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Note on the distortion of .2 ; q/ -torus knots

Luca Studer

Abstract. We show that the distortion of the .2; q/-torus knot is not bounded linearly from
below.
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1. Introduction

�e notion of distortion was introduced by Gromov [GPL]. If 
 is a recti�able
simple closed curve in R3 , then its distortion ı is de�ned as

ı.
/ D sup
v;w2


d
 .v; w/

jv � wj
;

where d
 .v; w/ denotes the length of the shortest arc connecting v and w in

 and j � j denotes the euclidean norm on R3 . For a knot K , its distortion
ı.K/ is de�ned as the in�mum of ı.
/ over all recti�able curves 
 in the
isotopy class K . Gromov [Gro] asked in 1983 if every knot K has distortion
ı.K/ � 100 . �e question was open for almost three decades until Pardon gave
a negative answer. His work [Par] presents a lower bound for the distortion of
simple closed curves on closed PL embedded surfaces with positive genus. Pardon
showed that the minimal intersection number of such a curve with essential discs
of the corresponding surface bounds the distortion of the curve from below. In
particular for the .p; q/-torus knot he showed that ı.Tp;q/ � min.p; q/=160: By
considering a standard embedding of Tp;pC1 into a torus of revolution one obtains
ı.Tp;pC1/ � const � p , hence for q D p C 1 Pardon’s result is sharp up to a
constant.

An alternative proof for the existence of families with unbounded distortion
was given by Gromov and Guth [GG]. In both works the answer to Gromov’s
question was obtained by estimating the conformal length, which is up to a
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constant a lower bound for the distortion of recti�able closed curves. However,
the conformal length is in general not a good estimate for the distortion. For
example, one �nds easily an embedding of the .2; q/-torus knot with conformal
length � 100 and distortion � q by looking at standard embeddings into a
torus of revolution with suitable dimensions. In particular, neither Pardon’s nor
Gromov and Guth’s arguments yield lower bounds for ı.T2;q/ . While Pardon
conjectures that limq!1 ı.T2;q/ D 1 and that there are to his knowledge no
known embeddings of T2;q with sublinear distortion [Par, p. 638], Gromov and
Guth [GG, p. 2588] write that the distortion of T2;q appears to be approximately
q . In this article we show that the growth rate of ı.T2;q/ is in fact sublinear
in q .

�eorem. Let q � 50 . �en ı.T2;q/ � 7q= log q . In particular the distortion of
the .2; q/-torus knot is not bounded linearly from below.

With the same technique as used in this article and somewhat more e�ort
one can give an embedding 
q of T2;q with ı.
q/ �

�
2

q
logq . Moreover, a more

technical proof yields that this asymptotical upper bound for ı.T2;q/ is sharp for
those embeddings of T2;q that project orthogonally onto a standard knot diagram.
�is leads to the following question.

Question. Is ı.T2;q/ up to a constant asymptotically equal to q= log q? And if
yes, is the constant equal to �=2?

2. Proof of the �eorem

In order to prove the �eorem we need to give for every odd integer q � 50
an embedding 
 of the .2; q/-torus knot with distortion smaller or equal to
7q= log q . �e idea is to use a logarithmic spiral. Let S be a logarithmic spiral
of unit length starting at its center 0 2 R3 and ending at some u 2 R3 . An
elementary calculation shows that its distortion is equal to 1=juj . For another
path ˛ � R3 of unit length and diameter � 2juj with endpoints ¹v;wº D @˛ we
get

ı.˛/ �
d˛.v; w/

jv � wj
D

1

jv � wj
�

1

2juj
D
ı.S/

2
:

Hence up to at most a factor 2 the logarithmic spiral has the smallest distortion
among all paths for a prescribed pathlength-pathdiameter-ratio. It seems therefore
natural to pack the q windings of the .2; q/-torus knot into a logarithmic spiral
in order to minimize distortion.
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0

Figure 1
�e embedding 
 for q D 7

We de�ne the embedding 
 as the union of a segment of the logarithmic
spiral S with slope k D log.q/=2�q and a piecewise linear part L , see Figure 1.
�e segment of the logarithmic spiral S is contained in the vertical .x; z/ plane
and parametrized by

' W Œ0; �q�! R2; '.s/ D eks �

 
cos.s/
sin.s/

!
;

see Figures 1 and 2. �e segment of the piecewise linear part L is in the horizontal
.x; y/ plane, see Figures 1 and 3. Note that

j'.�q/j D ek�q D
p
q and j'.0/j D 1;

hence the lengths de�ning L in Figure 3 are chosen such that the union 
 of
S and L is the simple closed curve illustrated in Figure 1. �e linear segments
L1 and L2 indicated in Figure 3 are named because of their special role in the
following computations.

To see that the obtained curve is an embedded .2; q/-torus knot, we perturb

 , see Figure 4. �is simple closed curve is ambient isotopic in R3 to 
 and
if we project it onto the .x; y/ plane, we see a well known diagram of the
.2; q/-torus knot, see Figure 5.

We now estimate the distortion of 
 . One has to show that
d
 .v; w/

jv � wj
�

7q

log q
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0 '.0/'.q�/

Figure 2
�e logarithmic spiral S in the .x; z/ plane
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Figure 3
�e linear part L in the .x; y/ plane

for all pairs of points v;w 2 
 . An easy computation shows that

1

k
�

p
2k2 C 1 D

2�q

log q
�
p
2.log q=2�q/2 C 1 �

7q

log q

for all integers � 2 . �erefore, it su�ces to show that

d
 .v; w/

jv � wj
�

p
2k2 C 1

k
:

In order to do this, we distinguish four cases.

Case 1: v;w 2 S: Let 0 � s � t � �q; v D '.s/; w D '.t/ . From

j'0.r/j D

ˇ̌̌̌
ˇ
 
cos.r/ � sin.r/
sin.r/ cos.r/

! 
kekr

ekr

!ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ
 
kekr

ekr

!ˇ̌̌̌
ˇ D pk2 C 1 � ekr ;

we get
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Figure 4
Perturbation of 


Figure 5
Projection onto the .x; y/ plane

d
 .v; w/ � dS .v; w/

D

tZ
s

j'0.r/jdr

D
p
k2 C 1

tZ
s

ekrdr

D

p
k2C1
k
� .ekt � eks/

D

p
k2C1
k
�
�
j'.t/j � j'.s/j

�
D

p
k2C1
k
� .jwj � jvj/:

Since jw � vj � jwj � jvj , we conclude that
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v
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t

a

jv � wj
'.0/

Figure 6
Visualization of Case 2

d
 .v; w/

jv � wj
�

p
k2 C 1

k
�
.jwj � jvj/

.jwj � jvj/
D

p
k2 C 1

k
:

Case 2: v 2 L1 [ L2; w 2 S . We consider the case where v 2 L1 . �e idea
is to �nd the maximum of d
 .v; w/=jv � wj for �xed w and varying v . Let
t D jv � '.0/j , a D j'.0/ � wj , and b D dS .'.0/; w/ , see Figure 6. Note that
jv � wj D

p
t2 C a2 and d
 .v; '.0// D jv � '.0/j D t: We get

d
 .v; w/

jv � wj
�
d

�
v; '.0/

�
C dS

�
'.0/; w

�
jv � wj

D
t C b
p
t2 C a2

DW f .t/:

Deriving f with respect to t yields a unique critical point at t D a2=b :

0 D f 0.t/ D
a2 � bt

.a2 C t2/3=2
() t D a2=b:

Since a2=b is the only critical point, f .1/ D 1 � b=a D f .0/ and

f .0/ D
b

a
�

p
a2 C b2

a
D

a2

b
C bq

.a
2

b
/2 C a2

D f .a2=b/;

a2=b must be a global maximum. Consequently we get

d
 .v; w/

jv � wj
�

p
a2 C b2

a

D

s
1C

�
b

a

�2
D

s
1C

�
dS .'.0/; w/

j'.0/ � wj

�2
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Case1
�

r
1C

�p
k2C1
k

�2
D

p
2k2 C 1

k
:

In the case where v 2 L2 , we make the estimate with the path that connects v
with w through '.�q/ . It works exactly the same and yields the same estimate.

Case 3: v;w 2 L: Consider Figure 3 and note that all pairs of points v;w 2 L of
euclidean distance < 1 are either on the same linear segment or on neighboring
linear segments of L . It is easy to see that such pairs of points cannot cause
distortion >

p
2 . For the pairs of points v;w 2 L of euclidean distance � 1 we

get
d
 .v; w/

jv � wj
� dL

�
'.0/; '.�q/

�
D 11

p
q C 1:

A direct calculation shows that

11
p
q C 1 �

2�q

log q
D
1

k

for q � 50 .

Case 4: v 2 L n .L1 [ L2/; w 2 S: Note that for these pairs of points we have
jv � wj � jwj: We estimate d
 .v; w/ using results of Cases 1 and 3:

d
 .v; w/ � dL
�
v; '.0/

�
C dS

�
'.0/; w

�
�

1
k
C

p
k2C1
k
� .jwj � 1/

�

p
k2C1
k
� jwj:

We conclude that

d
 .v; w/

jv � wj
�

p
k2C1
k
� jwj

jwj
D

p
k2 C 1

k
;

which �nishes the proof.
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