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Line, spiral, dense

Neil Dobbs

Abstract. Exponential of exponential of almost every line in the complex plane is dense in
the plane. On the other hand, for lines through any point, for a set of angles of Hausdor�
dimension one, exponential of exponential of a line with angle from that set is not dense
in the plane. �e third iterate of an oblique line is always dense.
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1. Introduction

In 1914, Harald Bohr and Richard Courant showed that for the Riemann zeta
function, if � 2 .1

2
; 1� , then �.� C iR/ D C , i.e., the image of any vertical line

with real part in .1
2
; 1� is dense [Boh, §4, p.271]. One hundred years on, we ask

what happens under the exponential map.
One may picture the exponential map, exp W z 7! ez 2 C , as mapping Cartesian

coordinates onto polar coordinates, since exp.x C iy/ D exeiy . It maps vertical
lines to circles centred on 0 and maps horizontal lines to rays emanating from
0 . �e map is in�nite-to-one and 2�i -periodic; preimages of a point lie along a
vertical line. Oblique (slanted) lines get mapped to logarithmic spirals.

Applying exponential a second time, what happens? See Figure 1. Circles
are compact, so their images are compact. Rays are subsets of lines, so they
get mapped into circles, rays or logarithmic spirals. Intriguingly, the image of a
logarithmic spiral under exponential is not obvious, and for good reason.

For p 2 C , ˛ 2 R , let L˛.p/ WD ¹p C t .i C ˛/ W t 2 Rº . Set L.p/ WD
¹L˛.p/ W ˛ 2 Rº , the family of non-horizontal lines through a point p 2 C ,
parametrised by ˛ 2 R . With this parametrisation, there is a natural one-
dimensional Lebesgue measure on the set L.p/ . It is equivalent to the measure
obtained when parametrising the family by angle (points on the half-circle).
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Line, spiral, what?

�eorem 1. Given p 2 C , for Lebesgue almost every ˛ 2 R ,

exp ı exp
�
L˛.p/

�
D C:

From the topological perspective, a property is generic in some space if it
holds for all points in a residual set, that is, a set which can be written as a
countable intersection of open, dense sets.

�eorem 2. For each p 2 C , the set ¹˛ 2 R W exp ı exp
�
L˛.p/

�
D Cº is residual

in R .

�eorem 3. �e image of an oblique line under exp ı exp ı exp is dense in C .

In other words, for each p 2 C , for every ˛ 2 R n ¹0º ,

exp ı exp ı exp
�
L˛.p/

�
D C:

Of course, every subsequent iterate of an oblique line is also dense.
In general, it is hard to determine whether a given line will have dense image

or not under exp ı exp. Certain ones do, however, and we obtain a concisely
de�ned, explicit, analytic dense curve. Let a 2 .0; 1/ be the binary Champernowne
constant (with binary expansion 0:11011100101 : : : ) or any other number whose
binary expansion contains all possible �nite strings of zeroes and ones. Let
p� WD log.2�a/C �

2
i and ˛� WD

log2
2�

.

�eorem 4. exp ı exp
�
L˛�.p�/

�
D C:

In �eorem 1 we obtained a full-measure set of parameters with dense image.
One may be tempted to think that all oblique lines would have dense image under
exp ı exp. However, this is not true, and to �eorem 1 there is the following
complementary statement.

�eorem 5. For each p 2 C and each open set X � R , the set®
˛ 2 X W exp ı exp

�
L˛.p/

�
¤ C

¯
has Hausdor� dimension 1 .
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Let Y denote the set of � 2 .1;1/ for which .�k/k�0 is not dense modulo 1 .
Kahane [Kah] proved that Y � R has Hausdor� dimension 1 ; however, in any
bounded interval, he only obtained dimension close to 1 . In Lemma 8, we establish
a connection between intersections of a logarithmic spiral with the imaginary axis
and density of the image of the spiral under exponential. �is allows us to improve
Kahane’s result a little.

Corollary 6. For each open interval I � .1;1/ , the set of � 2 I for which
.�k/k�0 is not dense modulo 1 has Hausdor� dimension 1 .

Remark: �e above-described phenomena are not unique to the exponential map,
the most fundamental of transcendental maps. Once one understands exponential,
extensions to maps such as z 7! sin.z/; exp.zn/; exp ı exp.z/ are not hard to
devise, but what of a general statement?
Remark: For a generic entire function of the complex plane, the image of the real
line is dense. Indeed, Birkho�1 [Bir] showed the existence of an entire function f
whose translates Tnf W x 7! f .x � n/ approximate polynomials in QŒx�C iQŒx�

arbitrarily well (on compacts). In particular, .Tnf /n2Z is dense in the (Fréchet)
space of entire functions with the topology of uniform convergence on compacts.
Hence, given an open set U of entire functions, there is some N 2 Z with
TNf 2 U . Since the translation operators Tn are continuous,

S
n2Z TnU is an

open dense set. Now let U be a countable basis of open sets for the topology.
�e set

XU WD
\
U2U

[
n2Z

Tn.U /

is residual. Consider g 2 XU . One readily checks that the translates .Tng/n2Z

enter each set in the basis and hence are dense in the space of entire functions.
In particular, the translates approximate all constant functions. Hence g.R/ D C ,
as required. �e fact that a generic curve has dense image does not tell one what
happens for a particular map or for a subfamily (for example, no logarithmic
spiral is dense). Besides Birkho�-style constructions and curves coming from
things resembling � -functions, we are unaware of other previously-known dense
analytic curves.

One can also ask (in the spirit of [BJ1, BJ2]) about the distributions
of the curves considered, in the following sense. Given ˛; p , let � W t 7!

exp ı exp.p C t .i C ˛// , so � parametrises exp ı exp of the line L˛.p/ . For
every measurable set A and T > 1 , let �T .A/ WD 1

2T
m.¹t 2 Œ�T; T � W �.t/ 2 Aº/ ,

where m denotes Lebesgue measure. �en �T is a probability measure. With

1�e author thanks P. Gauthier for a helpful conversation in this regard.
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the weak� -topology on the space of probability measures on C , we obtain the
following unilluminating result.

�eorem 7. For every oblique line L˛.p/ , the corresponding measures �T satisfy

lim
T!1

�T D
ı0

4
C
ı1

2
C
ı1

4
;

where ız denotes the Dirac mass at the point z .

We shall use Re.z/ and Im.z/ to denote the real and imaginary parts of a
complex number z . We denote one-dimensional Lebesgue measure by m and
denote the length of an interval I by m.I/ or by jI j . If † W t 7! exp.pCt .iC˛// ,
then d

dt
†.t/ D †.t/.iC˛/ . �erefore the spiral † has tangent of slope �˛ when

it intersects the imaginary axis.
�e proofs are provided in linear fashion.

2. Dense analytic curves

In this section we prove �eorems 1–3.

Proof of �eorem 1. Let f denote exp ı exp. Fix p and write L˛ for L˛.p/ .
Let

(1) XU WD
®
˛ W f .L˛/ \ U ¤ ¿

¯
:

Given a sequence .qn/
1
nD1 dense in C and a decreasing sequence of positive

reals .ın/1nD1 with ın ! 0C , let U WD ¹B.qn; ın/ W n � 1º . �en a set is dense
in C if and only if it has non-empty intersection with each U 2 U . Since U is
countable, if for each U 2 U , XU has full measure, then X1 WD

T
U2U XU has

full measure as a countable intersection of full-measure sets. Of course, for each
˛ 2 X1 , f .L˛/ is dense in C .

�us proving �eorem 1 reduces to showing that for any open ball U , XU
has full measure. We say a point x is an " -density point for a set X � R if
limr!0C

m.X\B.x;r//
m.B.x;r//

� " . By the Lebesgue density point theorem, almost every
point of X is a 1 -density point for X . On the other hand, if " > 0 and almost
every point in R is an " -density point for a set X � R , then the set of 1 -density
points for the complement of X has zero measure, so the complement has zero
measure, so X must have full measure. It therefore su�ces to prove that, given
a ball U , there exists " > 0 such that each ˛0 2 R n ¹0º is an " -density point
for XU . So let us do this.
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Figure 2
An open ball U , V D exp�1.U / , a vertical line H passing through V ,
S D exp�1.H/ and the projection �k onto a component Sk of S .

Let V WD exp�1.U / . �en V is an open set. Let H be a vertical line, with
real part h ¤ 0 , which intersects V , see Figure 2. Since exp is 2�i -periodic,
H \ V contains an open interval I and all 2�i -translates of I . In particular,
for any subinterval T � H of length at least 2� ,

(2) m.T \ V /=m.T / � m.I/=4�:

Now consider S D exp�1.H/ . If h > 0 then one connected component of S , S0
say, can be parametrised by


C W t 7!
1

2
log.t2 C h2/C i arctan

t

h

with 
C.R/ D S0 . If h < 0 then S0 can be parametrised by 
� W t 7! �iC
C.t/ .
Taking the derivative of 
C and 
� ,



96 N. Dobbs

(3) 
 0C.t/ D 

0
�.t/ D

t

t2 C h2
C i

h

t2 C h2
;

so the slope of 
˙ tends to 0 as jt j ! 1 . For k 2 Z , if ˛0 > 0 let
Sk WD S0 C 2k�i ; otherwise let Sk WD S0 � 2k�i . �en Sk for k 2 Z are
the connected components of S .

Let Wk WD Sk \ exp�1.V / . �e absolute value of the derivative of exp on S

is bounded below by jhj > 0 , so any segment of Sk of length at least 2�=jhj
gets mapped onto a segment of H of length at least 2� . �e distortion of exp
(by distortion, we mean the ratio of the absolute value of the derivative at any
two points) is bounded by e4�=jhj on each vertical strip of width 4�=jhj . By the
distortion bound and (2), for any segment B of Sk of length between 2�=jhj

and 4�=jhj ,

(4)
m.B \Wk/

m.B/
�

m
�
exp.B/ \ V

�
m
�
exp.B/

�
e4�=jhj

�
m.I/

4�e4�=jhj
:

Any segment B of Sk of length at least 2�=jhj can be divided into segments
of length between 2�=jhj and 4�=jhj , so (4) continues to hold for all segments
B of Sk of length at least 2�=jhj .

Let � W ˛ 7! pC i C ˛ . Let ˛0 2 R n ¹0º and let r0 D j˛0j=2 . For r 2 .0; r0/ ,
let Jr WD �.B.˛0; r// be the open line segment joining the points pC i C ˛0 � r
and pCiC˛0Cr . For some K � 1 , for every k � K , for each ˛ 2 B.˛0; r0/ , L˛
intersects Sk transversely (twice). For k � K , let �k denote the central projection
with respect to p from Jr0 to Sk (taking the �rst point of intersection). For
some K0 > K and each k � K0 , �k.Jr0/ is almost horizontal and the distortion
of �k on Jr0 is close to 1 , in particular it is bounded by 2 . Now simple
geometry entails that m.�k.Jr //=�kr ! 1 as k ! 1 so, for each r 2 .0; r0/ ,
there exists kr � K0 with m.�kr .Jr // > 2�=jhj . Let Xr WD Jr \ �

�1
kr
.Wkr /:

From (4) and the distortion bound of 2 , we deduce that m.Xr /=m.Jr / � " , for
" WD m.I/=8�e4�=jhj . For ˛ 2 ��1.Xr / , L˛ \Wkr ¤ ¿ so f .L˛/ \ U ¤ ¿: In
particular, ��1.Xr / � XU and

m
�
��1.Xr /

�
m
�
B.˛0; r/

� � ":
Noting that " depends only on U and h , we have shown that ˛0 is an " -density
point for XU for each ˛0 2 R n ¹0º .

Proof of �eorem 2. Fix p 2 C . Let .qn/1nD1 be a dense sequence in C and
let .ın/1nD1 be a decreasing sequence of positive reals with ın ! 0C . Let
U WD ¹B.qn; ın/ W n � 1º . As per (1), given an open set U , let

XU WD
®
˛ W exp ı exp

�
L˛.p/

�
\ U ¤ ¿

¯
:
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Since exp is continuous (so exp�2.U / is open) and the central projection is an
open map, XU is open. By �eorem 1, XU has full measure and thus is dense
and open for each open set U . Consequently, X1 WD

T
U2U XU is a countable

intersection of open, dense sets. As in the proof of �eorem 1, each point ˛ 2 X1
satis�es exp ı exp.L˛.p// is dense.

Proof of �eorem 3. We wish to show that the image of an oblique line under
exp ı exp ı exp is dense. Let us reprise the notation of the preceding proof, so U
is an open set, V D exp�1.U / , H a vertical line (not containing 0 ) intersecting
V , S D exp�1.H/ and Sk the connected components of S . Let v0 be a point
in H \V and let vj WD v0C2j�i , so vj 2 H \V for all j 2 Z . Let wkj denote
the preimage of vj in Sk , and write !j for the real part of wkj , noting that this
is independent of k . As j !1 , !j tends to C1 . �erefore the slope of the
line segment Zkj joining wkj to wkjC1 tends to 0 as j !1 (cf. (3)). Since H
is a vertical line, Sk lies in a horizontal strip of height � , and so


kj0 WD
[
j�j0

Zkj

is a curve, contained in a strip of height � , joining wkj0 to 1 .
For some r 2 .0; 1/ , B.vj ; r/ � V . Estimating via the derivative of

exp, we obtain B.wkj ;
r

2jvj j
/ � exp�1.V / for all large j , and similarly that

jwkjC1 � w
k
j j < 2�=jvj j < 1 . Setting ı WD r=4� , we deduce that

Bkj WD B
�
wkj ; ıjw

k
jC1 � w

k
j j
�
� exp�1.V /:

Simple geometry then entails that if � is a smooth curve with slope bounded in
absolute value by ı=2 which intersects the line segment Zkj and whose projection
onto the real line contains .!j ; !jC1/ , then � intersects Bkj . �is holds for all
j � j0 , for some large j0 , independent of k .

Now any curve in the half-plane ¹Re.z/ > !j0º whose imaginary part has
range at least 3� long must intersect a curve 
kj0 for some k . From this we
deduce that if �0 is a smooth curve contained in ¹Re.z/ > !j0º , with slope lying
in .ı=4; ı=2/ and of horizontal length at least 2C 12�=ı , then �0 must intersect
some Bkj . Indeed, there is a subcurve whose projection is .!j1 ; !j2/ (say) and
has horizontal length at least 12�=ı . By the slope estimate, the range of its
imaginary part is at least 3� long, so it intersects some 
kj0 , so it intersects some
Zkj , with j1 � j < j2 , and so it intersects Bkj .

Given an oblique line, under exponential it gets mapped to a spiral † , say.
Every revolution, the spiral has two stretches where the slope lies in .ı=4; ı=2/ ,
one in the right half-plane, one in the left half-plane. Let .†n/n2Z denote
the sequence of those stretches lying in the right half-plane, ordered so that the
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distance of †n from 0 increases with n . For n large enough, Re.†n/ � .!j0 ;1/
and the horizontal length of †n is arbitrarily large, in particular it can be taken
bigger than 2C 12�=ı . �erefore it intersects some Bkj .

Since exp of the line intersects Bkj , exp ı exp ı exp of the line intersects U .
�is holds for every open set U so the theorem is proven.

3. An explicit dense curve

Given R > 1 , let AR denote the annulus B.0;R/ n B.0; 1=R/ , the image of
the vertical strip HR WD ¹z W Re.z/ 2 Œ� logR; logR/º under exp.

Lemma 8. Let † be a logarithmic spiral whose intersections with the imaginary
axis occur at points .wk/k2Z , ordered by distance from 0 . �en exp.†/ is dense
in C if and only if .wk=2�i/k�0 are dense modulo 1 .

Proof. Denote by †k the connected component of the † \HR containing wk .
�ere exists k0 for which, for all k � k0 , †k D †k0 , which spirals all the way
in to 0 . �e set exp.†k0/ has �nite length and is not dense anywhere. Of course
this then holds for exp.†k/ for each k , so we only need to consider positive k .

If † D exp.L˛.p// say, denote by Zk the intersection of HR and the line
which passes through wk with slope �˛ . �en the Hausdor� distance of †k to
Zk decreases to 0 as k !C1 .

Taken sequentially, the following statements are (clearly) equivalent.

� .wk=2�i/k�0 is dense modulo 1 .

� the union of all 2�i -translates of ¹Zkºk�0 is dense in HR .

� the union of all 2�i -translates of ¹†kºk�0 is dense in HR .

�
S
k�0 exp.†k/ is dense in AR .

� exp.†/ is dense in C .

�is completes the proof of the lemma.

Proof of �eorem 4. Let a 2 .0; 1/ have a binary expansion containing all
possible strings of zeroes and ones; let p WD log.2�a/C �

2
i and ˛ WD log 2=2�

as per �eorem 4. By choice of ˛ , each time the imaginary part of the line
L˛.p/ increases by 2� , the real part increases by log 2 . �us the intersections
of the spiral † WD exp.L˛.p// with the positive imaginary axis .iRC ) occur at
values 2�a2ki , k 2 Z .

By choice of a , for all k0 the set ¹2kaºk�k0 is dense modulo 1. Now apply
Lemma 8.
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4. Hausdor� dimension of the complementary set of parameters

In this section we prove �eorem 5 and Corollary 6. �e Mass Distribution
Principle is a standard source of lower bounds for the Hausdor� dimension. It is
infused into the following lemma.

Lemma 9. Let J be a non-degenerate interval, let Y � J and let � be a
measure with �.Y / > 0 . For each n � 1 , let Pn be a �nite partition of J into
intervals, each of length at most 2�n . Let " 2 .0; 1/ , let ˇ > 1 and suppose

(5) �.P / � ˇ.1C "/njP j

for every P 2 Pn . �en the Hausdor� dimension of Y is at least 1 � 2" .

Proof. For r 2 .0; 1/ , let n WD d� log2 re . Let x 2 J . If P 2 Pn then
jP j � 2�n � r , so if P \ B.x; r/ ¤ ¿ then P � B.x; 2r/ . �e total length
of elements of Pn intersecting B.x; r/ is thus at most 4r . Summing (5) over
such elements, we deduce that

�
�
B.x; r/

�
=ˇ � 4r.1C "/n � 4r.1C "/e� log.1C"/ log r= log2 � 8r1�log.1C"/= log2:

Now log 2 > 1
2

and log.1C "/ < " , so

�
�
B.x; r/

�
=8ˇ � r1�2":

If U1; U2; : : : is any countable cover of Y by balls of radius at most 1 , thenX
j�1

jUj j
1�2"
�

X
j�1

�.Uj /=8ˇ � �.Y /=8ˇ > 0:

Since this positive lower bound does not depend on the cover, the Hausdor�
dimension of Y is at least 1 � 2" , as required.

Together with the following lemma, one can glean an insight into the means
of proving �eorem 5.

Lemma 10. Let I be an open subinterval of the imaginary axis and let
OI WD

S
k2Z.2k�i C I / be the union of all 2�i -translates of OI . Suppose OI

is disjoint from B.0; 1/ . Let p 2 C . Let Y be a compact subset of R and
suppose that exp.L˛.p//\ OI D ¿ for every ˛ 2 Y . �en there is an open set U
with exp ı exp.L˛.p// \ U D ¿ for each ˛ 2 Y .

Proof. Di�erentiating t 7! exp.pC t .iC˛// gives .iC˛/ exp.pC t .iC˛// . �us
exp.L˛.p// has slope �˛ at each intersection with the imaginary axis. Moreover,
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since Y is bounded, there is a constant C > 1 such that the slope of exp.L˛.p//
is bounded in absolute value by C in the region²

z W jRe.z/j <
1

2
; jIm.z/j >

1

2

³
:

Let D denote the body of the rhombus with diagonal I and sides of slope ˙C ,
and cD the union of all 2�i -translates of D . �en exp.L˛.p// \ cD D ¿
for each ˛ 2 Y . Let x be the midpoint of I and denote by U the open set
exp.B.x; jI j=4C / . By construction, B.x; jI j=4C / � D so exp�1.U / � cD . �us
exp ı exp.L˛.p// \ U D ¿ for each ˛ 2 Y , as required.

Now we can prove �eorem 5, which states that for each p 2 C and each open
set X � R , the set ¹˛ 2 X W exp ı exp.L˛.p// ¤ Cº has Hausdor� dimension 1 .

Proof of �eorem 5. We can assume 0 … X . Writing � for the map sending
points to their complex conjugates, exp ı � D � ıexp and �.L˛.p// D L�˛.�.p//
so, without loss of generality (replacing p by �.p/ and X by �X , if necessary),
one can assume X � RC .

Given X and p , let X 0 D .˛0; ˛1/ be a non-degenerate subinterval of X
with 0 < ˛0 < ˛1 . Let � W ˛ 7! pC i C ˛ and let J be the line segment �.X 0/ .
For k 2 Z , let Sk WD .k C 1

2
/�i CR . �en exp.Sk/ is a vertical ray leaving 0 ,

heading up if k is even and down if k is odd. Let �k be the central projection
with respect to p from J to Sk , so

�k.p C i C ˛/ D Re.p/C
��
k C

1

2

�
� � Im.p/

�
˛ C i

��
k C

1

2

�
� � Im.p/

�
:

In particular, as a map from J to Sk , �k is a�ne with derivative

D�k.z/ D
�
k C

1

2

�
� � Im.p/

for every z 2 J . �ere exists a (possibly negative) k0 2 Z such that, for all
k � k0 , �k.J / � ¹z W Re.z/ < 0º , and thus, for k � k0 , exp ı�k.J / � B.0; 1/ .
Writing  k WD exp ı�k on J ,  k maps J onto a subinterval of the imaginary
axis, see Figure 3. As �k is a�ne, the distortion of  k on an interval W � J
is bounded by exp.j�k.W /j/ .

We have jD kj D jD exp.�k/jjD�kj D jD�kj exp.Re.�k// , so

(6) jD k.p C i C ˛/j D

ˇ̌̌̌�
k C

1

2

�
� � Im.p/

ˇ̌̌̌
eRe.p/e.

�
2 �Im.p//˛ek�˛:

�us for k > jIm.p/j=� ,

(7)
ˇ̌
D kC1.p C i C ˛/=D k.p C i C ˛/

ˇ̌
> e˛� ;
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 k.J /

 kC1.J /

 kC2.J /
exp.L˛1.p//

exp.L˛0.p//

1

Figure 3
Two logarithmic spirals (exp.L˛0.p// and exp.L˛1.p// , drawn with p D 0 ) and the
increasing (in length) subintervals  k.J /;  kC1.J /;  kC2.J / of the imaginary axis.

so the derivatives grow exponentially. Moreover, there exists C 2 .0; 1/ such that,
for each k � k0 with p … Sk ,

(8) jD kj > C:

Remark: Choice of the constant N : If ˛ > 0 is small, then there is not much
expansion at each revolution. We shall consider blocks of N (half-) revolutions at
a time, for large integers N . Let I be small open sub-interval of the imaginary
axis and let OI WD

S
k2Z.2k�i C I / . Let " > 0 and suppose that V is a

subinterval of J , that  j .V / \ OI D ¿ for j � nN and that  nN .V / � " . We
shall obtain estimates for the points in V not meeting OI for j � .n C 1/N .
To continue by induction, we will need to regain the starting condition length
� " . By (7), j nNCj .V /j � ej˛0�" , and for j � N the length is bounded by
L WD j .nC1/N .V /j . Note L � eN˛0�" . �e number of connected components
of the set of points z 2 V with  nNCj .z/ … OI for j D 1; : : : ; N is bounded
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by N.L C 2/ [if L > 2� , one can improve the bound to NL=2� C 1 ]. �e
proportion of points z 2 V with  nNCj .z/ … OI for j D 1; : : : ; N is at least
1 � 2N jI j=" , if one assumes bounded distortion giving a factor of 2 . If we
remove all connected components whose image under �.nC1/N is less than " ,
the remaining proportion is at least 1 � 2N jI j=" � 2"N.LC 2/=L . If one takes
" D N�2 , jI j D N�4 and N large, then L > 1 and the proportion is at least
1 � 8=N , which can be made as close to 1 as we desire. To get good starting
conditions for a forthcoming induction argument, N may need to be taken larger
again, and jI j slightly smaller.

Let an integer N > 2jk0j C 8� be large enough that

� N� > 2jIm.p/j ;

� eN�˛0=2 > N 4 ;

� NeRe.p/ > 1I

� 1=N 2 < jJ j .

By (6) and choice of N , for all z D p C i C ˛ 2 J ,

(9) jD N .z/j > .N�=2/e
Re.p/eN�˛0=2 > N 4:

From (7) and choice of N , we obtain

(10)
ˇ̌
D .nC1/N .z/=D nN .z/

ˇ̌
> N 4

for each n � 1 and z 2 J .
Let M WD supz2J jD N .z/j , so for any subinterval J 0 � J , j N .J 0/j �

M jJ 0j . Let I be an open subinterval of the imaginary axis of length N�4C=M

whose 2�i -translates are disjoint from exp.p/ and from B.0; 1/ . Let OI WDS
k2Z.2k�i C I / . For k � k0 ,  k.J / � B.0; 1/ , so  k.J / \ OI D ¿ .
Let J 0 be a subinterval of J of length 1=N 2 . Let Jn be the set of points

z 2 J 0 for which  k.z/ … OI for all k � n . Note that Jk0 D J 0 .
We now deal with the steps from k0 to N , to get a good starting interval. We

shall later use induction to pass from nN to .nC 1/N . For k D k0 C 1; : : : ; N ,

j�k.J
0/j < jJ 0j

��
N C

1

2

�
� � Im.p/

�
< N�2

�
.N C 1/�=2

�
< �=N:

Hence the distortion of  k is bounded by e�=N < 2 . For k D k0 C 1; : : : ; N ,
j k.J

0/j � j N .J
0/j and by (9), j N .J 0/j > N 4=N 2 D N 2 . For k � N ,

the number of connected components of OI intersecting  k.J
0/ is bounded by

j N .J
0/j ; it follows that m. OI \ k.J 0// � j N .J 0/jjI j: Using (8) and then choice

of M and I ,
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m.JN / D jJ
0
j �m

�
J 0 \

N[
kDk0C1

 �1k . OI /
�

� jJ 0j � .N � k0/j N .J
0/jjI j=C

� jJ 0j � .N � k0/jJ
0
jN�4

> jJ 0j=2;

say. Meanwhile, JN has at most .N � k0/j N .J
0/j connected components.

�erefore, at least one connected component V of JN must satisfy

jV j > jJ 0j=3.N � k0/j N .J
0/j

and, more importantly (by the distortion bound of 2 ),

j N .V /j > 1=2.N � k0/ > 1=N
2:

Let W1 WD ¹V º .
Now we repeat the argument for general intervals. Let us de�ne Wn inductively

as follows. For W 2 Wn , let AW denote the (�nite) collection of connected
components A of J.nC1/N \W for which j .nC1/N .A/j � 1=N 2: Let

WnC1 WD [W 2Wn
AW :

Note W1 D ¹V º is non-empty. �e set

ƒ WD
\
n�1

[
W 2Wn

W

is a closed subset of J , as a countable intersection of �nite unions of closed
sets. For z 2 ƒ , z 2 Jk for all k , so the image of the line passing through p

and z is a spiral which avoids OI . We shall show that ƒ is non-empty and has
dimension at least 1 � 10=N .

For W 2 Wn , let W C WD [A2AW A: In order to apply Lemma 9, we will
need to show that m.W C/=m.W / is close to 1 ; in particular it will be at least
1 � 4=N .

Since W 2Wn , j nN .W /j � 1=N 2 . Let k satisfy nN � k.nC 1/N . By (7),
 k.W / has length at least 1=N 2 . Hence

(11) m
�
OI \  k.W /

�
=j k.W /j � N

2
jI j:

Now

jD�kj=jD�nN j D

��
k C

1

2

�
� � Im.p/

�
=

��
nN C

1

2

�
� � Im.p/

�
< 4:

Since  nN .W / \ OI D ¿ , one obtains j nN .W /j � 2� and �nN .W / has length
(crudely) bounded by 1=8 . Hence j�k.W /j is bounded by 1=2 . �erefore the
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W

WW

W

W

W \  �1
nNC1

. OI /

W \  �1
.nC1/N

. OI /

W \  �1
.nC1/N�1

. OI /

Z D W n
Sn.NC1/
kDnNC1

 �1
k
. OI /

Figure 4
A schematic drawing of Z D W n

S.nC1/N
kDnNC1

 �1
k
. OI / showing

multiple copies of W . Connected components of W \ �1
k
. OI / are tiny,

so most of Z will consist of relatively large connected components.

distortion of  k on W is bounded by e1=2 < 2 . We deduce from this and (11)
(N times, for k D nN C1; : : : ; .nC1/N ) that the set Z WD J.nC1/N \W satis�es
m.Z/=jW j � 1 � 2N 3jI j . Meanwhile, by (10),

j .nC1/N .W /j � N
4
j nN .W /j � N

4=N 2
D N 2:

[As an aside, note that the image is long and therefore contains many components
of OI , so elements of AW will have length much less than jW j=2 .] �e set Z (see
Figure 4) has at most N j .nC1/N .W /j connected components. �ose of length at
least 2jW j=j .nC1/N .W /jN 2 get mapped by  .nC1/N onto an interval of length
at least 1=N 2 , by bounded distortion, so they are contained in AW . Knowing a
bound for the number of connected components, we deduce that those of length at
most 2jW j=j .nC1/N .W /jN 2 have measure bounded by 2jW j=N . Consequently,

m.W C/=m.W / � 1 � 2N 3
jI j � 2=N

> 1 � 4=N;

noting jI j � 1=N 4:

Since jJ 0j D 1=N 2 , jV j < 1=2 for (the unique interval) V 2 W1 . It follows
that for each W 2Wn , jW j � 2�n .

Recall we wish to construct a measure on ƒ D \n�1 [W 2Wn
W , in order

to estimate its dimension using Lemma 9. For each n � 1 , let us introduce
a measure �n on

S
W 2Wn

W . Let �1 be Lebesgue measure restricted to the
unique interval V 2W1 . De�ne inductively �n , for n � 2 , as follows. For each
W 2Wn�1 , set
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(12) �n WD
m.W /

m.W C/
�n�1

on W C , and �n WD 0 on W nW C . As de�ned, �n.W C/ D �n�1.W / for each
W 2 Wn�1 , whence �k.W / D �n.W / for all k � n and each W 2 Wn . Since
also maxW 2Wn

jW j � 2�n , there exists a unique (weak) limit measure

� WD lim
n!1

�n

and � is supported on ƒ with �.ƒ/ D �n.J 0/ D jV j . We need to check the limit
measure is well-behaved. In particular, it should not have atoms. By induction
using (12),

�n.W / � jW j.1 � 4=N/
�nC1

for W 2 Wn . �us for z 2 ƒ and n � 1 , there are at most two elements
W1; W2 2Wn intersecting all tiny neighbourhoods of z , and

�n.Wi / � jWi j.1 � 4=N/
�nC1

� 2�n=2C1

for i D 1; 2 . Hence �k.Wi / � 2�n=2C1 for all k � n , and so �.¹zº/ � 2�n=2C2

for each n ; therefore � is continuous (i.e. it has no atoms). Since � is continuous,
�.W / D �k.W / for each W 2Wn and k � n .

We are nearly at a stage where we can apply Lemma 9. For each n , let Qn
denote a �nite partition of J 0 n

S
W 2Wn

W into intervals such that each Q 2 Qn
has jQj < 2�n . For each Q 2 Qn , �k.Q/ D 0 for all k � n , hence �.Q/ D 0

(using continuity of � ). Let

Pn WD Qn [Wn;

so Pn is a partition of J 0 . From the construction,

�.P / � jP j.1 � 4=N/�n � jP j.1C 5=N/n

for each n � 1 and P 2 Pn . By Lemma 9, the Hausdor� dimension of ƒ is at
least 1 � 10=N . Recalling ƒ � J 0 , set Y WD ��1.ƒ/ � X 0 . Applying Lemma 10
to Y , we obtain that for each ˛ 2 Y , exp ı exp.L˛.p// is not dense. As � is a
translation it preserves Hausdor� dimension, and the dimension of Y is at least
1� 10=N . But N could be taken arbitrarily large (of course, I and therefore Y
depend on choice of N ). Noting that any set with subsets of dimension arbitrarily
close to 1 has dimension at least 1 , the proof of �eorem 5 is complete.

Proof of Corollary 6. Taking p D 2�i , the intersections of the spiral with the
positive imaginary axis occur at points exp.2�˛k/2�i , k 2 Z . From �eorem 5
and Lemma 8, we deduce that the set of ˛ in any open interval X for which
exp.2�˛k/ is not dense modulo 1 has dimension 1 , from which the result follows
(taking X D .log I /=2� ).
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Remark: One could use Lemma 8 to prove �eorem 1 (using Koksma’s
theorem [Kok]), however the lemma cannot be used to prove �eorem 3, neither
does �eorem 3 provide information about distributions of sequences modulo 1 .

5. Distribution

Given ˛; p and the corresponding spiral † W t 7! exp.p C t .i C ˛// , we set
� WD exp ı† , a parametrisation of exp ı exp of the line L˛.p/ . We now study
the distribution of �.t/ . For every measurable set A and T > 1 , let

�T .A/ WD
1

2T
m
�
¹t 2 Œ�T; T � W �.t/ 2 Aº

�
;

where m denotes Lebesgue measure. �en �T is a probability measure.

Proof of �eorem 7. We can assume without loss of generality that ˛ > 0 . Since
limt!�1 j†.t/j D 0;

lim
t!�1

�.t/ D 1:

Let us de�ne intervals

ICn WD 2n� C
�
� �=2C 1=n � Im.p/; �=2C 1=n � Im.p/

�
:

�e intervals are chosen so that for t 2 ICn and n large,

Re
�
†.t/

�
� sin.1=n/ exp

�
Re.p/C 2n�˛ � �=2 � Im.p/

�
� 1;

so
lim
n!1

j�.ICn /j D C1:

Setting I�n WD I
C
n C � , we similarly obtain that

lim
n!1

j�.I�n /j D 0:

Noting that the intervals I˙n have length approaching � , and the spaces between
them have length � 2=n , it follows that

lim
T!1

�T D ı1=2C
ı0 C ı1

4
;

as required.
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