
then to prove that

H q
�
X;�

p
X .log D/˝ L

�1
�
D 0 for p C q < n:

Let now f W Y ! X be the m -fold cyclic cover branched along D as in
Proposition 2, with f �D D mD0 and L0 D OY .D

0/ . Proposition 2 says that Y
and D0 can be chosen to be smooth; also, D0 is obviously ample. Since f is a
�nite cover, using Lemma 4 what we want is equivalent to showing that

H q
�
Y;�

p
Y .log D

0/˝OY .�D
0/
�
D 0 for p C q < n:

One can now appeal to the exact sequence in Lemma 3(ii). Using this, our desired
statement is equivalent to the fact that the restriction maps

rp;q W H
q.Y;�

p
Y / �! H q.D0; �

p
D0/

are isomorphisms for p C q � n � 2 , and injective for p C q D n � 1 . But this
follows immediately from the weak Lefschetz theorem, as the restriction maps

H i .Y;C/ �! H i .D0;C/

are morphisms of Hodge structures.

Saito’s generalization of �eorem 1 is stated and proved in Section 8, while
important special cases are explained in Section 9. Before being able to do this
we need a lengthy review of background material. �e reader may already visit
those sections however, for a �rst encounter with the main topic.

3. Filtered D -modules and de Rham complexes

In this section I will recall some �ltered D -module terminology and facts used
in the paper. Excellent introductions to the subject are for instance the book by
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Hotta–Takeuchi–Tanisaki [HTT] and the lecture notes of Maisonobe–Sabbah [MS].
In what follows the standard language is that of right D -modules; as emphasized
in [Sai1], this is often more appropriate in the theory of mixed Hodge modules, for
instance due to the fact that it is the natural setting for considering direct image
or duality functors. Occasionally however left D -modules will be necessary, in
which case I will state explicitly that we are considering that setting and are
performing the left-right transformation described below.

De�nitions. Let X be a smooth complex variety. A �ltered right D -module
on X is a DX -module with an increasing �ltration F D F�M by coherent
OX -modules, bounded from below and satisfying

FlM � FkDX � FkClM for all k; l 2 Z:

In addition, the �ltration is good if the inclusions above are equalities for k � 0 .
�is condition is equivalent to the fact that the total associated graded object

GrF� M D

M
k

GrFk M D

M
k

FkM=Fk�1M

is �nitely generated over GrF� DX ' Sym TX , i.e. induces a coherent sheaf on
the cotangent bundle T �X . Assuming that such a good �ltration exists (in which
case M is also called coherent), the closed subset

Char.M/ WD Supp GrF� M � T �X

is called the characteristic variety of X . A well-known result of Bernstein says
that dimCh.M/ � dimX , and M is called holonomic if this is actually an
equality. �e D -modules we consider later will only be of this kind.

Left-right rule. �e canonical bundle !X is naturally endowed with a right
DX -module structure. Concretely, if z1; : : : ; zn are local coordinates on X , for
any f 2 OX and any P 2 DX , the action is

.f � dz1 ^ � � � ^ dzn/ � P D
tP.f / � dz1 ^ � � � ^ dzn:

Here, if P D
P
˛ g˛@

˛ , then tP D
P
˛.�@/

˛g˛ is its formal adjoint.
Using this structure, as one often needs to switch between the two, let’s recall

the one-to-one correspondence between left and right DX -modules given by

N 7!M D N ˝ OX
!X and M 7! N D HomOX

.!X ;M/:

In terms of �ltrations, the left-right rule is

FpN D Fp�nM˝OX
!�1X :



54 M. Popa

de Rham complex. While we will consider right DX -modules when talking
about Hodge modules, one naturally associates the de Rham complex to the
corresponding left DX -module N :

DRX .N / D
�
N ! �1X ˝N ! � � � ! �nX ˝N

�
;

which is a C -linear complex placed in degrees 0; : : : ; n , with maps induced by
the corresponding integrable connection r W N ! N ˝�1X . It turns out that the
natural de Rham complex to consider for the right D -module M (sometimes
called a Spencer complex; see [MS, 1.4.2]) satis�es

DRX .M/ ' DRX .N /Œn�:

By de�nition the �ltration F�M is compatible with the DX -module structure on
M and therefore, using the left-right rule above, this induces a �ltration on the
de Rham complex of M by the formula

Fk DRX .M/ D
h n̂

TX ˝ Fk�nM!

n�1̂

TX ˝ FkC1�nM! � � � ! FkM
i
Œn�:

�e associated graded complexes for the �ltration above are

GrFk DRX .M/ D
h n̂

TX˝GrFk�nM!

n�1̂

TX˝GrFkC1�nM! � � � ! GrFk M
i
Œn�;

which are now complexes of coherent OX -modules in degrees �n; : : : ; 0 , and
provide objects in Db.X/ , the bounded derived category of coherent sheaves on
X .

We will be particularly interested in the lowest non-zero graded piece of a
�ltered D -module. For one such right DX -module .M; F / de�ne

(5) p.M/ WD min ¹p j FpM ¤ 0º and S.M/ WD Fp.M/M:

For the associated left DX -module we then have

p.N / D p.M/C n and S.N / D S.M/˝ !�1X :

Pushforward. Let f W X ! Y be a morphism of smooth complex varieties. We
consider the associated transfer module

DX!Y WD OX f̋ �1OY
f �1DY :

It has the structure of a .DX ; f
�1DY / -bimodule, and it has a �ltration given by

f �FkDY . For a right DX -module M , one can de�ne a naive pushforward as

f�M WD f�
�
M˝DX

DX!Y

�
;
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where on the right hand side f� is the usual sheaf-theoretic direct image. However,
the appropriate pushforward is in fact at the level of derived categories, namely

fC W D.DX / �! D.DY /; M�
7! Rf�

�
M�

L
˝DX

DX!Y

�
:

�is is due to the left exactness of f� versus the right exactness of ˝ . See
[HTT, §1.5] for more details; in loc. cit. this last functor is denoted by

R
f
.

Given a proper morphism of smooth varieties f W X ! Y , Saito has also
constructed in [Sai1, §2.3] a �ltered direct image functor

fC W Db
�
FM.DX /

�
! Db

�
FM.DY /

�
:

Here the two categories are the bounded derived categories of �ltered D -modules
on X and Y respectively. Without �ltration, it is precisely the functor above. �e
�ltration requires more work; I will include a few details below for the special
D -modules that we consider in this paper.

Strictness. A special property that is crucial in the theory of �ltered D -modules
underlying Hodge modules is the strictness of the �ltration. Let

f W .M; F /! .N ; F /

be a morphism of �ltered DX -modules, i.e. such that f .FkM/ � FkN for all
k . �en f is called strict if

f .FkM/ D FkN \ f .M/ for all k:

Similarly, a complex of �ltered DX -modules .M�; F�M�/ is called strict if all of
its di�erentials are strict. It can be easily checked that an equivalent interpretation
is the following: the complex is strict if and only if, for every i; k 2 Z , we have
that the induced morphism

Hi .FkM�/ �! HiM�

is injective. It is only in this case that the cohomologies of M� can also be seen
as �ltered DX -modules.

Via a standard argument, the notion of strictness makes sense more generally
for objects in the derived category Db

�
FM.DX /

�
of �ltered DX -modules. In

the next sections, a crucial property of the �ltered D -modules we consider is
the following. If f W X ! Y is a proper morphism of smooth varieties, and
.M; F / is one such �ltered right DX -module, then fC.M; F / is strict as an
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object in Db
�
FM.DY /

�
; here fC is the �ltered direct image functor mentioned

above. Given the previous discussion, this means that

H i
�
FkfC.M; F /

�
! H ifC.M; F /

is injective for all integers i and k . Finally, Saito’s de�nition of the �ltration on
the direct image implies that this is equivalent to the injectivity of the mapping

Rif�
�
Fk.M

L
˝DX

DX!Y /
�
! Rif�.M

L
˝DX

DX!Y /:

Up to a choice of representatives, the image is the �ltration FkH
ifC.M; F / .

�us in the strict case, one has a reasonably good grasp of the �ltration on
direct images, and the cohomologies of direct images are themselves �ltered D -
modules. Even more is true in case .M; F / underlies a Hodge module, as we
will see in the next section.

4. Hodge modules and variations of Hodge structure

Starting with this section, and up to §7, I will recall the objects that are the
main focus of the paper. In the next section I will give several important examples.
�e main two references for the theory of Hodge modules are Morihiko Saito’s
papers [Sai1] in the pure case, and [Sai2] in the mixed case. A quite gentle but
comprehensive overview of the theory was recently provided by Schnell [Sch2].
Here I will give a brief review of the information needed for understanding the
statement and proof of Saito’s vanishing theorem; the reader is encouraged to
consult the references above for further information.

Let us �rst recall the notion of a variation of Hodge structure, which is the
“smooth" version of a Hodge module. If X is a smooth complex variety, a
variation of Q -Hodge structure of weight ` on X is the data

V D .V; F �;VQ/

where:
� VQ is a Q -local system on X .
� V D VQ ˝Q OX is a vector bundle with �at connection r , endowed with
a decreasing �ltration with subbundles F p D F pV satisfying the following
two properties:
� for all x 2 X , the data Vx D .Vx ; F �x ;VQ;x/ is a Hodge structure of weight
` .
� Gri�ths transversality: for each p , r induces a morphism

r W F p �! F p�1 ˝�1X :
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Considering the Tate twist Q.�`/ D .2�i/�`Q , a polarization on V is a
morphism

Q W VQ ˝VQ �! Q.�`/

inducing a polarization of the Hodge structure Vx for each x 2 X . We say that
V is polarizable if one such polarization exists.

In order to generalize this notion, consider now X to be a smooth complex
algebraic variety of dimension n , and let Z be an irreducible closed subset. Let
V D .V; F �;VQ/ be a polarizable variation of Q -Hodge structure of weight `
on an open set U in the smooth locus of Z . Following [Sai1], one can change
terminology and call it a smooth pure Hodge module of weight dimZC ` on U,
whose main constituents are:
(i) �e right D -module M D V ˝ !U with �ltration FpM D F �p�nV ˝ !U .
(ii) �e Q -perverse sheaf P D VQŒn� .

According to Saito’s theory, this extends uniquely to a pure polarizable Hodge
module M of weight dimZC` on X , whose support is Z . �is has an underlying
perverse sheaf, which is the intersection complex ICZ.VQ/ D

pjŠ�VQ associated
to the given local system. For this reason one sometimes uses the notation
M WD jŠ�V . It also has an underlying D -module, namely the minimal extension
of M , corresponding to ICZ.VC/ via the Riemann-Hilbert correspondence.2 Its
�ltration is (nontrivially) determined by the Hodge �ltration on U , as we will
see in §7.

More generally, in [Sai1] Saito introduced an abelian category of HM.X; `/ of
pure polarizable Hodge modules on X of weight ` . �e main two constituents
of one such Hodge module M are still:
(i) A �ltered (regular) holonomic DX -module .M; F / , where F D F�M is a

good �ltration by OX -coherent subsheaves, so that GrF� M is coherent over
GrF� DX .

(ii) A Q -perverse sheaf P on X whose complexi�cation corresponds to M
via the Riemann-Hilbert correspondence, so that there is an isomorphism

˛ W DRX .M/
'
�! P ˝Q C:

�ese are subject to a list of conditions, which are de�ned by induction on
the dimension of the support of M . If X is a point, a pure Hodge module is
simply a polarizable Hodge structure of weight ` . In general, it is required that
the nearby and vanishing cycles associated to M with respect to any locally
de�ned holomorphic function are again Hodge modules, now on a variety of

2A direct construction can be given, though this requires quite a bit of work and will not be used
here. �e reader interested in details can consult [HTT, §3.4].
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smaller dimension. �is will not play a key role here, but a nice discussion can
be found in [Sch2, §12].

�e de�nition of a polarization on M is quite involved, but in any case
involves an isomorphism DP ' P.`/ , where DP is the Verdier dual of the
perverse sheaf P (together of course with further properties compatible with the
inductive de�nition of Hodge modules suggested above); more details in §6.

One of the fundamental results of Saito [Sai1], [Sai2] clari�es the picture
considerably; it says that we mainly need to think of the examples described
above as extensions of variations of Hodge structure. Indeed, the existence of
polarizations makes the category HM.X; `/ semi-simple: each object admits a
decomposition by support, and simple objects with support equal to an irreducible
subvariety Z � X (called pure Hodge modules with strict support Z , i.e. with
no nontrivial subobjects or quotient objects whose support is Z ) are obtained
from polarizable variations of Hodge structure on Zariski-open subsets of Z .
Formally,

(6) HM.X; `/ D
M
Z�X

HMZ.X; `/;

with HMZ.X; `/ the subcategory of pure Hodge modules of weight ` with strict
support Z . In other words:

�eorem 7 (Simple objects, [Sai2, �eorem 3.21]). Let X be a smooth complex
variety, and Z an irreducible closed subvariety of X . �en:

(1) Every polarizable variation of Hodge structure of weight `� dimZ de�ned
on a nonempty open set of Z extends uniquely to a pure polarizable Hodge
module of weight ` with strict support Z .

(2) Conversely, every pure polarizable Hodge module of weight k with strict
support Z is obtained in this way.

Furthermore, M. Saito introduced in [Sai2] the abelian category MHM.X/ of
(graded-polarizable) mixed Hodge modules on X . In addition to data as in (i)
and (ii) above, in this case a third main constituent is:

(iii) A �nite increasing weight �ltration W�M of M by objects of the same kind,
compatible with ˛ , such that the graded quotients GrW` M D W`M=W`�1M

are pure Hodge modules in HM.X; `/ .

Again, if X is a point a mixed Hodge module is a graded-polarizable
mixed Hodge structure, while in general these components are subject to several
conditions de�ned by induction on the dimension of the support of M , involving
the graded quotients of the nearby and vanishing cycles of M . For a further
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discussion of the de�nition see also [Sch2, §20]. I do not insist on giving more
background on mixed Hodge structures and modules, as they will be used in
what follows only by reduction to pure Hodge modules. �ere is however one
important class of examples worth pointing out.

Let D be a divisor in X with complement U , and assume that we are
given a variation of Hodge structure V on U . Besides the pure Hodge module
extension whose underlying perverse sheaf is the intersection complex ICZ.VQ/ ,
it is also natural to consider a mixed Hodge module extension, denoted j �j�1M
in [Sai2], whose underlying perverse sheaf is simply the direct image j�VQ .
More precisely,

j�j
�1M D

�
.V.�D/; F /I j�VQ

�
;

where V.�D/ is the localization of the �at bundle V underlying V along D ,
endowed with a meromorphic connection (see, e.g., [HTT, §5.2]). Further details
are given in Example 14.

Returning to the general theory, one of the most important results is M. Saito’s
theorem on the behavior of direct images of pure polarizable Hodge modules via
projective morphisms. (I am only stating part of it here.)

�eorem 8 (Stability �eorem, [Sai1], �éorème 5.3.1). Let f W X ! Y be
a projective morphism of smooth complex varieties, and h D c1.H/ for a line
bundle H on X which is ample relative to f . If M 2 HM.X; `/ is a polarizable
Hodge module, then

(i) �e �ltered direct image fC.M; F / is strict, and H ifCM underlies a
polarizable Hodge module Mi 2 HM.Y; `C i/ .

(ii) For every i one has an isomorphism of pure Hodge modules

hi WM�i �!Mi .i/:

As alluded to in the paragraph on strictness in §3, the statement in (i) is
a key property of D -modules underlying Hodge modules that is not shared by
arbitrary �ltered D -modules; for more on this see, e.g., [Sch2, §26–28]. One
important consequence is Saito’s formula [Sai1, 2.3.7] giving the commutation of
the graded quotients of the de Rham complex with direct images:

Rif�GrFk DRX .M/ ' GrFk DRY .H ifCM/:

A fundamental consequence of the theorem above deduced in [Sai1] is the
analogue of the decomposition theorem for pure polarizable Hodge modules,
obtained formally from the above as an application of Deligne’s criterion for the
degeneration of the Leray spectral sequence in terms of the Lefschetz operator.
�is result extends the well-known BBD-decomposition theorem; here I state the
�ltered D -modules version, which is crucial for the applications presented later.
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�eorem 9 (Saito Decomposition �eorem). Let f W X ! Y be a projective
morphism of smooth complex varieties, and let M 2 HM.X; `/ , with underlying
�ltered D -module .M; F / . �en

fC.M; F / '
M
i2Z

H ifC.M; F /Œ�i �

in Db
�
FM.DY /

�
.

Remark 10. As we are working in the algebraic category and all mixed Hodge
modules will be polarizable (cf. [Sai2, §4.2]), I will implicitly assume that all
objects are polarizable in what follows and ignore mentioning this condition.

5. Examples

�is section reviews the main examples that will be of interest in view of
Saito’s vanishing theorem. I will use freely the notation of the previous sections.

Example 11 (�e canonical bundle). If X is smooth of dimension n and
V D QX is the constant variation of Hodge structure, we have that P D QX Œn� ,
M D !X with the natural right DX -module structure, and Fk!X D !X for
k � �n , while Fk!X D 0 for k < �n . �e associated Hodge module is usually
denoted QH

X Œn� , and called the trivial Hodge module on X . �e de Rham complex
of M is

DRX .!X / D DRX .OX /Œn� D
h
OX ! �1X ! � � � ! �nX

i
Œn�:

Note that
GrF�k DR.!X ; F / D �

k
X Œn � k� for all k:

Finally, in this example we have p.M/ D �n and S.M/ D !X .

Example 12 (Direct images). Let f W X ! Y be a projective morphism with
X smooth of dimension n and Y of dimension m , and let V be a polarizable
variation of Q -Hodge structure of weight k on an open dense subset U � X ,
inducing a pure Hodge module M of weight nCk on X as in the previous section.
If .M; F / is the underlying �ltered DX -module, �eorem 9 gives a decomposition

fC.M; F / '
M
i

.Mi ; F /Œ�i �

in the derived category of �ltered DY -modules. According to �eorem 8, each
.Mi ; F / underlies a pure Hodge module Mi D H

if�M on Y , of weight nCkCi .
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Furthermore, fC.M; F / satis�es the strictness property, a particular case of which
is the isomorphism

(13) Rf�S.M/ ' Fp.M/.fCM/ '
M
i

Fp.M/Mi Œ�i �

in the bounded derived category of coherent sheaves on Y .
For instance, in the case when V D QX is the constant variation of Hodge

structure, by Example 11 p.M/ D �n and S.M/ D !X . �is implies for all i that

p.Mi / D �n and F�nMi D R
if�!X :

Note that for the corresponding left D -modules Ni this means

p.Ni / D m � n and Fm�nNi D Rif�!X=Y :

Finally, formula (13) specializes to

Rf�!X '
M
i

Rif�!X Œ�i �;

which is the well-known Kollár decomposition theorem [Kol2]. Moreover, we
will see in Corollary 37 and �eorem 55 below that Rif�S.M/ satisfy other
important properties known from [Kol1] in the case of canonical bundles, like
vanishing and torsion-freeness.

Example 14 (Localization). Let M be a right DX -module and D an e�ective
divisor on a smooth variety X , given locally by an equation f . One can de�ne
a new DX -module M.�D/ by localizing M at f ; in other words, globally we
have

M.�D/ D j�j
�1M;

where j W U ,! X is the inclusion of the complement U D X XD .

A standard characterization of those D -modules which do not change under
localization will be useful later.

Proposition 15. Let X be a smooth complex variety, D an e�ective divisor in
X , and denote j W U ,! X the inclusion of the complement U D XXD . �en the
restriction functor j � induces an equivalence between the following categories:

(i) Regular holonomic DX -modules M such that the natural morphism M!

M.�D/ is an isomorphism.
(ii) Regular holonomic DU -modules.
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Proof. A quick argument is to apply the Riemann-Hilbert correspondence for
regular holonomic D -modules, see, e.g., [HTT, �eorem 7.2.5], as the condition
de�ning the category in (i) says that for the perverse sheaf K associated to M
one has K ' j�j�1K , i.e. K can be recovered from its restriction to U .

Assume now that M underlies a mixed Hodge module M . By the formula
above, M.�D/ underlies the corresponding mixed Hodge module j�j�1M , and
so continues to carry a natural Hodge �ltration F . �is is in general very
complicated to compute; the case M D !X , where !X .�D/ is the sheaf of
meromorphic n -forms on X that are holomorphic on U and the corresponding
Hodge module is j�QH

U Œn� , is already very relevant. I will say a few words below,
and more later.

We always have F`!X .�D/ � FkDX � FkC`!X .�D/ , since the �ltration is
compatible with the order of di�erential operators, while by [Sai3]*Proposition 0.9
we have

(16) Fk!X .�D/ � Pk!X .�D/ D

´
!X
�
.nC k C 1/D

�
if k � �n

0 if k < �n;

i.e., the Hodge �ltration is contained in the �ltration by pole order. Furthermore,
in [Sai3, Corollary 4.3] it is shown that if D is smooth, then

Fk!X .�D/ D Pk!X .�D/ for all k:

In general, a detailed analysis of the Hodge �ltration on !X .�D/ is given in the
upcoming [MP].

We will see in Section 9 that the �rst nontrivial step in the �ltration is always
related to the V -�ltration along D , and that this provides a useful relationship
with multiplier ideals. For this purpose it is more convenient to write things in
terms of left D -modules. In fact, for the left D -module OX .�D/ associated to
!X .�D/ (recall that FpOX .�D/ D Fp�n!X .�D/˝ !

�1
X ), one has the formula

S
�
OX .�D/

�
D F0OX .�D/ D QV

1OX �OX .D/:

�e V -�ltration on M and M.�D/ is discussed in §7, and provides further
insight into the process of localization.

6. Duality

For later use, a few words are in order about duality for polarized Hodge
modules, on a smooth projective variety X of dimension n . Further discussion
and references can be found for instance in [Sch2, §13 and §29].
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As mentioned earlier, a polarization on a pure Hodge module M D�
.M; F /IP

�
of weight ` involves an isomorphism P.`/ ' DP , where DP

is the Verdier dual of the perverse sheaf P , compatible with the �ltration F .
�is means that for the dual holonomic right DX -module

DM WD Extn.M; !X ˝OX
DX /

we have DM 'M , but furthermore the natural induced �ltration on DM should
satisfy

.DM; F / ' .M; F��`/:

It is necessary therefore for the �ltration on DM to be strict. In fact, it is standard
that this strictness property is equivalent to GrF� M being Cohen-Macaulay as
a GrF� DX -module; this last statement holds by [Sai1, Lemma 5.1.13] for �ltered
D -modules underlying Hodge modules. A consequence is that one can de�ne
a dual Hodge module DM , and in fact DM ' M.`/ , with underlying �ltered
D -module .M; F��`/ .

Moreover, by [Sai1, §2.4.11] the �ltered de Rham complex commutes with the
duality functor. Given the discussion above, a useful consequence is:

Lemma 17. If X is a smooth projective variety of dimension n and .M; F / is
the �ltered D -module underlying a pure Hodge module M 2 HM.X; `/ , then

R�GrFk DRX .M/ ' GrF�k�`DRX .M/;

where R� D RHomOX
. � ; !X /Œn� is the Grothendieck duality functor.

7. �e V -�ltration

In this section I will recall some key de�nitions and results regarding the
V -�ltration with respect to a hypersurface, and its interaction with the Hodge
�ltration. I am mostly following [Sai1, §3], which is a complete reference for all
the de�nitions and results recalled here.

Let X be a complex manifold or smooth complex variety of dimension n ,
and let X0 be an smooth divisor on X de�ned locally by an equation t . We
�rst consider a rational �ltration on DX , given by

V˛DX D ¹P 2 DX j P � IjX0
� Ij�Œ˛�X0

º for ˛ 2 Q;

where IX0
is the ideal of X0 in OX , with the convention that IjX0

D OX for
j � 0 .
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De�nition 18 (V -�ltration). Let M be a coherent right DX -module. A rational
V -�ltration (a slight re�nement of the Kashiwara-Malgrange �ltration) of M
along X0 is an increasing �ltration V˛M with ˛ 2 Q satisfying the following
properties:

� �e �ltration is exhaustive, i.e.
S
˛ V˛M DM , and each V˛M is a coherent

V0DX -submodule of M .

� V˛M � ViDX � V˛CiM for every ˛ 2 Q and i 2 Z ; furthermore

V˛M � t D V˛�1M for ˛ < 0:

� �e action of t@t � ˛ on GrV˛ M is nilpotent for each ˛ , where @t is a
vector �eld such that Œ@t ; t � D 1 . (One de�nes GrV˛ M as V˛M=V<˛M ,
where V<˛M D [ˇ<˛VˇM .)

It is known that if a V -�ltration exists, then it is unique. In addition, D -
modules underlying mixed Hodge modules also come by de�nition with a Hodge
�ltration, and it is important to compare the two. Note �rst that on each GrV˛ M
one considers the �ltration induced by that on M , i.e.,

Fp GrV˛ M WD
FpM \ V˛M
FpM \ V<˛M

:

De�nition 19 (Regular and quasi-unipotent). In the situation above, assume that
M is endowed with a good �ltration F . We say that .M; F / is quasi-unipotent
(or strictly specializable) along X0 if M admits a rational V -�ltration along
X0 and the following conditions are satis�ed:

� .FpV˛M/ � t D FpV˛�1M for ˛ < 0 .

� .Fp GrV˛ M/ � @t D FpC1GrV˛C1M for ˛ > �1 .

One says that .M; F / is regular and quasi-unipotent along X0 if in addition
the �ltration F�GrV˛ M is a good �ltration for �1 � ˛ � 0 .

Let now f W X ! C be a holomorphic function, and denote by

i D i�f
W X ,! X �C D Y

the embedding of X as the graph of f . Denote by t the coordinate on C , so
that in the notation above we have X0 D X � ¹0º D t�1.0/ . If M is a coherent
right DX -module, denote . QM; F / D i�.M; F / . One says that .M; F / is strictly
specializable along f if . QM; F / is so along X0 , and the same for regular and
quasi-unipotent along f . One important feature of mixed Hodge module theory
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is that all D -modules underlying Hodge modules are required to satisfy this last
property with respect to any holomorphic function.

�e following technical result on the behavior of regular and quasi-unipotent
�ltered D -modules is a key step in extending Kashiwara’s theorem on closed
embeddings to the setting of Hodge D -modules. �is will be very useful when
stating Saito’s vanishing theorem on singular varieties in Section 8.

Lemma 20 ([Sai2], Lemma 3.2.6). Let f W X ! C be a holomorphic function,
and .M; F / a �ltered coherent DX -module. Assume that Supp.M/ � f �1.0/ .
�en the following are equivalent:

(i) .M; F / is regular and quasi-unipotent along f .
(ii) GrFp M � f D 0 for all p .
(iii) . QM;F / ' j�.M; F / , where j W X � ¹0º ,! X �C .

We will also need a transversality notion for a �ltered D -module with respect
to a morphism (or a submanifold) introduced in [Sai1, 3.5.1], under which �ltered
inverse images become particularly simple.

De�nition 21 (Non-characteristic morphism). Let f W X ! Y be a morphism
of complex manifolds, and let .M; F / be a �ltered coherent DY -module. One
says that f is non-characteristic for .M; F / if the following two conditions are
satis�ed:

� H i .f �1GrF M
L
f̋ �1OY

OX / D 0 for i ¤ 0 .3
� �e natural morphism

df � W p�12
�
Char.M/

�
! T �X

is �nite, where p2 W X �Y T �Y ! T �Y is the second projection and

df � W X �Y T
�Y ! T �X; .x; !/ 7! df �! for all x 2 X; ! 2 T �Y:

If f is a closed immersion, we say that X is non-characteristic for .M; F /

if f is so.

If f is non-characteristic for .M; F / and d D dimX � dimY , then as in
[Sai1, §3.5] one has the �ltered pullback ��.M; F / D . QM; F /Œ�d� given by the
formula

QM D ��1M˝��1OX
!Y=X and Fp QM D ��1FpCdM˝��1OX

!Y=X :

3 In terms of the individual graded pieces, which are coherent sheaves of Y , this simply says that
Lif �GrFk M D 0 for all i ¤ 0 and all k .
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In other words we can de�ne the inverse image to be, up to shift, the naive
�ltration on the naive pullback, and this again gives a holonomic DX -module if
M is so; see [Sai1, Lemma 3.5.5]. If .M; F / underlies a pure Hodge module
M of weight m on Y , ��.M; F / then underlies a pure Hodge module ��M

of weight mC d on X .4

Example 22. �e most basic examples of this notion are:
(i) If f is smooth, then it is non-characteristic for any .M; F / , as df � is

injective and f is �at.
(ii) If .M; F / underlies a variation of Hodge structure, any f is non-

characteristic for it, as Char.M/ is the zero section, while each GrFk M
is locally free.

As a combination of the two, if f is smooth outside of the locus where
.M; F / underlies a variation of Hodge structure, then f is non-characteristic for
.M; F / .

�e following lemmas are important in what follows; they show that under
the non-characteristicity assumption one can perform concrete calculations with
the V -�ltration.

Lemma 23 ([Sai1], Lemma 3.5.6). Let i W D ,! X be an inclusion of a smooth
hypersurface in a smooth complex variety. Let .M; F / be a �ltered coherent
right DX -module for which D is non-characteristic. �en

(1) .M; F / is regular and quasi-unipotent along D .
(2) �e V -�ltration on M is given by

V˛M DM�OX .�iD/ for �i�1 � ˛ < �i; i � 0 and V˛M DM for ˛ � 0:

Lemma 24 ([Sai1], Lemma 3.5.7). With the notation of Lemma 23, we have that

(1) �e V -�ltration on M.�D/ satis�es

V˛M.�D/ DM �OX .�iD/ for � i � 1 � ˛ < �i:

(2) �ere is a �ltration F on M.�D/ which makes it a �ltered coherent right
DX -module, such that there is an exact sequence of �ltered D -modules

0 �! .M; F / �! .M.�D/; F / �! i�i
Š.M; F /Œ1� �! 0:

In addition, .M.�D/; F / is regular and quasi-unipotent along D .
4�is is a non-trivial result, using the fact that pure Hodge modules with strict support come from

generic variations of Hodge structure; see, e.g., [Sch2, §30] for an explanation.
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It will also be crucial, under suitable hypotheses, to be able to recover the
Hodge �ltration from its restriction over the complement of a hypersurface. �is
is one of the key points of the interaction between the Hodge �ltration and the
V -�ltration in the case of �ltered D -modules underlying Hodge modules.

Lemma 25 ([Sai1], Proposition 3.1.8). With the notation of Lemma 23, and
U D X XD , let M0 be the smallest sub-object of M such that MjU DM0

jU
.

�en:

(1) M0 D V˛M �DX for ˛ < 0 .
(2) M=M0 ' i�Coker

�
can D @t W GrV�1M! GrV0 M

�
.

In particular, M D V˛M �DX for ˛ < 0 if can is surjective.

Lemma 26 ([Sai1], Proposition 3.2.2). With the notation of Lemma 25, and
j W U ! X the natural inclusion, we have that:

(1) �e �rst condition in De�nition 19 is equivalent to

FpV<0M D V<0M \ j�j�1FpM for all p:

(2) If M D V<0M � DX , or equivalently if can D @t W GrV�1M ! GrV0 M is
surjective, the second condition in De�nition 19 for ˛ � �1 5 is equivalent
to

FpM D

X
i�0

.Fp�iV<0M/ � @it for all p:

8. Kodaira–Saito vanishing

We now come to the main goal, M. Saito’s vanishing theorem. Before stating
and proving the theorem, it is important to emphasize the following point: this is
a result that works on singular varieties by embedding them into smooth ambient
spaces. It is known that the objects considered are independent of the embedding.

It is therefore important to have a way of thinking about mixed Hodge
modules and �ltered D -modules on singular varieties, compatible with the
material developed for smooth varieties. In general this can only be done be
locally embedding X into smooth ambient spaces, and then using a gluing
procedure (see [Sai2, §2.1]).

However, on projective varieties we can use the embedding of X into some
PN . If X ,! PN is one such, then one de�nes the category of mixed Hodge

5�ere is an extra point here, for which I am grateful to C. Sabbah: in De�nition 19 one only
considers ˛ > �1 , while in the lemma ˛ D �1 appears as well. However, the property we want for
˛ D �1 follows from Hodge theory conditions on GrV�1 and GrV0 ; in our application they will be
trivially satis�ed since both terms will be 0 .
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modules on X to be that of mixed Hodge modules on PN with support contained
in X , i.e.

MHM.X/ D MHMX .PN /:

One can do the same with any embedding X � Z into a smooth variety; at least
when Z is projective, the fact that the resulting MHM(X ) is independent of
the embedding follows by extending Kashiwara’s equivalence theorem for closed
embeddings to the setting of Hodge modules.

Indeed, recall that Kashiwara’s theorem says that for a closed embedding
h W Z ,! W one has

Modcoh.DZ/ ' Modcoh;Z.DW /;

where the category on the right is that of coherent DW -modules with support
contained in Z . �is correspondence restricts on both sides to the subcategories of
objects with support contained in X . �e equivalence does not extend in general to
�ltered D -modules; however, those underlying mixed Hodge modules are regular
and quasi-unipotent (De�nition 19) along the zero-locus of any holomorphic
function.

In the regular and quasi-unipotent case, one can use Lemma 20 for each local
de�ning equation f for Z inside W (or global equations when W D PN ) in
order to deduce that for every .M; F / on W with support in Z , there exists
.MZ ; F / on Z such that .M; F / ' h�.MZ ; F / . �us Kashiwara’s theorem
extends to these special �ltered holonomic D -modules, which is the key step in
extending it to mixed Hodge modules. Once this is established, it is not too hard
to deduce that MHM(X ) is independent of the embedding; formally

(27) HM.X; `/ D HMX .Z; `/ and MHM.X/ D MHMX .Z/

for any smooth Z containing X . Further details can be found in [Sai1, Lemma
5.1.9] and [Sai2, 2.17.5]; see also [Sch4, §6 and 7].

�eorem 28 (M. Saito, [Sai2], §2.g). Let X be a complex projective variety,
and L an ample line bundle on X . Consider an integer m > 0 such that L˝m
is very ample and gives an embedding X � PN . Let .M; F / be the �ltered
D -module underlying a mixed Hodge module M on PN with support contained
in X , i.e. an object in MHM.X/ . �en:

(1) GrFk DRPN .M/ is an object in Db.X/ for each k , independent of the
embedding of X in PN .6

6 In fact, based on the discussion above it can be shown that each GrFk DRPN .M/ is independent
of the embedding of X into any smooth complex variety.
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(2) We have the hypercohomology vanishing

H i
�
X;GrFk DRPN .M/˝ L

�
D 0 for all i > 0:

and
H i
�
X;GrFk DRPN .M/˝ L�1

�
D 0 for all i < 0:

Proof. Step 1. �is step addresses (1) and a number of useful reductions towards
(2). For the �rst statement in (1), due to the de�nition of GrFk DRPN .M/ , it is
enough to have that each GrFk M is an OX -module. But note that by Lemma 20,
if for a holomorphic function f the support of M is contained in f �1.0/ , the
condition of .M; F / being regular and quasi-unipotent along f is equivalent to
having

GrFp M � f D 0 for all p:

Now our .M; F / satis�es this for any f , as it underlies a Hodge module, and
applying it for the de�ning equations of X inside PN we obtain the conclusion.

Note that the independence on the embedding of the de�nition MHM.X/ D
MHMX .PN / follows from the discussion preceding the statement of the theorem.
However here strictly speaking one only needs to know independence of embed-
dings X ,! PN by various powers L˝m . �us the Kashiwara-type statement (27)
actually su�ces, as any two such can be compared inside a common Veronese
embedding.

Along the same lines, the independence of the embedding for the complex of
OX -modules GrFk DRPN .M/ follows then from the remark above and the fact
that if h W Z ,! W is a closed embedding of two smooth varieties containing
X , and .M; F / ' h�.MZ ; F / on W , then one has the easily checked formula

GrFk DRW .M; F / ' h�GrFk DRZ.MZ ; F /:

Based on the fact that our objects do not depend on the embedding X � PN , to
attack (2) we may assume furthermore that m � 2 . �is will come up later, as
we will need to produce non-integral rational numbers with denominator m .

A standard reduction is that it is enough to assume that M is a polarized
pure Hodge module with strict support X , of some weight d . First, once we
have reduced to the case of pure Hodge modules, we can apply the strict support
direct sum decomposition (6) to reduce to this case. On the other hand, if M
is in MHM.X/ , recall that it has a �nite weight �ltration W�M by objects
in MHM.X/ , such that the graded quotients GrW` M D W`M=W`�1M are in
HM.X; `/ D HMX .PN ; `/ . To reduce to the pure case, we simply use the fact
that the functor GrFk ıDR is exact by construction.

Given this last reduction, we also see that it is enough to check only the second
statement in (2). �is follows from Grothendieck-Serre duality and Lemma 17.
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Step 2. Let Y be a general hyperplane in PN , chosen to be non-characteristic for
.M; F / . Denote D D X \ Y , the zero locus of some section s 2 H 0.X;L˝m/ .
Let f W QX ! X be the m -fold cyclic cover branched along D as in Proposition
2, with f �D D mD0 and L0 D O QX .D

0/ .
Denote now

U D PN X Y and j W U ,! PN

the natural inclusion of the (a�ne) complement of Y . Denoting also by
i W Y ,! PN the inclusion of Y , by Lemma 24 there is a �ltered short exact
sequence

(29) 0 �! .M; F / �! .M.�Y /; F / �! .H1i ŠM; F / �! 0

(Note that here H1i ŠM simply means M˝ !Y=PN .)
For each k , we apply the exact functor GrFk ıDRPN to (29) to obtain a

distinguished triangle of complexes of coherent sheaves on X :

GrFk DRPN .M/˝ L�1 �! GrFk DRPN

�
M.�Y /

�
˝ L�1 �!

�! GrFk DRPN .H1i ŠM/˝ L�1 �! GrFk DRPN .M/˝ L�1Œ1�:

�e claim is that

(30) H i
�
X;GrFk DRPN

�
M.�Y /

�
˝ L�1

�
D 0 for all i ¤ 0:

�is will be proved in Step 4. Assuming it for now, by the long exact sequence
on cohomology we are reduced to showing

H i
�
X;GrFk DRPN .H1i ŠM/˝ L�1

�
D 0 for all i < �1:

But in fact the statement is true even for i < 0 by induction on n D dimX ,
since .H1i ŠM; F / is supported on D and, again by non-characteristic pullback
as in Section 7, it underlies a Hodge module in HMD.Y; d C 1/ .

Step 3. Note �rst that we can extend the cover f W QX ! X rami�ed over D to
a cover still denoted f W QPN ! PN , rami�ed over Y ; it is enough to do this
locally since Hodge modules are local by construction. Fix a point x 2 X . �e
claim is that there exists a neighborhood x 2 Ux � PN such that the restriction
of f W QX ! X over Ux \ X can be extended to a �nite cover fx W Vx ! Ux ,
rami�ed over Y \ Ux . If x 62 Y , it is clear that there is such an extension.
On the other hand, if x 2 Y , then one uses a local holomorphic trivialization
.Ux ; Ux \X/ ' .Ux \ Y;Ux \D/ �D2 , considering a contractible neighborhood
of x in Y such that the contraction is compatible with D .

�is new f is non-characteristic for .M; F / by our choice of Y , and so
the �ltered pullback .f �M; F / on QPN can be de�ned as in the remarks after
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De�nition 21. It underlies a pure Hodge module f �M of weight d , as the
relative dimension is zero. By �eorem 8 we then obtain f�f �M 2 HMX .PN ; d / ;
note that this is a single Hodge module since f is �nite. �ere is a natural
monomorphism M ! f�f

�M , and we de�ne QM as its cokernel, so that there
is an exact sequence

(31) 0 �!M �! f�f
�M �! QM �! 0;

in the abelian category HMX .PN ; d / , i.e. QM is a new pure polarized Hodge
module of weight d with support contained in X . Note that by Saito’s fundamental
result mentioned in Section 4, all the Hodge modules in the exact sequence above
are uniquely extended from the open subset of U on which they are variations
of Hodge structure; in particular they coincide with the strict support extension
of their restriction to U .

We denote by QP the Q -perverse sheaf associated to QM , so that DRPN . QM/ '
QPC WD QP ˝C . Since as mentioned above QM is the unique extension with strict
support X of its restriction to U , we have

QP ' j�j
�1 QP ;

i.e., QP is the extension of its restriction to the a�ne open set U as well. By the
Artin-Grothendieck vanishing theorem (see, e.g., [Laz, �eorem 3.1.13]), we then
have

H i .X; QPC/ ' H
i .U; j�1 QPC/ D 0 for all i > 0:

Since QM is polarized, as in Section 17 we have that D QP ' QP .d/ , where D QP is
the Verdier dual. By Verdier duality we then also get

H i .X; QPC/ D 0 for all i < 0:

In conclusion, we have veri�ed that

(32) H i
�
X;DRPN . QM/

�
D 0 for all i ¤ 0:

�e main assertion in this step is that

(33) H i
�
X;GrFk DRPN . QM/

�
D 0 for all k and all i ¤ 0:

To this end we need to use stability under projective morphisms, �eorem 8;
applied to the absolute case PN ! pt , the strictness in the statement amounts to
the degeneration at E1 of the natural Hodge-to-de Rham spectral sequence

E
p;q
1 D HpCq

�
X;GrF�q DRPN . QM/

�
H) HpCq

�
X;DRPN . QM/

�
:

Note that here we are using the identi�cation f� QM ' R� DRPN . QM/ (which is
a special case of the de�nition of push-forward via smooth morphisms). Given
(32), this degeneration immediately implies (33).
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Step 4. We are left with proving (30), which will be done in this step. More
precisely, for each k we will prove the isomorphism

(34) GrFk QM ' GrFk M.�Y /˝ QL;

where
QL WD Coker.OX ! ��O QX / ' L

�1
˚ � � � ˚ L�.m�1/;

the last isomorphism coming from Proposition 2. �e isomorphism (34) implies
what we want in combination with (33); it is proved using the interaction between
the Hodge �ltration and the V -�ltration along Y .

To this end, note �rst that by de�nition there is a canonical isomorphism of
�ltered right DU -modules

. QM; F /jU ' .M; F /˝OU
QLjU :

Indeed, this follows from (31) and the de�nition of the �ltration on f �M given
after De�nition 21; passing to the �ltration on the D -modules underlying (31)
is, on the open set U on which f is étale, the same as the split short exact
sequence

0 �! FpM �! FpM˝ f�OQPN �! FpM˝ QL �! 0:

Here and in what follows we consider QL as a left D -module with trivial �ltration.
On the open set U it is by de�nition an integrable connection, underlying the
complement of QU in f�Qf �1.U / . On the other hand, we know from [EV,
§6] that globally each L�i is the Deligne canonical extension of L�i

jU
, whose

meromorphic connection has residue i=m along Y . �e direct sum QL is the
D -module underlying the canonical extension of this complement. �e tensor
product M ˝ QL becomes a right D -module,7 with the induced tensor product
�ltration.

�e statement follows if we show that the isomorphism on U above can be
extended uniquely to an isomorphism of �ltered right D -modules

(35) . QM; F / '
�
M.�Y /; F

�
˝OPN

QL:

Both sides of (35) are regular holonomic; moreover, they are isomorphic to their
localization along Y , i.e., a local equation of Y acts on them bijectively. Forgetting
about the �ltration, the isomorphism in (35) then follows from Proposition 15.

As for the �ltration F , we need to compare it to the V -�ltration along the
divisor Y . �e �rst claim is that .M.�Y /; F /˝ QL is regular and quasi-unipotent

7Recall that if M is a right DX -module, and N a left DX -module, the tensor product M˝OX
N

has a natural right DX -module structure; see, e.g., [HTT, Proposition 1.2.9(ii)].
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along Y ; see De�nition 19. To this end, note �rst that the summand M.�Y /˝L�i

of M.�Y /˝ QL , with i ranging from 1 to m� 1 , coincides with M.�Y / on U ,
and so their V -�ltrations along Y are the same for ˛ < 0 . On the other hand, if
t is a local equation for Y , then multiplication by L�i coincides with the action
of t i=m , and so by the de�nition of the V -�ltration we obtain for each ˛ :

(36) V˛
�
M.�Y /˝ L�i

�
D V˛Ci=mM.�Y /˝ L�i :

�is gives in particular

FpV˛
�
M.�Y /˝ L�i

�
D
�
FpV˛Ci=mM.�Y /

�
˝ L�i

for all possible indices. Using this, the fact that .M.�Y /; F /˝ QL is regular and
quasi-unipotent is an immediate consequence of the fact that M.�Y / is so (as it
underlies a mixed Hodge module), together with Lemma 24(1).

From (36) we also obtain that

GrV˛
�
M.�Y /˝ L�i

�
' GrV˛Ci=m

�
M.�Y /

�
˝ L�i :

We see however from Lemma 24(1) that

GrV˛ M.�Y / D 0 for ˛ 62 Z;

and therefore
GrV˛

�
M.�Y /˝ L�i

�
D 0 for ˛ C i=m 62 Z:

�e bottom line is that in order to have GrV˛
�
M.�Y /˝ QL

�
¤ 0 , one must have

˛ C i=m 2 Z for all 1 � i � m � 1 , and consequently ˛ cannot be an integer
(recall that we are working with m � 2 ).

Let us now denote M0 DM.�Y /˝ QL for simplicity. Using this last remark,
by Lemma 25 we deduce that M0 is generated as a D -module by the negative
part of its V -�ltration, i.e.

M0
' V<0M0

�DPN :

�e next thing to note is that, again since the jumps in the V -�ltration do not
happen at integers, according to Lemma 26(2) the second condition in De�nition
19 is equivalent to the fact that

FpM0
D

X
i�0

�
Fp�iV<0M0

�
� @it

for all p . Consequently, the Hodge �ltration is determined by its restriction to
the negative part of the V -�ltration. Finally, this restriction is determined by the
corresponding �ltration on the open complement U since according to Lemma
26(1) for all p we have

FpV<0M0
D V<0M0

\ j�j
�1FpM0:

As . QM; F / and .M.�Y /; F /˝ QL coincide on U , and as . QM; F / was de�ned by
extension from U , the two �ltered D -modules must then agree everywhere.
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9. Particular cases

In this section I will explain how M. Saito’s vanishing theorem can be used
to deduce many of the standard vanishing theorems. In the next sections I will
make the point however that the abstract version is equally valuable for concrete
applications.

Kodaira–Nakano vanishing. Let X be a smooth projective complex variety of
dimension n . We consider the trivial Hodge module M D QH

X Œn� . According to
Example 11, the corresponding right D -module is !X , with �ltration Fp!X D !X
if p � �n and Fp!X D 0 if p < �n , so that

GrF�p DRX .!X / D �
p
X Œn � p� for all p:

�eorem 28 gives

H q.X;�
p
X ˝ L/ D 0 for p C q > n

and the dual statement, for any L ample, i.e., Kodaira–Nakano vanishing.
If we restrict to the Kodaira vanishing theorem, which corresponds to the

lowest non-zero piece of the �ltration on !X , then we can see it as an example
of the following more easily stated special case of �eorem 28; it is useful to
record this for applications.

Corollary 37. If .M; F / is a �ltered D -module underlying a mixed Hodge
module M on a projective variety X , and L is an ample line bundle on X ,
then

H i
�
X;S.M/˝ L

�
D 0 for all i > 0:

Kollár vanishing. �e following theorem of Kollár is a natural generalization of
Kodaira vanishing to higher direct images of canonical bundles.

�eorem 38 ([Kol1], �eorem 2.1(iii)). Let f W X ! Y be a morphism between
complex projective varieties, with X smooth, and let L be an ample line bundle
on Y . �en

H i .X;Rjf�!X ˝ L/ D 0 for all i > 0 and all j:

To deduce the statement from �eorem 28, we consider the push-forward
M D f�QH

X Œn� of the trivial Hodge module on X , with n D dimX . According
to Example 12, for the underlying D -modules we have

fC.!X ; F / '
M
i

.Mi ; F /Œ�i �
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in the derived category of �ltered DY -modules (so compatible with inclusions
into smooth varieties), and for each i we have S.Mi / D Rif�!X . �eorem 38
then follows from Corollary 37. More generally, the same argument shows the
following vanishing theorem due to Saito: the statement of �eorem 38 holds for
Rif�S.M/ , where M corresponds to the unique pure Hodge module with strict
support X extending a polarized variation of Hodge structure on an open set
U � X .

Nadel vanishing. To deduce Nadel vanishing, one needs a more subtle rela-
tionship between multiplier ideals, the V -�ltration on the structure sheaf, and
the Hodge �ltration on localizations, combining results of [BS] and [Sai5]. As
mentioned in Example 14, this is one place where it is more convenient to have
the initial discussion in terms of left D -modules.

Let X be a smooth projective variety, and D an e�ective Cartier divisor on
X . Recall that OX .�D/ is equipped with a natural Hodge �ltration F , as the left
D -module associated to the Hodge module j�QH

U Œn� , where j W U D XXD ,! X

is the inclusion; see Example 14. Looking at the �rst step in this �ltration, one
can recognize multiplier ideals from the formula

(39) F0OX .�D/ ' J
�
.1 � "/D

�
�OX .D/;

where 0 < � � 1 , and in general J .B/ stands for the multiplier ideal of a
Q -divisor B (see [Laz, Ch. 9]). Indeed, [Sai5, �eorem 0.4] says that

F0OX .�D/ ' QV
1OX �OX .D/;

while [BS, �eorem 0.1] says that for any ˛ 2 Q one has

QV ˛OX ' J
�
.˛ � "/D

�
:

Here the V -�ltration notation means the following: assume that D is given
locally by an equation f , and consider the graph embedding if W X ! X � C .
One can consider the V -�ltration on the left D -module if �OX D OX ˝C CŒ@t �

along X0 D X � ¹0º . �e notation QV ˛OX stands for the �ltration induced on
OX D OX ˝ 1 .

�is allows us to deduce the Nadel vanishing theorem (see, e.g., [Laz, �eorem
9.4.8]), at least when D is a Cartier divisor.

�eorem 40. With the notation above, if L is a line bundle on X such that
L �D is ample, then

H i
�
X;!X ˝ L˝ J

�
.1 � "/D

��
D 0 for all i > 0:
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Proof. From the discussion above it follows that for the left D -module OX .�D/

the lowest graded piece for the �ltration F is

GrF0 OX .�D/ D J
�
.1 � "/D

�
�OX .D/;

so for the associated right D -module we have

S.M/ D !X ˝OX .D/˝ J
�
.1 � "/D

�
:

Corollary 37 implies that if A is ample, then

H i .X; !X ˝ A˝OX .D/˝ J
�
.1 � "/D

�
D 0 for all i > 0:

But by assumption we can write L ' A˝OX .D/ with A ample.

Remark 41 (Arbitrary Q -divisors). �e Nadel vanishing theorem for arbitrary
Q -divisors B is not in general a vanishing theorem for the lowest graded piece
of the Hodge �ltration corresponding to a mixed Hodge module; it is however a
consequence of the same result. Roughly speaking one can reduce to the situation
studied above after performing a Kawamata covering construction to arrive at
a Cartier divisor, using a bistrictness property of Hodge modules which allows
us to deduce vanishing for the push-forward to the base, and �nally passing to
an eigensheaf of the push-forward. In other words multiplier ideals are naturally
direct summands of Hodge theoretic objects, while �eorem 28 also applies to
�ltered direct summands of D -modules underlying mixed Hodge modules, again
since the functor GrFk ıDR is exact. I thank N. Budur for this observation.

On the other hand, it is perhaps most natural to try and prove an analogue
of the Kawamata–Viehweg vanishing theorem for Q -divisors in the context of
mixed Hodge modules. �is will be done in �eorem 52 below. An analogous
extension of Nadel vanishing is then an immediate consequence; see Corollary 54.

Abelian varieties. In the case of abelian varieties it turns out that �eorem 28
holds directly for the graded pieces of a �ltered D -module .M; F / underlying
a Hodge module itself, rather than those of its de Rham complex.

Proposition 42 ([PS1], Lemma 2.5). Let A be a complex abelian variety, .M; F /

the �ltered D -module underlying a mixed Hodge module on A , and let L be
an ample line bundle. �en for each k 2 Z , we have

H i
�
A;GrFk M˝ L

�
D 0 for all i > 0:

Proof. Denote g D dimA . Consider for each k 2 Z the complex of coherent
sheaves
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GrFk DRA.M/ D
h
GrFk M! �1A ˝GrFkC1M! � � � ! �

g
A ˝GrFkCg M

i
;

supported in degrees �g; : : : ; 0 . According to �eorem 28, this complex has the
property that, for i > 0 ,

H i
�
A;GrFk DRA.M/˝ L

�
D 0:

Using the fact that �1A ' O
˚g
A , one can deduce the asserted vanishing theorem

for the individual sheaves GrFk M by induction on k . Indeed, since GrFk M D 0

for k � 0 , inductively one has for each k a distinguished triangle

Ek ! GrFk DRA.M/! GrFkCg M! EkŒ1�;

with Ek an object satisfying H i .A;Ek ˝ L/ D 0 .

�is observation is one of the key points towards showing that, under the
above assumptions, all graded pieces GrFk M satisfy the analogues of the generic
vanishing theorems of [GL1], [GL2], [Hac], [PP]. In view of the examples in
Section 5, besides recovering these results the statement leads to new applications,
for instance to Nakano-type generic vanishing (see [PS1, �eorem 1.2]).

�eorem 43 ([PS1], �eorem 1.1). Under the assumptions of Proposition 42, each
GrFk M is a GV -sheaf on A , i.e.

codimPic0.A/
¹˛ 2 Pic0.A/ j H i .A;GrFk M˝ ˛/ ¤ 0º � i; for all i � 0:

A stronger generic vanishing statement was proved in [PS1] for the total
associated graded object

GrF� M D

M
k

GrFk M;

seen as a coherent sheaf on T �A ' A �H 0.A;�1A/ ; this was useful in proving
that all holomorphic 1 -forms on varieties of general type have zeros [PS2].

10. Weak positivity

�is section contains a proof of an extension of Viehweg’s weak positivity
theorem for direct images of relative canonical sheaves, based on �eorem 28
and found jointly with C. Schnell; see also [Sch3]. �e general strategy follows
Kollár’s approach to semipositivity via vanishing theorems in [Kol1, §3]. �e
shortness of the proof is due to the fact that one can apply the machinery of
vanishing theorems to abstract Hodge modules.
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De�nition 44. A torsion-free coherent sheaf F on a (quasi-)projective variety
X is weakly positive on a non-empty open set U � X if for every ample line
bundle A on X and every a 2 N , the sheaf OSabF ˝A˝b is generated by global
sections at each point of U for b su�ciently large. (Here OSpF denotes the
re�exive hull of the symmetric power SpF .)

Before proving the main result, let’s record a standard global generation
consequence of �eorem 28.

Corollary 45. Let X be a smooth projective complex variety of dimension n ,
and .M; F / a �ltered D -module on X underlying a mixed Hodge module M .
�en for any ample and globally generated line bundle L on X , the sheaf

S.M/˝ L˝.nC1/

is globally generated.

Proof. Denoting F D S.M/˝ L˝.nC1/ , Corollary 37 implies that

H i .X;F ˝ L˝�i / D 0 for all i > 0:

�e result is then an immediate consequence of the Castelnuovo-Mumford Lemma;
see [Laz, �eorem 1.8.5].

We also need the following simpli�cation of what is needed in order to check
weak positivity under our hypotheses.

Lemma 46. Let F be a torsion-free sheaf on a smooth (quasi-)projective variety
X , and L a line bundle on X . �en F is weakly positive on an open set U � X
on which F is locally free if F ˝a ˝ L is generated by global sections over U
for all a > 0 .

Proof. �is is well known, so I will only sketch the proof. First, it is standard that
one can reduce to checking the de�nition for only one (not necessarily ample)
line bundle L , and all a > 0 ; see [Vie, Remark 1.3(ii)]. Now a torsion-free sheaf
is locally free and therefore coincides with its re�exive hull outside of a closed
set of codimension at least 2 . On the other hand, its global sections inject into
those of the re�exive hull. So it is enough to reduce the de�nition to the usual
symmetric powers, which in turn are quotients of the tensor powers.

Viehweg’s theorem in [Vie] saying that f�!Z=X is weakly positive for any
surjective morphism f W Z ! X of smooth projective varieties is a special case
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of the following result.8 �e statement and proof are more conveniently phrased
in terms of left D -modules.

�eorem 47. Let X be a smooth projective complex variety, and .N ; F / the
�ltered left D -module on X underlying a mixed Hodge module M which is a
variation of mixed Hodge structure on a non-empty open set U � X . �en S.N /
is weakly positive over U .

Proof. Step 1. First, as M is a variation of mixed Hodge structure generically
over X , it is well known that S.N / is a torsion-free sheaf on X . Fix now a
positive integer m , and consider the diagonal embedding

i W X ,! X � � � � �X;

where the product is taken m times. On this product, consider the box product
mixed Hodge module

M�m
WDM � � � ��M:

As the �ltration on M�m is the convolution of the �ltrations on the individual
factors, it is not hard to see that p.N�m/ D m � p.N / and moreover

i�S.N�m/ D S.N /˝m:

Denoting by r D .m � 1/n the codimension of X via the diagonal embedding,
in the derived category of coherent sheaves on X we have a natural morphism

(48) Fm�p.N /�r i
Š.N�m; F / �! Li�S.N�m/Œ�r�;

which is an isomorphism over the open set U where M is a variation of mixed
Hodge structure. �is follows for instance from [Sch1, Lemma 2.17] (see also
[Sch3, Lemma 3.2]).

Step 2. We can specialize formula (48) by passing to the cohomology sheaves in
degree r , in order to obtain a natural sheaf homomorphism

(49) S.Q/ D Fm�p.N /�r Q �! S.N /˝m

which is an isomorphism on U ; here .Q; F / is another �ltered left D -module
on X , underlying the object i�M�m in MHM(X ).

Fix now a very ample line bundle L on X . In order to deduce that S.N /
is weakly positive over U , using Lemma 46 it su�ces then to show that
S.Q/ ˝ !X ˝ L˝.nC1/ is globally generated, where n D dimX . But this a
consequence of Corollary 45, recalling that S.Q/ ˝ !X is the lowest non-zero
graded piece of the right D -module associated to Q .

8We apply it to the left D -modules Ni corresponding to Mi in the decomposition f�.!Z ; F / 'L
i .Mi ; F /Œ�i� ; see Example 12.
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Remark 50. A more general result, involving kernels of Kodaira-Spencer mor-
phisms associated to the de Rham complex of M , was recently proved in [PW].
�e method of proof is however di�erent, and does not rely on vanishing theorems.

In [Vie], Viehweg proved that if f W Z ! X is a surjective morphism of
smooth projective varieties, then f�!

˝m
Z=X

is weakly positive for m � 2 as well.
A natural question to ask in this direction is the following:

Question 51. Let f W Z ! X be a surjective morphism of smooth projective
varieties, and .M; F / the �ltered left D -module underlying a mixed Hodge
module M which is a variation of mixed Hodge structure on a non-empty open
set in Z . Is

f�

�
S.N /˝ !˝m

Z=X

�
weakly positive for all m � 1?

Assuming a positive answer to this question, the exact same method of proof
as in �eorem 47 would imply for all m � 2 the weak positivity of

f�

�
S.N /˝m ˝ !˝m

Z=X

�
:

It is worth noting that it is indeed now possible to give a proof of Viehweg’s
statement on f�!

˝m
Z=X

using cohomological methods à la Kollár; see [PS3].

11. Kawamata–Viehweg-type vanishing

In this section I will show that the Kawamata–Viehweg vanishing theorem
for Q -divisors continues to hold for the lowest graded piece of a mixed Hodge
module as long as its singular locus does not intersect the augmented base
locus BC.L/ of a big and nef line bundle (in particular always for variations of
mixed Hodge structure). �e proof follows quite closely the original one, with
modi�cations permitted by Saito’s study of non-characteristic pullbacks. I expect
a stronger version to hold, at least under certain non-characteristicity hypotheses
with respect to BC.L/ .9

9Added during revision: since this was written, in the case when L is a big and nef line bundle
the most general version of Kawamata–Viehweg-type vanishing was proved by Suh [Suh] and Wu [Wu].
Further results for Q -divisors were also obtained in [Wu].
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�eorem 52. Let .M; F / be the �ltered right D -module underlying a mixed
Hodge module M on a smooth projective variety X , and let L be a line bundle
on X with L �Q AC� , where A is a big and nef Q -divisor on X and .X;�/
is a klt pair. Assume that BC.A/ [ Supp � is contained in the smooth locus of
M . �en

H i .X; S.M/˝ L/ D 0 for all i > 0:

Remark 53. In particular we have the vanishing above if L is a big and nef line
bundle such that BC.L/ is contained in the smooth locus of M . Note that one
does not have a similar statement for other associated graded pieces GrFk DR.M/

of the �ltered de Rham complex, as in the case of Kodaira–Saito vanishing. �is
is already well known for the trivial Hodge module M D QH

X Œn� . In this case, by
Example 11 the graded pieces are �kX Œn � k� with n D dimX . Simple examples
show however that for k < n the Nakano extension of Kodaira vanishing does
not usually hold for twists by big and nef line bundles; see [Laz, Example 4.3.4].

In order to understand the statement and proof, we need to review a few
more de�nitions and results. Before doing this, let’s note that an immediate
consequence of the theorem above is the following generalization of the Nadel
vanishing theorem; see also Section 9.

Corollary 54. Let X be a smooth projective variety, and D an e�ective Q -
divisor on X with associated multiplier ideal I.D/ . Let L be a line bundle
in X such that L �D is big and nef, and assume that BC.L �D/ [ Supp D
is contained in the smooth locus of a mixed Hodge module M with underlying
�ltered D -module .M; F / . �en

H i
�
X;S.M/˝ L˝ I.D/

�
D 0 for all i > 0:

Higher direct images of the lowest Hodge piece. Let X be a smooth variety.
Recall that according to M. Saito’s theory [Sai2], for a mixed Hodge module
M with strict support equal to X , there exists a maximal non-empty open set
U � X on which M is variation of mixed Hodge structure, denoted say by V ;
we call this the smooth locus of M . Note that the lowest Hodge piece S.M/ is
a locally free sheaf on U .

As the functor S.�/ is exact, we can often restrict our study to the case when
M is a pure Hodge module which is a polarized variation of Hodge structure on
U . In this case, in response to a conjecture of Kollár, Saito proved (among other
things) the following, the second part of which can be seen as a generalization
of the Grauert-Riemenschneider vanishing theorem.
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�eorem 55 (Saito, [Sai4]). Let f W X ! Y be a surjective projective morphism
(with Y possibly singular), and let .M; F / be the �ltered D -module underlying a
pure Hodge module with strict support X that is generically a polarized variation
of Hodge structure V . For each i � 0 , one has

Rif�S.M/ D S.Y;Vi /;

the lowest Hodge piece of the variation of Hodge structure Vi on the intersection
cohomology of V along the �bers of f . Consequently, Rif�S.M/ are torsion-
free, and in particular

Rif�S.M/ D 0 for i > dimX � dimY:

Augmented base loci. We start by recalling the de�nition and some basic results
on augmented base loci of divisors.

De�nition 56 ([ELMNP], §1). Let D be a Q -divisor on a normal complex
projective variety X . �e augmented base locus of L is

BC.D/ WD B.D � �H/;

where H is any ample divisor on X , 0 < � � 1 is rational, and B.D � �H/
denotes the stable base locus of the Q -divisor D � �H , i.e., the base locus of
jm.D � �H/j for m � 0 . If L is a line bundle, we de�ne BC.L/ similarly. It
is not hard to check (see [ELMNP, Proposition 1.5]) that equivalently one has

(57) BC.D/ D
\

DDACE

Supp E;

where the intersection is taken over all Q -divisor decompositions of D such that
A is ample and E is e�ective.

We have that BC.L/ ¤ X if and only if L is big. When L is a big and nef,
according to Nakamaye’s theorem [Nak], one has the following description

BC.L/ D Null.V /;

where Null.V / is the union of all subvarieties V � X such that LdimV � V D 0 ,
or equivalently LjV is not big.

We will use the following birational interpretations of the augmented base
locus; slightly more general statements can be found for instance in [BBP, Lemma
2.2 and Proposition 2.3].10

10 I thank Angelo Lopez for pointing out this reference.
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Lemma 58. If D is a Q -divisor on X , then

BC.D/ D
\
f;A;E

f .Supp E/ ;

where the intersection is taken over all projective birational morphisms f W Y ! X

with Y normal, and all decompositions f �D �Q ACE , with A ample and E

e�ective.

Lemma 59. Let f W Y ! X be a birational morphism of smooth projective
varieties, and Exc.f / � Y its exceptional locus. If D is a Q -divisor on X ,
then

BC
�
f �.D/

�
D f �1

�
BC.D/

�
[ Exc.f /:

Proof of �eorem 52. First, just as in the proof of Saito’s vanishing theorem,
due to the exactness of the functor S.�/ we can reduce to assuming that M is a
pure Hodge module. I will divide the proof into a few steps which loosely follow
the standard steps in the proof of the Kawamata–Viehweg theorem. In the �rst
three steps we will assume that L is a big and nef line bundle, and � D 0 . �e
last two will deal with the general case.

�e line bundle case. Note to begin with that since L is big, in general there
exist an m > 0 , an ample line bundle A , and an e�ective divisor E , such that

(60) L˝m ' A˝OX .E/:

Step 1. �is is a Norimatsu-type statement (see [Laz, Lemma 4.3.5]): we show that
if A is an ample line bundle, and E � X is a reduced simple normal crossings
divisor on X contained in the smooth locus of M , then

H i
�
X;S.M/˝ A˝OX .E/

�
D 0 for all i > 0:

Let’s assume �rst that E is a smooth divisor. As S.M/ is locally free in a
neighborhood of E , we have a short exact sequence

0 �! S.M/˝ A �! S.M/˝ A˝OX .E/ �! S.M/jE ˝ AjE ˝OE .E/ �! 0

Passing to cohomology and applying Corollary 37, we see that is is enough to
show that

H i
�
E; S.M/jE ˝OE .E/˝ AjE

�
D 0 for all i > 0:

Again by Corollary 37, it su�ces then to note that S.M/jE ˝OE .E/ ' S.M0/ ,
for some �ltered D -module underlying a mixed Hodge module M 0 on E . We
can in fact take
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.M0; F / WD .H1i ŠM; F /:

On one hand, this �ltered D -module underlies a Hodge module, as

.H1i ŠM; F / ' i Š.M; F /Œ1�

by [Sai1, Lemma 3.5.6]. On the other hand, since E is contained in the smooth
locus of M , using [Sch1, Lemma 2.17] (as in the proof of �eorem 47) we see
that there is an isomorphism S.N 0/ ' S.N /jE , where N is again notation for
the associated left D -modules. �is is equivalent to what we want by adjunction.

In general we have E D E1 C � � � C Ek , where Ej are smooth divisors with
transverse intersections. �e statement can be easily proved by induction on k ,
using exact sequences similar to the one above, and the fact that M continues
to be a variation of mixed Hodge structure when restricted to the log-canonical
centers of E .

Step 2. In this step we show that we can reduce the general statement to the
case where in .60/ we have that E has simple normal crossings support, and
this support is contained in the smooth locus of M . Consider the notation of
De�nition 56, so that

BC.L/ D B.L � �H/ D Bs
�
L˝k ˝OX .�k�H/

�
;

for k su�ciently large and divisible, and Bs.�/ stands for the usual base locus.
We consider � W Y ! X a log-resolution of the linear series jL˝k˝OX .�k�H/j ,
so that

��
�
L˝k ˝OX .�k�H/

�
'Mk ˝OY .Fk/;

where Mk is the moving part of the pullback, a big and basepoint-free line
bundle, and Fk is its �xed divisor. From Lemma 59 we have that

BC.��L/ D ��1
�
BC.L/

�
[ Exc.�/ D Supp.Fk/ [ Exc.�/;

which is a divisor with simple normal crossings support on Y.
By assumption BC.L/ is contained in the smooth locus of M . Choosing the

log-resolution to be an isomorphism outside of BC.L/ , by Example 22 we have
that � is non-characteristic for .M; F / . Recall that this implies that the �ltered
inverse image ��.M; F / D . QM; F / is given by the formula

QM D ��1M˝��1OX
!Y=X and Fp QM D ��FpM˝ !Y=X ;

and this underlies the Hodge module ��M . We see then that S.��M/ '

��S.M/˝ !Y=X , and so

��S.�
�M/ ' S.M/;



Kodaira–Saito vanishing and applications 85

as ��!Y=X ' OX . Assuming that we proved that

(61) H i
�
Y; S.��M/˝ ��L

�
D 0 for all i > 0;

this implies the vanishing we want on X as Ri��S.�
�M/ D 0 , which is a

consequence of �eorem 55.
Let’s now write

Fk D
X
j

ajEj ;

with the convention that aj � 0 , so that we may assume that the sum contains
all the exceptional divisors of � among the Ej . By construction we have that
BC.��L/ is contained in the smooth locus of ��M ; equivalently, this statement
holds for all Ej in the sum above.

Finally, note that by construction we have

��L˝k ' ��OX .k�H/˝Mk ˝OY .Fk/;

and the line bundle ��OX .k�H/ ˝Mk is still big and nef. To conclude, one
appeals to a version of the Negativity Lemma, stating that for such a k � 0 ,
there exist bj � 0 such that

��OX .k�H/˝OY .�
X
j

bjFj /

is ample, where the sum runs over the exceptional divisors of � (and so with
the same convention as above we can assume that it runs over all Ej ); see, e.g.,
[Laz, Corollary 4.1.4]. But now we can write

��L˝k '
�
��OX .k�H/˝OY .�

X
j

bjFj /
�
˝OY

�X
j

.aj C bj /Fj
�
;

which is of the form required at the beginning of this reduction step.

Step 3. In this last step we conclude the proof assuming that E in .60/ has
simple normal crossings support contained in the smooth locus of M , which
is the outcome of Step 2. By standard arguments using Kawamata covers, it is
known that there exists a �nite cover f W Y ! X with Y smooth projective,
such that

f �L ' A0 ˝OY .E
0/;

with A0 ample and E 0 a reduced simple normal crossings divisor; see, e.g.,
[Laz, p. 255]. Moreover, f can be chosen to be non-characteristic with respect
to .M; F / .

�is last statement requires some discussion; recall that Kawamata covers can
be constructed in two steps (see [Laz, Proposition 4.1.12]). �e �rst is a Bloch–
Gieseker type cover g W Z ! X , where for some component E1 of E one can
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write g�E D kE1 , for a given k and some E1 not necessarily e�ective. In this
step one can assume that E is very ample by writing it as the di�erence of two
very ample line bundles, and then g can be constructed so as to be rami�ed
along a generic union of hyperplane sections of X in the embedding given by E ;
see the proof of [Laz, �eorem 4.1.10]. From this genericity it follows that g is
non-characteristic with respect to .M; F / . On the other hand, the second step is
to consider a cyclic cover h W Y ! Z , which is rami�ed along f �E1 ; since this
is contained in the smooth locus of f �M , this cover is also non-characteristic.
One then applies this procedure inductively for all components of E .

Going back to the proof, we can now consider the �ltered inverse image
f �.M; F / underlying the pullback Hodge module just as in Step 2. Note that we
have E 0 D f �1.Supp E/ , and so E 0 is contained in the smooth locus of f �M .
By Step 1, we then have

H i
�
Y; S.f �M/˝ f �L

�
D 0 for all i > 0:

But precisely as in Step 2 we have that

f�S.f
�M/ ' S.M/˝ f�!Y=X :

As OX is a direct summand of f�!Y=X via the trace map, we obtained the
desired vanishing using the projection formula.

�e Q -divisor case. We do this in two further steps which reduce us to the line
bundle case discussed above. We �rst reduce to the case when Supp � is a
simple normal crossings divisor.

Step 4. Let � W Y ! X be a log-resolution of .X;�/ , and write

KY � �
�.KX C�/ D P �N;

where P and N are e�ective Q -divisors with simple normal crossings support,
without common components, and such that P is exceptional and all the
coe�cients in N are strictly less than 1 . We then have

KY CN C dP e � P C �
�A D ��.KX C�C A/C dP e;

and so there exists a line bundle L0 on Y such that L0 �Q ��AC �0 , where
�0 D N C dP e � P , a strictly boundary divisor with normal crossings support.
Note that ��A is still big and nef, and in fact by Lemma 59 we have

BC.��A/ D ��1
�
BC.A/

�
[ Exc.�/:

We can choose � such that it is an isomorphism outside the support of � . It
follows that both BC.��A/ and Supp �0 are contained in the smooth locus of
��M . Note �nally that it is enough to show that
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H i
�
Y; S.��M/˝ L0

�
D 0 for all i > 0:

Indeed, we have observed before that

��S.�
�M/ ' S.M/ and Ri��S.�

�M/ D 0 for i > 0:

Step 5. It is enough to assume then that � is a divisor with simple normal
crossings, support, say � D

Pk
iD1 aiDi , with 0 < ai < 1 and Di smooth.

�e strategy is to prove the statement by induction on k . �e case k D 0

is the line bundle case proved above. Assume now that k > 0 , and let’s write
a1 D

p
q
. Note that 0 < p � q � 1 . Just as in Step 3, one considers a Kawamata

cover associated to the divisor D1 ; concretely, there exists a �nite morphism
f W Y ! X , with Y smooth projective, such that on Y the divisor D1 becomes
divisible by d . In other words, we have

L0 WD f �L �Q A0 C cD01 C

kX
iD2

aiD
0
i ;

where A0 D f �A and D0i D f �Di , still satisfying the fact that
P
D0i has simple

normal crossings. Moreover, this morphism can be chosen to be non-characteristic
for .M; F / , so we can deal with f �M as in the previous proof.

By induction we can now assume that the line bundle L0˝OY .�cD
0
1/ satis�es

H i
�
Y; S.f �M/˝ L0 ˝OY .�cD

0
1/
�
D 0 for all i > 0:

Recall that due to the de�nition of the �ltration under non-characteristic inverse
image we have S.f �M/ ' f �S.M/˝ !Y=X . On the other hand, it is standard
that in the covering construction above we have that f�

�
L0 ˝OY .�cD

0
1/˝ !Y=X

�
contains L as a direct summand. �e desired vanishing follows from the projection
formula.
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