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Abstract. We study integrable Euler equations on the Lie algebra gl.3;R/ by interpreting
them as evolutions on the space of hexagons inscribed in a real cubic curve.
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1. Introduction

In this paper we study an integrable matrix di�erential equation

d

dt
X D ŒX2; A�(1.1)

where X 2 gl.3;R/ is a real 3 by 3 matrix depending on the time t , and
A 2 gl.3;R/ is a real, �xed, 3 by 3 matrix. While we will not need a precise
de�nition of an integrable system, we will take the point of view of [HSW]
according to which “integrability of a system of di�erential equations should
manifest itself through some generally recognizable features: i) the existence of
many conserved quantities, ii) the presence of algebraic geometry, iii) the ability
to give explicit solutions.” Equation (1.1) shows all these properties. In particular,
the algebraic geometry underlying this equation is geometry of real cubic curves.
�is algebraic geometry arises from the possibility to rewrite equation (1.1) in the
so-called Lax form with a spectral parameter (see equation (2.1) below). A Lax
representation with a spectral parameter for equations of type (1.1) was found in
S.V.Manakov’s fundamental paper [Man].

Equation (1.1) can be regarded as a special case of several general constructions
of integrable systems. In particular, it can be obtained by the argument shift
method [Man, MF], or by the method based on loop algebras [AvM2, AvM1,
RSTS1, RSTS2]. Depending on the restrictions imposed on the matrices X and
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A , this equation is known under di�erent names. If A is symmetric, and X is
skew-symmetric, it becomes the classical Euler equation describing the rotation
of a torque-free rigid body. If, on the contrary, A is skew-symmetric, and X

is symmetric, this equation is known as the Bloch–Iserles system [BI, BBIC ].
Finally, it is worth mentioning the case of skew-Hermitian X and Hermitian
A . In this setting, Equation (1.1) describes travelling wave solutions for the
famous three-wave equation arising in optics, �uid dynamics, and plasma physics
[ALMR] (see also recent paper [RT] studying equations of type (1.1) for n � n
skew-Hermitian matrices).

In the present paper, we regard equation (1.1) as a dynamical system on the
whole space gl.3;R/ of real 3 by 3 matrices. A distinctive feature of this full
system is that, in contrast to the symmetric and skew-symmetric cases, solutions
on arbitrary matrices need not be bounded and, in particular, may blow up in
�nite time. Using algebro-geometric technique, we show that for a generic matrix
A Equation (1.1) has both types of solutions, that is blow-up solutions, and
solutions de�ned for any t 2 R . We also show that the behavior of a given
solution can be understood in terms of a simple geometric construction. Namely,
with each generic initial condition X we associate a real cubic curve CX with
�xed points at in�nity (the spectral curve coming from the Lax representation),
and a hexagon HX inscribed in this curve in such a way that its sides are parallel
to the asymptotes of the curve. �en, we show that the behavior of the solution of
Equation (1.1) with initial condition X is completely determined by the number
of ovals of the curve CX and the distribution of vertices of the hexagon HX

among these ovals.
It is also worth mentioning that Equation (1.1) may be regarded as an Euler

equation on the Lie algebra gl.3;R/ , or, which is the same, the geodesic equation
for a certain left-invariant metric on the general linear group GL.3;R/ . �e
study of such metrics originates from V.Arnold’s fundamental paper [Arn1],
where Arnold suggests a common geometric framework for the Euler equation
governing the motion of an ideal �uid, and the Euler equation in rigid body
dynamics. In Arnold’s approach, both equations describe the geodesic �ow of a
one-sided invariant metric on a certain Lie group G . Such a geodesic �ow is a
dynamical system on the cotangent bundle T �G , and, thanks to the G -invariance,
it descends to the quotient space T �G =G , which is naturally identi�ed with the
dual Lie algebra g� . �e corresponding equation on g� is called an Euler equation.

Equation (1.1) is an example of an Euler equation on the Lie algebra gl.3;R/ .
It describes the geodesic �ow of a left-invariant pseudo-Riemannian metric . ; /

on the group GL.3;R/ given at the identity by

.X;X/ WD trXA�1.X/



Euler equations on the general linear group 145

where A.X/ D 1
2
.AX C XA/ . In particular, the problem of existence of global

solutions for equation (1.1) is equivalent to the problem of geodesic completeness
for the metric . ; / .

A distinctive feature of the Euler equation (1.1) is its integrability. Note that
a general Euler equation need not be integrable, and integrable examples are in
fact quite rare. In particular, the above equation seems to be the only known
example of an integrable Euler equation on gl.3;R/ .

�e problem of geodesic completeness for left-invariant metrics on �nite-
dimensional Lie groups was studied, for example, in [AP, BM]. Note that for
general invariant metrics, geodesic completeness or, equivalently, existence of
global in time solutions of the Euler equation, seems to be a very di�cult
problem. For integrable metrics constructed by the argument shift method this
problem was discussed in [BIKO].

We also remark that since equation (1.1) is integrable, its solutions can be
explicitly expressed in terms of theta functions. So, global behavior of solutions
can be, in principle, studied by �nding and examining explicit formulas. However,
as we show in the present paper, global properties of solutions can be in fact
understood from purely geometrical considerations, and there is no need in the
analysis of complicated theta-functional formulas.

We tried to make the exposition self-contained. In particular, we do not assume
that the reader is familiar with the general theory of integrable systems and the
algebro-geometric approach to such systems. For most statements which can be,
in principle, derived from this general theory, we give geometric proofs (relations
to the general theory are explained in remarks; see, in particular, Remark 2.18).
�e only exception is, perhaps, Proposition 3.4 where we follow the standard
approach on linearization of an integrable �ow on the Jacobian. It would be
interesting to �nd a geometric proof for this statement as well.

Main results of the paper are in Section 2. Section 3 is devoted to proofs of
these results. In Section 4, we discuss possible generalizations of our approach to
the gl.n/ case and their relation to general questions of real algebraic geometry.

2. Main constructions and results

2.1. Reduction to diagonal matrices. In what follows, we assume that the
eigenvalues of the matrix A are all distinct and real. �e case of complex
conjugate eigenvalues can be treated using similar ideas, but still needs a separate
consideration, and we omit it.
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Denote the eigenvalues of A by a1 , a2 , a3 . Note that equation (1.1) is
invariant under similarity transformations

X 7! BXB�1; A 7! BAB�1:

For this reason, we may assume that A is a diagonal matrix with diagonal entries
a1 , a2 , a3 . �erefore, 9 -dimensional family of equations (1.1) boils down to a
3 -dimensional family parametrized by three real numbers a1 , a2 , a3 .

So, in what follows, we always assume that A is diagonal with distinct diagonal
entries. We call such diagonal matrices generic.

Provided that A is diagonal, equation (1.1) is invariant under transformations
of the form X 7! DXD�1 where D is an invertible diagonal matrix. Such
transformations form a group which may be regarded as the quotient group of
invertible diagonal matrices by scalar matrices. We shall denote this quotient
group by PD.3;R/ . �is group is isomorphic to .R�/2 , and in particular, it is
disconnected. We denote its connected component of the identity by PDC.3;R/ .
�e latter group consists of (cosets of) those diagonal matrices whose diagonal
entries are of the same sign.

2.2. Lax representation and spectral curve. We begin our study of equation
(1.1) by rewriting it as a so-called Lax equation

d

dt
X� D ŒX�; Y��(2.1)

where

X� WD X C �A; Y� WD AX CXAC �A
2(2.2)

and � 2 C is an auxiliary time-independent parameter, called the spectral
parameter. It is straightforward to verify that equations (1.1) and (2.1) are
equivalent.

Remark 2.1. For details about Lax equations with a spectral parameter and their
algebraic-geometric solutions see, e.g., the monograph [BBT].

�e following proposition is well-known.

Proposition 2.2. If a matrix X� evolves according to equation (2.1), then the
eigenvalues of X� do not change with time.

Proof. Using induction on k , one can show that

d

dt
Xk� D ŒX

k
� ; Y��
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for any integer k � 1 ; therefore

d

dt
trXk� D tr ŒXk� ; Y�� D 0

where in the last identity we used that the trace of a commutator is always equal
to zero. �us, since traces of powers of the matrix X� do not depend on t ,
neither do its eigenvalues, q.e.d.

Proposition 2.2 implies that the coe�cients of the characteristic polynomial
fX .�; �/ WD det.XC�A��Id/ are conserved along the solutions of equation (1.1).
Note that only six out of ten coe�cients explicitly depend on X , so there are six
conserved quantities. We will not need explicit expressions for these conserved
quantities. Instead, we organize them into an algebraic curve, called the spectral
curve. In a�ne coordinates, this curve is de�ned by the equation fX .�; �/ D 0 .
However, it will be convenient for us to work in homogenous coordinates. For
this reason, we give the following de�nition:

De�nition 2.3. For a given X 2 gl.3;R/ , the curve

CX WD
®
.z1 W z2 W z3/ 2 CP2 j det.z3X C z1A � z2Id/ D 0

¯
is called the spectral curve.

By de�nition, the spectral curve CX is conserved along solutions of equation
(1.1).

Proposition 2.4. �e spectral curve CX is a real1 projective cubic intersecting
the line at in�nity ¹z3 D 0º at points

11 D .1 W a1 W 0/; 12 D .1 W a2 W 0/; 13 D .1 W a3 W 0/

where a1; a2; a3 are the eigenvalues of A .

Proof. �e proof is achieved by putting z3 D 0 in the equation of the spectral
curve.

As we show below, any smooth real cubic curve passing through the points
11 , 12 , 13 is the spectral curve for a suitable matrix X 2 gl.3;R/ . Moreover,
we explicitly describe the topology of the set of matrices X corresponding to
the given curve C in terms of the geometry of C .

1Recall that an algebraic curve is called real if it is invariant under complex conjugation, or,
equivalently, if it can be de�ned as the zero locus of a real polynomial.
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2.3. Isospectral sets. Since the �ow (1.1) preserves the spectral curve associated
with the matrix X , we can restrict this �ow to the set

TC D
®
X 2 gl.3;R/ W CX D C

¯
of matrices whose spectral curve is the given curve C . Note that the set TC
may also be de�ned as a joint level set for six conserved quantities of equation
(1.1) (recall that these conserved quantities are, by de�nition, the coe�cients of
the equation of the spectral curve). Since the space gl.3;R/ is 9 -dimensional,
we should expect that the set TC is generically of dimension 9 � 6 D 3 .

Further, note that the �ow (1.1) restricted to the 3 -dimensional manifold
TC has a 2 -dimensional symmetry group PDC.3;R/ acting by conjugation. A
dimension count suggests that the PDC.3;R/ orbits of solutions of equation (1.1)
are exactly the connected components of TC . In particular, all solutions lying in
the same connected component should have the same global behavior.

In what follows, we aim to answer the following questions.

i) For a given cubic curve C , what is the topology of the set TC ? In particular,
how many connected components does it have?

ii) What is the global behavior of solutions of (1.1) on each of these components?
In particular, do these solutions blow up or exist for all times?

iii) Given an initial condition X 2 gl.3;R/ , how do we determine whether the
solution passing through X blows up, or exists for all times?

�e answer to the �rst two of these questions is given by �eorem 2.5. �e
answer to the third question is given by �eorem 2.13.

(a) (b) (c)

One oval Two ovals, one bounded Two unbounded ovals
and one unbounded

TC ' 4R3 TC ' 4R3 t 4S1 �R2 TC ' 4R3 t 2S1 �R2

Figure 1
Types of cubic curves and the topology of the corresponding isospectral sets
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2.4. Topology of isospectral sets. �e answer to the above questions i) and ii)
is formulated in terms of the real part of the curve C . By de�nition, the real part
CR of a real projective curve C is the set of its real points: CR D C \RP2 . If
the curve C is smooth, then its real part consists of a �nite number of closed
curves, which are called ovals. An oval is called bounded if it does not intersect
the line at in�nity. Otherwise, it is unbounded. It is a classical result that a
smooth projective cubic can have either one oval, which is then unbounded, or
two ovals, at least one of which is unbounded (see Figure 1).

Before we describe the set TC , note that for this set to be non-empty, the
curve C should have the properties listed in Proposition 2.4, i.e. it should be a
real cubic passing through the points 11 , 12 , and 13 where 1i D .1 W ai W 0/ ,
and a1 , a2 , a3 are the eigenvalues of the matrix A . �e following theorem in
particular says that for smooth curves C these conditions are also su�cient for
the set TC to be non-empty.

�eorem 2.5. Assume that A is a generic diagonal matrix, and let C be a smooth
real cubic passing through the points 11 , 12 , and 13 . �en the following
statements hold.

(1) If the real part of C has one oval, then the set TC has four connected
components each di�eomorphic to R3 .

(2) If the real part of C has two ovals and one of them is bounded, then TC has
four components di�eomorphic to R3 and four components di�eomorphic to
S1 �R2 .

(3) Finally, if the real part of C has two unbounded ovals, then TC has
four components di�eomorphic to R3 and two components di�eomorphic to
S1 �R2 .

Furthermore, all solutions of (1.1) lying on components of TC di�eomorphic to
R3 blow up2, while all solutions lying on S1�R2 components exist for all times.

Note that this theorem does not answer the third of the above questions.
Namely, if the spectral curve CX has two ovals, then �eorem 2.5 does not allow
us to determine whether the solution with initial condition X blows up or exists
for all times. As we discuss below, the answer to this question can also be given
in terms of a simple geometric construction.

2 In what follows, when we say that a solution blows up, we mean that it does so both forward and
backward in time. Note that equation (1.1) does have solutions which blow up only in one direction,
but these solutions correspond to singular spectral curves.
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Remark 2.6. Note that despite the fact that solutions located on R3 components
blow up, the topology of these components is still compatible with the Arnold–
Liouville theorem [Arn2]. �is phenomenon is explained in the �rst author’s paper
[Ale].

2.5. Regularly inscribed hexagons. As was pointed out above, it is not in
general possible to decide from the spectral curve CX whether the solution of
equation (1.1) with initial condition X blows up. So, we need to supplement the
curve with certain additional data in order to be able to understand the behavior
of a given solution. It turns out that as such additional data we can take a certain
hexagon inscribed in the spectral curve. �is hexagon is constructed as follows.

As before, we assume that A is a diagonal matrix with distinct diagonal entries
a1 , a2 , a3 . Under this assumption, the spectral curve CX has three distinct real
asymptotes which are, by de�nition, the tangent lines to CX at the points 11 ,
12 , 13 . Denote these asymptotes by l1 , l2 , l3 . Let X 2 gl.3;R/ be such that
the spectral curve CX is smooth. Consider the matrix

Xz WD z3X C z1A � z2Id

D

0B@ x11z3 C a1z1 � z2 x12z3 x13z3

x21z3 x22z3 C a2z1 � z2 x23z3

x31z3 x32z3 x33z3 C a3z1 � z2

1CA :
Recall that the zero locus of the determinant of this matrix is, by de�nition, the
spectral curve CX . Furthermore, we have the following:

Proposition 2.7. Asymptotes of the curve CX are the zero loci of the diagonal
entries of the matrix Xz . In other words, the equation of the asymptote li is
Li D 0 where

Li WD xi iz3 C aiz1 � z2:

Proof. We have
detXz D L1L2L3 C z23L

where L is a linear function in z1 , z2 , z3 . �erefore, the restriction of the
function Li to the curve detXz D 0 has a zero of order 2 at in�nity, which
means that Li D 0 is an asymptote.

Further, let Mij .z1; z2; z3/ be the .i; j / minor of the matrix Xz . �en, for
i ¤ j , we have Mij D z3Lij where Lij is a linear function in z1 , z2 , z3 .
Explicitly, one has

Lij D ˙ det
 
xki xkkz3 C akz1 � z2

xj i xjkz3

!
(2.3)
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Q1P2

Q3

P1 Q2

P3
l3

l12

l21

l1
l32l13 l2

l31l23

Figure 2
Inscribed hexagon HX

where .i; j; k/ is any permutation of .1; 2; 3/ . Note that the function Lij cannot
be identically equal to zero. Indeed, as follows from formula (2.3), if Lij � 0 ,
then either the j ’th row or the i ’th column of the matrix Xz contains two zeros.
�e latter implies that the polynomial detXz is reducible, which contradicts the
smoothness of the curve CX .

�is way, we obtain six straight lines lij given by Lij D 0 where i ¤ j .
Properties of these straight lines are described in the following proposition.

Proposition 2.8. Let .i; j; k/ be any permutation of .1; 2; 3/ . �en:

(1) �e line lij is parallel to the asymptote lk of the curve CX . In other words,
we have

l12 k l21 k l3; l23 k l32 k l1; l31 k l13 k l2:

(2) We have lij ¤ lik , and lj i ¤ lki .

(3) �e points
Pi WD lij \ lik ; Qi WD lj i \ lki

lie in the real part of the curve CX . In other words, P1Q2P3Q1P2Q3 is
an inscribed hexagon (see Figure 2).

Proof. �e �rst statement is straightforward and follows from Proposition 2.7 and
formula (2.3) for the function Lij . Let us prove the second statement. Assume
that lij D lik D l . �en, since lij k lk and lik k lj , we have 1j ;1k 2 l .
�erefore, l is the line at in�nity. At the same time, it easy to see from formula
(2.3) that the line lij is the line at in�nity if and only if xj i D 0 . So, we have
xj i D xki D 0 . However, if this was so, then the curve CX would be not smooth
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but reducible. �erefore, our assumption is false, and lij ¤ lik . �e proof of the
inequality lj i ¤ lki is analogous.

Now, let us prove the third statement. We show that the point P1 lies in the
real part of CX . �e proof for other points is analogous. First note that P1 is
the intersection point of two real straight lines, therefore this point is real. So, it
su�ces to show that P1 2 CX . Let P1 D .z1 W z2 W z3/ . �en, by de�nition of the
point P1 , the �rst two columns, as well as the �rst and the last column of the
matrix  

x21 x22z3 C a2z1 � z2 x23z3

x31 x32z3 x33z3 C a3z1 � z2

!
(2.4)

are linearly dependent. Note that the �rst column of this matrix cannot be zero:
if it is zero, then, again, CX is a reducible curve. �erefore, the rank of this
matrix is equal to one, which implies that detXz D 0 , and thus P1 2 CX .

Remark 2.9. Note that since the rank of the matrix (2.4) is equal to 1 at the
point P1 , the diagonal minor M11 of the matrix Xz at P1 is equal to zero.
Similarly, M11 vanishes at the point Q1 . Also note that the zero locus of the
minor M11 is a conic whose asymptotes coincide with the asymptotes l2 , l3 of
the spectral curve. �e latter implies that the conic M11 D 0 has at most two
�nite intersection points with the spectral curve, and these points are P1 and
Q1 . Similarly, Pi and Qi may be de�ned as �nite intersection points of the
quadric Mi i D 0 with the spectral curve.

Proposition 2.8 implies that to each matrix X such that the corresponding
spectral curve CX is smooth one can associate a hexagon inscribed in the real part
of the spectral curve. We denote this hexagon by HX . �e sides of this hexagon
are parallel to the asymptotes of the curve CX . In what follows, hexagons with
this property are called regularly inscribed hexagons. More precisely, we give
the following de�nition:

De�nition 2.10. Assume that C is a real smooth cubic curve which intersects the
line at in�nity at real points 11 , 12 , and 13 . A hexagon regularly inscribed
in C is six points P1 , Q2 , P3 , Q1 , P2 , Q3 2 CR such that for any permutation
.i; j; k/ of .1; 2; 3/ , the third intersection point of the line PiQj with the curve
C is 1k .

Note that a regularly inscribed hexagon is uniquely determined by any of
its vertices. Indeed, assume that we are given a point P1 2 CR . �en we can
reconstruct the point Q2 as the intersection point of the cubic with the line passing
through P1 and parallel to the asymptote l3 . In a similar way, we reconstruct
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points P3 , Q1 , P2 , and Q3 . If it turns out that Q3P1 is parallel to the asymptote
l2 , then we obtain a regularly inscribed hexagon. In what follows, we show that
this is always so. �is, in fact, is a simple corollary of a classical result about
nine points on a cubic, known as Chasles, or Cayley–Bacharach theorem. �us,
there exists exactly one regularly inscribed hexagon with a given vertex P1 (this
is, of course, true for other vertices as well). In particular, the set of hexagons
regularly inscribed in a curve C can be, in principle, identi�ed with the real part
of C .

Also note that De�nition 2.10 describes a slightly more general class of
hexagons compared to Proposition 2.8. Indeed, setting Pi D Qi D 1i for
i D 1; 2; 3 , we obtain a regularly inscribed hexagon. In what follows, we shall
refer to this hexagon as the degenerate hexagon (note that if Pi D1i or Qi D1i

at least for one value of i , then the hexagon is automatically degenerate). Since
all sides of the degenerate hexagon coincide, the second statement of Proposition
2.8 implies that this hexagon does not correspond to any matrix X . As we
show below, this situation is exceptional: any other regularly inscribed hexagon
corresponds to a 2 -dimensional family of matrices X .

Now, we need to discuss certain topological properties of regularly inscribed
hexagons. Note that if the real part of C has two ovals, then di�erent vertices of
a regularly inscribed hexagon may lie on di�erent ovals. To distinguish between
possible con�gurations, we use the fact that if the real part of a cubic has two
ovals, then exactly one of these two ovals is contractible in RP2 . Namely, if
one of the ovals is bounded, then it is contractible, and the other oval is not; if
both ovals are unbounded, then the one which intersects the line at in�nity at
two points is contractible, and the other one is not.

De�nition 2.11. We say that a regularly inscribed hexagon has type .m; n/ if
m of its vertices lie on the contractible oval, and n of its vertices lie on the
non-contractible oval.

Proposition 2.12. All possible types of regularly inscribed hexagons are depicted
in Figure 3: if one of the ovals of CR is bounded, then H has type .0; 6/ or
.6; 0/ , and if both ovals of CR are unbounded, then H has type .4; 2/ or .2; 4/ .

Proof. �e proof follows from simple topological considerations.

2.6. Blow-up and global solutions. Now, we formulate a theorem which allows
one to determine whether a given solution of equation (1.1) blows up. �is result
is stated in terms of the type of the hexagon HX .

First note that, in contrast to the spectral curve CX , the hexagon HX is
time-dependent. However, the type of this hexagon obviously cannot change with
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.0; 6/ .6; 0/

P1
∞1∞1

P1 ∞1∞1

Blow-up solution Global solution

.4; 2/ .2; 4/

P1

∞1∞1 P1
∞1∞1

Blow-up solution Global solution

Figure 3
Di�erent types of regularly inscribed hexagons
and the behavior of the corresponding solutions

time. Moreover, the type of HX stays the same if we vary X within a connected
component of the isospectral set TC . It turns out that the topological type of
HX allows one to distinguish between R3 and S1 �R2 components of TC , i.e.
between global and blow-up solutions.

�eorem 2.13. Assume that A is a generic diagonal matrix, and let X 2 gl.3;R/

be such that the spectral curve CX is smooth. Let also X.t/ be the solution of
equation (1.1) with initial condition X . �en the following statements hold.

(1) If the real part of CX has one oval, then X.t/ blows up.

(2) If the real part of CX has two ovals, then X.t/ blows up if and only if the
hexagon HX is of type .0; 6/ or .4; 2/; if HX is of type .6; 0/ or .2; 4/ ,
then X.t/ exists for all times.

Example 2.14 (Rigid body). As we mentioned in the Introduction, for skew-
symmetric matrices X equation (1.1) becomes the Euler equation governing the
motion of a rigid body. Let us demonstrate how �eorem 2.13 works in this case.
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3

l1
l2

l3
1′

1

3′

2

2′

Figure 4
Asymptotes of the spectral curve for the rigid body

�e equation of the spectral curve, written in a�ne coordinates � D z1=z3;

and � D z2=z3 , is det.X C �A � �Id/ D 0 . Using that X t D �X , we have

det.X C �A � �Id/ D det
�
.X C �A � �Id/t

�
D

det.�X C �A � �Id/ D � det.X � �AC �Id/;

so, for a skew-symmetric X , the spectral curve CX is symmetric with respect to
the origin. �e latter in particular implies that CX has two ovals both of which
are unbounded.

Further, let us show that if the matrix X is skew-symmetric, then the hexagon
HX is of type .2; 4/ . Figure 4 depicts the asymptotes l1 , l2 , l3 of the spectral
curve and six sectors into which these asymptotes cut the a�ne plane. �e
asymptote li is given by the equation � D ai� (without loss of generality, we
may assume that a1 > a2 > a3 ). According to Remark 2.9, the vertex P1 of the
hexagon HX may be found as one of the intersection points of the spectral curve
with the conic M11 D 0 . In a�ne coordinates, this conic is given by

.� � a2�/.� � a3�/C x
2
23 D 0;

i.e. it is a hyperbola whose branches lie in sectors 1 and 10 . �erefore, the
point P1 lies in one of these sectors. �e branch of the curve CX lying in the
corresponding sector joins the point P1 with at least one of the points 12 or
13 . So, P1 lies in the same oval as 12 or 13 , and thus the hexagon HX

is indeed of type .2; 4/ (see Figure 3). �e latter allows us to conclude that all
generic solutions of the rigid body equation exist for all times. �is is, of course,
very well known (these trajectories are in fact periodic).
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Example 2.15 (Rigid body in a pseudo-Euclidian space). Equation (1.1) may also
be restricted to the Lie algebra so.1; 2/ , which consists of matrices satisfying
the equation XI C IX t D 0 where I is diagonal I WD diag.1; 1;�1/ . For such
matrices X , equation (1.1) may be regarded as the equation of a rigid body in
the pseudo-Euclidian space R1;2 . (Rigid body dynamics in non-Euclidian spaces
was considered, e.g., in a recent paper [BoM].)

As in the Euclidian case, the spectral curve CX is symmetric with respect to
the origin and thus has two unbounded ovals. �e di�erence is that we can no
longer assume that a1 > a2 > a3 due to the special role of the �rst coordinate.
So, there are two di�erent cases. �e �rst case is when a1 does not lie in the
interval .a2; a3/ . �en, repeating the argument of the Euclidian case (see Example
2.14), one shows that the hexagon HX is of type .2; 4/ , and thus all generic
trajectories exist for all times. �e second case is a1 2 .a2; a3/ . In this case, a
similar argument shows that the hexagon HX is of type .4; 2/ . �us, if a1 is
between a2 and a3 , then all generic trajectories blow up in �nite time.

Now, let us give an informal explanation why �eorem 2.13 is true. First,
assume that the real part of the spectral curve CX has one oval. �en, as the
matrix X evolves according to equation (1.1), the hexagon HX , and in particular
its vertex P1 , slide along the spectral curve CX . At some point of time t 0 , the
vertex P1 hits the point 11 , and the hexagon HX becomes degenerate. However,
as was pointed out above, the degenerate hexagon does not correspond to any
matrix X . For this reason, the solution X.t/ can not be extended to t D t 0 .

Further, note that if the real part of the spectral curve has two ovals, but the
hexagon HX is of type .0; 6/ or .4; 2/ , then the points P1 and 11 still lie in
the same oval (see Figure 3). So, we arrive to exactly the same conclusion as in
the one oval case.

Finally, if the real part of CX has two ovals, and HX is of type .6; 0/ or
.2; 4/ , then the points P1 and 11 lie in di�erent ovals. For this reason, they
can never meet each other, and the solution exists for all times.

Of course, to turn this explanation into a rigorous proof, one should understand
the dynamics of the hexagon HX . It turns out that this dynamics is, roughly
speaking, a uniform rotation. More precisely, there exists an angular coordinate
� 2 Œ0; 2�/ on each oval of the curve CX such that the evolution of all vertices
of HX is given by d�=dt D const ¤ 0 . �us, if the points P1 and 11 lie in
the same oval, they will inevitably meet each other.

Note that this consideration also implies that for each global in time solution
of equation (1.1), the hexagon HX returns to its initial position after some time
T . In other words, the evolution of the hexagon HX is periodic. However, the
evolution of the matrix X itself is, in general, not periodic but quasi-periodic.
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To be more precise, we have the following.

�eorem 2.16. Assume that A is a generic diagonal matrix, and let C be a
smooth real cubic passing through the points 11 , 12 , 13 . Further, assume
that the real part of C has two ovals3. �en there exist a real number T > 0

and a diagonal matrix M 2 PD.3;R/ such that for each lying in TC global in
time solution of equation (1.1), the following statements hold.

(1) �e dynamics of the hexagon HX is periodic with period T .

(2) �e dynamics of the matrix X is quasi-periodic:

X.t C T / DMX.t/M�1:

Furthermore, we have M 2 PDC.3;R/ if HX has type .6; 0/ , and
M … PDC.3;R/ if HX has type .2; 4/ .

Example 2.17 (Rigid body revisited). Let us again consider the case of a skew-
symmetric matrix X . �en, as follows from considerations of Example 2.14,
the hexagon HX has type .2; 4/ . �erefore, X.t C T / D MX.t/M�1 where
M 2 PD.3;R/ n PDC.3;R/ . On the other hand, all generic trajectories of the
rigid body are closed, so we should have M k D Id for a suitable integer k > 0 .
Clearly, this is only possible when the diagonal entries of M are equal to ˙1 ,
and thus M 2 D Id . Note that M itself is not ˙Id since M … PDC.3;R/ . So,
we have X.t C 2T / D X.t/ , i.e. the period of a generic trajectory of the rigid
body is twice the period of the corresponding hexagon.

Remark 2.18. Let us comment on the relation between the hexagon HX and
the general approach of the algebro-geometric integration theory. In this general
approach, one considers eigenvectors of the Lax matrix X� as a line bundle E
over the spectral curve. �e �ber of the bundle E at the point .�; �/ is the
eigenspace of X� corresponding to the eigenvalue � (one can show that for
smooth spectral curves this eigenspace is always one-dimensional, and that the
line bundle E extends to the points at in�nity). �e isomorphism class of the
line bundle E de�nes a point in the Jacobian of the spectral curve. �e main
result of the algebro-geometric integration theory is that the evolution of this
point according to the Lax equation is linear with respect to the addition law on
the Jacobian (see, e.g., the above-mentioned monograph [BBT]; cf. Proposition
3.4 below). From the latter it, in particular, follows that equation (1.1) can be
solved in terms of theta functions (cf. [Man]).

3Recall that if the real part of C has one oval, then there are no global in time solutions lying in
TC .
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�e relation between the line bundle E and the hexagon HX is as follows.
For any regularly inscribed hexagon H , we have

P1 C12 C13 � 11 C P2 C13 � 11 C12 C P3 ;(2.5)

where D1 � D2 denotes linear equivalence of divisors D1 , D2 . Indeed, the
divisor of the function L13=L23 , where Lij is given by (2.3), is P1C12�11�P2

(see Figure 2). �erefore, P1C12 � 11CP2 , and P1C12C13 � 11CP2C13 ,
as desired. �e proof of the equivalence 11 C P2 C 13 � 11 C 12 C P3

is analogous. Furthermore, one can show that the line bundle corresponding to
divisors (2.5) is isomorphic to the eigenvector bundle E . �us, the data contained
in the hexagon HX and the line bundle E are equivalent. However, it turns out that
it is easier to read o� the information about the matrix X from the corresponding
hexagon rather than from the line bundle.

3. Proofs of the main results

3.1. Regularly inscribed hexagons and Chasles’ theorem. In this section we
prove that for any point lying in the real part of a cubic curve, there exists a
unique regularly inscribed hexagon whose vertex P1 is at that point. Of course,
there is nothing special about the vertex P1 , so the result is also true for any
other vertex.

Let C be a smooth real cubic curve, and assume that C intersects the line
at in�nity at three real points 11;12;13 . �en C has three real asymptotes
l1; l2; l3 . Take any point P1 2 CR and consider the line passing through P1 and
parallel to l3 , that is the line passing through P1 and 13 (if P1 D 13 , then
the line passing through P1 and 13 is, by de�nition, the tangent line to C at
13 , i.e. the asymptote l3 ). By Bézout’s theorem, this line should meet the curve
C at one more point which we call Q2 (see Figure 2). Clearly, Q2 2 CR . Now,
consider the line passing through Q2 and parallel to l1 , and denote its third
intersection point with C by P3 . Continuing this procedure, we obtain points
P1;Q2; P3;Q1; P2;Q3; P

�
1 2 CR such that

P1Q2 k l3; Q2P3 k l1; P3Q1 k l2; Q1P2 k l3; P2Q3 k l1; Q3P
�
1 k l2:

Now, we need to show that the points P �1 and P1 in fact coincide, so that
the polygon P1Q2P3Q1P2Q3 is a regularly inscribed hexagon. For simplicity,
assume that the nine points

P1;Q2; P3;Q1; P2;Q3;11;12; and 13

are pairwise distinct (the general case follows by continuity). We shall apply the
following classical result, known as Chasles’, or Cayley–Bacharach theorem:
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�eorem 3.1. Let C1; C2; and C3 be three cubic curves in CP2 . Assume that
C1 intersects C2 at nine distinct points R1; : : : ; R9 , and that C3 passes through
eight of these nine points. �en C3 also passes through the ninth point.

To apply this result in our setting, consider the curves

C1 D C; C2 D P1Q2 [ P3Q1 [ P2Q3; and C3 D Q2P3 [Q1P2 [Q3P �1 :

�en
C1 \ C2 D ¹P1;Q2; P3;Q1; P2;Q3;11;12;13º;

and thus C3 passes through all points of C1\C2 except, possibly, P1 . �erefore,
by �eorem 3.1, the curve C3 also passes through the point P1 , so

P1 2 C1 \ C3 D ¹Q2; P3;Q1; P2;Q3; P
�
1 ;11;12;13º;

and hence P1 D P �1 , q.e.d.

3.2. Reconstructing a matrix from a curve and a hexagon. In this section we
show that a matrix X can be reconstructed from the spectral curve CX and the
hexagon HX uniquely up to conjugation by diagonal matrices. For the sake of
simplicity, we shall assume that the spectral curve satis�es the following genericity
assumptions: (i) it does not have in�ection points at in�nity, (ii) intersection points
of asymptotes do not lie on the curve. It is easy to see that under these assumptions
every regularly inscribed hexagon which is not degenerate has at most one side
at in�nity. �e proof of the general case is similar.

Proposition 3.2. Let C be a smooth real projective cubic passing through the
points 11 , 12 , 13 , and satisfying the above genericity assumptions. Let also
H � C be a regularly inscribed hexagon which is not degenerate. �en there
exists a matrix X 2 gl.3;R/ , unique up to conjugation by a diagonal matrix,
such that CX D X , and HX D H .

Proof. First note that the spectral curve CX and the hexagon HX are invariant
under transformations X 7! DXD�1 where D is a diagonal invertible matrix.
�erefore, uniqueness up to conjugation by diagonal matrices is the best result
we can expect.

Now, let us show how to reconstruct X from C and H . Note that by
Proposition 2.7 the diagonal entries x11; x22; x33 of the matrix X are uniquely
determined by the spectral curve. So, we only need to reconstruct the o�-diagonal
entries.

First, assume that none of the sides of H are at in�nity. �is also implies
that none of the sides of H are asymptotes of C . In terms of the matrix X to
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be constructed, these conditions mean that all o�-diagonal entries of X do not
vanish (cf. formula (2.3)). Take any two non-zero real numbers ˛; ˇ 2 R� , and
set x31 D ˛; x32 D ˇ . Now, we �nd the remaining entries of X by using the
equations of sides of H . First, we �nd x12 from the equation of l23 . Since the
side l23 is parallel to the asymptote l1 , its equation has the form

a.x11z3 C a1z1 � z2/ � bz3 D 0

where a; b are constants. Note that since l23 is neither the line at in�nity, nor
an asymptote, these constants do not vanish. On the other hand, in terms of the
matrix X to be constructed, the equation of l23 should be

x32.x11z3 C a1z1 � z2/ � x31x12z3 D 0;

so
x32

a
D
x31x12

b
;

which allows us to �nd x12 . In a similar way, we �nd x21 from the equation of
l13 , then x23 from l12 , and, �nally, x13 from l32 .

Now, let us show that the curves CX and C are the same. As follows from the
construction of X , the hexagons HX and H have four common consecutive sides
l23 , l13 , l12 , and l32 . �erefore, they have three common vertices Q3; P1 , and
Q2 . By Proposition 2.8, these points are not collinear. So, the curves C and CX
are two cubics which have common asymptotes and three common non-collinear
points. As it is easy to see, such cubics must coincide. �is, in turn, implies that
the hexagons H and HX coincide as well: they are two hexagons which are
regularly inscribed in the same cubic and have a common vertex P1 .

Now, assume that H has one side at in�nity. Without loss of generality,
it is l31 . �en the two adjacent sides of H are necessarily asymptotes of the
curve, namely l32 D l1 , and l21 D l3 . As above we �x ˛; ˇ 2 R� and set
x31 D ˛; x32 D ˇ . Apart from this, since the side l31 is at in�nity, we should set
x13 D 0 (see the proof of Proposition 2.8). Further, similarly to the above, we
�nd x12 , x21 , x23 using the equations of l23 , l13 , and l12 respectively. Note that
since x13 D 0 , the sides l32 and l21 of the hexagon HX automatically coincide
with the corresponding sides of H , that is with asymptotes l1; l3 . So, HX and
H have �ve sides in common and thus, similarly to the above, CX coincides
with C , and HX coincides with H .

So, we showed that in both cases a matrix X satisfying the desired conditions
is uniquely determined by its non-zero entries x31; x32 . Conjugating such a matrix
with a suitable diagonal matrix, we can always assume that x31 D 1 and x32 D 1 .
�erefore, X is indeed unique up to conjugation by a diagonal matrix.
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3.3. Description of isospectral sets. In this section, we prove the topological
part of �eorem 2.5. Namely, we describe the topology of the sets TC D ¹X 2
gl.3;R/ W CX D C º .

Let HC be the set of hexagons regularly inscribed in the curve C . Let also
Hd 2 HC be the degenerate hexagon. Proposition 3.2 allows us to conclude that
the set TC is the total space of a principal PD.3;R/ bundle over HC nHd . Also
note that, according to Section 3.1, the space HC nHd can be identi�ed with the
real part of the curve C without a point.

A trivializing cover for the bundle TC ! HC n Hd can be constructed as
follows. Let

U1 D ¹H 2 HC W l13 ¤ l2º; U2 D ¹H 2 HC W l31 ¤ l2º:

It it easy to see that, under the genericity assumptions of the previous section,
¹U1; U2º is indeed a cover of HC nHd . As coordinates on �bers over U1 , we
take the entries x21 and x32 of the matrix X . Since l13 ¤ l2 , these entries are
non-zero (cf. formula (2.3)), and thus they uniquely determine a matrix X within
its PD.3;R/ orbit. Similarly, we take x12 and x23 as coordinates on �bers over
U2 .

Now, let us prove the �rst statement of �eorem 2.5. If the real part CR of
the curve C has one oval, then the set HC ' CR is di�eomorphic to a circle S1 .
�erefore, the set HC nHd is di�eomorphic to R , and hence TC ! HC nHd is a
trivial bundle: TC ' R�PD.3;R/: �e latter set has four connected components
di�eomorphic to R3 , q.e.d.

Further, let us prove the second statement. Assume that the real part of C has
two ovals one of which is bounded. In this case, the set HC has two connected
components distinguished by the type of a hexagon. Let

Hi;j
C WD

®
H 2 HC W H is of type .i; j /

¯
; T i;jC WD

®
X 2 TC W HX 2 Hi;j

C

¯
:

�en
HC D H6;0

C tH0;6
C ; and TC D T 6;0C t T 0;6C :

Note that since the degenerate hexagon Hd has type .0; 6/ , we have

HC nHd D H6;0
C t

�
H0;6
C nHd

�
:

�erefore, the set T 0;6C is the total space of a principal PD.3;R/ bundle over
H0;6
C nHd . Since the latter set H0;6

C nHd is di�eomorphic to R , this bundle is
trivial, and thus T 0;6C ' 4R3:

Now, let us study the component T 6;0C . By de�nition of the set H6;0
C , all

vertices of any hexagon HX 2 H6;0
C lie on the bounded oval, and therefore none

of the vertices are at in�nity. In particular, the side l13 of HX cannot coincide
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with the asymptote l2 . So, the component H6;0
C is completely covered by the

chart U1 , and thus the bundle T 6;0C ! H6;0
C is also trivial. Since H6;0

C ' S
1 , we

have T 6;0C ' 4S1 �R2 , q.e.d.
Finally, let us prove the third statement of �eorem 2.5. Assume that the real

part of C has two unbounded ovals. �en

HC nHd D H2;4
C t

�
H4;2
C nHd

�
:

Similarly to the above, we have H4;2
C n Hd ' R , therefore the bundle T 4;2C !

H4;2
C nHd is trivial, and T 4;2C ' 4R3 .
Now, let us show that the bundle T 2;4C ! H2;4

C is not trivial. Note that there
are only two di�erent principal PD.3;R/ bundles over the circle S1 , namely
the trivial one with the total space 4S1 � R2 , and the non-trivial one with the
total space 2S1 �R2 . So, as soon as we prove that the bundle is non-trivial, the
topology of the total space is uniquely determined.

Without loss of generality, we may assume that the points 12;13 lie on the
contractible oval O1 , and that the point 11 lies on the non-contractible oval O2
(if this is not so, we renumber these points). �en P1 2 O1 , and Q3 2 O2 , as
depicted in Figure 5. Let us consider the intersection of the chart U1 with the
component H2;4

C . �e complement to U1 consists of those hexagons for which
l13 D l2 . �e latter is possible if either P1 D 12 , or Q3 D 12 . However, for
HX 2 H2;4

C , the points Q3 and 12 lie on di�erent ovals (see Figure 5), therefore
the chart U1 covers the whole set H2;4

C except one hexagon H0 distinguished by
the condition P1 D12 . �is hexagon can be obtained by moving the point Q3
in Figure 5 to the right till it reaches the asymptote l2 . �e domain H2;4

C nH0

is covered by the chart U1 , therefore in this domain we have a trivialization of

Q3

P1

∞1∞1

∞2

∞2

∞3

∞3

l2
O1

O2

l13

Figure 5
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the bundle given by x21; x32 . Let us analyze what happens to these coordinates
as the hexagon HX passes through H0 , or, which is the same, as the vertex
Q3 crosses the asymptote l2 . First, note that the side l12 of the hexagon H0

is at in�nity, therefore for this hexagon we have x21 D 0 (see the proof of
Proposition 2.8), which shows that the trivialization ¹x21; x32º is no longer valid
for HX D H0 . However, since H0 has only one side at in�nity, we have x32 ¤ 0 .
�erefore, to determine whether the bundle T 2;4C ! H2;4

C is trivial, we should
study what happens to the sign of x21 as the point Q3 crosses the asymptote
l2 . By formula (2.3), the side l13 is given by the equation

x31.x22z3 C a2z1 � z2/ � x21x32z3 D 0:

At the same time, x22z3 C a2z1 � z2 D 0 is the equation of the asymptote l2 .
�erefore, provided that x31 ¤ 0 , i.e. that the side l13 is not at in�nity, the
sign of the product x21x32 has the following geometric meaning: it is positive
if the line l13 lies on one side of the asymptote l2 , and negative if it lies at the
other side. Now, notice that as Q3 crosses the asymptote l2 , the line l13 gets
from one side of the asymptote to the other (see Figure 5), therefore the sign
of the product x21x32 changes to its negative. Since x32 does not vanish as Q3
crosses the asymptote, this means that the sign of x21 changes, and therefore the
bundle is non-trivial. So, we have T 2;4C ' 2S1 �R2 , thus the third statement of
�eorem 2.5 is proved.

3.4. Dynamics of the hexagon. Let us �x the spectral curve C and describe the
evolution of the hexagon HX under the �ow (1.1). As before, consider the matrix
Xz D z3XCz1A�z2Id: Recall that the zero locus of the determinant of this matrix
is the spectral curve C . We shall describe the dynamics of the hexagon HX by
relating its vertices to eigenvectors of Xz . Note that since a regularly inscribed
hexagon is uniquely determined by any of its vertices, it su�ces to describe the
dynamics of one vertex. As before, let Mij be the .i; j / minor of Xz . �en
the vector .M11;�M12;M13/

t belongs to the kernel of Xz . Normalizing this
vector by dividing its components by M11 , we obtain the following meromorphic
vector-function  on C :

 WD

0BBBBB@
1

�
M12

M11

M13

M11

1CCCCCA
Denote the components of this vector by  1;  2;  3 . By construction, we have
Xz D 0 identically on C .
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Proposition 3.3. �e component  2 of  has poles at 12 and Q1 and zeros
at 11 and Q2 ; the component  3 has poles at 13 and Q1 and zeros at 11

and Q3 .

Proof. As follows from Remark 2.9, zeros of M11 on C are the points P1;Q1 ,
and the points 12 , 13 taken with multiplicity 2 . Further, we have M12 D z3L12

where L12 is a linear function whose zero locus is the line l12 . �erefore, zeros of
M12 are the points P1 , Q2 , 11 , 12 , and the point 13 taken with multiplicity
2 . Dividing M12 by M11 , we obtain the desired statement about zeros and poles
of  2 . Zeros and poles of  3 are computed analogously.

So, the vertex Q1 of the hexagon HX is the only movable pole of the
eigenvector  (clearly, vertices Q2 and Q3 can be interpreted in the same way;
to obtain these vertices as poles, one needs to renormalize the vector  by
setting  2 D 1 or  3 D 1 ). �is allows us to describe the dynamics of Q1
using standard technique (see e.g. the reviews [DKN, DMN, RSTS3]). Let ! be
a holomorphic 1 -form on C ; such a form is unique up to a constant factor. In
the a�ne chart � D z1=z3 and � D z2=z3 , it is given by

! D
d�

@�fX
D �

d�

@�fX
(3.1)

where fX .�; �/ D 0 is the equation of the a�ne part of the curve C .

Proposition 3.4. Assume that X evolves according to equation (1.1). �en, for
the holomorphic form ! normalized by (3.1), we have

!

�
dQ1

dt

�
D 1:

Proof. We work in a�ne coordinates � D z1=z3 and � D z2=z3 . Equation
Xz D 0 can be rewritten as

.X� � �Id/ D 0(3.2)

where X� D XC�A . Assuming that X� evolves according to Lax equation (2.1)
and di�erentiating (3.2) with respect to time, we get

.X� � �Id/
�
d 

dt
C Y� 

�
D 0:(3.3)

Note that rank .X� � �Id/ D rankXz D 2 at every point of C . Indeed, if
rankXz D 1 at some point P 2 C , then this point is a common zero for all
2�2 minors Mij of the matrix Xz , which means that all vertices of the hexagon
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HX coincide. However, as follows from Proposition 2.8, this is impossible. �us,
(3.3) implies that

d 

dt
D .� � Id � Y�/ ;(3.4)

where � is a function on the curve C . Using that  1 � 1 , we �nd that � is
equal to the �rst coordinate .Y� /1 of the vector Y� .

Now, let us consider the point Q1 at some moment of time t0 , and let u be
a local coordinate on C near this point. Let also uq.t/ be the u -coordinate of
Q1 at moment t . Provided that Q1 does not coincide with 12 or 13 , we have

 .t/ D
h.t/

u � uq.t/
C terms holomorphic in u ;(3.5)

where h.t/ is a vector holomorphic in u . Substituting (3.5) into (3.4) and equating
coe�cients in .u � uq.t//

�2 , we get

duq

dt
D .Y�h/1 ;

where .Y�h/1 is the �rst coordinate of the vector Y�h . �e coordinate free-form
of this equation is

!

�
dQ1

dt

�
D ResQ1

�
.Y� /1!

�
;(3.6)

where ! is the holomorphic form de�ned above. Now, note that the form .Y� /1!

may only have poles at those points where either Y� or  have a pole, i.e. at
points Q1 , 11 , 12 , 13 . �erefore, by Cauchy’s residue theorem, we have

ResQ1
..Y� /1!/ D �

3X
iD1

Res1i

�
.Y� /1!

�
:(3.7)

Further, note that Y� D ��1.X2� �X
2/ (cf. Formula (2.2)), therefore,

Res1i
..Y� /1!/ D Res1i

�
.X2� /1�

�1!
�
� Res1i

�
.X2 /1�

�1!
�

D Res1i
.�2��1!/

where we used the identities X� D � ,  1 D 1 , and that the function
.X2 /1�

�1 does not have a pole at the point 1i . Combining the last formula
with (3.6) and (3.7), we conclude that

!

�
dQ1

dt

�
D �

3X
iD1

Res1i
.�2��1!/:(3.8)
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Note that although we assumed in the proof that Q1 ¤ 12 and Q1 ¤ 13 ,
formula (3.8) still holds for these points by continuity argument. Now, to complete
the proof, it su�ces to compute the residues. �is can be easily done using formula
(3.1) and the explicit expression for the polynomial fX (note that only cubic terms
of fX a�ect the residues).

Note that the conclusion of Proposition 3.4 is obviously true for other Q -
vertices of the hexagon HX as well, i.e.

!

�
dQ1

dt

�
D !

�
dQ2

dt

�
D !

�
dQ3

dt

�
D 1 :

For P -vertices, we have

!

�
dP1

dt

�
D !

�
dP2

dt

�
D !

�
dP3

dt

�
D �1 :

�e latter can be proved by noting that (1.1) is anti-invariant with respect to the
transformation X 7! X t which preserves the spectral curve C and interchanges
P -vertices with Q -vertices.

Now, for each oval Oi of the curve C , �x a point Ri 2 Oi and consider the
function

�.R/ D

Z R

Ri

! :

�en � is a periodic coordinate on Oi . In terms of the coordinate � , the
dynamics of vertices of HX is linear: d�=dt D ˙1 . �is in particular implies
that the dynamics of the hexagon HX is monotonous and periodic. �e period is
given by the integral of ! along any of the ovals of C (note that this integral
is the same for both ovals since they are homologous cycles in C ).

3.5. Complete and blow-up solutions. In this section, we prove �eorems 2.13
and 2.16, i.e. we investigate the dynamics of (1.1) at each connected component
of the set TC . As we know from Section 3.3, the set TC is the total space
of a principal PD.3;R/ bundle over the set HC n Hd where HC is the set
of all hexagons regularly inscribed in C , and Hd is the degenerate hexagon.
Furthermore, �ow (1.1) is invariant with respect to the PD.3;R/ action on TC .
�is allows us to apply the following classical result.

�eorem 3.5 (A. Lichnerowicz [Lic]). Let � W E ! B be a principal G -bundle,
and let v be a vector �eld on E which is invariant with respect to the G -action.
�en an integral trajectory x.t/ of the �eld v is complete if and only if the
corresponding trajectory of the �eld ��v on the base is complete.
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�is result implies that one can study the behavior of solutions of (1.1) by
considering their projections to the space of hexagons. Dynamics on the space
of hexagons was studied in the previous section: it is linear.

To prove �eorem 2.13, we consider separately each of the components T i;jC
de�ned in Section 3.3. For example, consider a solution X.t/ of equation (1.1)
such that the corresponding hexagon HX has type .0; 6/ . �e latter means that
X.t/ 2 T 0;6C in the notation of Section 3.3. �e set T 0;6C is a principal bundle
over H0;6

C nHd . Furthermore, as follows from Section 3.4, the dynamics on H0;6
C

is linear in terms of the coordinate � , so the projection of X.t/ to the base
H0;6
C n Hd meets the degrease hexagon Hd and thus blows up in �nite time.

�erefore, by �eorem 3.5, the trajectory X.t/ itself also blows up.
An analogous consideration shows that trajectories of (1.1) corresponding to

hexagons of type .4; 2/ also blow up, while trajectories corresponding to types
.6; 0/ or .2; 4/ exist for all times. �us, �eorem 2.13 is proved.

Note that this consideration also proves the dynamical part of �eorem 2.5
since all R3 components of TC correspond to hexagons of type .0; 6/ or .4; 2/ ,
while all S1 �R2 components correspond to .6; 0/ or .2; 4/ (see Section 3.3).

Now, let us prove �eorem 2.16. As follows from the previous section, if
a trajectory X.t/ exists for all times, then the dynamics of the corresponding
hexagon is periodic with a certain period T . Now, the formula

X.t C T / DMX.t/M�1:

easily follows from the PD.3;R/ invariance of the �ow (1.1). Further, let us show
that M 2 PDC.3;R/ if HX has type .6; 0/ . Consider the bundle T 6;0C ! H6;0

C .
By de�nition of the number T , the matrices X.t C T / and X.t/ lie in the
same �ber of this bundle. Furthermore, since it is a trivial bundle, X.t C T /
and X.t/ should lie in the same connected component of the �ber, and thus
M 2 PDC.3;R/ .

Analogously, since the bundle T 2;4C ! H2;4
C is not trivial, we have M …

PDC.3;R/ if HX has type .2; 4/ , so �eorem 2.16 is proved.

4. Discussion

Note that equation (1.1), as well as the de�nitions of the spectral curve and the
corresponding set TC , can be without any di�culty generalized to gln.R/ . It is
an interesting question how to generalize our results to this case. In particular, is
it always true that the topology of TC is completely determined by the geometry
of CR ? It is particularly interesting whether the structure of the set TC depends
on the way the ovals of C are nested into each other. (Recall that description of
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all possible relative positions of ovals for a real algebraic curve of degree n is
the Hilbert 16th problem which is still unsolved in full generality.)

We also note that the problem of description of the set TC can be reformulated
in purely algebro-geometric terms. Similarly to the gl.3;R/ case, let a1; : : : ; an
be the eigenvalues of the matrix A . For simplicity, let all eigenvalues a1; : : : ; an
be real, so that we may assume that A is a diagonal matrix. Further, let
1i D .1 W ai W 0/ 2 CP2 , and let C be a smooth real projective curve of
degree n passing through the points 11; : : : ;1n . �en, as follows from the
results of [Bea], the manifold TC D ¹X 2 gl.n;R/ W CX D C º can be described
as a principal .R�/n�1 bundle over the real part of Jac.C / n‚ where Jac.C / is
the Jacobian of the curve C , and ‚ � Jac.C / is the theta-divisor (the latter can
also be deduced from the earlier papers [VMM, AvM2, RSTS2]).

Further, it is a classical result by Comessatti (see e.g. [SS]) that the topology
of the real part of Jac.C / is uniquely determined by the number of ovals of
C . However, one still needs to understand the structure of the .R�/n�1 bundle
TC ! .Jac.C / n‚/R: For n D 3 this is (in much more elementary terms) done
in the present paper.

Also note that there is a more explicit algebro-geometric description of the set
TC due to L.Gavrilov [Gav]. Namely, consider the singular curve Cs obtained
from the smooth curve C by identifying the points 11; : : : ;1n , and let Jac.Cs/
be the generalized Jacobian of Cs . �en, as follows from [Gav], the set TC is
di�eomorphic to the real part of Jac.Cs/ n ��1.‚/ where � W Jac.Cs/! Jac.C /
is the canonical projection. �us, to describe the set TC , one needs to describe
the real part of the generalized Jacobian Jac.Cs/ , and to study how it intersects
the preimage of the theta divisor under the projection � .

Acknowledgments. �e second author was partially supported by the Dynasty
Foundation Scholarship and an NSERC research grant. �e authors are grateful
to Alexey Bolsinov and Boris Khesin for useful remarks.

References

[Ale] K. R. Aleshkin, �e topology of integrable systems with incomplete �elds.
Sbornik: Mathematics 205 (2014), 1264. Zbl 1338.37070 MR3288424

[ALMR] M. S. Alber, G. G. Luther, J. E. Marsden, and J.M. Robbins, Geometric
phases, reduction and Lie-Poisson structure for the resonant three-wave
interaction. Physica D: Nonlinear Phenomena 123 (1998), 271–290.
Zbl 1038.37510 MR 1664938

http://zbmath.org/?q=an:1338.37070
http://www.ams.org/mathscinet-getitem?mr=3288424
http://zbmath.org/?q=an:1038.37510
http://www.ams.org/mathscinet-getitem?mr=1664938


Euler equations on the general linear group 169

[AP] D. V. Alekseevskii and B.A. Putko, Completeness of left-invariant metrics on
Lie groups. Functional Analysis and Its Applications 21 (1997), 233–234.
Zbl 0657.53028

[Arn1] V. Arnold, Sur la géométrie di�érentielle des groupes de lie de dimension
in�nie et ses applications à l’hydrodynamique des �uides parfaits. In
Annales de l’institut Fourier, volume 16, pages 319–361. Institut Fourier,
1966. Zbl 0148.45301 MR0202082

[Arn2] V. I. Arnol’d, Mathematical methods of classical mechanics. Springer, 1989.
Zbl 0692.70003 MR0997295

[AvM1] M. Adler and P. Van Moerbeke, Completely integrable systems, Euclidean
Lie algebras, and curves. Advances in mathematics 38 (1980), 267–317.
Zbl 0455.58017 MR0597729

[AvM2] M. Adler and P. Van Moerbeke, Linearization of Hamiltonian systems, Jacobi
varieties and representation theory. Advances in Mathematics 38 (1980),
318–379. Zbl 0455.58010 MR0597730

[BBIC ] A.M. Bloch, V. Brînzănescu, A. Iserles, J. E. Marsden, and T. S. Ratiu,
A class of integrable �ows on the space of symmetric matrices. Commu-
nications in Mathematical Physics 290 (2009), 399–435. Zbl 1231.37030
MR2525626

[BBT] O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable
Systems. Cambridge University Press, 2003. Zbl 1045.37033 MR 1995460

[Bea] A. Beauville, Jacobiennes des courbes spectrales et systemes hamiltoniens
completement intégrables. Acta Mathematica, 164(1):211–235, 1990.
Zbl 0712.58031 MR 1049157

[BI] A.M. Bloch and A. Iserles, On an isospectral lie–poisson system and its lie
algebra. Foundations of Computational Mathematics 6 (2006), 121–144.
Zbl 1105.37033 MR2198217

[BIKO] A. V. Bolsinov, A.M. Izosimov, A. Yu. Konyaev and A.A. Osjemkov, Algebra
and topology of integrable systems: Problems for investigation. Tr. Sem.
Vektor. Tenzor. Anal 28 (2012), 119–191.

[BoM] A. V. Borisov and I. S. Mamaev, Rigid body dynamics in non-Euclidean
spaces. Russian Journal of Mathematical Physics 23 (2016): 431–454.

[BM] Sh. Bromberg and A. Medina, Complétude de l’équation d’euler. In Algebra
and Operator �eory, pages 127–144. Springer, 1998. Zbl 0923.58037
MR 1643439

[DKN] B. A. Dubrovin, I.M. Krichever, and S. P. Novikov, Integrable systems.
I. Dynamical systems IV, Encyclopaedia Math. Sci 4 (1985), 179–284.
Zbl 0780.58019 MR0842910

[DMN] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Non-linear equations
of Korteweg-de Vries type, �nite-zone linear operators, and Abelian
varieties. Russian Mathematical Surveys 31 (1976), 55–136. Zbl 0326.35011
MR0427869

http://zbmath.org/?q=an:0657.53028
http://zbmath.org/?q=an:0148.45301
http://www.ams.org/mathscinet-getitem?mr=0202082
http://zbmath.org/?q=an:0692.70003
http://www.ams.org/mathscinet-getitem?mr=0997295
http://zbmath.org/?q=an:0455.58017
http://www.ams.org/mathscinet-getitem?mr=0597729
http://zbmath.org/?q=an:0455.58010
http://www.ams.org/mathscinet-getitem?mr=0597730
http://zbmath.org/?q=an:1231.37030
http://www.ams.org/mathscinet-getitem?mr=2525626
http://zbmath.org/?q=an:1045.37033
http://www.ams.org/mathscinet-getitem?mr=1995460
http://zbmath.org/?q=an:0712.58031
http://www.ams.org/mathscinet-getitem?mr=1049157
http://zbmath.org/?q=an:1105.37033
http://www.ams.org/mathscinet-getitem?mr=2198217
http://zbmath.org/?q=an:0923.58037
http://www.ams.org/mathscinet-getitem?mr=1643439
http://zbmath.org/?q=an:0780.58019
http://www.ams.org/mathscinet-getitem?mr=0842910
http://zbmath.org/?q=an:0326.35011
http://www.ams.org/mathscinet-getitem?mr=0427869


170 K. Aleshkin and A. Izosimov

[Gav] L. Gavrilov, Generalized Jacobians of spectral curves and completely inte-
grable systems. Math. Zeitschrift 230 (1999), 487–508. Zbl 0922.58033
MR 1679969

[HSW] N. J. Hitchin, G. B. Segal, and R. S. Ward, Integrable Systems: Twistors,
Loop Groups, and Riemann Surfaces. Oxford University Press, 2013.
Zbl 1268.37001

[Lic] A. Lichnerowicz, Global �eory of Connections and Holonomy Groups.
Noordho�, 1976. Zbl 0337.53031 MR0413000

[Man] S. V. Manakov, Note on the integration of euler’s equations of the dynamics
of an n-dimensional rigid body. Functional analysis and its applications
10 (1976), 328–329. Zbl 0358.70004

[MF] A. S. Mishchenko and A. T. Fomenko, Euler equations on �nite-dimensional lie
groups. Mathematics of the USSR-Izvestiya 12 (1978), 371. Zbl 0405.58031

[RT] T. S. Ratiu and D. Tarama, �e U(n) free rigid body: Integrability and stability
analysis of the equilibria. Journal of Di�erential Equations 259 (2015):
7284—7331.

[RSTS1] A. G. Reyman and M.A. Semenov-Tian-Shansky, Reduction of Hamiltonian
systems, a�ne Lie algebras and Lax equations. Inventiones mathematicae
54 (1979), 81–100. Zbl 0403.58004

[RSTS2] A. G. Reyman and M.A. Semenov-Tian-Shansky, Reduction of Hamiltonian
systems, a�ne Lie algebras and Lax equations II. Inventiones mathemat-
icae 63 (1981), 423–432. Zbl 0442.58016 MR0620678

[RSTS3] A. G. Reyman and M.A. Semenov-Tian-Shansky, Group-theoretical methods
in the theory of �nite-dimensional integrable systems. In Dynamical
systems VII, pages 116–225. Springer, 1994.

[SS] M. Seppälä and R. Silhol, Moduli spaces for real algebraic curves and
real abelian varieties. Mathematische Zeitschrift 201 (1989), 151–165.
Zbl 0777.14014 MR 1135469

[VMM] P. Van Moerbeke and D. Mumford, �e spectrum of di�erence operators and
algebraic curves. Acta Mathematica 143 (1979), 93–154. Zbl 0502.58032
MR0533894

(Reçu le 16 avril 2015)

Konstantin Aleshkin, SISSA, via Bonomea 265, 34136 Trieste, Italy and Landau
Institute for �eoretical Physics, 119334 Moscow, Russia

e-mail: kaleshkin@sissa.it

Anton Izosimov, Department of Mathematics, University of Toronto, 40 St. George
Street, Toronto, Ontario M5S 2E4, Canada

e-mail: izosimov@math.utoronto.ca

© Fondation L’Enseignement Mathématique

http://zbmath.org/?q=an:0922.58033
http://www.ams.org/mathscinet-getitem?mr=1679969
http://zbmath.org/?q=an:1268.37001
http://zbmath.org/?q=an:0337.53031
http://www.ams.org/mathscinet-getitem?mr=0413000
http://zbmath.org/?q=an:0358.70004
http://zbmath.org/?q=an:0405.58031
http://zbmath.org/?q=an:0403.58004
http://zbmath.org/?q=an:0442.58016
http://www.ams.org/mathscinet-getitem?mr=0620678
http://zbmath.org/?q=an:0777.14014
http://www.ams.org/mathscinet-getitem?mr=1135469
http://zbmath.org/?q=an:0502.58032
http://www.ams.org/mathscinet-getitem?mr=0533894
mailto:kaleshkin@sissa.it
mailto:izosimov@math.utoronto.ca

	Introduction
	Main constructions and results
	Proofs of the main results
	Discussion
	References

