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Some noncoherent, nonpositively curved Kähler groups

Pierre Py

Abstract. If � is any nonuniform lattice in the group PU.2; 1/ , let � be the quotient of �
obtained by �lling the cusps of � (i.e. killing the center of parabolic subgroups). Assuming
that such a lattice � has positive �rst Betti number, we prove that for any su�ciently
deep subgroup of �nite index �1 < � , the group �1 is noncoherent. �e proof relies on
previous work of M. Kapovich as well as of C. Hummel and V. Schroeder.
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1. Introduction

A group G is called coherent if every �nitely generated subgroup of G is
�nitely presented. �is notion has been studied within various classes of groups
and has a long history. For instance, it is easy to see that the fundamental group
of a closed orientable surface is coherent, and Scott proved that the fundamental
group of any 3 -manifold is also coherent [Sco]. On the other hand, it has been
known for a long time that the direct product of two non-Abelian free groups is
not coherent, see [Gru]. �is implies for instance that SLn.Z/ is not coherent if
n � 4 whereas the coherence of SL3.Z/ is an old open problem, �rst raised by
Serre, see [Cos, Wal]. For other examples of incoherent groups the reader can
consult Wise’s article [Wis].

In [Kap2], Kapovich conjectured that any lattice � in a semisimple Lie group
not locally isomorphic to SL2.R/ or SL2.C/ is not coherent (the conjecture for
lattices in the isometry group of real hyperbolic spaces of dimension at least
4 is due to Wise). Kapovich proved this conjecture for many rank 1 lattices,
see [Kap2] for a precise statement as well as [BM, KP, KPV, Pot] for earlier
results which motivated the conjecture. He proved in particular the following
statement:
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If � is a cocompact lattice in the isometry group of the complex hyperbolic
plane and if vb1.�/ is positive, then � is noncoherent.

Here vb1.�/ denotes the virtual �rst Betti number of � , i.e. the supremum
of the �rst Betti numbers of �nite index subgroups of � . �is result implies
in particular that any cocompact arithmetic lattice of the simplest type in the
group PU.n; 1/ of holomorphic isometries of the complex hyperbolic space of
dimension n � 2 is noncoherent.

In this note we will see that the arguments of Kapovich can be used to give
other examples of aspherical complex surfaces with noncoherent fundamental
groups. �e fundamental groups of the surfaces we will be dealing with are
closely related to, but di�erent from, complex hyperbolic lattices (and hence we
will say nothing new about Kapovich’s conjecture). Before stating our result, we
recall classical facts concerning non-uniform lattices in the group PU.2; 1/ and
their parabolic subgroups. We will use freely the notions of elliptic, parabolic and
hyperbolic isometries for elements of PU.2; 1/ . For a de�nition of these notions
in the context of CAT.0/ spaces, which applies in particular to symmetric spaces
of noncompact type, we refer the reader to [BH, II.6].

So let � � PU.2; 1/ be a non-uniform lattice. Let � be a point in the
boundary of the complex hyperbolic plane H2

C and let H� be a �xed horosphere
centered at � inside H2

C . Recall that H� can be identi�ed with the 3 -dimensional
Heisenberg group, that we will simply denote by N . Under this identi�cation,
and using the embedding

H� ' N ,! H2
C;

the metric of H2
C induces a left-invariant metric on N . �e isometry group

Iso.H�/ of this metric is isomorphic to a semidirect product of the form N ÌK
where K is a compact group. �e point � is called a parabolic point for � if
the stabilizer �.�/ of � inside � contains a parabolic isometry. In this case, any
element in �.�/ � ¹idº is parabolic or elliptic, the group �.�/ is a lattice in
the group Iso.H�/ and is called a parabolic subgroup of � . For all of this, we
refer the reader to [GR, HS]. It is known that the intersection of �.�/ with the
normal subgroup N G Iso.H�/ has �nite index in �.�/ [Aus].

De�nition 1. We will say that the lattice � has nice cusps if each parabolic
subgroup �.�/ is actually contained in the normal subgroup N G Iso.H�/
(following the terminology of [Hum], we also say that the parabolic isometries
of � have no rotational part).

It is well-known that any nonuniform lattice � < PU.2; 1/ has a �nite index
subgroup with nice cusps; the reader will �nd a proof of this fact in [Hum] for
instance. If such a lattice � is torsion-free and has nice cusps, the ends of the
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manifold H2
C=� are di�eomorphic to the product of an interval by a nilmanifold.

In this case we will denote by � the quotient of � by the normal subgroup
generated by the centers of all parabolic subgroups of � . �e group � is the
fundamental group of the natural toroidal compacti�cation of the open complex
surface H2

C=� . We will spend some time describing this compacti�cation in
Section 2. We will sometimes informally refer to the group � as the �lling of
the lattice � . We can now state the:

Main �eorem. Let � < PU.2; 1/ be a torsion-free nonuniform lattice with nice
cusps. Assume that b1.�/ is positive. �en, there exists a �nite set F � � of
parabolic isometries such that for any �nite index normal subgroup �1 G � with
�1 \ F D ¿ , the group �1 is not coherent.

As the reader will see, the strategy of the proof is very similar to the one
used by Kapovich to prove the result mentioned earlier about cocompact lattices
in PU.2; 1/ . �e main new ingredients we will need are a result of Hummel and
Schroeder saying that the �lling �1 appearing in the theorem is the fundamental
group of a nonpositively curved Riemannian manifold, and Poincaré’s reducibility
theorem for Abelian varieties.

Let us also mention that every arithmetic nonuniform lattice in PU.2; 1/ has
positive virtual �rst Betti number according to a theorem by Shimura [Shi].
Hence every such lattice has �nite index subgroups satisfying the hypothesis of
the theorem. One can obtain other examples in a more geometric manner thanks
to the work of Deligne and Mostow [DM]; indeed among the lattices constructed
by them, one can �nd nonunifom lattices in PU.2; 1/ for which the corresponding
complex hyperbolic orbifold admits a holomorphic map to a hyperbolic Riemann
surface and thus has positive �rst Betti number. We refer the reader to [Der] for
a study of certain holomorphic maps between Deligne-Mostow quotients.

�e text is organized as follows. In Section 2, we recall classical facts
concerning the compacti�cation of �nite volume quotients of the complex
hyperbolic space and in particular we recall the results from [HS]. In Section 3,
we describe Kapovich’s strategy to study the coherence of fundamental groups of
aspherical Kähler surfaces with positive �rst Betti number. Finally, we conclude
the proof in Section 4, using the description of Abelian subgroups of rank 2 of
the �llings of nonuniform lattices in PU.2; 1/ , as well as Poincaré’s reducibility
theorem.
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2. Cusp closing after Hummel and Schroeder

We �rst state some classical results concerning cusps of complex hyperbolic
manifolds of �nite volume and their compacti�cation by Abelian varieties. All the
results that we will discuss in this section remain true for non-uniform lattices in
PU.n; 1/ for any n � 2 ; however we only state them in the case n D 2 since this
is the case we are dealing with in this article. �ese results are well-known and
can be found for instance in [HS] or [Mok]. One important point here is that this
discussion is independent of the arithmeticity of the lattices under consideration.
We follow the presentation and notations from [HS].

We recall brie�y the de�nition of the complex hyperbolic plane H2
C . We

consider the vector space C3 endowed with the Hermitian form de�ned by:

hz; wi D z1w1 C z2w2 � z3w3:

�e space H2
C is the open subset of P .C3/ made of lines which are negative for

the form h�; �i ; its boundary @H2
C is the subset of P .C3/ made of isotropic lines.

�e space H2
C carries a PU.2; 1/-invariant Kähler metric of negative curvature

for which the visual boundary is naturally identi�ed with @H2
C . We assume that

the metric is normalized to have constant holomorphic sectional curvature equal
to �4 .

Let � 2 @H2
C be a point in the boundary of the complex hyperbolic plane

H2
C . Let �t be the gradient �ow of the negative of any Busemann function

associated to � . Concretely, for p 2 H2
C and t 2 R , the point �t .p/ is the

point at distance t from p on the oriented geodesic going from p to � . Finally,
let N be the unipotent radical of the stabilizer of � in the group PU.2; 1/ ;
this is a simply connected nilpotent Lie group isomorphic to the real Heisenberg
group. A down-to-earth description of N can be obtained as follows. Pick a basis
.v1; v2; v3/ of C3 such that:

(1) the vector v1 spans the line � ,

(2) the vectors v1 and v2 are isotropic and satisfy hv1; v2i D 1 ,

(3) the vector v3 satisfy hv3; vi i D ıi3 for i D 1; 2; 3 .

Representing linear transformations of C3 by their matrices in the basis
.v1; v2; v3/ , one checks that the group N can be identi�ed with the group
of 3 � 3 matrices with complex entries of the form:

(1)

0B@ 1 ˇ �v

0 1 0

0 v 1

1CA
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where ˇ and v are complex numbers satisfying 2Re.ˇ/C jvj2 D 0 . Hence for
s 2 R and v 2 C we will denote by g.s; v/ the matrix above with ˇ D �jvj

2

2
Cis ,

i.e.

(2) g.v; s/ D

0B@ 1 �jvj2

2
C is �v

0 1 0

0 v 1

1CA :
�e center of N is the group of matrices of the form g.0; s/ for s 2 R . We will
denote by n the Lie algebra of N .

We now �x a base point o in H2
C . �e map

(3) R �N ! H2
C

sending .t; n/ to �t .n � o/ is a di�eomorphism. We will often identify H2
C and

R�N using this map. Let � be the scalar product on n induced by the embedding
n 7! n � o , let z be the Lie algebra of the center of N and r the orthogonal of z

for � . If a and b are positive real numbers, let �a;b be the scalar product on
n which also makes z and r orthogonal, coincides with a2� on r � r and with
b2� on z � z . �e pull-back of the metric of H2

C to R �N has the form:

dt2 ˚ �e�t ;e�2t :

In this expression, the scalar product �e�t ;e�2t on n is identi�ed with a left-
invariant metric on N .

�e following well-known proposition describes the structure of the quotient
of H2

C (or of a horoball of H2
C centered at � ) by a cyclic subgroup of the center

of N . We refer the reader to [Mok] for instance for its proof.

Proposition 1. Let ` be a positive real number. �e quotient R� hg.0; `/inN is
biholomorphic to the open subset O of C2 de�ned as follows:

O D
°
.v; w/ 2 C2; 0 < jwj < e

��jvj2

`

±
:

�is identi�cation can be chosen so that the following properties hold:

(1) �e projections of horoballs centered at � in R � hg.0; `/inN corresponds
to subsets of the form OC WD ¹.v; w/ 2 C2; 0 < jwj < Ce

��jvj2

` º for some
constant C 2 .0; 1/ .

(2) �e action of an element g.v0; s0/ by translation on N corresponds to the
following di�eomorphism of O :

(4) .v; w/ 7!
�
v C v0; e

2i�s0��jv0j
2�2�v�v0

` w
�
:
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We also add that the foliation de�ned by v D cst in the coordinate system
.v; w/ above has an intrinsic meaning: if one lifts this foliation to H2

C , then
the leaf through a point p is the complex geodesic containing the real geodesic
Œp; �� .

Consider now a lattice ƒ < N . Let ` > 0 be such that the center Z.ƒ/
of ƒ is generated by g.0; `/ . Identify the quotient H2

C=Z.ƒ/ with the open
set O � C2 appearing in Proposition 1. �e group ƒ=Z.ƒ/ acts on O , the
projection of an element g.v0; s0/ acting by formula (4). �is group also projects
injectively into N=ŒN;N � ' C , its image is a lattice denoted by A . �e quotient
Oƒ of O by this action admits a submersion onto the elliptic curve C=A , whose
�bers are punctured discs. One can complete Oƒ by considering the open seteO D ¹.v; w/; jwj < e ��jvj2` º . �e action of ƒ=Z.ƒ/ on O extends to an action
on eO ; the quotient eO ƒ of eO by this action is a disc bundle over the elliptic
curve C=A . One can do the same construction replacing H2

C at the beginning
by a horoball and replacing the open set O by the open set OC appearing in
Proposition 1 for a suitable constant C .

Until the end of Section 2, all the lattices of PU.2; 1/ that we consider are
assumed to be torsion-free. Let now � < PU.2; 1/ be a nonuniform lattice with
nice cusps. By compactifying each cusp of H2

C=� by the process described above,
one obtains a compact complex surface that we will denote by X� , which is the
disjoint union of H2

C=� and �nitely many elliptic curves. �is compacti�cation
is canonical. Moreover, the fundamental group of X� is naturally isomorphic to
the group � de�ned in the introduction.

We now state some of the main results from [HS]:

(1) First, the complex surface X� admits a Kähler metric, see �eorem 7 in [HS].

(2) Second, if � is �xed, there exists a �nite set F of parabolic isometries of �
such that if �1 is a �nite index normal subgroup of � whose intersection
with F is empty, then X�1 admits a Riemannian metric h of nonpositive
curvature, which has moreover the following property. �e sectional curvature
of h along any 2 -plane P � TxX�1 is negative if x does not lie on one
of the compactifying elliptic curves; these elliptic curves are �at and totally
geodesic. See [HS, §3], in particular Proposition 3.3 and Remark 1 on pages
293–294.

Remark 1. As for the original surface X� , it always carries the structure of a
nonpositively curved orbifold, see [HS]. Note also that X� need not be aspherical
if one does not replace at �rst � by a deep enough �nite index subgroup,
see [DiCS, Hir].
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Remark 2. If �1 is a �nite index normal subgroup of � with F \�1 D ¿ , and
if �2 < �1 is a subgroup of �nite index, not necessarily normal, then the proof
of Hummel and Schroeder also shows that X�2 carries a metric of nonpositive
curvature with the same properties as above. Consequently, if b1.�/ is positive,
the result of our main theorem will also apply to the �lling �2 .

We will say that a lattice �1 < PU.2; 1/ has very nice cusps if it has nice cusps
as in De�nition 1 and if X�1 carries a nonpositively curved Riemannian metric
with all the properties from the paragraph above. Using the residual �niteness of
lattices, it is easy to see that any nonuniform lattice in PU.2; 1/ has �nite index
subgroups which are lattices with very nice cusps.

Let us say a word about the proof of these results: any horoball of H2
C is

di�eomorphic to .a; b��N . Hummel and Schroeder consider in [HS] Riemannian
metrics on .a; b��N of the form h�; �if;g WD dt2˚�f .t/;g.t/ where f and g are
smooth positive functions. Recall here that �f .t/;g.t/ is the left-invariant metric
on N obtained by rescaling � by f .t/2 on z and by g.t/2 on r . If f and
g coincide with one of the model functions ˛e�t and ˛2e�2t near t D b , one
can glue isometrically .a; b� � N endowed with this metric to the exterior of a
horoball. �is metric is also invariant by left translations on the N factor, one can
thus consider it as a metric on any (truncated) cusp of the form .a; b��ƒnN for
a lattice ƒ < N . One can then impose conditions on f and g �rst to guarantee
that this metric extends smoothly to the compacti�ed cusp and then to guarantee
that it is either Kähler or nonpositively curved (but one cannot do both at the
same time). We refer the reader to [HS, §3] for more details.

�e only consequences of Hummel and Schroeder’s result that we will need is
that if � has very nice cusps, then X� is aspherical and the Abelian subgroups
of its fundamental group are understood, as shown by the following proposition:

Proposition 2. Let � < PU.2; 1/ be a lattice with very nice cusps. Let
i W Z2 ! �1.X�/ ' � be an injective homomorphism. �en i.Z2/ is conjugated
to a subgroup of the fundamental group of one of the totally geodesic elliptic
curves in X� �H2

C=� .

Proof. Consider the action of � on the universal cover eX� of X� , endowed
with the lift of a nonpositively curved Riemannian metric as above. By [BH,
II.6.10], every element of � is a semisimple isometry of eX� . By the �at
torus �eorem [BH, II.7.1], the group i.Z2/ must preserve a totally geodesic �at
R2 ,! eX� . But since Hummel and Schroeder’s Riemannian metric has negative
curvature in the open set H2

C=� � X� , this �at must be contained in the inverse
image of one of the elliptic curves from X� � H2

C=� . �is gives the desired
result.
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Remark 3. �e fundamental groups of complex surfaces such as X� �t into
the study of groups acting on CAT.0/ spaces with isolated �ats or of relatively
hyperbolic groups as in [Gro, HK] or [GM, Osi] for instance.

�e following result is well-known.

Proposition 3. Let � < PU.2; 1/ be a nonuniform lattice with nice cusps. �e
Kähler surface X� constructed above is algebraic.

Proof. �e reader will �nd a proof of this fact in [DiC, §2], based on the
classi�cation of surfaces. A di�erent proof, applying also in higher dimensions,
goes as follows. Mok [Mok] proved that there exists a holomorphic map X� ! PN

(for some N ) which is an embedding on the open set H2
C=� � X� and which

contracts the elliptic curves in X� �H2
C=� to points. �is implies that X� is

Moishezon. But a Kähler manifold which is also Moishezon is projective.

3. Coherence and homomorphisms to Abelian groups for Kähler groups

In this section we recall a result essentially due to Kapovich [Kap2], which
was used in his proof of the noncoherence of cocompact arithmetic lattices of the
simplest type in PU.n; 1/ . �e result concerns fundamental groups of compact
aspherical Kähler surfaces X with positive �rst Betti number. Recall that for
a Kähler manifold, the �rst Betti number is even. If b1.X/ > 0 , one can thus
consider surjective homomorphisms from �1.X/ to Z2 .

In the following we will say that a compact complex surface is a Kodaira
surface if it admits a holomorphic submersion onto a compact hyperbolic Riemann
surface with connected hyperbolic �bers. Although this de�nition is not completely
standard (see the discussion in [Kot]), we will use it here. Such a surface is
necessarily aspherical, as follows from the homotopy exact sequence of a �bration.
Actually, one can deduce from Bers’ simultaneous uniformization theorem that
the universal cover of such a surface is homeomorphic to R4 .

�eorem 4. (Kapovich) Let X be an aspherical Kähler surface with positive
�rst Betti number. Assume that �1.X/ has no �nitely generated Abelian subgroup
whose normalizer has �nite index in �1.X/ . �en, at least one of the following
three cases occurs:
(1) �e group �1.X/ is not coherent.
(2) �e surface X has a �nite cover which is a Kodaira surface.
(3) For every surjective homomorphism � W �1.X/ ! Z2 , the kernel of � is

isomorphic to the fundamental group of a closed Riemann surface.
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�e proof of this theorem has several ingredients that we now list.

(1) One of them is Delzant’s alternative [Del2], stating the following: if X is
a closed Kähler manifold and if � W �1.X/! A is a homomorphism to an
Abelian group, then the kernel of � is �nitely generated unless X admits
a holomorphic �bration onto a hyperbolic 2 -dimensional orbifold. Here a
�bration means a surjective holomorphic map with connected �bers. We
refer the reader to [Del2] for a more precise statement and for the de�nition
of hyperbolic 2 -dimensional orbifolds; here we will only need this weak
form of Delzant’s �eorem.

(2) We will use the fact that Poincaré duality groups of dimension 2 are
fundamental groups of closed Riemann surfaces, as follows from the work
of Eckmann together with Bieri, Linnel and Müller, see [Eck] and the
references there. For the de�nition of Poincaré duality groups, we refer the
reader to [Bro, VIII.10].

(3) If G is a Poincaré duality group of dimension 4 and if one has a a short
exact sequence

1 // H // G // �1.S/ // 1

where H is �nitely presented and S is a closed Riemann surface, then H is
a Poincaré duality group of dimension 2 . �is result is due to Hillman, see
�eorem 1.19 in [Hil2] (which is more general). Combined with the previous
result, Hillman’s result implies that H is the fundamental group of a closed
Riemann surface.

(4) Let X be an aspherical Kähler surface whose fundamental group �ts into a
short exact sequence

1 // H1 // �1.X/
� // H2 // 1

where both H1 and H2 are fundamental groups of closed Riemann surfaces
of genus greater than one. �en the homomorphism � is induced by a
holomorphic submersion onto a closed Riemann surface, with connected
�bers. �is result, or slight variations on it, has been proved independently
by several people at the end of the 90’s, see for instance [Hil1, Kap1, Kot].
We refer the reader to [Kot] for a short elegant proof.

We now turn to the proof of �eorem 4, based on the above ingredients.
Although this proof is essentially contained in [Kap2], we will explain it for the
reader’s convenience. We start with the:
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Proposition 5. Let X be an aspherical Kähler surface with coherent fundamental
group. Let � W �1.X/ ! Z2 be a homomorphism with �nitely generated kernel.
�en, the kernel of � is isomorphic to the fundamental group of a closed Riemann
surface.

Proof. Since �1.X/ is coherent the kernel of � is �nitely presented. Now by
Hillman’s theorem mentioned above, the kernel of � must be a Poincaré duality
group of dimension 2 (for short: a PD.2/ group). �e characterization of PD.2/
groups then implies that the kernel of � is the fundamental group of a closed
Riemann surface.

Proof of �eorem 4.. We assume that the fundamental group of X is coherent
and prove that it must satisfy the second or the third possibility from the
theorem. If every homomorphism �1.X/! Z2 has �nitely generated kernel, then
Proposition 5 implies that �1.X/ satis�es the third possibility of the theorem.

Now if there exists one homomorphism �0 W �1.X/ ! Z2 whose kernel is
not �nitely generated, then Delzant’s �eorem implies that there is a holomorphic
�bration � W X ! † onto a 2 -dimensional hyperbolic orbifold. Such a �bration
induces a surjective homomorphism

�1.X/! �orb1 .†/

with �nitely generated kernel, where �orb1 .†/ is the orbifold fundamental group
of † ; note that we implicitly assume here that the orbifold structure on † is
given by the multiplicities of the singular �bers of � . See [Del1, §4.1] for all of
this. �ere exists a �nite cover X1 ! X and a �nite orbifold cover †1 ! † such
that †1 is a manifold and such that � lifts to a holomorphic map �1 W X1 ! †1

inducing a surjective homomorphism

.�1/� W �1.X1/! �1.†1/:

�e kernel of .�1/� is also �nitely generated. Since �1.X/ is assumed to be
coherent (and since �1.X1/ is a subgroup of �1.X/ ), the kernel of .�1/� must
be �nitely presented. Using Hillman’s result again, we obtain that Ker..�1/�/
is the fundamental group of a closed Riemann surface F . �e hypothesis on
Abelian subgroups of �1.X/ implies that the genus of F is greater than 1 .
�en the fourth result recalled above implies that X1 is a Kodaira surface. Hence
the surface X satis�es the second possibility of the theorem. �is concludes the
proof.
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4. Flats and Poincaré’s theorem

We now prove the main theorem. So let � � PU.2; 1/ be a torsion-free
nonuniform lattice with nice cusps and such that b1.�/ is positive. We have seen
in Section 2 that there exists a �nite set F of parabolic isometries of � such
that any �nite index normal subgroup �1 of � with trivial intersection with
F has very nice cusps, which means by de�nition that the compacti�ed surface
X�1 admits a nonpositively curved Riemannian metric enjoying all the properties
described in Section 2. We take exactly this set F as the set appearing in the
statement of our theorem. We now �x a �nite index normal subgroup �1 of �
such that �1 \ F D ¿ . We also endow once and for all the surface X�1 with
one of the nonpositively curved Riemannian metrics constructed by Hummel and
Schroeder, whose properties were listed in Section 2. We start with the following
proposition.

Proposition 6. �e group �1 does not contain any �nitely generated Abelian
group A whose normalizer has �nite index in �1 . No �nite cover of the surface
X�1 is a Kodaira surface.

Proof. We denote by eX�1 the universal cover of X�1 . Suppose that A is a
�nitely generated Abelian group of �1 ' �1.X�1/ . For g 2 �1 , considered as an
isometry of eX�1 , let

Min.g/ D
®
x 2 eX�1 ; d

�
x; g.x/

�
D min.g/

¯
where min.g/ is the translation length of g . Let Min.A/ D \g2AMin.g/ . It
is known that Min.A/ is a convex subset of eX�1 which splits as a product
Y � Rr where r is the rank of A , see [BH, II.7]. If r � 2 or if Y is not
reduced to a point, one sees, using that the curvature is negative on the open set
H2

C=�1 � X�1 , that Min.A/ must be contained in a connected component eE of
the inverse image of an elliptic curve E � X�1 . Since the normalizer N.A/ of
A in �1 preserves Min.A/ by [BH, II.7], this actually implies that N.A/ must
preserve the �at eE . Any element g of N.A/ acts on eE as a translation (being
semisimple and orientation preserving). �is implies that N.A/ is free Abelian
of rank at most 2 , hence it cannot be of �nite index in �1 . If r D 1 and Y

is a point, the proof is similar (and simpler): Min.A/ is then made of a single
geodesic, which must be N.A/ -invariant, preventing N.A/ from being of �nite
index.

For the second claim of the proposition, suppose that a �nite cover X1 of X�1
is a Kodaira surface, i.e., that there exists a closed hyperbolic Riemann surface
S and a holomorphic submersion � W X1 ! S with connected hyperbolic �bers.
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Let E � X1 be a totally geodesic elliptic curve. Note that we have seen that such
curves exist in X�1 ; hence they also exist in any �nite cover of X�1 . Since S is
Kobayashi hyperbolic, the restriction of � to E is constant; hence E � ��1.�/
for some point � 2 S . Since ��1.�/ is smooth and connected, this implies that
E D ��1.�/ . �is contradicts the fact that � has hyperbolic �bers.

We will also need the following observation:

Lemma 7. �e groups �1 and �1 have the same �rst Betti number.

Proof. Since the �rst Betti number can only decrease by passing to a quotient, it
is enough to show that b1.�1/ � b1.�1/ . But the kernel of the map �1 ! �1 is
normally generated by the centers of parabolic subgroups of �1 . If g is a generator
for the center of a parabolic subgroup ƒ < �1 then g has a power which is a
product of commutators in ƒ hence in �1 . Hence any homomorphism f W �1 ! R

vanishes on g and must descend to �1 . �is proves that b1.�1/ � b1.�1/ .

To prove that �1 is not coherent, we will now apply �eorem 4. Note that �1
indeed satis�es the hypothesis of that theorem: the �rst Betti number b1.�/ of
� was assumed to be positive hence b1.�1/ is also positive. Moreover �1 and
�1 have the same �rst Betti number as shown by the previous lemma. Hence
b1.�1/ > 0 . Also, by Proposition 6, the group �1 satis�es the hypothesis on
Abelian subgroups appearing in �eorem 4.

Observe that �1 cannot satisfy the second possibility appearing in �eorem 4,
thanks to Proposition 6. We assume that �1 satis�es the third possibility given
by �eorem 4 and prove that �1 is not coherent in this case. �is implies that
�1 is not coherent in all cases. Pick any surjective homomorphism f W �1 ! Z2 .
We know that there is a short exact sequence

1 // �1.S/ // �1
f // Z2 // 1

where S is a closed Riemann surface. �e surface S is necessarily of genus greater
than 1 by Proposition 6. �is short exact sequence determines a homomorphism

‰ W Z2 ! Out
�
�1.S/

�
:

Here Out.�1.S// is the group of outer automorphisms of �1.S/ , also known as
the mapping class group of S . From this situation, we can construct an embedding
i W Z2 ! �1 such that the composition of i with the projection f W �1 ! Z2

has rank one image. Let us explain this construction.

� If ‰ is not faithful, we pick x 2 �1 such that ‰.f .x// D 1 and f .x/ ¤ 1 .
�is means that for any y 2 �1.S/ � �1 , xyx�1 and y are conjugated in
�1.S/ . So for any y 2 �1.S/ � ¹1º there exists hy 2 �1.S/ such that
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(5) xyx�1 D hyyh
�1
y :

�en, for any y 2 �1.S/�¹1º , h�1y x and y generate a free Abelian subgroup
of rank 2 of �1 whose image under f is in�nite cyclic.

� We now suppose that ‰ is faithful. As in [Kap2], we use the fact that a
rank 2 Abelian subgroup of the mapping class group of S must contain a
reducible element, see [BLM]. Recall that a reducible element in the mapping
class group is an element which preserves the isotopy class of a �nite disjoint
union of essential simple closed curves. So let x 2 �1 such that f .x/ is
nontrivial and such that ‰.f .x// is reducible. After maybe replacing x by
one of its powers, this means precisely that Equation (5) holds for at least
one nontrivial element y in �1.S/ . �is is enough to construct the desired
embedding i W Z2 ! �1 as before.

According to Proposition 2, and up to conjugacy, any embedding i W Z2 ! �1

has its image contained into the image of the map

�1.E/! �1.X�1/ D �1

induced by the inclusion of a totally geodesic elliptic curve E in X�1 . �is
implies:

Proposition 8. If the third possibility of �eorem 4 occurs, there exists a totally
geodesic elliptic curve E ,! X�1 such that the holomorphic map

h W E ! Alb.X�1/

obtained by composition of the inclusion of E in X�1 and the Albanese map of
X�1 is nontrivial.

Recall that the Albanese variety Alb.Y / of a compact Kähler manifold Y

is a compact complex torus of real dimension equal to b1.Y / endowed with a
holomorphic map alb.Y / W Y ! Alb.Y / which induces an isomorphism

alb.Y /� W H 1
�
Alb.Y /;R

�
! H 1.Y;R/

between the �rst cohomology groups of Y and Alb.Y / . �e map alb.Y / is
canonical up to translation. �e torus Alb.Y / is algebraic if Y is (see [Voi]). In
the proposition above, we can assume that h.E/ is a subtorus of Alb.X�1/ , up
to composing the map alb.X�1/ with a translation. We will make this assumption
below.

We now continue the proof. Since the surface X�1 is algebraic, so is Alb.X�1/ .
We apply Poincaré’s reducibility theorem to Alb.X�1/ . Recall that this theorem
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states that if A is an Abelian variety and B a subtorus of A , there exists another
subtorus C � A such that there is an isogeny B � C ! A ; see [Deb, VI.8]
for a proof. We apply Poincaré’s theorem to A D Alb.X�1/ and B D h.E/

the image of the elliptic curve appearing in Proposition 8. Hence there exists
an Abelian variety C of dimension one less than Alb.X�1/ and an isogeny
h.E/ � C ! Alb.X�1/ which itself gives rise to an isogeny

u W E � C ! Alb.X�1/:

Let � W X2 ! X�1 be a �nite cover of X�1 such that the map alb.X�1/ ı � W
X2 ! Alb.X�1/ lifts to E � C i.e. such that there exists a holomorphic map
g W X2 ! E � C making the following diagram commutative:

X2
g //

�

��

E � C

u

��
X�1

alb.X�1 / // Alb.X�1/

Denote by g2 the composition of g with the �rst projection from E �C to E .
We are now going to repeat the previous line of arguments, but considering the
homomorphism

.g2/� W �1.X2/! �1.E/ ' Z2

induced by g2 . �e main di�erence is that we now know that this homomorphism
is induced by a holomorphic map. We apply again �eorem 4, this time to X2

instead of X�1 . If �1.X2/ is not coherent, the same is true for �1 . So we must
exclude the second and third possibilities of the theorem for X2 . �e fact that
X2 has not �nite cover which is a Kodaira surface follows from Proposition 6.
Assume now that the third possibility of �eorem 4 holds and consider the
homomorphism .g2/� . Its kernel is then a non-Abelian surface group. As before
the image of the homomorphism Z2 ! Out.Ker..g2/�/ induced by g2 must
have rank < 2 or must contain a reducible element, thus giving rise to a rank 2

Abelian subgroup
A ' Z2 < �1.X2/

such that the restriction of .g2/� to A has rank 1 image and rank 1 kernel.
But now we can assume again that, up to conjugacy, A is contained in the
fundamental group of a certain elliptic curve i1 W E1 ,! X2 . We thus obtain a
homomorphism

.g2 ı i1/� W �1.E1/! �1.E/

between the fundamental groups of two elliptic curves which has rank 1 image
and is induced by a holomorphic map. �is is a contradiction. Hence the groups
�1.X2/ and �1 are not coherent. �is completes the proof of our main theorem.
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Let us make one �nal remark, valid in any dimension, concerning nonuniform
lattices in PU.n; 1/ , and their �llings. If � < PU.n; 1/ is a torsionfree nonuniform
lattice with nice cusps (i.e., whose parabolic elements have no rotational part)
the positivity of the �rst Betti number of � is equivalent to that of b1.X�/ .
Similarly, the group � surjects onto a non-Abelian free group if and only if
�1.X�/ does. �is should motivate the study of the spaces X� and of their
fundamental groups, since the positivity of the �rst Betti number as well as the
largeness of lattices in PU.n; 1/ are well-known open problems.

Acknowledgements. I would like to thank Yves de Cornulier for his comments
on a preliminary version of this text, as well as the referees for their useful
remarks.
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