Fuchsian groups and compact hyperbolic surfaces Yves Benoist and Hee Oh **Abstract.** We present a topological proof of the following theorem of Benoist-Quint: for a finitely generated non-elementary discrete subgroup Γ_1 of $PSL(2,\mathbb{R})$ with no parabolics, and for a cocompact lattice Γ_2 of $PSL(2,\mathbb{R})$, any Γ_1 orbit on $\Gamma_2 \setminus PSL(2,\mathbb{R})$ is either finite or dense. Mathematics Subject Classification (2010). Primary: 11N45, 37F35, 22E40. Keywords. Fuchsian group, orbit closure, unipotent flow, homogeneous dynamics. ### 1. Introduction Let Γ_1 be a non-elementary finitely generated discrete subgroup with no parabolic elements of $PSL(2,\mathbb{R})$. Let Γ_2 be a cocompact lattice in $PSL(2,\mathbb{R})$. The following is the first non-trivial case of a theorem of Benoist-Quint [BQ1]. **Theorem 1.1.** Any Γ_1 -orbit on $\Gamma_2 \setminus PSL(2,\mathbb{R})$ is either finite or dense. The proof of Benoist-Quint is quite involved even in the case as simple as above and in particular uses their classification of stationary measures [BQ2]. The aim of this note is to present a short, and rather elementary proof. We will deduce Theorem 1.1 from the following Theorem 1.2. Let - $H_1 = H_2 := PSL(2, \mathbb{R})$ and $G := H_1 \times H_2$; - $H := \{(h, h) : h \in PSL_2(\mathbb{R})\}$ and $\Gamma := \Gamma_1 \times \Gamma_2$. **Theorem 1.2.** For any $x \in \Gamma \backslash G$, the orbit xH is either closed or dense. Our proof of Theorem 1.2 is purely topological, and inspired by the recent work of McMullen, Mohammadi and Oh [MMO] where the orbit closures of the $PSL(2,\mathbb{R})$ action on $\Gamma_0 \setminus PSL(2,\mathbb{C})$ are classified for certain Kleinian subgroups Γ_0 of infinite co-volume. While the proof of Theorem 1.2 follows closely the sections 8-9 of [MMO], the arguments in this paper are simpler because of the assumption that Γ_2 is cocompact. We remark that the approach of [MMO] and hence of this paper is somewhat modeled after Margulis's original proof of Oppenheim's conjecture [Mar]. When Γ_1 is cocompact as well, Theorem 1.2 also follows from [Rat]. Finally we remark that according to [BQ1], both Theorems 1.1 and 1.2 are still true in presence of parabolic elements, more precisely when Γ_1 is any non-elementary discrete subgroup and Γ_2 any lattice in $PSL(2,\mathbb{R})$. The topological method presented here could also be extended to this case. ### 2. Horocyclic flow on convex cocompact surfaces In this section we prove a few preliminary facts about unipotent dynamics involving only one factor H_1 . The group $\mathrm{PSL}_2(\mathbb{R}) := \mathrm{SL}_2(\mathbb{R})/\{\pm e\}$ is the group of orientation-preserving isometries of the hyperbolic plane $\mathbb{H}^2 := \{z \in \mathbb{C} : \mathrm{Im}\, z > 0\}$. The isometry corresponding to the element $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}_2(\mathbb{R})$ is $z \mapsto \frac{az+b}{cz+d}$. It is implicit in this notation that the matrices g stand for their equivalence class $\pm g$ in $\mathrm{PSL}_2(\mathbb{R})$. This group $\mathrm{PSL}_2(\mathbb{R})$ acts simply transitively on the unit tangent bundle $\mathrm{T}^1(\mathbb{H}^2)$ and we choose an identification of $\mathrm{PSL}_2(\mathbb{R})$ and $\mathrm{T}^1(\mathbb{H}^2)$ so that the identity element e corresponds to the upward unit vector at i. We will also identify the boundary of the hyperbolic plane with the extended real line $\partial \mathbb{H}^2 = \mathbb{R} \cup \{\infty\}$ which is topologically a circle. We recall that Γ_1 is a non-elementary finitely generated discrete subgroup with no parabolic elements of the group $H_1 = \mathrm{PSL}_2(\mathbb{R})$, that is, Γ_1 is a convex cocompact subgroup. Let S_1 denote the hyperbolic orbifold $\Gamma_1 \backslash \mathbb{H}^2$, and let $\Lambda_{\Gamma_1} \subset \partial \mathbb{H}^2$ be the limit set of Γ_1 . Let A_1 and U_1 be the subgroups of H_1 given by $$A_1 := \{a_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix} : t \in \mathbb{R}\} \text{ and } U_1 := \{u_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in \mathbb{R}\}.$$ Since the subgroup Γ_1 is convex cocompact, the set (2.1) $$\Omega_{\Gamma_1} := \{ x \in \Gamma_1 \backslash H_1 : xA_1 \text{ is bounded} \}$$ is a compact A_1 -invariant subset and one has the equality $$\Omega_{\Gamma_1} = \{ [h] \in \Gamma_1 \backslash H_1 : h(0), h(\infty) \in \Lambda_{\Gamma_1} \}.$$ In geometric words, seen as a subset of the unit tangent bundle of S_1 , the set Ω_{Γ_1} is the union of all the geodesic lines which stays inside the convex core of S_1 . **Definition 2.2.** Let K > 1. A subset $T \subset \mathbb{R}$ is called K-thick if, for any t > 0, T meets $[-Kt, -t] \cup [t, Kt]$. **Lemma 2.3.** There exists K > 1 such that for any $x \in \Omega_{\Gamma_1}$, the subset $T(x) := \{t \in \mathbb{R} : xu_t \in \Omega_{\Gamma_1}\}$ is K-thick. *Proof.* Using an isometry, we may assume without loss of generality that x = [e]. Since the element e corresponds to the upward unit vector at i, and since x belongs to Ω_{Γ_1} , both points 0 and ∞ belong to the limit set Λ_{Γ_1} . Since $u_t(\infty) = \infty$ and $u_t(0) = t$, one has the equality $$T(x) = \{t \in \mathbb{R} : t \in \Lambda_{\Gamma_1}\}.$$ Write $\mathbb{R} - \Lambda_{\Gamma_1}$ as the union $\cup J_\ell$ where J_ℓ 's are maximal open intervals. Note that the minimum hyperbolic distance between the convex hulls in \mathbb{H}^2 $$\delta := \inf_{\ell \neq m} d(\operatorname{hull}(J_{\ell}), \operatorname{hull}(J_m))$$ is positive, as 2δ is the length of the shortest closed geodesic of the double of the convex core of S_1 . Choose the constant K > 1 so that for t > 0, one has $$d(\text{hull}[-Kt, -t], \text{hull}[t, Kt]) = \delta/2.$$ Note that this choice of K is independent of t. If T(x) does not intersect $[-Kt, -t] \cup [t, Kt]$ for some t > 0, then the intervals [-Kt, -t] and [t, Kt] must be included in two distinct intervals J_{ℓ} and J_m , since $0 \in \Lambda_{\Gamma_1}$. This contradicts the choice of K. **Lemma 2.4.** Let K > 1 and let T be a K-thick subset of \mathbb{R} . For any sequence h_n in $H_1 \setminus U_1$ converging to e, there exists a sequence $t_n \in T$ such that the sequence $u_{-t_n}h_nu_{t_n}$ has a limit point in $U_1 \setminus \{e\}$. *Proof.* Write $h_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$. We compute $$q_n := u_{-t_n} h_n u_{t_n} = \begin{pmatrix} a_n - c_n t_n & (a_n - d_n - c_n t_n) t_n + b_n \\ c_n & d_n + c_n t_n \end{pmatrix}.$$ Since the element h_n does not belong to U_1 , it follows that the (1,2)-entries $P_n(t_n) := (a_n - d_n - c_n t_n)t_n + b_n$ are non-constant polynomial functions of t_n of degree at most 2 whose coefficients converge to 0. Hence, by Lemma 2.5 below, we can choose $t_n \in T$ going to ∞ so that $k \leq |P_n(t_n)| \leq 1$, for some constant k > 0 depending only on K. Since the entry $P_n(t_n)$ is bounded and since h_n converges to e, the product $c_n t_n$ must converge to 0 and the sequence q_n has a limit point in $U_1 - \{e\}$. We have used the following basic lemma: **Lemma 2.5.** For every K > 1 and $d \ge 1$, there exists k > 0 such that, for every non-constant polynomial P of degree d with $|P(0)| \le k$, and for every K-thick subset T of \mathbb{R} , there exists t in T such that $k \le |P(t)| \le 1$. *Proof.* Using a suitable homothety in the variable t, we can assume with no loss of generality that P belongs to the set \mathcal{P}_d of polynomials of degree at most d such that $P(1) = \max_{t \in \mathcal{P}_d} |P(t)| = 1$. Assume by contradiction that there exists a sequence P_n of polynomials in \mathcal{P}_d and a sequence of K-thick subsets T_n of \mathbb{R} such that $\sup_{T_n \cap [-1,1]} |P_n(t)|$ converge to 0. After extraction, the sequence T_n converges to a K-thick subset T_∞ and the sequence P_n converges to a polynomial $P_\infty \in \mathcal{P}_d$ which is equal to 0 on the set $T_\infty \cap [-1,1]$. This is not possible since this set is infinite. We record also, for further use, the following classical lemma: **Lemma 2.6.** Let U_1^+ be the semigroup $\{u_t : t \ge 0\}$. If the quotient space $X_1 := \Gamma_1 \setminus H_1$ is compact, any U_1^+ -orbit is dense in X_1 . *Proof.* For $x \in X_1$, set $x_n := xu_n$. We then have $x_n u_{-n} U_1^+ = x U_1^+$. Hence if z is a limit point of the sequence x_n in X_1 , we have $zU \subset \overline{xU_1^+}$. By Hedlund's theorem [Hed], zU is dense. Hence the orbit xU_1^+ is also dense. ## 3. Proof of Theorems 1.1 and 1.2 In this section, using minimal sets and unipotent dynamics on the product space $\Gamma \setminus G$, we provide a proof of Theorem 1.2. **3.1. Unipotent dynamics.** We recall the notation $G := PSL_2(\mathbb{R}) \times PSL_2(\mathbb{R})$ and $\Gamma := \Gamma_1 \times \Gamma_2$. Set - $H_1 = \{(h, e)\}, H_2 = \{(e, h)\}, H = \{(h, h)\};$ - $U_1 = \{(u_t, e)\}, \ U_2 = \{(e, u_t)\}, \ U = \{(u_t, u_t)\};$ - $A_1 = \{(a_t, e)\}, A_2 = \{(e, a_t)\}, A = \{(a_t, a_t)\};$ - $X_1 = \Gamma_1 \backslash H_1$, $X_2 = \Gamma_2 \backslash H_2$, $X = \Gamma \backslash G = X_1 \times X_2$. Recall that Γ_1 is a non-elementary finitely generated discrete subgroup of H_1 with no parabolic elements and that Γ_2 is a cocompact lattice in H_2 . For simplicity, we write \widetilde{u}_t for (u_t, u_t) and \widetilde{a}_t for (a_t, a_t) . Note that the normalizer of U in G is AU_1U_2 . **Lemma 3.1.** Let g_n be a sequence in $G \setminus AU_1U_2$ converging to e, and let T be a K-thick subset of \mathbb{R} for some K > 1. Then for any neighborhood G_0 of e in G, there exist sequences $s_n \in T$ and $t_n \in \mathbb{R}$ such that the sequence $\widetilde{u}_{-s_n}g_n\widetilde{u}_{t_n}$ has a limit point $q \neq e$ in $AU_2 \cap G_0$. *Proof.* Fix $0 < \varepsilon \le 1$. Write $g_n = (g_n^{(1)}, g_n^{(2)})$ with $g_n^{(i)} = \begin{pmatrix} a_n^{(i)} & b_n^{(i)} \\ c_n^{(i)} & d_n^{(i)} \end{pmatrix}$. Then the products $q_n := \widetilde{u}_{-s_n} g_n \widetilde{u}_{t_n}$ are given by $$q_n^{(i)} = u_{-s_n} g_n^{(i)} u_{t_n} = \begin{pmatrix} a_n^{(i)} - c_n^{(i)} s_n & (b_n^{(i)} - d_n^{(i)} s_n) - t_n (c_n^{(i)} s_n - a_n^{(i)}) \\ c_n^{(i)} & d_n^{(i)} + c_n^{(i)} t_n \end{pmatrix}.$$ Set $$t_n = \frac{b_n^{(1)} - d_n^{(1)} s_n}{c_n^{(1)} s_n - a_n^{(1)}}.$$ The differences $q_n - e$ are now rational functions in s_n of the form $$q_n - e = \frac{1}{c_n^{(1)} s_n - a_n^{(1)}} P_n(s_n),$$ where $P_n(s)$ is a polynomial function of s of degree at most 2 with values in $M_2(\mathbb{R}) \times M_2(\mathbb{R})$. Since the elements g_n do not belong to AU_1U_2 , these polynomials P_n are non-constants. In particular, the real valued polynomial functions $s \mapsto \|P_n(s)\|^2$ are non-constant of degree at most 4. Since $||P_n(0)|| \to 0$ as $n \to \infty$, it follows from Lemma 2.5 that for any $0 < \epsilon$, we can choose $s_n \in T$ going to ∞ so that $k\varepsilon \le ||P_n(s_n)|| \le \varepsilon$ for some constant k > 0 depending only on K. Moreover we can deduce $1/2 \le |c_n^{(1)}s_n - a_n^{(1)}| \le 2$ from the condition $||P_n(s_n)|| \le \varepsilon$ by looking at the (1,1) and (2,2) entries of the first component of $P_n(s_n)$. Therefore $$k\varepsilon/2 < ||q_n - e|| < 2\varepsilon$$. By construction, when ε is small enough, the sequence q_n has a limit point $q \neq e$ in $A_1A_2U_2 \cap G_0$. We claim that this limit $q=(q^{(1)},q^{(2)})$ belongs to the group AU_2 . It suffices to check that the diagonal entries of $q^{(1)}$ and $q^{(2)}$ are equal. If not, the two sequences $c_n^{(i)}s_n$ converge to real numbers $c^{(i)}$ with $c^{(1)} \neq c^{(2)}$, and a simple calculation shows that the (1,2)- entries of $q_n^{(2)}$ are comparable to $\frac{c^{(2)}-c^{(1)}}{c^{(1)}-1}s_n$ which tends to ∞ , yielding a contradiction. Hence q belongs to AU_2 . ### 3.2. H-minimal and U-minimal subsets. Let $$\Omega := \Omega_{\Gamma_1} \times X_2$$ where $\Omega_{\Gamma_1} \subset X_1$ is defined in (2.1). Note that, since Γ_2 is cocompact, one has the equality $\Omega_{\Gamma_2} = X_2$. Let $x=(x_1,x_2)\in \Gamma\backslash G$ and consider the orbit xH. Note that xH intersects Ω non-trivially. Let Y be an H-minimal subset of the closure \overline{xH} with respect to Ω , i.e., Y is a closed H-invariant subset of \overline{xH} such that $Y\cap\Omega\neq\varnothing$ and the orbit yH is dense in Y for any $y\in Y\cap\Omega$. Since any H orbit intersects Ω , it follows that yH is dense in Y for any $y\in Y$. Let Z be a U-minimal subset of Y with respect to Ω . Since Ω is compact, such minimal sets Y and Z exist. Set $$Y^* = Y \cap \Omega$$ and $Z^* = Z \cap \Omega$. In the following, we assume that the orbit xH is not closed and aim to show that xH is dense in X. **Lemma 3.2.** For any $y \in Y$, the identity element e is an accumulation point of the set $\{g \in G \setminus H : yg \in \overline{xH}\}$. *Proof.* If y does not belong to xH, there exists a sequence $h_n \in H$ such that xh_n converges to y. Hence there exists a sequence $g_n \in G$ converging to e such that $xh_n = yg_n$. These elements g_n do not belong to H; hence proving the claim. Suppose now that y belongs to xH. If the claim does not hold, then for a sufficiently small neighborhood G_0 of e in G, the set $yG_0 \cap Y$ is included in the orbit yH. This implies that the orbit yH is an open subset of Y. The minimality of Y implies that Y = yH, contradicting the assumption that the orbit yH = xH is not closed. **Lemma 3.3.** There exists an element $v \in U_2 \setminus \{e\}$ such that $Zv \subset \overline{xH}$. *Proof.* Choose a point $z = (z_1, z_2) \in Z^*$. By Lemma 3.2, there exists a sequence g_n in $G \setminus H$ converging to e such that $zg_n \in \overline{xH}$. We may assume without loss of generality that g_n belongs to H_2 . Suppose first that at least one g_n belongs to U_2 . Set $v=g_n$ be one of those belonging to U_2 , so that the point zv belongs to \overline{xH} . Since v commutes with U and Z is U-minimal with respect to Ω , one has the equality $Zv=\overline{zvU}$, hence the set Zv is included in \overline{xH} . Now suppose that g_n does not belong to U_2 . Then, since the set $T(z_1)$ is K-thick for some K>1 by Lemma 2.3, it follows from Lemma 2.4 that there exists a sequence $t_n\to\infty$ in $T(z_1)$ such that, after extraction, the products $\widetilde{u}_{-t_n}g_n\,\widetilde{u}_{t_n}$ converge to an element $v\in U_2\smallsetminus\{e\}$. Since the points $z \widetilde{u}_{t_n}$ belong to Ω , this sequence has a limit point $z' \in Z^*$. Since one has the equality $$z'v = \lim_{n \to \infty} z \, \widetilde{u}_{t_n}(\widetilde{u}_{-t_n}g_n \, \widetilde{u}_{t_n}) = \lim_{n \to \infty} (zg_n) \, \widetilde{u}_{t_n},$$ the point z'v belongs to \overline{xH} . We conclude as in the first case that the set $Zv = \overline{z'vU}$ is included in \overline{xH} . **Lemma 3.4.** For any $z \in Z^*$, there exists a sequence g_n in $G \setminus U$ converging to e such that $zg_n \in Z$ for all n. *Proof.* Since the group Γ_2 is cocompact, it does not contain unipotent elements and hence the orbit zU is not compact. By Lemma 2.3, the orbit zU is recurrent in Z^* , hence the set $Z^* \setminus zU$ contains at least one point. Call it z'. Since the orbit z'U is dense in Z, there exists a sequence $\widetilde{u}_{t_n} \in U$ such that $z = \lim z' \widetilde{u}_{t_n}$. Hence one can write $z' \widetilde{u}_{t_n} = zg_n$ with g_n in $G \setminus U$ converging to e. **Proposition 3.5.** There exists a one-parameter semi-group $L^+ \subset AU_2$ such that $ZL^+ \subset Z$. *Proof.* It suffices to find, for any neighborhood G_0 of e, an element $q \neq e$ in $AU_2 \cap G_0$ such that the set Zq is included in Z; then writing $q = \exp w$ for an element w of the Lie algebra of G, we can take L^+ to be the semigroup $\{\exp(sw_\infty): s \geq 0\}$ where w_∞ is a limit point of the elements $\frac{w}{\|w\|}$ when the diameter of G_0 shrinks to 0. Fix a point $z=(z_1,z_2)\in Z^*$. According to Lemma 3.4 there exists a sequence $g_n\in G\smallsetminus U$ converging to e such that $zg_n\in Z$. Suppose first that g_n belongs to AU_1U_2 for infinitely many n; then one can find $\widetilde{u}_{t_n} \in U$ such that the product $q_n := g_n \widetilde{u}_{t_n}$ belongs to $AU_2 \setminus \{e\}$ and zq_n belongs to Z. Since q_n normalizes U and since Z is U-minimal with respect to Ω , one has the equality $Zq_n=\overline{zU}q_n=\overline{zq_nU}$, hence the set Zq_n is included in Z. Now suppose that g_n is not in AU_1U_2 . By Lemmas 2.3 and 3.1, there exist sequences $s_n \in T(z_1)$ and $t_n \in \mathbb{R}$ such that, after passing to a subsequence, the products $\widetilde{u}_{-s_n}g_n\widetilde{u}_{t_n}$ converge to an element $q \neq e$ in $AU_2 \cap G_0$. Since the elements $z\widetilde{u}_{s_n}$ belong to Z^* , they have a limit point $z' \in Z^*$. Since we have $$z'q = \lim_{n \to \infty} z \, \widetilde{u}_{s_n}(\widetilde{u}_{-s_n}g_n \, \widetilde{u}_{t_n}) = \lim_{n \to \infty} (zg_n) \, \widetilde{u}_{t_n},$$ the element z'q belongs to Z. We conclude as in the first case that the set $Zq=\overline{z'qU}$ is included in Z. **Proposition 3.6.** There exist an element $z \in \overline{xH}$ and a one-parameter semi-group $U_2^+ \subset U_2$ such that $zU_2^+ \subset \overline{xH}$. *Proof.* By Proposition 3.5 there exists a one-parameter semigroup $L^+ \subset AU_2$ such that $ZL^+ \subset Z$. This semigroup L^+ is equal to one of the following: U_2^+ , A^+ or $v_0^{-1}A^+v_0$ for some element $v_0 \in U_2 \setminus \{e\}$, where U_2^+ and A^+ are one-parameter semigroups of U_2 and A respectively. When $L^+ = U_2^+$, our claim is proved. Suppose now $L^+ = A^+$. By Lemma 3.3 there exists an element $v \in U_2 \setminus \{e\}$ such that $Zv \subset xH$. Then one has the inclusions $$ZA^+vA \subset ZvA \subset \overline{xH}A \subset \overline{xH}$$. Choose a point $z' \in Z^*$ and a sequence $\widetilde{a}_{t_n} \in A^+$ going to ∞ . Since $z' \widetilde{a}_{t_n}$ belong to Ω , after passing to a subsequence, the sequence $z' \widetilde{a}_{t_n}$ converges to a point $z \in \overline{xH} \cap \Omega$. Moreover, since the Hausdorff limit of the sets $\widetilde{a}_{-t_n}A^+$ is A, one has the inclusions $$zAvA \subset \lim_{n \to \infty} z' \widetilde{a}_{t_n} (\widetilde{a}_{-t_n} A^+) vA = z' A^+ vA \subset \overline{xH}.$$ Now by a simple computation, we can check that the set AvA contains a one-parameter semigroup U_2^+ of U_2 , and hence the orbit zU_2^+ is included in \overline{xH} as desired. Suppose finally $L^+ = v_0^{-1}A^+v_0$ for some v_0 in $U_2 \setminus \{e\}$. We can write $A^+ = \{\widetilde{a}_{\varepsilon t} : t \ge 0\}$ with $\varepsilon = \pm 1$ and $v_0 = (e, u_s)$ with $s \ne 0$. A simple computation shows that the set $U_2' := \{(e, u_{\varepsilon st}) : 0 \le t \le 1\}$ is included in $v_0^{-1}A^+v_0A$. Hence one has the inclusions $$ZU_2' \subset Zv_0^{-1}A^+v_0A \subset ZA \subset \overline{xH}$$. Choose a point $z' \in Z^*$ and let $z \in \overline{xH}$ be a limit of a sequence $z'\widetilde{a}_{-t_n}$ with t_n going to $+\infty$. Since the Hausdorff limit of the sets $\widetilde{a}_{t_n}U_2'\widetilde{a}_{-t_n}$ is the semigroup $U_2^+ := \{(e, u_{\varepsilon st}) : t \geq 0\}$, one has the inclusions $$zU_2^+ \subset \lim_{n \to \infty} (z'\widetilde{a}_{-t_n})\widetilde{a}_{t_n}U_2'\widetilde{a}_{-t_n} \subset \overline{ZU_2'A} \subset \overline{xH}.$$ ### 3.3. Conclusion. *Proof of Theorem* 1.2. Suppose that the orbit xH is not closed. By Proposition 3.6, the orbit closure \overline{xH} contains an orbit zU_2^+ of a one-parameter subsemigroup of U_2 . Since Γ_2 is cocompact in H_2 , by Lemma 2.6, this orbit zU_2^+ is dense in zH_2 . Hence we have the inclusions $$X = zG = zH_2H \subset \overline{zU_2^+}H \subset \overline{xH}.$$ This proves the claim. *Proof of Theorem* 1.1. Let x = [g] be a point of $X_2 = \Gamma_2 \setminus H_2$. By replacing Γ_1 by $g^{-1}\Gamma_1 g$, we may assume without loss of generality that g = e. One deduces Theorem 1.1 from Theorem 1.2 thanks to the following equivalences: The orbit [e]H is closed (resp. dense) in $\Gamma \backslash G \iff$ The orbit $\Gamma[e]$ is closed (resp. dense) in $G/H \iff$ The product $\Gamma_2\Gamma_1$ is closed (resp. dense) in $PSL_2(\mathbb{R}) \iff$ The orbit $[e]\Gamma_1$ is closed (resp. dense) in $\Gamma_2 \backslash PSL_2(\mathbb{R})$. **Acknowledgment.** Oh was supported in part by an NSF Grant. ### References - [BQ1] Y. Benoist and J.F. Quint, Stationary measures and invariant subsets of homogeneous spaces I. Annals of Math 174 (2011), 1111–1162. Zbl 1241.22007 MR 2831114 - [BQ2] Y. Benoist and J. F. Quint, Stationary measures and invariant subsets of homogeneous spaces III. Annals of Math 178 (2013), 1017–1059. Zbl 1279.22013 MR 3092475 - [Hed] G. Hedlund, Fuchsian groups and transitive horocycles. *Duke Math. J.* 2 (1936), 530–542. Zbl 0015.10201 MR 1545946 - [Mar] G. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces. In *Dynamical Systems and Ergodic Theory* (Warsaw, 1986), volume 23. Banach Center Publ., 1989. Zbl 0689.10026 MR 1102736 [MMO] C. McMullen, A. Mohammadi and H. Oh, Geodesic planes in hyperbolic 3-manifolds. Preprint, 2015 [Rat] M. RATNER, Raghunathan's topological conjecture and distributions of unipotent flows. Duke Math. J. **63** (1991), 235–280. Zbl 0733.22007 MR 1106945 (Reçu le 11 juin 2015) Yves Benoist, Universite Paris-Sud, Bâtiment 425, 91405 Orsay, France *e-mail:* yves.benoist@math.u-psud.fr Hee Oн, Mathematics department, Yale University, New Haven, CT 06520 and Korea Institute for Advanced Study, Seoul, Korea e-mail: hee.oh@yale.edu