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Abstract. We apply the theory of descent for buildings to give elementary constructions

of the exceptional buildings of type A2 , B2 , C3 and F4 as the �xed point building of

a Galois involution of a building of type E6 , E7 or E8 or, in one case, a pseudo-split

building of type F4 .
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1. Introduction

In this paper we apply the theory of descent for buildings introduced in [MPW]

to give elementary constructions of the exceptional buildings of type A2 , B2 , C3

and F4 as the �xed point buildings of a Galois involution of either a building

of type E6 , E7 or E8 or, in one case, a pseudo-split building of type F4 (as

de�ned in 15.3). Our main results are 11.21, 12.11, 13.12, 14.11, 15.4 and 17.14.

�e notion of a building was introduced by J. Tits in order to give a uniform

geometric/combinatorial description of the groups of rational points of an isotropic

absolutely simple group. �e buildings that arise in this context are spherical.

In [Tit2], Tits classi�ed irreducible spherical buildings of rank at least 3 and this

classi�cation was extended to the rank 2 case in [TW] under the assumption that

the building satis�es the Moufang condition (which is automatic when the rank

is at least 3). �e classi�cation in the rank 2 case is carried out by studying

commutator relations; in [TW, Chapter 40] it is used to give another proof of the

classi�cation in rank greater than 2 . �e question of existence is settled in [TW,

Chapter 32] for the rank 2 case and in [TW, 40.56] for the remaining cases

using the geometric ideas introduced by Ronan and Tits in [RT]. �is replaced

the earlier existence proofs for the exceptional buildings in [Tit2, 5.12 and 10.3]

and [TW, 42.6], where existence is proved using the theory of Galois descent in

algebraic groups (see 5.6).
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�e result of this classi�cation is that most spherical buildings satisfying the

Moufang condition are the spherical buildings associated with absolutely sim-

ple algebraic groups. �e exceptions are buildings determined by algebraic data

involving in�nite dimensional structures, defective quadratic or pseudo-quadratic

forms, inseparable �eld extension and/or the square root of a Frobenius endomor-

phism. Most notable among these exceptions are the indi�erent quadrangles, the

Moufang quadrangles of type F4 and the Moufang octagons.

�e classi�cation results in [Tit2] and [TW] do not reveal the connection

between a spherical building and its ambient split building which is the central

concern in the theory of Galois descent. In [MPW, Part 3], this shortcoming was

remedied with a theory of descent for buildings. �is theory gives, in particular, a

combinatorial interpretation of the Tits indices which appear in [Tit1]. It applies,

moreover, to buildings of arbitrary type. Some central results of this theory are

summarized in §6 below and they are applied to buildings of type E6 , E7 , E8

and F4 in subsequent sections.

�is paper can thus be seen as a contribution to Tits’ larger plan of interpreting

the classi�cation of isotropic absolutely simple algebraic group purely in the

language of buildings.

�e results in this paper provide uniform proofs of [MPW, 34.3–34.9];

see [MPW, 34.12]. �ese results, in turn, are applied in [MPW, Chapter 36]

to the study of exceptional a�ne buildings. Precursors of the results in this paper

can be found in [Mue] and [MM1].

We con�ne our attention in this paper to those exceptional groups which can

be constructed as �xed point buildings of Galois involutions (as de�ned in 4.15

below). �is allows various simpli�cations in the arguments. In particular, we

do not treat the Moufang hexagons (which require the action of a larger Galois

group) in this paper. �e Moufang octagons can be constructed as �xed point

buildings of involutions, but these involutions involve a Tits endomorphism rather

than a Galois group; see [dMSW] for more about this case.

All known proper Moufang sets can be described in terms of our theory of

descent as �xed point buildings of relative rank 1 . �e methods used in this paper

provide a point of access to these buildings which we are presently pursuing.

See, in this context, [CdM] and [MM2].

�is paper is organized as follows: In §2–§5, we give background material

in the theory of buildings, in §6 we summarize the results about descent we

require and in §7 and §8 we make some observations about buildings of type

An and Dn in terms of linear algebra. �e proofs of existence for various forms

of buildings of type E6 , E7 and E8 begin then in §9, where we describe an

anisotropic Galois involution of a building of type Dn . �e existence proofs are

carried out in §10–§15 by extending this involution (for certain small values of n)
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to involutions of various ambient buildings. In §16 and §17, �nally, we apply our

methods to construct the quadrangles of type F4 .

Notation 1.1. We will follow the conventions used in [TW] that ab D b�1ab and

Œa; b� D a�1b�1ab for all elements a; b in some group and we will compose

permutations from left to right. (When we are not composing them, however, we

will usually write functions on the left.) If i < j are integers, we denote by Œi; j �

the interval ¹m 2 Z j i � m � j º ; we only use this notation when i and j are

subscripts.

2. Coxeter groups

Let … be a Coxeter diagram with vertex set S and let .W; S/ be the

corresponding Coxeter system. An automorphism of .W; S/ is an automorphism of

the group W that stabilizes the generating set S . �ere is a canonical isomorphism

from Aut.W; S/ to Aut.…/ and we will think of these two groups as being the

same.

Notation 2.1. Let † be the graph with vertex set W in which two vertices

x and y are joined by an edge labeled with the element s of S whenever

x�1y D s . �us each edge of † has a unique label in the set S . We call this

label the type of the edge. �e group W acts on † by left multiplication and

can, in fact, be identi�ed with the group of type-preserving automorphisms of † .

See [Wei1, 3.10] for the de�nition of a root of † .

Lemma 2.2. �e only automorphism of † stabilizing every root is the identity.

Proof. If c and d are distinct vertices of † , there is a root of † containing

c but not d (by [Wei1, 3.20]). �us a non-trivial automorphism of † cannot

stabilize every root of † .

Notation 2.3. Let J be a spherical subset of S (by which we mean that the

subgroup WJ WD hJ i is �nite) and let wJ denote the longest element of the

Coxeter group WJ with respect to the generating set J . By [Wei1, 5.11], the map

s 7! wJ swJ is an automorphism of the subdiagram of … spanned by the set

J . We denote this subdiagram by …J and this automorphism by opJ . �e map

opJ is called the opposite map of …J .

Remark 2.4. �e map opJ stabilizes every connected component of …J and

acts non-trivially on a given connected component if and only if it is isomorphic

to the Coxeter diagram An for some n � 2 , to Dn for some odd n � 5 , to E6

or to I2.n/ for some odd n � 5 .
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Suppose now that .W; S/ itself is spherical, equivalently, that the graph † is

�nite.

Notation 2.5. We say that two vertices of † are opposite if they are at maximal

distance in † . Let �.x/ D xwS for all x 2 W , where wS is as in 2.3 with

J D S . Every vertex of † has a unique opposite vertex, and the unique vertex

opposite a vertex x is precisely �.x/ .

Notation 2.6. Let op D opS be as in 2.3. By [Wei1, 5.11], � maps edges of type

s to edges of type op.s/ . �e automorphism op is trivial if and only if wS is

in the center of W and in this case, � is given by left multiplication by wS .

Remark 2.7. �e permutation op of S � W extends to a unique automorphism

� of † �xing the vertex 1 . �e automorphisms � is simply conjugation by wS .

�e automorphisms � and � commute and their product is left multiplication by

wS .

Proposition 2.8. �e automorphism � de�ned in 2.5 is the unique automorphism

of † mapping every root to its opposite.

Proof. By [Wei1, 5.1], no root of † contains two opposite vertices. In other

words, �.˛/ � �˛ for each root ˛ . Since all roots contain the same number

of vertices (namely jW j=2), we conclude that � maps each root to its opposite.

Uniqueness holds by 2.2.

Remark 2.9. Suppose that .W; S/ is the spherical Coxeter system associated with

a root system ˆ , so S is the set of re�ections corresponding to the walls of a

unique chamber c of ˆ . If op is non-trivial, then all the roots of ˆ have the

same length. Hence there always exists a unique automorphism of ˆ �xing c

and inducing the permutation op on S . We can thus think of � and � in 2.7 as

automorphisms of ˆ and it follows from 2.8 that � is the unique automorphism

of ˆ mapping every root of ˆ to its negative.

Remark 2.10. Let ˆ and � be as in 2.9. If ˆ is of type Dn with n � 4 even,

then by 2.4, 2.6 and 2.9, wS is the unique automorphism of ˆ mapping every

root of ˆ to its negative.

3. Buildings

Let .W; S/ be a spherical Coxeter system and let � be a building of type

.W; S/ as de�ned in [Wei1, 7.1]. (All buildings considered in this paper are
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assumed to be spherical and thick.) �us � is a graph whose vertices are called

chambers and whose edges are labeled by elements of S . �e apartments of �

are the subgraphs isomorphic to the graph † de�ned in 2.1. We assume that �

is Moufang as de�ned in [Wei1, 11.2]. �is means that � is irreducible and of

rank jS j at least 2 and that for each root of � , the corresponding root group

U˛ de�ned in [Wei1, 11.1] acts transitively on the set of apartments containing ˛ .

Notation 3.1. We denote by G� the subgroup of G WD Aut.�/ generated by all

the root groups of � .

Remark 3.2. Let † be an apartment of � , let c be a chamber of † , let ˛1; : : : ; ˛n

be the roots of † containing c but not some chamber of † adjacent to c and

let D be the subgroup of G� generated by the 2n root groups U˙˛1
; : : : ; U˙˛n

.

By [Wei1, 11.22], the stabilizer D† induces the group W on † and hence D

contains Uˇ for all roots ˇ of † . By [Wei1, 11.11(ii)], therefore, D contains Uˇ

for all roots of � containing c . Since � is connected and D acts transitively

on each panel containing c , D acts transitively on the set of chambers of c .

�us D D G� .

Moufang buildings were classi�ed in [Tit2] and [TW]. �ere is a summary

of the classi�cation in [Wei2, Appendix B]. We will use the notation for these

buildings given in [Wei2, 30.15].

Notation 3.3. Suppose that .K; L; Q/ is a regular quadratic space of �nite Witt

index ` � 1 . We denote by B.Q/ the building de�ned in [MPW, 35.5] whose

chambers are the maximal �ags of subspaces of L that are totally isotropic with

respect to the quadratic form Q .

Proposition 3.4. Let .K; L; Q/ be a regular but not hyperbolic quadratic space

with �nite Witt index ` � 1 . �en B.Q/ Š B
Q

`
.ƒ/ , where ƒ is the anisotropic

part of .K; L; Q/ and B
Q

`
.ƒ/ is as in [Wei2, 30.15].

Proof. By [MPW, 35.6], it su�ces to assume that ` D 1 . Let OL D K ˚ K ˚ L

and let OQ W OL ! K be the quadratic form given by OQ.x; y; v/ D xy C Q.v/ for

all .x; y; v/ 2 OL . �en B.Q/ is a residue of B. OQ/ and we have B.Q/ Š B
Q

1 .ƒ/

by [MPW, 3.8 and 3.20] applied to OQ .

�e remaining results in this section will be needed in §13.

De�nition 3.5. Let † be an apartment and let R be a residue of � containing

chambers of † . We say that a root ˛ of † cuts R if it contains some but not

all chambers of the apartment † \ R of R . Equivalently, a root cuts a residue

if the residue contains panels in the wall of the root.
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Notation 3.6. Let … be the Coxeter diagram corresponding to .W; S/ , let J

be a subset of S such that the subdiagram …J spanned by J is irreducible

and jJ j � 2 and suppose that K is a subset of S such that J \ K D ¿ and

ŒJ; K� D 1 . Let L D J [ K , let R be a J -residue of � , let T be an L -residue

containing R , let � be the restriction of the projection map projR (as de�ned

in [Wei1, 8.23]) to T , let GT;J denote the subgroup G consisting of those

elements of the stabilizer GT which induce an automorphism of the Coxeter

diagram … mapping J to itself and let

x�.g/ D �.xg/

for all g 2 GT;J and all chambers x of R . By [MPW, 21.40], � is a

homomorphism from GT;J to Aut.R/ .

Notation 3.7. Let R , T , � , etc., be as in 3.6, let † be an apartment containing

chambers of R , let ˛ be a root of † cutting R , let g be an element of GT;J

stabilizing † , let R1 D R and let R2 D Rg . By [MPW, 21.38(i)], the residues R1

and R2 are parallel as de�ned in [MPW, 21.7]. By [MPW, 21.19(i)], therefore, ˛

cuts R2 and by [MPW, 21.8(v)], the restriction O� of � to R2 is an isomorphism

from R2 to R1 . Let X denote the set of apartments of � containing ˛ (so

† 2 X ) and for i 2 Œ1; 2� , let Yi be the set of apartments of Ri containing

the root ˛ \ Ri of Ri . �e map A 7! A \ Ri is a bijection from X to Yi for

i 2 Œ1; 2� . By [Wei1, 8.23], �.A \ R2/ � A \ R1 for all A 2 X . Since O� is a

bijection, it follows that

(3.8) O�.A \ R2/ D A \ R1

for all A 2 X . Hence, in particular, we have

(3.9) O�.˛ \ R2/ D ˛ \ R1:

For i 2 Œ1; 2� , let 'i denote the map that sends each element of U˛ to its

restriction to Ri . By [Wei1, 9.3 and 11.10] U˛ acts faithfully on X , the root

group U˛\Ri
of Ri acts faithfully on Yi and 'i is an isomorphism from U˛

to U˛\Ri
such that

Aa D .A \ Ri /
'i .a/

for all A 2 X , all a 2 U˛ and for i 2 Œ1; 2� . By (3.8) and (3.9), therefore,

(3.10) O��1 � '1.a/ � O� D '2.a/

for all a 2 U˛ . �is means that if we identify U˛ with U˛\Ri
via 'i for

i 2 Œ1; 2� , then O� simply centralizes the root group U˛ .
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Proposition 3.11. Let R and � be as in 3.6, let † , ˛ , g and '1 be as in 3.7

and let ˇ D ˛g . �en �.g/ is an automorphism of R , ˇ is a root of † cutting

R , ˇ \ R D .˛ \ R/�.g/ and for each a 2 U˛ , the restriction of ag 2 Uˇ to R

equals '1.a/�.g/ 2 Uˇ\R .

Proof. By 3.6, �.g/ 2 Aut.R/ . By [MPW, 21.19(i) and 21.38(i)], ˇ is a root of †

cutting R . We can thus replace ˛ by ˇ everywhere in 3.7. By (3.9), therefore,

ˇ \ R D .˛ \ R/�.g/ . �e last assertion holds by 3.10.

Remark 3.12. Let ˛ , � , etc., be as in 3.11 and for each root 
 of † cutting

R , let U
 be identi�ed with the root group U
\R of R via the map that sends

an element to its restriction to R . �en the last assertion in 3.11 says simply that

ag D a�.g/ for all a 2 U˛ .

4. Simply laced buildings

We continue to let � be a spherical building of type .W; S/ satisfying the

Moufang condition. In this section we assume that � is simply laced and split.

�is means that there exists a �eld E such that � is isomorphic to An.E/ for

some n � 1 , to Dn.E/ for some n � 3 , to E6.E/ , to E7.E/ or to E8.E/ .

Notation 4.1. Let ˆ be the corresponding root system of type An , Dn , E6 , E7

or E8 , let ˛1; : : : ; ˛n be the basis of the root system ˆ described in [Bou, Plate I

or IV–VII] and let d be the unique chamber of ˆ which is the intersection of

the half-spaces determined by the roots ˛1; : : : ; ˛n , let † be an apartment of �

and let c be a chamber of † . We denote the re�ection associated with a root ˇ

of ˆ by sˇ and we identify W with the Weyl group of ˆ in such a way that

S D ¹s˛1
; : : : ; s˛n

º . �ere is then a unique W -equivariant bijection � from the

set of chambers of † to the set of chambers of ˆ mapping c to d . �e bijection

� induces a bijection from Aut.ˆ/ into Aut.†/ that carries the stabilizer of d

to the stabilizer of c and it induces a bijection from the set of roots of † to

the set of half-spaces associated with the roots of ˆ and thus to ˆ itself. From

now on, we identify Aut.ˆ/ with its image in Aut.†/ under � and we identify

the roots of † with the corresponding roots of ˆ . In particular, W � Aut.ˆ/

is the group of type-preserving automorphisms of † and to each root ˇ of ˆ ,

we have a root group Uˇ of � (as de�ned in [Wei1, 11.1]).

�eorem 4.2. �ere exists a collection of isomorphisms xˇ W E ! Uˇ , one for

each root ˇ of ˆ , and a mapping � W ˆ � ˆ ! ¹1; �1º such that for all ordered

pairs .˛; ˇ/ of roots of ˆ such that ˛ ¤ ˙ˇ and for all s; t 2 E , the following

hold:
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(i) Œx˛.s/; xˇ .t/� D x˛Cˇ

�

�.˛; ˇ/st
�

if ˛ C ˇ 2 ˆ .

(ii) Œx˛.s/; xˇ .t/� D 1 if ˛ C ˇ 62 ˆ .

(iii) U
x�˛.t/
˛ D U

x˛.t�1/
�˛ if t ¤ 0 .

Proof. �e building � is the building obtained by applying [TW, Prop. 42.3.6]

to the root group data associated with the corresponding Chevalley group. �e

assertions (i) and (ii) hold, therefore, by [Ste, (R2) on p. 30]; see also [Car,

�m. 5.2.2]. Assertion (iii) holds by [Ste, (R7) on p. 30 and Lemma 59 on

p. 160].

Remark 4.3. Let ˛ 2 ˆ and suppose that U
g
˛ D U

x˛.t�1/
�˛ for some g 2 U�˛

and some t 2 E� . Since the identity is the only element of U�˛ normalizing

U˛ , it follows from 4.2(iii) that g D x�˛.t/ .

Notation 4.4. We call a set ¹xˇ ºˇ2ˆ satisfying the three conditions in 4.2 for

some map � a coordinate system for � and we call the map � the sign function

of ¹xˇ ºˇ2ˆ . �is notion depends, of course, on the choice of the apartment †

and the choice of the identi�cation of ˆ with the set of roots of † which we

made (once and for all) in 4.1.

If ¹xˇ ºˇ2ˆ is a coordinate system, then we obtain new coordinate system

(with a new sign function) by choosing ˇ 2 ˆ and replacing xˇ and x�ˇ by

x0
ˇ

and x0
�ˇ

, where x0
ˇ

.t/ D xˇ .�t/ and x0
�ˇ

.t/ D x�ˇ .�t/ for all t 2 E .

Notation 4.5. We call two coordinate systems ¹xˇ ºˇ2ˆ and ¹x0
ˇ

ºˇ2ˆ equivalent

if there exists a map ˇ 7! "ˇ from the set of positive roots ˆC to ¹1; �1º

such that x0
ˇ

.t/ D xˇ ."ˇ t/ and x0
�ˇ

.t/ D x�ˇ ."ˇ t/ for each t 2 E and for each

ˇ 2 ˆC .

Proposition 4.6. Let ¹xˇ ºˇ2ˆ and ¹x0
ˇ

ºˇ2ˆ be two coordinate systems for �

such that x˛i
D x0

˛i
for all i 2 Œ1; n� . �en ¹xˇ ºˇ2ˆ and ¹x0

ˇ
ºˇ2ˆ are equivalent.

Proof. By [Hum, §10.2, Cor. to Lemma A] and induction, there exists a map

ˇ 7! "ˇ from ˆC to ¹1; �1º such that x0
ˇ

.t/ D xˇ ."ˇ t/ for all ˇ 2 ˆC and

all t 2 E . By 4.3, it follows that x0
�ˇ

.t/ D x�ˇ ."ˇ t/ for all ˇ 2 ˆC and all

t 2 E .

�eorem 4.7. Let ¹xˇ ºˇ2ˆ be a coordinate system for � , let �1; : : : ; �n be

non-zero elements of E and let � 2 Aut.E/ . �en the following hold:
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(i) �ere exists a unique automorphism

g D g�1;:::;�n;�

of � that �xes the chamber c and stabilizes the apartment † such that

x˛i
.t/g D x˛i

.�i t
� /

for all i 2 Œ1; n� and all t 2 E .

(ii) If

ˇ D

n
X

iD1

ci˛i 2 ˆ;

then

xˇ .t/g D xˇ .�ˇ t� /;

where

�ˇ D

n
Y

iD1

�
ci

i :

Proof. �e existence assertion in (i) holds by [Ste, Lemma 58 on p. 158] and the

existence of �eld automorphisms; uniqueness holds by [Wei1, 9.7]. By 4.3, we

have x�˛i
.t/g D x�˛i

.��1
i t� / for all t 2 E and each i 2 Œ1; n� . By 4.2(i), [Hum,

§10.2, Cor. to Lemma A] and induction, it follows that (ii) holds.

Remark 4.8. Let � W E ! E be given by �.t/ D �t for all t 2 E . Suppose that

the set ¹˛1; : : : ; ˛nº is ordered so that for each j 2 Œ2; n� , there is at most one

i 2 Œ1; j � 1� such that ˛i C j̨ 2 ˆ . Let ¹xˇ ºˇ2ˆ be a coordinate system for

� . Replacing x˛i
by � � x˛i

for suitable i , we can �nd an equivalent coordinate

system ¹x0
ˇ

ºˇ2ˆ whose sign function � 0 satis�es � 0.˛i ; j̨ / D 1 for all i; j 2 Œ1; n�

such that i < j .

In the following display, x
'

ˇ
denotes the map t 7! xˇ .t/ followed by the inner

automorphism of the root group Uˇ induced by the automorphism ' of � .

Proposition 4.9. Let ¹xˇ ºˇ2ˆ and ¹x0
ˇ

ºˇ2ˆ be two coordinate systems for � .

�en there exists a unique automorphism ' of � acting trivially on † such that

®

x
'

ˇ

¯

ˇ2ˆ

is a coordinate system for � which is equivalent to ¹x0
ˇ

ºˇ2ˆ for all ˇ 2 ˆ .
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Proof. Let � and � 0 be the sign functions of ¹xˇ ºˇ2ˆ and ¹x0
ˇ

ºˇ2ˆ . Since the

Coxeter diagram of � has no circuits, it follows from 4.8 that after replacing

¹x0
ˇ

ºˇ2ˆ by an equivalent coordinate system, we can assume that

(4.10) �.˛i ; j̨ / D � 0.˛i ; j̨ /

for all i; j 2 Œ1; n� .

Let M be the set of pairs i; j 2 Œ1; n� such that ˛i C j̨ 2 ˆ . For each

¹i; j º 2 M , let Rij be the unique ¹˛i ; j̨ º-residue containing c . By (4.10)

and [TW, 7.5], there exists for each ¹i; j º 2 M a unique automorphism 'ij

of Rij acting trivially on † \ Rij such that

x
'ij
˛k

D x0
˛k

for k D i and j . By 4.7(i) applied to each Rij and then to � , it follows that

there exists a unique automorphism ' of � acting trivially on † such that

x'
˛k

D x0
˛k

for all k 2 Œ1; n� . By 4.6, we conclude that ¹x
'

ˇ
ºˇ2ˆ is a coordinate system

equivalent to ¹x0
ˇ

º�2ˆ .

In the following result, we are identifying Uˇ with the root group Uˇ\R of

the residue R for each ˇ 2 ˆ1 via the isomorphism which sends each element

of Uˇ to its restriction to R , and hence for each ˇ 2 ˆ1 , xˇ is simultaneously

an isomorphism from E to Uˇ and an isomorphism from E to Uˇ\R .

Proposition 4.11. Let M � Œ1; n� , let X D ¹˛i j i 2 M º , let J D ¹s˛i
j i 2 M º

and let R be the unique J -residue of � containing c . Suppose that R is

irreducible and of rank at least 2 , let ˆ1 denote the root system hXi \ ˆ and

let ¹x0
ˇ

ºˇ2ˆ1
be a coordinate system for R with respect to the apartment †\R .

�en there exists a coordinate system ¹xˇ ºˇ2ˆ for � such that xˇ D x0
ˇ

for all

ˇ 2 ˆ1 .

Proof. Let ¹xˇ ºˇ2ˆ be an arbitrary coordinate system for � . Since R is

irreducible and of rank at least 2 , it is Moufang (by [Wei1, 11.8]). By 4.9,

therefore, there exists an automorphism 'R of R acting trivially on † \ R such

that ¹x
'R

ˇ
ºˇ2ˆ1

is a coordinate system for R equivalent to the coordinate system

¹x0
ˇ

ºˇ2ˆ1
. �us there exists a coordinate system ¹x00

ˇ
ºˇ2ˆ equivalent to ¹xˇ ºˇ2ˆ

such that .x00
ˇ

/'R D x0
ˇ

for all ˇ 2 ˆ1 . By 4.7(i), 'R can be extended to an

automorphism ' of � acting trivially on † . Hence ¹.x00
ˇ

/'ºˇ2ˆ is a coordinate

system for � extending ¹x0
ˇ

ºˇ2ˆ1
.
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�eorem 4.12. Let ¹xˇ ºˇ2ˆ be a coordinate system for � and let 
 2 Aut.ˆ/ .

�en there exists a unique automorphism Q
 of � that stabilizes the apartment

† such that

x˛i
.t/ Q
 D x
.˛i /.t/

for all t 2 E . Furthermore, there exists a mapping �
 W ˆ ! ¹1; �1º such that

xˇ .t/ Q
 D x
.ˇ/.�
 .ˇ/t/ for all ˇ 2 ˆ and all t 2 E .

Proof. �is holds by [Ste, �m. 29 on p. 154].

Notation 4.13. Let ¹xˇ ºˇ2ˆ be a coordinate system for � . We set

g
;�1;:::;�n;� D g�1;:::;�n;� � Q


for all 
 2 Aut.ˆ/ , all �1; : : : ; �n 2 E� and all � 2 Aut.E/ , where g�1;:::;�n;�

is as in 4.7(i) and Q
 is as in 4.12.

Proposition 4.14. Let ¹xˇ ºˇ2ˆ be a coordinate system for � . If g 2 Aut.�/

stabilizes † , then there exist 
 2 Aut.ˆ/ , �1; : : : ; �n 2 E� and � 2 Aut.E/ such

that

g D g
;�1;:::;�n;� :

Proof. It su�ces to assume that g is an element of Aut.�/ acting trivially on

† . �us g stabilizes every irreducible rank 2 residue containing the chamber c .

By [TW, 37.13], we can assume that g acts trivially on each of the n panels

containing c . �e claim holds, therefore, by [Wei1, 9.7].

De�nition 4.15. Let ¹xˇ ºˇ2ˆ be a coordinate system for � . A Galois involution

of � is an element of order 2 in the coset g
;�1;:::;�n;�G� for some 
; �1; : : : ; �n; �

such that � ¤ 1 , where G� is as in 3.1. �is is a special case of the notion of a

Galois involution of an arbitrary Moufang building given in [MPW, 31.1]. By 4.9,

in particular, it is independent of the choice of the coordinate system ¹xˇ ºˇ2ˆ .

By [MPW, 29.24], it is, in fact, independent also of the choice of † and the

identi�cation of the set of roots of † with ˆ in 4.1.

Proposition 4.16. Let ¹xˇ ºˇ2ˆ be a coordinate system for � , let g be an element

of Aut.�/ acting trivially on † and let 
; �1; : : : ; �n; � be as in 4.14. If ¹x0
ˇ

ºˇ2ˆ

is another coordinate system for � , then there exists a map i 7! "i from Œ1; n�

to ¹1; �1º such that "i D 1 if w.˛i / D ˙˛i and

g D g0

;�0

1
;:::;�0

n;�
;

where �0
i D "i�i for all i 2 Œ1; n� and g0


;�0
1

;:::;�0
n;�

is as de�ned in 4.13 with

¹xˇ ºˇ2ˆ replaced by ¹x0
ˇ

ºˇ2ˆ .

Proof. �is holds by 4.9.
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5. �e exceptional Moufang quadrangles

A Moufang quadrangle is a building of type B2 satisfying the Moufang

condition. �e exceptional Moufang quadrangles are the Moufang quadrangles

de�ned in [TW, 16.6–16.7]. �ese are the Moufang quadrangles denoted by BE
2 .ƒ/

and BF
2 .ƒ/ in [Wei2, 30.15], where ƒ is a quadratic space of type E6 , E7 or

E8 in the �rst case and ƒ is a quadratic space of type F4 in the second.

De�nition 5.1. A quadratic space .K; V; q/ is of type Ek for k D 6 , 7 or 8

if it is anisotropic and for some �1; : : : ; �d 2 K , where d D 2 C 2k�6 , and

some separable quadratic extension E=K with norm N , the quadratic form q is

equivalent to the quadratic form Q on Ed given by

(5.2) Q.u1; : : : ; ud / D �1N.u1/ C � � � C �d N.ud /

for all .u1; : : : ; ud / 2 Ed with the additional conditions that

(5.3) �1�2�3�4 62 N.E/

if k D 7 and

(5.4) � �1�2 � � � �6 2 N.E/

if k D 8 .

Remark 5.5. Let .K; V; q/ be a quadratic space of type Ek for k D 6 , 7 or

8 . If E is as in 5.1, then N ˝K E is hyperbolic and hence qE WD q ˝K E

is also hyperbolic. By [dMed, Lemma 4.2] and [MPW, 8.5], if E=K is an

arbitrary separable quadratic extension such that qE is hyperbolic, then there

exist �1; : : : ; �d 2 K satisfying (5.3) if k D 7 and (5.4) if k D 8 such that q is

equivalent to the quadratic form Q W Ed ! K given by (5.2).

Remark 5.6. In [dMed, �m. 5.3], it is shown that for each ` 2 ¹6; 7; 8º , an

anisotropic quadratic form is of type E` if and only if its even Cli�ord algebra has

a certain structure. In the paragraphs entitled “Type (2)”, “Type (3)” and “Type

(4)” in [TW, 42.6], it is shown (given [dMed, �m. 5.3]) that a quadratic form

of type E6 , E7 , respectively, E8 is precisely the ingredient needed to construct

a form of type 2E160

6;2 , E31
7;2 , respectively, E66

8;2 (in the notation of [Tit1]). See

also [Tit3, §5].

�e following notion was introduced in [TW, 14.1].
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De�nition 5.7. A quadratic space .K; V; q/ is of type F4 if it is anisotropic,

char.K/ D 2 and for some separable quadratic extension E=K with norm N ,

some extension F=K (of arbitrary dimension, possibly in�nite) such that F 2 � K

and some �1; �2 2 K such that

�1�2 2 F 2;

the quadratic form q is similar to the quadratic form Q on E ˚ E ˚ F given by

(5.8) Q.u1; u2; t/ D �1N.u1/ C �2N.u2/ C t2

for all .u1; u2; t/ 2 E ˚ E ˚ F . (Here F 2 denotes ¹t2 j t 2 F º , not F ˚ F .)

Remark 5.9. Let .K; V; q/ be a quadratic space of type F4 , let F be as in 5.7

and let D denote the radical of the bilinear form @q . �en F 2 D q.D/=q.v/ for

every non-zero v 2 D . �us the extension F=K is an invariant of the similarity

class of q .

Remark 5.10. If � D B
E
2.ƒ/ for some quadratic space ƒ of type E6 , E7 or

E8 , then by [TW, 35.11], ƒ is an invariant of � up to similarity. If � D B
F
2 .ƒ/

for some quadratic space ƒ D .K; V; q/ of type F4 and F is as in 5.9, then

by [TW, 35.12], the similarity class of ƒ determines a second similarity class

of quadratic spaces over F of type F4 and this pair of similarity classes is an

invariant of � .

De�nition 5.11. We call a quadratic space .K; V; q/ pseudo-split if it is the

orthogonal sum of a �nite dimensional hyperbolic space and an anisotropic totally

singular space (of arbitrary dimension). See [MPW, 2.31–2.33].

Remark 5.12. Let .K; V; q/ be a quadratic space of type F4 , let f D @q and

let E=K be as in 5.7. Since N ˝K E is hyperbolic, the quadratic form qE

is pseudo-split as de�ned in 5.11. Suppose that E=K is an arbitrary separable

quadratic extension such that qE is pseudo-split. Let v; v0 be two elements of V

such that v ˝ 1 and v0 ˝ 1 span a hyperbolic pair in V ˝K E and f .v; v0/ D 1 .

�e restriction of q to hv; v0i is similar to N . Let �1 D q.v/ . By [MPW, 9.7],

there exists �2 2 K such that �1�2 2 F 2 and q is similar to the quadratic form

Q W E ˚ E ˚ F ! K given by (5.8).

Remark 5.13. In [CP, D.2.7], forms of relative rank 2 of a pseudo-split group of

type F4 are classi�ed in terms of quadratic forms of type F4 . �e quadratic forms

which appear in this context are those where at least one of the two extensions

K=F or F=K2 in 5.9 is �nite.
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Proposition 5.14. Let ƒ D .K; V; q/ be an anisotropic quadratic space. Suppose

that either ƒ is a quadratic space of type E6 , E7 or E8 or that the bilinear

form @q is degenerate but not identically zero. �en q is not similar to the norm

of a composition algebra.

Proof. Let Q be the norm of a composition algebra (as de�ned in [Wei2, 30.17]).

�en the bilinear form @Q is either non-degenerate or identically zero. If @Q is

non-degenerate, then dim.Q/ divides 8 and if dim.Q/ D 8 , its Hasse invariant

is trivial. If ƒ is of type E6 , E7 or E8 , then @q is non-degenerate, but its

dimension divides 8 only if ƒ is of type E7 and in this case the Hasse invariant

is non-trivial (by [MPW, 8.3]).

In the following, A1.D/ and B
Q

1 .ƒ/ are as de�ned in [MPW, 3.8]. �us A1.D/

is the Moufang set (as de�ned in [MPW, 1.5]) associated with the projective line

D [ ¹1º and B
Q

1 .ƒ/ is the Moufang set associated with an anisotropic quadratic

space ƒ D .K; V; '/ on the “projective line” V [ ¹1º .

Proposition 5.15. Let ƒ be as in 5.14. �en there is no �eld or skew �eld D

such that BQ1 .ƒ/ Š A1.D/ .

Proof. Let D be a �eld or skew �eld and let F be its center. By [Wei3, 31.21],

B
Q

1 .K; V; q/ Š A1.D/ for some anisotropic quadratic space .K; V; q/ if and only if

.D; F / is a composition algebra, F Š K and q is similar to the norm of .D; F / .

�e claim holds, therefore, by 5.14.

We will use the following result, which depends on the classi�cation of

Moufang polygons, to identify the �xed point buildings that we construct.

Alternatively, we could have used [MPW, 24.32] to identify these buildings

by calculating their commutator relations. �is is what is done, for instance,

in [MM1].

Proposition 5.16. Let � be a Moufang quadrangle, let G D Aut.�/ , let c be a

chamber, let R1 and R2 be the two panels containing c and for i D 1 and 2 ,

let Mi be the Moufang set induced by the stabilizer GRi
on Ri . Suppose that

M1 Š B
Q

1 .ƒ/ for some quadratic space ƒ D .K; V; q/ of type E6 , E7 , E8 or

F4 and that either

(a) M2 has non-abelian root groups or

(b) M2 Š B
Q

1 .‚/ for some anisotropic quadratic space ‚ D .F; L; Q/ such

that @Q is degenerate but not identically zero.

�en ƒ is of type E6 , E7 or E8 and � Š B
E
2 .ƒ/ if (a) holds and ƒ is of type

F4 and � Š B
F
2 .ƒ/ if (b) holds.
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Proof. By [TW, 38.9], � is in one of the six cases described in [MPW, 4.2],

where the quadrangles are described in terms of root group sequences as de�ned

in [TW, 8.7]. �e root groups of M1 are abelian and if (b) holds, then by [MPW,

4.8(iii)], the tori of M2 (as de�ned in [MPW, 1.6]) are non-abelian. If � were

as in [MPW, 4.2(iii)], then the root groups and (by [MPW, 4.8(iv)]) the tori

of Mi for both i D 1 and 2 would have to be abelian. Hence � is not as

in [MPW, 4.2(iii)]. If � were as [MPW, 4.2(i), (ii) or (iv)], then there would

exist a �eld or a skew �eld D such that Mi Š A1.D/ for i D 1 or 2 . �is

is impossible by 5.15. Only the cases (v) and (vi) of [MPW, 4.8] remain. �us

� Š BE
2 .ƒ0/ for some quadratic space ƒ0 of type E6 , E7 or E8 if (a) holds

and � Š B
F
2 .ƒ0/ for some quadratic space ƒ0 of type F4 if (b) holds. Suppose

that (a) holds. �en M1 Š B
Q

1 .ƒ0/ and hence by [MPW, 6.10], ƒ0 is similar

to ƒ . �us � Š B
E
2 .ƒ/ (by [TW, 35.11]). Suppose that (b) holds and let ƒ00

denote the dual of ƒ0 as de�ned in [MPW, 9.5]. By [TW, 28.45], there is a non-

type-preserving isomorphism from B
F
2 .ƒ0/ to B

F
2 .ƒ00/ . �us M1 is isomorphic

to B
Q

1 .ƒ0/ to B
Q

1 .ƒ00/ . By [MPW, 6.10] again, ƒ is similar to ƒ0 or ƒ00 . Hence

� Š B
F
2 .ƒ/ (by [TW, 35.12]).

6. Descent

In this section we assemble the results in [MPW] on descent in buildings that

we will require.

De�nition 6.1. Let � be a building and let � be a subgroup of Aut.�/ . A

� -residue is a residue of � stabilized by � . A � -chamber is a � -residue which

is minimal with respect to inclusion. A � -panel is a � -residue P such that for

some � -chamber C , P is minimal in the set of all � -residues containing C

properly.

De�nition 6.2. Let � and � be as in 6.1. �e group � is anisotropic if � itself

is the unique � -chamber and isotropic if this is not the case. �us � is isotropic

if and only if there exist � -panels (equivalently, if there exist � -residues other

than � itself).

Notation 6.3. Let � be a building and let � be an isotropic subgroup of Aut.�/ .

We denote by �� the graph with vertex set the set of all � -chambers, where

two � -chambers are joined by an edge of �� if and only if there is a � -panel

containing them both.

De�nition 6.4. Let � be a building. A descent group of � is an isotropic

subgroup � of Aut.�/ such that each � -panel contains at least three � -chambers.
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�eorem 6.5. Let � be a simply laced spherical building which is Moufang and

split. If � is an isotropic Galois involution of � as de�ned in 4.15 and 6.2, then

� WD h�i is a descent group of � .

Proof. By [MPW, 28.16], � satis�es [MPW, 30.1(i)]. �e claim holds, therefore,

by [MPW, 32.27].

Proposition 6.6. Suppose that R is a residue of a Moufang building � . Let †

be an apartment containing chambers of R and let UR denote the subgroup

generated by the root groups U˛ for all roots ˛ of † containing R \ † . �en

UR is independent of the choice of † .

Proof. �is holds by [MPW, 24.17].

De�nition 6.7. �e group UR in 6.6 is called the unipotent radical of the

residue R .

De�nition 6.8. A Tits index is a triple .…; ‚; A/ where … is a Coxeter diagram,

‚ is a subgroup of Aut.…/ and A is a ‚ -invariant subset of the vertex set S

of … such that for each s 2 SnA , the subset A [ ‚.s/ of S is spherical (i.e.,

the subgroup hA[‚.s/i of W is �nite) and A is stabilized by the opposite map

opA[‚.s/ de�ned in 2.3. Here ‚.s/ denotes the ‚ -orbit containing s .

De�nition 6.9. Let T D .…; ‚; A/ be a Tits index. For each s 2 SnA ,

let Qs D wAwA[‚.s/ , where wJ for J D A and J D A [ ‚.s/ is as in 2.3.

�us there is one element Qs for each ‚ -orbit in SnA . Let QS be the set of all

these elements Qs . By [MPW, 20.32], . QW ; QS/ is a Coxeter system. Let Q… be

the corresponding Coxeter diagram. We call … the absolute Coxeter diagram

of T and Q… the relative Coxeter diagram of T . An algorithm for calculating

the relative Coxeter diagram of a Tits index is described in [TW, 42.3.5(c)].

Conventions 6.10. Our notion of a Tits index generalizes the usual notion of a

Tits index as de�ned, for example, in [TW, 42.3.4], where it is called a Witt

index. We use Tits’ conventions for indicating a Tits index .…; A; ‚/ , drawing

the Coxeter diagram … with a circle around each ‚ -orbit disjoint from A and

with vertices in the same ‚ -orbit brought near to one another. See [MPW, 34.2]

for a more precise description of these conventions.

Examples 6.11. �ere are Tits indices (drawn using the conventions in 6.10) in

all of our main results. Using [TW, 42.3.5(c)], we can check that the relative

type of the indices in 11.21, 13.12, 14.11 and 17.14 is B2 , the relative type of the
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index in 12.11 is A2 , the relative type of the �rst three indices in 15.4 is F4 and

the relative type of the last index in 15.4 is C3 . We observe, too, that the Tits

index in 17.14 does not appear in [Tit1].

�e following is a special case of the main results of [MPW, Part 3].

�eorem 6.12. Let � be a descent group of a spherical building � . Let … be

the Coxeter diagram of � , let S denote the vertex set of … and let ‚ denote

the subgroup of Aut.…/ induced by � . �en the following hold:

(i) �e graph �� is a building with respect to a canonical coloring of its edges.

(ii) All � -chambers are residues of � of the same type A � S , the set A is

‚ -invariant and the rank k of �� is the number of ‚ -orbits in S disjoint

from A .

(iii) �e triple T WD .…; ‚; A/ is a Tits index and �� is a building of type Q… ,

where Q… is the relative Coxeter diagram of T .

(iv) If � is Moufang and k � 2 , then �� is also Moufang.

(v) Suppose that � is Moufang and that k D 1 and let X denote the set of

all � -chambers. For each R 2 X , let QUR denote the subgroup of Sym.X/

induced by the centralizer CUR
.�/ of � in the unipotent radical UR . �en

�

X; ¹ QUR j R 2 Xº
�

is a Moufang set.

Proof. Assertions (i) and (ii) hold by [MPW, 22.20(v) and (viii)], assertion (iii)

holds by [MPW, 22.20(iv) and (viii)] and the remaining two assertions hold

by [MPW, 24.31].

De�nition 6.13. Let � and � be as in 6.12. We refer to the triple T in 6.12(iii)

as the Tits index of � . (In fact, the Tits index of a descent group � is de�ned

also when � is not assumed to be spherical; see [MPW, 22.20 and 22.22].)

De�nition 6.14. A �xed point building is a building of the form �� for some

pair � , � as in 6.12. If the rank of �� is 1 and � is Moufang, we interpret

�� to mean the Moufang set described in 6.12(v).
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Remark 6.15. Let � , � , ‚ , A , etc., be as in 6.12 and suppose that � is

Moufang. Let Q� D �� and let QG D Aut. Q�/ . By 6.9, we can identify the vertex

set of the relative Coxeter diagram Q… with the set of ‚ -orbits disjoint from A .

Let I D ‚.s/ be one of these orbits, let J D A [ I , let R be a � -residue

of type J and let �R denote the restriction of � to R . By [MPW, 22.39],

P WD R�R is an I -panel of Q� and by [MPW, 24.30], R�R is isomorphic as a

Moufang set (see 6.14) to the Moufang set induced on P by the stabilizer of P

in QG .

7. Linear groups

Let V be an .n C 1/ -dimensional vector space over a �eld E (by which we

mean a commutative �eld) for some n � 1 and let

B D .e1; : : : ; enC1/

be an ordered basis of V . For each ordered pair .i; j / of distinct integers i; j

in the interval Œ1; n C 1� and each t 2 E , let xij .t/ denote element of SL.V /

that maps ej to ej C tei and �xes ek for k ¤ j .

Let ˆ be the root system of type An and let "1; : : : ; "nC1 , ˛1; : : : ; ˛n and

Q̨ be as in [Bou, Plate I]. �us, in particular, ˛i D "i � "iC1 for each i 2 Œ1; n�

and Q̨ D "1 � "nC1 . For each ˇ 2 ˆ , we set set xˇ D xij if ˇ D "i � "j . Let �

be the building of type An associated with V . �us the chambers of � are the

maximal �ags of subspaces of V , and � Š An.E/ in the notation in [Wei2,

30.15]. �e groups xˇ .E/ act faithfully on � and we will simply identify them

with their images in Aut.�/ . Let † the apartment of � whose chambers are

maximal �ags involving only subspaces spanned by subsets of the basis B , let c

denote the chamber

(7.1) he1i � he1; e2i � � � � � he1; e2; : : : ; eni

of † and let ˆ be identi�ed with the set of roots of † and Aut.ˆ/ with a

subgroup of Aut.†/ as in 4.1. �us ˛1; : : : ; ˛n are the roots of † containing c

but not some chamber of † adjacent to c and ¹xˇ ºˇ2ˆ is a coordinate system

for � . By [Tit2, Prop. 6.6], there is a natural homomorphism from Aut.SL.V //

to Aut.�/ .

�e following observation will be used in §14.

Lemma 7.2. �ere exists a unique automorphism � of � stabilizing † such

that x˛1
.t/ 7! x Q̨�˛1

.�t/ , x˛n
.t/ 7! x Q̨�˛n

.�t/ and x˛i
.t/ 7! x�˛i

.�t/ for all

i 2 Œ2; n � 1� . �e automorphism � has order 2 .
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Proof. Let T denote the linear automorphism of V that interchanges e1 and enC1

and �xes ei for all i 2 Œ2; n� , let � 2 Aut.SL.V // denote the composition of the

automorphism A 7! .At /�1 followed by conjugation by T . �e automorphism

of � induced by � has the desired properties. Uniqueness holds by 4.7(i).

�e following observation will be used in the proof of 15.4.

Lemma 7.3. �ere exists a unique automorphism � of � stabilizing † such

that x˛i
.t/� D x˛nC1�i

.�t/ for all i 2 Œ1; n� and all t 2 E . �e automorphism

� has order 2 .

Proof. Let T denote the linear automorphism of V that interchanges ei and

enC2�i for all i 2 Œ1; n C 1� and let � 2 Aut.SL.V // denote the composition of

the automorphism A 7! .At /�1 of SL.V / followed by conjugation by T . �e

automorphism of � induced by � has the desired properties. Uniqueness holds

by 4.7(i).

Remark 7.4. Let � be as in 7.3 and let c be the �ag in (7.1). �en c is the

unique chamber of the apartment † stabilized by the root group U˛i
for all

i 2 Œ1; n� . Since � stabilizes † and interchanges these root groups, it �xes c .

Remark 7.5. �e automorphisms � of � in 7.2 and 7.3 are not type-preserving.

8. Orthogonal groups

Notation 8.1. Let E be a �eld, let V be a vector space over E of dimension

2n for some n � 3 , let

B D ¹e1; : : : ; en; f1; : : : ; fnº

be a basis of V , let q W V 7! E be the quadratic form given by

q
�

n
X

iD1

.xiei C yifi /
�

D

n
X

iD1

xiyi

for all x1; : : : ; yn 2 E and let O.q/ denote the corresponding orthogonal group.

Notation 8.2. For distinct i; j 2 Œ1; n� and all t 2 E , we denote by xij .t/ the

element of O.q/ �xing ek and fm for all k ¤ j and all m ¤ i that maps ej

to ej C tei and fi to fi � tfj .

For i; j such that 1 � i < j � n and all t 2 E , we denote by yij .t/ the

element of O.q/ �xing ek and fm for all k and all m 62 ¹i; j º that maps fi

to fi � tej and fj to fj C tei .
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For i; j such that 1 � i < j � n and all t 2 E , we denote by zij .t/ the

element of O.q/ �xing ek and fm for all k 62 ¹i; j º and all m that maps ei

to ei C tfj and ej to ej � tfi .

Notation 8.3. Let � D Dn.E/ denote the building of type Dn associated with q .

�e chambers of � are the maximal elements of the set F.q/ described in [MPW,

35.9], where q is the quadratic form in 8.1. We will call these maximal elements

ori�ammes. �us an ori�amme is a set of n subspaces Z1; : : : ; Zn of V each

of which is totally isotropic with respect to q such that dimE Zi D i for all

i 2 Œ1; n � 2� , dimE Zn�1 D dimE Zn D n , dimE .Zn�1 \ Zn/ D n � 1 and

Zi � Zj for all i 2 Œ1; n � 2� and all j 2 Œ1; n� whenever i � j . Let c denote

the ori�amme consisting of the subspaces

he1i � he1; e2i � � � � � he1; e2; : : : ; en�2i

together with he1; e2; : : : ; en�1; eni and he1; e2; : : : ; en�1; fni .

Notation 8.4. Let ˆ be the root system of type Dn and let "1; : : : ; "n , ˛1; : : : ; ˛n

and Q̨ be as in [Bou, Plate IV]. �us ˛i D "i � "iC1 for i 2 Œ1; n � 1� ,

˛n D "n�1 C"n and Q̨ D "1 C"2 . For each ˇ 2 ˆ , we set xˇ D xij if ˇ D "i �"j ,

we set xˇ D yij if ˇ D "i C "j and we set xˇ D zij if ˇ D �"i � "j . �e

groups xˇ .E/ for ˇ 2 ˆ act faithfully on � and we will simply identify them

with their images in Aut.�/ . Let S denote the set of re�ections ¹s˛1
; : : : ; s˛n

º

and let W D hSi � Aut.ˆ/ be the Weyl group of ˆ . Let † be the apartment

of � whose chambers are the ori�ammes containing only subspaces spanned by

a subset of B and let ˆ be identi�ed with the set of roots of † and Aut.ˆ/ (and

hence, in particular, W ) with a subgroup of Aut.†/ as in 4.1. �us ˛1; : : : ; ˛n

are the roots of † containing c but not some chamber of † adjacent to c . For

each ˇ 2 ˆ , the group xˇ .E/ is the root group of � corresponding to the root

ˇ of † , and there exists a map � such ¹xˇ ºˇ2ˆ is a coordinate system for �

as de�ned in 4.4.

Notation 8.5. �e symbol �.q/ denotes the subgroup of O.q/ generated by all

its root groups. �e group �.q/ is the kernel of the spinor norm from O.q/

to E�=.E�/2 . In particular, the quotient O.q/=�.q/ is an elementary abelian

2-group; see, for example, [Die, II, §6.4 and §10.4].

We will apply 8.6–8.13 in §13.

Notation 8.6. Let n be even and at least 6 and let ˆ1 D h˛3; : : : ; ˛ni \ ˆ . �us

ˆ1 is a root system of type Dn�2 . Let J be the set of re�ections ¹s˛i
j i 2 Œ3; n�º ,

let w1 be the longest element in the Coxeter group WJ D hJ i with respect to the
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set of generators J and let w0 D s˛1
w1 . �e roots ˛1 and Q̨ are perpendicular

to ˆ1 and hence �xed by w1 , and w1.˛i / D �˛i for all i 2 Œ3; n� by 2.10. Since

(8.7) Q̨ D ˛1 C 2˛2 C � � � C 2˛n�2 C ˛n�1 C ˛n;

it follows that ˛1 C ˛2 C w1.˛2/ D Q̨ . �us

(8.8) w1.˛2/ D "2 C "3;

so w1.˛2/ is the highest root of the root system h˛2; : : : ; ˛ni \ ˆ of type Dn�1

(by 8.4). It also follows from (8.8) that

(8.9) w0.˛2/ D "1 C "3 D Q̨ � ˛2:

Finally, we have

(8.10) w0.˛i / D �˛i

for all i 2 Œ1; n� other than 2 .

Lemma 8.11. Let n be even and at least 6 and let w0 be as in 8.6. �ere

exists a unique automorphism � of � mapping the basis B to itself such that

x˛1
.t/ 7! xw0.˛1/.t/ , x˛2

.t/ 7! xw0.˛2/.t/ and x˛i
.t/ 7! xw0.˛i /.�t/ for each

i 2 Œ3; n� . �e automorphism � has order 2 and interchanges the residues of �

corresponding to he1i and he2i .

Proof. It follows from 8.2, (8.9) and (8.10) that conjugation by the automorphism

of V that interchanges e1 with e2 , f1 with f2 and ei with fi for each i 2 Œ3; n�

induces an automorphism of � with the desired properties. Uniqueness holds

by 4.7(i).

Remark 8.12. Let V1 be a totally isotropic subspace of V of dimension k � n�3

contained in an ori�amme c1 , let R1 be the residue of � containing all ori�ammes

that agree with c1 in all dimensions at least k , let R2 be the residue of �

containing all ori�ammes that agree with c1 in all dimensions at most k and

let �i D projRi
for i D 1 and 2 (as de�ned in [Wei1, 8.23]). Let d be an

arbitrary ori�amme containing V1 . �en �1.d/ is the ori�amme that agrees with

c1 in all dimensions at least k and with d in all dimensions at most k , and

�2.d/ is the ori�amme that agrees with c1 in all dimensions at most k and with

c1 in all dimensions at least k .
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Remark 8.13. Let � be the automorphism of � in 8.11, let c1 be an ori�amme

(i.e. a chamber of � ) containing he1i and he1; e2i and contained in the apartment

† , let d be the ori�amme containing he2i that agrees with c1 in all dimensions

greater than 1 and let P be the panel of � containing c1 and d . �us d is the

other chamber in P \† . By 8.12, the composition � � projP (that is, � followed

by projP ) interchanges c1 and d and maps the image of d under x˛1
.t/ to the

image of d under x˛1
.t�1/ for all t 2 E� .

�e following will be applied in §12.

Lemma 8.14. �ere exists a unique automorphism � of � stabilizing † such that

x˛1
.t/ 7! x Q̨ .t/ and x˛i

.t/ 7! x�˛i
.�t/ for each i 2 Œ2; n� . �e automorphism �

has order 2 .

Proof. �e automorphism of � induced by the element of O.q/ that �xes e1

and f1 and interchanges ei and fi for each i 2 Œ2; n� has the desired properties.

Uniqueness holds by 4.7(i).

Notation 8.15. Let � be an involution in Aut.E/ and let K D FixE .�/ . We will

usually write x in place of x� for elements x 2 E . Let N be the norm of the

quadratic extension E=K .

�e last two results of this section will be applied in the proof of 15.4. For

the de�nition of the quaternion algebra .E=K; �/ that appears in the next result,

see, for example, [TW, 9.3].

Lemma 8.16. Suppose that n is even and that � is an element of K not in

N.E/ . Let R be the residue of � whose chambers are the ori�ammes containing

the subspaces he1; e2; : : : ; eki for all even k 2 Œ1; n� and let R1 denote the residue

whose chambers are the ori�ammes containing the subspace he1; e2; : : : ; eni . �en

there exists a type-preserving Galois involution � on � that stabilizes † , R

and R1 such that � does not stabilize any proper residues of R and

R
h�1i
1 Š Am.D/;

where �1 denotes the restriction of � to R1 , m D .n=2/ � 1 and D denotes

the quaternion division algebra .E=K; �/ .

Proof. Let T denote the unique � -linear automorphism of V that extends the

maps tei 7! teiC1 and tfi 7! �tfiC1 for all odd i 2 Œ1; n� and tei 7! �tei�1 and

tfi 7! tfi�1 for all even i 2 Œ1; n� . �en q.T .v// D � � q.v/ for all v 2 V and

T stabilizes the subspaces he1; : : : ; eki for all even k 2 Œ1; n� . Let � denote the
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automorphism of � induced by T . �en �2 D 1 and � stabilizes both R and

R1 . Let � D h�i and let �1 denote the restriction of � to R1 .

Every subspace of QV WD he1; : : : ; eni of dimension n � 1 is contained in

exactly two totally isotropic subspaces of V of dimension n . It follows that the

residue R1 is isomorphic to the building of type An�1 whose chambers are the

maximal �ags of subspaces of QV WD he1; : : : ; eni .

We have

D D ¹x C uy j x; y 2 Eº;

where uy � uz D �yz , uy � z D u.yz/ and y � uz D u.yz/ for all y; z 2 E .

�e vector space QV has a unique structure as a right vector space over D of

dimension n=2 such that

.sei C teiC1/.x C uy/ D .xs C �yt/ei C .xt C ys/eiC1

for all odd i 2 Œ1; n� and all s; t; x; y 2 E . We have T .v/ D v � u for all v 2 QV .

It follows that the T -invariant subspaces of QV as a vector space over E are

precisely the subspaces of QV as a right vector space over D . �us R is a

� -chamber and R
�1

1 Š Am.D/ .

Lemma 8.17. If n D 3 , then there exists a unique automorphism � of �

stabilizing † such that x˛1
.t/� D x˛1

.�t/ and x˛2
.t/� D x˛3

.�t/ for all

t 2 E . �e automorphism � is a non-type-preserving Galois involution and

�h�i Š B
Q

2 .K; E; N / .

Proof. Let T be the unique � -linear automorphism of V that �xes e1 and

f1 , maps e2 to �e2 and f2 to �f2 and interchanges e3 with f3 . �en

T 2 D 1 and q.T .v// D q.v/ for all v 2 V and by 8.2, x˛1
.t/T D x˛1

.�t/

and x˛2
.t/T D x˛3

.�t/ for all t 2 E . Let � denote the Galois involution of �

induced by T . �en � is non-type-preserving and stabilizes † . By 4.7(i), � is

unique. Since c is the unique chamber of † contained in ˛i for all i 2 Œ1; 3� ,

� �xes c . �us, in particular, � is isotropic.

Let � be a non-zero element of trace 0 in E , let ! be an element of E not

in K and let V0 D FixV .T / , let V1 denote the subspace over K (rather than

E ) spanned by the set

B1 WD ¹e1; f1; �e2; ��1f2; e3 C f3; !e3 C !f3º:

�en V1 � V0 , so q.V1/ � K and by [MPW, 2.40(i)], V1 D V0 . Let Q W V1 ! K

denote the restriction of q to V1 . By 6.5, � WD h�i is a descent group of � .

By [MPW, 2.40(ii)], �� is isomorphic to the building B.Q/ de�ned in 3.3. �e

restriction of Q to he1; f1; �e2; ��1f2i is hyperbolic and the map
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s.e3 C f3/ C t.!e3 C !f3/ 7! s C t!

is an isometry from the restriction of Q to the subspace he3 C f3; !e3 C !f3i

of V1 to the norm N viewed as a quadratic form over K . �us N is the

anisotropic part of Q . By 3.4, we conclude that B.Q/ Š B
Q

2 .K; E; N / .

9. An anisotropic Galois involution of Dn.q/

We continue with all the notation and assumptions from the previous section.

In particular, � is the building Dn.E/ whose chambers are the ori�ammes of V

with respect to the quadratic form q as de�ned in 8.3.

Notation 9.1. Let � , K , x 7! x and N be as in 8.15, let ! be an element of E

not in K and let

x2 � ax C b D .x � !/.x � !/

be the minimal polynomial of ! over K . �us

(9.2) N.x C y!/ D x2 C axy C by2

for all x; y 2 K .

Lemma 9.3. Let ! , a , b , x 7! x and N be as in 9.1. Let i 2 Œ1; n� , let e D ei ,

let f D fi , let � 2 E and let ' be the quadratic form on he; f i given by

'.xe C yf / D xy

for all x; y 2 E . Let b1 D �e C f and let b2 D �!e C !f . �en the following

hold:

(i) e D ��1.! � !/�1.!b1 � b2/ and f D �.! � !/�1.!b1 � b2/ .

(ii) '.xb1 C yb2/ D �.x2 C axy C by2/ for all x; y 2 E .

(iii) ' Š N ˝K E .

Proof. It can be veri�ed with a few calculations that (i) and (ii) hold; (iii) follows

from (ii) and (9.2).

Notation 9.4. Let �1; : : : ; �n be non-zero elements of K and let Q W En ! K

denote the quadratic from over K given by

Q.y1; : : : ; yn/ D

n
X

iD1

�iN.yi/

for all .y1; : : : ; yn/ 2 En .
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Proposition 9.5. Let q W V ! E be as in 8.1, let x 7! x and K be as in

9.1, let �1; : : : ; �n and Q be as in 9.4 and let � D ��1;:::;�n
be the � -linear

automorphism of V given by

(9.6) �
�

n
X

iD1

.xiei C yifi /
�

D

n
X

iD1

.�iyiei C ��1
i xi fi /

for all x1; : : : ; yn 2 E . �en the following hold:

(i) q.�.v// D q.v/ for all v 2 V and �2 D 1 .

(ii) q Š Q ˝K E .

(iii) If the quadratic form Q is anisotropic, then there are no non-zero �-

invariant subspaces of V that are totally isotropic with respect to q .

Proof. Assertion (i) is clear and assertion (ii) follows from 9.3(iii). Suppose that

V0 is a non-zero totally isotropic �-invariant subspace of V . �us q.v/ D 0 for

all v 2 V0 . Let u be a non-zero element of V0 . �e sum v WD u C �.u/ is �xed

by � . Replacing u by tu for some t 2 EnK if necessary, we can assume that

v is non-zero. Hence

v D

n
X

iD1

.xiei C yi fi /

for some x1; : : : ; yn 2 E not all zero. Since v is �xed by � , we have xi D �iyi

for each i 2 Œ1; n� . �erefore the elements y1; : : : ; yn are not all zero and

Q.y1; : : : ; yn/ D

n
X

iD1

�iyi yi D q.v/ D 0:

�us (iii) holds.

Proposition 9.7. Let ˛1; : : : ; ˛n and xˇ for ˇ 2 ˆ be as in 8.4 and let � be

as in (9.6). �en

x˛i
.t/� D x�˛i

.���1
i �iC1t/

for all i 2 Œ1; n � 1� and all t 2 E and

x˛n
.t/� D x�˛n

.���1
n�1��1

n t/

for all t 2 E .

Proof. �is holds by 8.2, (9.6) and some computation.
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Notation 9.8. Let W be the Weyl group of ˆ , let w1 be the longest element in

W with respect to the set of generators ¹s˛i
j i 2 Œ1; n�º and let �1 WD �1;:::;1

be the involution obtained by setting �1 D � � � D �n D 1 in 9.5. We use the

same letters � D ��1;:::;�n
and �1 to denote the automorphisms of � induced

by these two involutions of V ; this convention should not cause any confusion.

Since �1; : : : ; �n 2 K , we have

(9.9) � D g�1;:::;�n;id � �1 D gw1;��1;:::;��n;�

if n is even by 2.10, 8.15 and 9.7, where �i D ��1
i �iC1 for all i 2 Œ1; n � 1� and

�n D ��1
n�1��1

n , g�1;:::;�n;id is as in 4.7(i) and gw1;��1;:::;��n;� is as in 4.13.

Notation 9.10. Let � be the automorphism of V given by

�
�

n
X

iD1

.xiei C yifi /
�

D

n
X

iD1

.xiei C yi fi /

for all x1; : : : ; yn 2 E . �en �.q.v// D q.v/ for all v 2 V , � commutes with the

element �1 in 9.8, the composition � � �1 is contained in O.q/ and

xˇ .t/� D xˇ .t/

for all ˇ 2 ˆ and all t 2 E .

Proposition 9.11. Let n be even and let �1 and � be as in 9.8 and 9.10. �en

the product � � �1 induces an automorphism of � contained in the group G�

de�ned in 3.1.

Proof. Since n is even, there is a unique element of O.q/ that maps ei to eiC1

and fi to fiC1 for all odd i 2 Œ1; n� and ei to fi�1 and fi to ei�1 for all

even Œ1; n� , and the square of this element equals � � �1 . By 8.5, it follows that

� � �1 2 �.q/ . �e claim holds, therefore, by 8.5.

10. An extension from Dn.E/ to DnC1.E/

Let V , E , � D ��1;:::;�n
, q , B , ˆ , etc., be as in the previous two sections.

Notation 10.1. Let V0 be a vector space over E containing V as a subspace of

co-dimension 2 , let

B0 D ¹e0; : : : ; en; f0; : : : ; fnº
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be an extension of the basis B to a basis of V0 , let q0 W V0 ! E be the quadratic

form given by

q0

�

n
X

iD0

.xiei C yi fi /
�

D

n
X

iD0

xi yi

and let ˛0; ˛1; : : : ; ˛n be an extension of the basis ˛1; : : : ; ˛n of ˆ to a basis

of a root system ˆ0 of type DnC1 containing ˆ . We extend � to a � -linear

automorphism �0 of V0 by setting

(10.2) �0.x0e0 C y0f0 C v/ D x0e0 C y0f0 C �.v/

for all x0; y0 2 E and all v 2 V . Since � is an involution, so is �0 .

Notation 10.3. Let �0 denote the building of type DnC1 whose chambers are

the ori�ammes with respect to q0 . We identify the building � D Dn.E/ in §9

with the residue of �0 consisting of all ori�ammes containing the subspace he0i

and we denote the automorphism of �0 induced by �0 also by �0 . �us � is

a h�0i -residue and �0 is a Galois involution of �0 extending � .

Proposition 10.4. Suppose that the quadratic form Q in 9.4 is anisotropic. �en

� is a h�0i -chamber and the �xed point building �
h�0i
0 is isomorphic to

B
Q

1 .K; En; Q/;

where B
Q

1 .K; En; Q/ is as de�ned in [Wei2, 30.15].

Proof. It follows from 9.5(iii) that � is a h�0i -chamber. Let

Q0 W K ˚ K ˚ En ! K

be the quadratic form over K given by

Q0.x0e0 C y0f0 C v/ D x0y0 C Q.v/

for all x0; y0 2 K and all v 2 En . �us Q is the anisotropic part of Q0 .

Let OV D FixV0
.�0/ . By [MPW, 2.40(i)], there is a canonical isomorphism from

OV ˝K E to V0 mapping Ov ˝ t to t Ov for all Ov 2 OV and all t 2 E . By [MPW,

2.40(ii)], the map W 7! W \ OV is an inclusion- and dimension-preserving bijection

from the set of �0 -invariant subspaces of V0 to the set of all subspaces of OV .

For each i 2 Œ1; n� , the elements b1 and b2 de�ned in 9.3 are �xed by �0 . �e

set of these elements together with e0 and f0 is thus a basis for OV over K .

By 9.3(ii), it follows that Q0 is the restriction of q0 to OV . �us by 9.5(ii), an

�0 -invariant subspace W of V0 is totally isotropic with respect to q0 if and

only if W \ OV is totally isotropic with respect to Q0 . By 3.4, we conclude that

�
h�0i
0 Š B

Q

1 .K; En; Q/ .
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Notation 10.5. For all ˇ 2 ˆ0 and all t 2 E , let xˇ .t/ be the elements of O.q0/

de�ned by applying 8.2 and 8.4 with the interval Œ1; n� replaced by the interval

Œ0; n� . �us, in particular, the restriction of xˇ .t/ to V is as it was in the previous

section for all ˇ 2 ˆ and all t 2 E , x˛0
.t/ is the unique element of O.q0/ that

�xes the elements ek and fm of B0 for all k ¤ 1 and all m ¤ 0 and maps e1

to e1 C te0 and f0 to f0 � tf1 for all t 2 E and x Q̨ .t/ is the unique element

of O.q0/ that �xes the elements ek and fm of B0 for all k 2 Œ0; n� and all

m 2 Œ2; n� and maps f0 to f0 � te1 and f1 to f1 C te0 for all t 2 E , where Q̨

is the highest root of ˆ0 with respect to the basis ˛0; : : : ; ˛n .

Proposition 10.6. Let �0 be as in 10.2 and let Q̨ be the highest root of the root

system ˆ D h˛1; : : : ; ˛ni \ ˆ0 of type Dn . �en

x˛0
.t/�0 D x Q̨ .�1t/

and

x˛i
.t/�0 D x�˛i

.���1
i �iC1t/

for all t 2 E and all i 2 Œ1; n � 1� as well as

x˛n
.t/�0 D x�˛n

.���1
n�1��1

n t/

for all t 2 E .

Proof. �e �rst identity holds by (10.2), 10.5 and some computation, and the

remaining identities hold by 9.7.

11. �e quadrangles of type E8

Our goal in this section is to prove 11.21. Let ˆ be a root system of type E7

and let ˛1; : : : ; ˛7 and Q̨ be as in [Bou, Plate VI]. Let W be the Weyl group

of ˆ , let S be the set of re�ections s˛i
for i 2 Œ1; 7� , let ˆ1 be the root system

h˛2; : : : ; ˛7i \ ˆ of type D6 , let S1 D Sn¹s˛1
º and let W1 D hS1i .

�e pair .W1; S1/ is a Coxeter system of type D6 . Let w1 denote the longest

element in W1 with respect to the set of generators S1 . Since Q̨ is orthogonal

to ˛i for all i 2 Œ2; 7� , we have

(11.1) w1. Q̨ / D Q̨ :

By 2.10, w1.˛i / D �˛i for all i 2 Œ2; 7� . Applying w1 to the equation

(11.2) Q̨ D 2˛1 C 2˛2 C 3˛3 C 4˛4 C 3˛5 C 2˛6 C ˛7;

we conclude that
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(11.3) Q̨ D w1.˛1/ C ˛1:

�us

(11.4) w1.˛1/ D ˛1 C 2˛2 C 3˛3 C 4˛4 C 3˛5 C 2˛6 C ˛7:

Notation 11.5. We denote by � the building E7.E/ . Let † be an apartment

of � , let c be a chamber of † and let �1 be the unique residue of � of type

D6 containing c . �us �1 Š D6.E/ and †1 WD �1 \ † is an apartment of �1 .

We identify the root system ˆ with the set of roots of † and Aut.ˆ/ with a

subgroup of Aut.†/ as in 4.1. �is gives an identi�cation of ˆ1 with the roots

of †1 .

Notation 11.6. Let Q� , Q† , Qc , Q̨1; : : : ; Q̨6 and ¹ Qxˇ ºˇ2ˆ1
be the building, the

apartment, the chamber, the set of roots and the coordinate system called � ,

† , c , ˛1; : : : ; ˛6 and ¹xˇ ºˇ2ˆ in 8.3 and 8.4 with n D 6 . �ere exists an

isomorphism � from Q� to �1 mapping Q† to †1 , Qc to c and the root Q̨ i

to ˛�.i/ for all i 2 Œ1; 6� , where � is the map sending the sequence 1; 2; : : : ; 6 to

the sequence 7; 6; 5; 4; 2; 3 . Let xˇ D ��1 � Qxˇ � � for all ˇ 2 ˆ1 . �en ¹xˇ ºˇ2ˆ1

is a coordinate system for �1 . By 4.11, we can extend this coordinate system to

a coordinate system ¹xˇ ºˇ2ˆ for � .

�e root Q̨ is orthogonal to the root ˛i for all i 2 Œ2; 7� . �us ŒU˙˛i
; U Q̨ � D 1

for all i 2 Œ2; 7� by 4.2(ii). By 3.2 and 9.11, there exists an element O�1 in

hUˇ j ˇ 2 ˆ1i � Aut.�/

stabilizing �1 and †1 and centralizing U Q̨ such that

(11.7) x
O�1

˛i
D x�˛i

.�t/

for all i 2 Œ2; 7� .

Let R be the unique residue such that R \ † and †1 are opposite residues

of † . For each root ˇ in ˆ1 , there exist chambers of †1 not in ˇ . �us each

root of ˆ1 contains chambers of R (by [Wei1, 5.2]) and hence the corresponding

root group stabilizes R . �erefore the element O�1 stabilizes R . Since it also

stabilizes †1 , it stabilizes projR.†1/ . By [Wei1, 5.14(i)], projR.†1/ D R \ † .

Hence O�1 stabilizes the convex closure of †1 and R \ † . By [Wei1, 8.9 and

9.2], this convex closure is † . We conclude that O�1 stabilizes † . Since w1 and
O�1 have the same restriction to †1 , the restriction of O�1 to † is w1 . By 4.14,

therefore, there exist �1; : : : ; �7 2 E� such that

O�1 D gw1;�1;:::;�7;id:
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�us, in particular, we have

(11.8) x˛1
.t/

O�1 D xw1.˛1/.�t/

for � D �1 and for all t 2 E . By (11.7), �i D �1 for all i 2 Œ2; 7� . By 4.7(ii),

there exists � 2 E� such that

(11.9) xw1.˛1/.t/
O�1 D x˛1

.�t/

for all t 2 E . By 4.2(i) and (11.3), there exists ı 2 ¹1; �1º such that

(11.10)
�

x˛1
.s/; xw1.˛1/.t/

�

D x Q̨ .ıst/

for all s; t 2 E . Applying O�1 to this identity, we �nd that

�

xw1.˛1/.�s/; x˛1
.�t/

�

D x Q̨ .ıst/

for all s; t 2 E . �us

�

x˛1
.�t/; xw1.˛1/.�s/

�

D x Q̨ .�ıst/

for all s; t 2 E . Applying (11.10) to the left-hand side of this identity, we conclude

that

(11.11) �� D �1:

Notation 11.12. Let � , x 7! x and K be as in 8.15, let �1; �1; : : : �6 2 K� and

let Q be as in 9.4 with n D 6 . We set

O� D g�1;�2:::;�7;� � O�1;

where �2 D ��1
5 �6 , �3 D ��1

5 ��1
6 , �4 D ��1

4 �5 , �5 D ��1
3 �4 , �6 D ��1

2 �3 ,

�7 D ��1
1 �2 and g�1;:::;�7;� is as in 4.7(i). �us

(11.13) �2
2�3

3�4
4�3

5�2
6�7 D ��1

1 � � � ��1
6 :

Notation 11.14. Let � W Q� ! �1 be as in 11.6 and let Q� be the automorphism

of Q� in (9.6) with n D 6 and �1; : : : ; �6 be as in 11.12. We denote by

� the automorphism ��1 � Q� � � of �1 . �e automorphism � satis�es the

identities in 9.7 with n D 6 and with the roots ˛1; : : : ; ˛6 replaced by the roots

˛7; ˛6; ˛5; ˛4; ˛2; ˛3 of ˆ1 (in that order).

Proposition 11.15. �e automorphism O� stabilizes �1 , the restriction of O� to �1

is the automorphism � de�ned in 11.14 and � is an involution.

Proof. Since O�1 and g�1;:::;�7;� both stabilize �1 , so does O� . �e second claim

holds by (9.9) and the third claim by 9.5(i).
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Proposition 11.16. �e automorphism O� is an involution if and only if

(11.17) N.�1/ D ��1 � � � �6;

where N is as in 9.1.

Proof. �e automorphism O� is an extension of � and �2 D 1 . �us O�2

centralizes U˛i
for all i 2 Œ2; 7� . By the uniqueness assertion in 4.7(i), therefore,

O� is an involution if and only if O�2 centralizes U˛1
. We have

x˛1
.t/

O�2

D xw1.˛1/.��1t/
O� by (11.8)

D xw1.˛1/.�1 � ��1
1 � � � ��1

6 � ��1t/
O�1 by 4.7(ii), (11.4) and (11.13)

D x˛1
.�� � N.�1/��1

1 � � � ��1
6 t/ by (11.9)

D x˛1
.�N.�1/��1

1 � � � ��1
6 t/ by (11.11):

�us O� is an involution if and only if (11.17) holds.

Corollary 11.18. Suppose the quadratic form Q in 11.12 is anisotropic and that

(11.17) holds. �en O� is a Galois involution and �1 is a h O�i -chamber.

Proof. �e �rst claim holds by 11.16 and the second claim holds by 9.5(iii)

and 11.15.

Proposition 11.19. Suppose the quadratic form Q in 11.12 is anisotropic and that

(11.17) holds. �en �h O�i is a Moufang set with non-abelian root groups.

Proof. By 11.18, O� is an involution and by 4.7(ii), (11.2) and (11.13), we have

(11.20) x Q̨ .t/
O� D x Q̨ .��1�1

�1
t/

O�1 D x Q̨ .��1�1
�1

t /

for all t 2 E . Let T be the trace of the extension E=K and let

X D ¹.t; u/ 2 E2 j T .�1u/ C �ıN.�1t/ D 0º:

It follows from (11.8), (11.10) and (11.20) that for all .t; u/ 2 X , the element

gt;u WD x˛1
.t/xw1.˛1/.��1t/x Q̨ .u/

is centralized by O� .

�e roots of † cutting �1 (as de�ned in 3.5) are the roots in ˆ1 . All the

other positive roots of ˆ contain �1 \ † . In particular, ˛1 , w1.˛1/ and Q̨ all

contain �1 \ † . By 6.12(v), the root group of �h O�i �xing the h O�i -chamber �1

is isomorphic to the centralizer of O� in the group generated by all the roots
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of ˆ containing �1 \ † . �us hgu;t j .u; t/ 2 Xi is contained in this root group.

For each t 2 E , we can choose ut 2 E such that .t; ut / 2 X . Applying (11.10)

and the identities [TW, 2.2], we �nd that

Œgs;us
; gt;ut

� D x Q̨ .ı��1.st � st//

for all s; t 2 E . �us not all of the elements gt;ut
commute with each other.

�eorem 11.21. Let ƒ D .K; V; Q/ be a quadratic space of type E8 . �en there

exists a separable quadratic extension E=K such that QE is hyperbolic and for

each such extension E=K , there exists a Galois involution � of the building

� D E8.E/ such that the Tits index of the group � WD h�i is
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and the �xed point building �� is isomorphic to B
E
2 .ƒ/ .

Proof. By 5.5, we can choose a separable quadratic extension E=K such that QE

is hyperbolic and we can assume that V D E6 and there exists �1; : : : ; �6 2 K

such that

Q.u1; : : : ; u6/ D �1N.u1/ C � � � C �6N.u6/

for all .u1; : : : ; u6/ 2 V , where N is the norm of the extension E=K , and

(11.22) � �1�2 � � � �6 2 N.E/:

Let � D E8.E/ , let † be an apartment of � and let c be a chamber of † . Let ˆ

be the root system of type E8 and let ˛1; : : : ; ˛8 be as in [Bou, Plate VII]. We

identify ˆ with the set of roots of † and Aut.ˆ/ with a subgroup of Aut.†/

as in 4.1 and choose a coordinate system ¹xˇ ºˇ2ˆ for � . Let A be the unique

subset of S spanning a subdiagram of … of type D6 , let w1 denote the longest

element in the Coxeter group WA with respect to the set of generators A , let R

denote the unique A-residue of � containing c , let R1 be the unique residue of

type D7 containing R and let R2 be the unique residue of type E7 containing

R .

By (11.22), we can choose �1 so that (11.17) holds. Let � be as in (11.8) and

let �2; : : : ; �7 be as in 11.12. We then set �1 D ��1 , �i D ��i for all i 2 Œ2; 7� ,

�8 D �1 and

� D gw1;�1;:::;�8;� ;

where � is the non-trivial element in Gal.E=K/ and gw1;�1;:::;�8;� is as in 4.13.

Let � D h�i . Since w1 stabilizes R \ † , it also stabilizes R1 \ † and R2 \ † .

Hence R , R1 and R2 are � -residues.
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By 4.11 with R1 in place of R and 11.6, we can assume that the coordinate

system ¹xˇ ºˇ2ˆ was chosen so that there are two isomorphisms, one from R1

to the building �0 in 10.3 with n D 6 carrying the automorphism �0 de�ned

in 10.2 to the restriction of � to R1 and the other from R2 to the building �

in 11.5 carrying the automorphism O� de�ned in (11.12) to the restriction of �

to R2 . By 10.6 applied to the restriction of � to R1 , �2 centralizes U˛i
for all

i 2 Œ2; 8� and R is a � -chamber. By 11.18 applied to the restriction of � to R2 ,

�2 also centralizes U˛1
. �us � is a Galois involution. By 6.5, therefore, � is a

descent group of � . By 6.11 and 6.12(iii), �� is a building of type B2 , and thus

by 6.12(iv), �� is a Moufang quadrangle. Let M1 and M2 be as in 5.16 applied

to �� . By 6.15, 10.4 and 11.19, one of these two Moufang sets is isomorphic

to B
Q

1 .K; E6; Q/ and the other has non-abelian root groups. By 5.16(a), it follows

that �� Š B
E
2 .ƒ/ .

12. �e exceptional buildings of type A2

Our goal in this section is to prove 12.11.

Notation 12.1. Let � D D5.E/ and let † , c , ˆ , ˛1; : : : ; ˛5 , Q̨ , .W; S/ , the

identi�cation of ˆ with the set of roots of † and the identi�cation of Aut.ˆ/

with a subgroup of Aut.†/ be as in 4.1. Let S1 D Sn¹s˛1
º , let W1 D hS1i ,

let ˆ1 be the root system h˛2; : : : ; ˛5i\ˆ of type D4 and let �1 be the unique

residue of type D4 containing c .

Notation 12.2. Let Q� , Q† , Qc , Q̨1; : : : ; Q̨4 and ¹ Qxˇ ºˇ2ˆ1
be the building, the

apartment, the chamber, the set of roots and the coordinate system called � ,

† , c , ˛1; : : : ; ˛4 and ¹xˇ ºˇ2ˆ1
in 8.3 and 8.4 with n D 4 . �ere exists an

isomorphism � from Q� to �1 mapping Q† to †1 , Qc to c and the root Q̨ i

to ˛�.i/ for all i 2 Œ1; 4� , where � is the map sending the sequence 1; 2; 3; 4 to

the sequence 5; 3; 4; 2 . Let xˇ D ��1 � Qxˇ � � for all ˇ 2 ˆ1 . �en ¹xˇ ºˇ2ˆ1
is

a coordinate system for �1 . By 4.11, we can extend this coordinate system to a

coordinate system ¹xˇ ºˇ2ˆ for � .

�e pair .W; S/ is a Coxeter system of type D5 and the pair .W1; S1/ is

a Coxeter system of type D4 . Let w1 denote the longest element in W1 with

respect to the set of generators S1 and let ˆ0 be the root system of type D6

obtained by applying 10.1 to ˆ . By 8.6 applied to ˆ0 , we have

(12.3) w1.˛1/ D Q̨ D ˛1 C 2˛2 C 2˛3 C ˛4 C ˛5:

We also know that
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(12.4) w1.˛i / D �˛i

for all i 2 Œ2; 5� . By 4.16 and 8.14, there exists ı 2 ¹1; �1º such that

(12.5) O�1 WD gw1;ı;�1;�1;�1;�1;id

is an involution, where gw1;ı;�1;�1;�1;�1;id is as in 4.13.

Notation 12.6. Let �1; : : : ; �4 and Q be as in 9.4 with n D 4 , let � , K , etc.,

be as in 8.15, let � and Q� be as in 12.2 and let Q� be the automorphism of Q�

in (9.6) with n D 4 . We denote by � the automorphism ��1 � Q� � � of �1 . �e

automorphism � satis�es the identities in 9.7 with n D 4 and with the roots

˛1; ˛2; ˛3; ˛4 replaced by the roots ˛5; ˛3; ˛4; ˛2 of ˆ1 (in that order).

Notation 12.7. Suppose that there exists �1 2 E such that N.�1/ D �1�2�3�4

and let
O� D g�1;:::;�5;� � O�1 D gw1;ı�1;��2;��3;��4;��5;� ;

where �2 D ��1
3 ��1

4 , �3 D ��1
2 �3 , �4 D ��1

3 �4 , �5 D ��1
1 �2 , O�1 and ı are as

in (12.5) and g�1;:::;�5;� is as in 4.7(i). We have

(12.8) �1�2
2�2

3�4�5 D �1
�1

:

�eorem 12.9. Suppose that �1�2�3�4 2 N.E/ and that the quadratic form Q in

12.6 is anisotropic. Let O� be as in 12.7 and let �1 be the unique residue of type

D4 containing the chamber c . �en O� is a Galois involution of � stabilizing

�1 but not any proper residue of �1 .

Proof. By (12.3) and (12.4), we have

x
O�

˛1
.t/ D x Q̨ .ı�1t /

for all t 2 E and

x
O�

˛i
.t/ D x�˛i

.��i t/

for all t 2 E and all i 2 Œ2; 5� . Since O�1 is an involution, we have

(12.10) x Q̨ .t/
O�1 D x˛1

.ıt/

for all t 2 E . �erefore

xw1.˛1/.t/
O� D x Q̨ .�1�2

2�2
3�4�5t /

O�1 by 4.7(ii) and (12.3)

D x Q̨ .�1
�1

t /
O�1 by (12.8)

D x˛1
.ı�1

�1
t/ by (12.10)
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for all t 2 E . Hence O�2 centralizes U˛1
. �us O� is an involution (and hence a

Galois involution). Since w1 stabilizes † \ �1 , O� stabilizes �1 . �e restriction

of O� to �1 coincides with the automorphism � de�ned in 12.6. By 9.5(iii), it

follows that O� stabilizes no proper residue of �1 .

�eorem 12.11. Let D be an octonion division algebra over a �eld K and

let E=K be a separable quadratic extension such that DE is split. �en there

exists a Galois involution � of the building � D E6.E/ such that the Tits index

of the group � WD h�i is
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and the �xed point building �� is isomorphic to A2.D/ .

Proof. Let � D E6.E/ , let † be an apartment of � and let c be a chamber

of † . Let ˆ and ˛1; : : : ; ˛6 be as in [Bou, Plate V]. We identify ˆ with the set

of roots of † as in 4.1 and choose a coordinate system ¹xˇ ºˇ2ˆ for � . Let A

be the unique set of vertices of the Coxeter diagram … spanning a subdiagram of

type D4 , let w1 denote the longest element in the Coxeter group WA with respect

to the generating set A , let R denote the unique A-residue of � containing c

and let R1 and R2 be the two maximal residues containing R .

�ere exist �1; : : : ; �4 2 K such that �1 � � � �4 2 N.E/ and the quadratic form

Q de�ned in 9.4 is similar to the norm of D . Let �1; � � � ; �5 and ı be as in 12.7.

We set �1 D ı�1 , �2 D ��4 , �3 D ��2 , �4 D ��3 , �5 D ��5 and �6 D �1 .

Next, we set

�0 D gw1;�1;:::;�6;� ;

where � is the non-trivial element in Gal.E=K/ and gw1;�1;:::;�6;� is as in 4.13.

Finally, we set � D h�0i .

By 4.11 with R2 in place of R and 12.6, we can assume that the coordinate

system ¹xˇ ºˇ2ˆ was chosen so that there are two isomorphisms, one from R1

to the building � in 12.1 carrying the automorphism O� in 12.7 to the restriction

of � to R1 and the other from R2 to the building �0 in 10.3 with n D 5

carrying the automorphism �0 de�ned in (10.2) to the restriction of � to R2 .

Since w1 stabilizes R \ † , � stabilizes R . Hence � stabilizes the residues

of � that contain R . By 12.9, therefore, �2
0 centralizes U˛i

for all i 2 Œ1; 5�

and R is a � -chamber, and by 10.6, �2
0 centralizes U˛6

. It follows that �0

is a Galois involution. By 6.5, therefore, � WD h�0i is a descent group of � .

By 6.11 and 6.12(iii), �� is a building of type A2 , and thus by 6.12(iv), ��

is a Moufang triangle. By [TW, 17.2–17.3], there exists a �eld, a skew-�eld or

an octonion division algebra D1 such that �� Š A2.D1/ . �us the Moufang set
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induced by the stabilizer of a panel of �� in the automorphism group of �� is

isomorphic to A1.D1/ . By 6.15 and 10.4, it follows that

A1.D1/ Š B
Q

1 .K; E4; Q/:

Hence by [Wei3, 31.21], D1 is an octonion division algebra whose norm is similar

to Q . �erefore D1 Š D (by [TW, 20.28], for example).

13. �e quadrangles of type E7

Our goal in this section is to prove 13.12.

Notation 13.1. Let � D D6.E/ , † , c , ˆ , ˛1; : : : ; ˛6 , .W; S/ , the identi�cation

of the set of roots of † with ˆ , the identi�cation of Aut.ˆ/ with a subgroup

of Aut.†/ , etc., be as in 4.1. Let S1 D Sn¹s˛1
; s˛2

º , let W1 D hS1i and let ˆ1

be the root system h˛3; : : : ; ˛6i \ ˆ of type D4 . Let �1 be the unique residue

of type D4 containing c .

Notation 13.2. Let Q� , Q† , Qc , Q̨1; : : : ; Q̨4 and ¹ Qxˇ ºˇ2ˆ1
be the building, the

apartment, the chamber, the set of roots and the coordinate system called � ,

† , c , ˛1; : : : ; ˛4 and ¹xˇ ºˇ2ˆ1
in 8.3 and 8.4 with n D 4 . �ere exists an

isomorphism � from Q� to �1 mapping Q† to †1 , Qc to c and the root Q̨ i

to ˛�.i/ for all i 2 Œ1; 6� , where � is the map sending the sequence 1; 2; 3; 4

to the sequence 6; 4; 5; 3 . Let xˇ D ��1 � Qxˇ � � . �en ¹xˇ ºˇ2ˆ1
is a coordinate

system for �1 . By 4.11, we can extend this coordinate system to a coordinate

system ¹xˇ ºˇ2ˆ for � .

�e pair .W; S/ is a Coxeter system of type D6 and the pair .W1; S1/ is

a Coxeter system of type D4 . Let w1 denote the longest element in W1 with

respect to the set of generators S1 and let w0 D s˛1
w1 . By (8.7), (8.9) and (8.10),

we have

(13.3) w0.˛2/ D ˛1 C ˛2 C 2˛3 C 2˛4 C ˛5 C ˛6

and

w0.˛i / D �˛i

for all i 2 Œ1; 6� other than 2 . By 4.16 and 8.11 with n D 6 , there exists ! 2 ¹1; �1º

such that

(13.4) O�1 WD gw0;1;!;�1;�1;�1;�1;id

is an involution, where gw0;1;!;�1;�1;�1;�1;id is as in 4.13.
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Notation 13.5. Let �1; : : : ; �4 and Q be as in 9.4 with n D 4 , let � , K , etc.,

be as in 8.15, let � and Q� be as in 13.2 and let Q� be the automorphism of Q�

in (9.6) with n D 4 . We denote by � the automorphism ��1 � Q� � � of �1 . �e

automorphism � satis�es the identities in 9.7 with n D 4 and with the roots

˛1; ˛2; ˛3; ˛4 replaced by the roots ˛6; ˛4; ˛5; ˛3 of ˆ1 (in that order).

Notation 13.6. Let

O� D g�1;:::;�6;� � O�1 D gw0;�1;!�2;��3;:::;��6;� ;

where �1 D �1�2�3�4 , �2 D 1 , �3 D ��1
3 ��1

4 , �4 D ��1
2 �3 , �5 D ��1

3 �4 ,

�6 D ��1
1 �2 and O�1 and g�1;:::;�6;� are as in 4.7(i). Note that

(13.7) �1�2�2
3�2

4�5�6 D 1:

�eorem 13.8. Suppose that �1�2�3�4 62 N.E/ and that the quadratic form Q

de�ned in 13.5 is anisotropic and let �0 be the unique residue of type A1 � D4

containing the chamber c . �en O� is a Galois involution of � stabilizing �0

but not any proper residue of �0 .

Proof. We have

x˛1
.t/

O� D x�˛1
.�1t/

and

x˛2
.t/

O� D xw0.˛2/.!t/

for all t 2 E as well as

(13.9) x˛i
.t/

O� D x�˛i
.��i t/

for all t 2 E and all i 2 Œ3; 6� . We also have

(13.10) xw0.˛2/.t/
O�1 D x˛2

.!t/

for all t 2 E since O�1 is an involution. �erefore

xw0.˛2/.t/
O� D xw0.˛2/.�1�2�2

3�2
4�5�6t/

O�1 by 4.7(ii) and (13.3)

D xw0.˛2/.t/
O�1 by (13.7)

D x˛2
.!t/ by (13.10)

for all t 2 E . Hence O�2 centralizes U˛2
. Since �i 2 K for all i 2 Œ1; 6� and

O�2
1 D 1 , it follows from 4.7(ii) that

x�˛1
.t/

O� D x�˛1
.��1

1 t/
O�1 D x˛1

.��1
1 t/
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and

x�˛i
.t/

O� D x�˛i
.��1

i t/
O�1 D x˛i

.���1
i t/

for all t 2 E and all i 2 Œ3; 6� . �erefore O�2 centralizes U˛i
for all i 2 Œ1; 6� .

�us O� is a Galois involution.

�e involution O� induces the automorphism w0 on † , and w0 stabilizes

�0 \ † . �erefore O� stabilizes �0 .

Let P be the 1-panel containing c , let �P be the restriction of the projection

map projP to �0 , let � denote the restriction of the projection map proj�1
to �0

and let � denote the restriction of O��� to �1 . By 3.11, 9.7 and (13.9), � coincides

with the automorphism � de�ned in 13.5.

Suppose that R is a residue of �0 stabilized by O� . By 9.5(iii), � does

not stabilize any proper residues of �1 . �erefore the image of R under the

projection map � is �1 . By 8.13, the image of �0 under �P is a projective

line over E which can be coordinatized so that O� � �P is the map t 7! �1t
�1

.

Since �1 D �1 � � � �4 62 N.E/ , this map has no �xed points. �erefore the image

of R under �P is P . Hence R D �0 . �us O� stabilizes no proper residues

of �0 .

Proposition 13.11. Suppose the quadratic form Q in 13.5 is anisotropic and that

�1�2�3�4 62 N.E/ . �en �h O�i is a Moufang set with non-abelian root groups.

Proof. By (13.8), O� is an involution. By 4.2(i) and (13.3), there exists ı 2 ¹1; �1º

such that
�

x˛2
.t/; xw0.˛2/.s/

�

D x Q̨ .ıst/

for all s; t 2 E . Setting s D ı and conjugating by O� , we have

x Q̨ .t/
O� D

�

xw0.˛2/.!t/; x˛2
.!ı/

�

D x Q̨ .�t/

for all t 2 E . Let T be the trace of the extension E=K and let

X D
®

.t; u/ 2 E2 j T .u/ C !ıN.t/ D 0
¯

:

It follows from (11.10) and (11.20) that for all .t; u/ 2 X , the element

gt;u WD x˛2
.t/xw0.˛2/.!t/x Q̨ .u/

is centralized by O� .

�e roots of † cutting �1 are the roots in ˆ \h˛1; ˛3; : : : ; ˛6i . All the other

positive roots of ˆ contain �1 \ † . In particular, ˛2 , w0.˛2/ and Q̨ all contain

�1 \ † . �e root group U of �h O�i �xing the h O�i -chamber �1 is isomorphic
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to the centralizer of O� in the group generated by all the positive roots of ˆ

containing �1 \ † . For each t 2 E , there exist ut 2 E such that .t; ut / 2 X .

Applying the identities [TW, 2.2], we see that

Œgs;us
; gt;ut

� D x Q̨

�

ı!.st � st/
�

for all s; t 2 E . �us not all of the elements gt;ut
commute with each other.

�erefore the root group U is non-abelian.

�eorem 13.12. Let ƒ D .K; V; Q/ be a quadratic space of type E7 . �en there

exists a separable quadratic extension E=K such that QE is hyperbolic and for

each such extension E=K , there exists a Galois involution � of the building

� D E7.E/ such that the Tits index of the group � D h�i is
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and the �xed point building �� is isomorphic to B
E
2 .K; V; Q/ .

Proof. By 5.5, we can choose a separable quadratic extension E=K such that

QE is hyperbolic and assume that V D E4 and that there exists �1; : : : ; �4 2 K

such that

Q.u1; : : : ; u4/ D �1N.u1/ C � � � C �4N.u4/

for all .u1; : : : ; u6/ 2 V , where N is the norm of the extension E=K , and

�1�2�3�4 62 N.E/:

Let � be the non-trivial element in Gal.E=K/ , let � D E7.E/ , let † be an

apartment of � and let c be a chamber of † . Let ˆ be the root system and let

˛1; : : : ; ˛7 be as in [Bou, Plate VI]. We identify ˆ with the set of roots of †

as in 4.1 and choose a coordinate system ¹xˇ ºˇ2ˆ for � . Let A be the unique

subset of S spanning a subdiagram of … of type A1 � D4 , let w0 denote the

longest element in the Coxeter group WA with respect to the generating set A

and let R denote the unique A-residue of � containing c . Let R1 and R2 be

the unique residues of type D6 and A1 � D5 containing c , let R3 be the unique

residue of R2 of type D5 containing c and let � be the restriction of � � projR3

to R3 .

Let �1; : : : ; �6 be as in 13.6. We set �1 D �1 , �2 D ��5 , �3 D ��6 ,

�4 D ��4 , �5 D ��3 , �6 D ı�2 and �7 D �1 . We then set

� D gw0;�1;:::;�7;� ;

where gw0;�1;:::;�7;� is as in 4.13. Finally, we set � D h�i .
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By 4.11 with R3 in place of R and 13.5, we can assume that the coordinate

system ¹xˇ ºˇ2ˆ was chosen so that there are two isomorphisms, one from R1 to

the building � in 13.1 carrying the restriction of � to R1 to the automorphism
O� in 13.6 and the other from R3 to the building �0 in 10.3 with n D 5 carrying

the map � to the automorphism �0 de�ned in (10.2).

By 13.8, �2 centralizes U˛i
for all i 2 Œ2; 7� and R is a � -chamber. By 3.11

and 10.6, �2 centralizes U˛1
. �us �2 centralizes U˛i

for all i 2 Œ1; 7� . Hence

� is a Galois involution. By 6.5, therefore, � is a descent group of � . By 6.11

and 6.12(iii), �� is a building of type B2 , and thus by 6.12(iv), �� is a Moufang

quadrangle. Let M1 and M2 be as in 5.16 applied to �� . By 6.15, 10.4 and 13.11,

one of these two Moufang sets is isomorphic to B
Q

1 .K; E4; Q/ and the other has

non-abelian root groups. By 5.16(a), it follows that �� Š B
E
2 .ƒ/ .

14. �e quadrangles of type E6

Our goal in this section is to prove 14.11.

Notation 14.1. Let � D A5.E/ , let ˆ be the root system of type A5 , let ˛1; : : : ; ˛5

and Q̨ be as in [Bou, Plate I], let S be the set of re�ections s˛i
for i 2 Œ1; 5� ,

let W D hSi , let S1 D ¹s˛2
; s˛3

; s˛4
º , let W1 D hS1i , let ˆ1 denote the root

system h˛2; ˛3; ˛4i\ˆ of type D3 and let �1 denote the unique residue of type

D3 containing c .

Notation 14.2. Let Q� , Q† , Qc , Q̨1; Q̨2; Q̨3 and ¹ Qxˇ ºˇ2ˆ1
be the building, the

apartment, the chamber, the set of roots and the coordinate system called � ,

† , c , ˛1; ˛2; ˛3 and ¹xˇ ºˇ2ˆ1
in 8.3 and 8.4 with n D 3 . �ere exists an

isomorphism � from Q� to �1 mapping Q† to †1 , Qc to c and the root Q̨ i

to ˛�.i/ for all i 2 Œ1; 6� , where � is the map sending the sequence 1; 2; 3 to

the sequence 3; 2; 4 . Let xˇ D ��1 � Qxˇ � � for all ˇ 2 ˆ1 . �en ¹xˇ ºˇ2ˆ1
is a

coordinate system for �1 . By 4.11, we can extend this coordinate system to a

coordinate system ¹xˇ ºˇ2ˆ for � .

�e pair .W; S/ is a Coxeter system of type A5 and the pair .W1; S1/ is

a Coxeter system of type D3 . Let w1 denote the longest element of W1 with

respect to the set of generators S1 .

We have w1 D .s2s4s3/2 , from which it follows that

w1.˛1/ D ˛1 C ˛2 C ˛3 C ˛4

and

w1.˛5/ D ˛2 C ˛3 C ˛4 C ˛5:
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Now let � be as in 2.9 with ˆ a root system of type A5 and let Ow D � � w1 .

�en

(14.3) Ow.˛1/ D ˛2 C ˛3 C ˛4 C ˛5 D Q̨ � ˛1

and

(14.4) Ow.˛5/ D ˛1 C ˛2 C ˛3 C ˛4 D Q̨ � ˛5

as well as Ow.˛i / D �˛i for all i 2 Œ2; 4� .

By 4.16 and 7.2, there exist ı1; ı5 2 ¹1; �1º such that

(14.5) O�1 WD g Ow;ı1;�1;�1;�1;ı5;id

is an involution, where g Ow;ı1;�1;�1;�1;ı5;id is as in 4.13.

Notation 14.6. Let �1 D �1 , �2 D ��1
2 �3 , �3 D ��1

1 �2 , �4 D ��1
2 ��1

3 and

�5 D �2 , so

(14.7) �1�2�3�4�5 D 1;

and let
O� D g�1;:::;�5;� � O�1 D g Ow;ı1�1;��2;��3;��4;ı5�5;� ;

where O�1 , ı1 and ı5 are as in (14.5), � is as in 8.15 and g�1;:::;�5;� is as

in 4.7(i).

Notation 14.8. Let Q� and � be as in 14.2, let Q� be the automorphism of Q�

de�ned in (9.6) with n D 3 and �1; �2; �3 as in 14.6 and let � D ��1 � Q� � � .

�eorem 14.9. Suppose that the quadratic form Q de�ned in 9.4 is anisotropic.

Let O� be as in 14.6 and let �1 be the unique S1 -residue containing the chamber

c . �en O� is a Galois involution of � stabilizing �1 but not any proper residue

of �1 .

Proof. We have

x
O�

˛1
.t/ D x Ow.˛1/.ı1�1t/

for all t 2 E . Since O�1 is an involution, we have

x Ow.˛1/.t/
O�1 D x˛1

.ı1t/

for all t 2 E . By 4.7(ii), therefore,

x Ow.˛1/.t/
O� D x Ow.˛1/.�2�3�4�5t /

O�1

D x˛1
.ı1�2�3�4�5t/
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for all t 2 E . By (14.7), therefore, O�2 centralizes U˛1
. Similarly, O�2 centralizes

U˛5
.

Since Ow1 stabilizes † \ �1 , O� stabilizes �1 . By 9.7, the restriction of O�

to �1 is the automorphism � de�ned in 14.8. Since � is an involution, it

follows that O�2 centralizes Ui for all i 2 Œ2; 4� (and thus for all i 2 Œ1; 5� by the

conclusion of the previous paragraph). We conclude that O� is a Galois involution

and that by 9.5(iii), O� does not stabilize any proper residues of �1 .

Proposition 14.10. Suppose the quadratic form Q in 9.4 is anisotropic. �en

�h O�i is a Moufang set with non-abelian root groups.

Proof. By (14.3), we have Q̨ D Ow.˛1/ C ˛1 . Hence there exists ! 2 ¹1; �1º such

that
�

x˛1
.t/; x Ow.˛1/.s/

�

D x Q̨ .!st/

for all s; t 2 E . Setting s D ! and conjugating by O� , we deduce that

x Q̨ .t/
O� D

�

x Ow.˛1/.ı1�1t/; x˛1
.ı1�2 � � � �5!/

�

D x Q̨ .�t/

for all t 2 E . Let T be the trace of the extension E=K and let

X D
®

.t; u/ 2 E2 j T .u/ C !ı1�1N.t/ D 0
¯

:

For all .t; u/ 2 X , the element

gt;u WD x˛1
.t/x Ow.˛1/.ı1�1t/x Q̨ .u/

is centralized by O� .

�e roots of † cutting �1 are the roots in ˆ \ h˛2; ˛3; ˛4i . All the other

positive roots of ˆ contain �1 \ † . In particular, ˛1 , Ow.˛1/ and Q̨ all contain

�1 \ † . �e root group U of �h O�i �xing the h�0i -chamber �1 is isomorphic

to the centralizer of O� in the group generated by all the positive roots of ˆ

containing �1 \ † . For each t 2 E , there exists ut 2 E such that .t; ut / 2 X .

Applying the identities [TW, 2.2], we see that

Œgs;us
; gt;ut

� D x Q̨

�

!ı1�1.st � st/
�

for all s; t 2 E . �us not all of the elements gt;ut
commute with each other.

�erefore the root group U is non-abelian.

�eorem 14.11. Let .K; V; Q/ be a quadratic space of type E6 . �en there

exists a separable quadratic extension E=K such that QE is hyperbolic and for

each such extension E=K , there exists a Galois involution � of the building

� D E6.E/ such that the Tits index of the group � WD h�i is
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and the �xed point building �� is isomorphic to B
E
2 .K; V; Q/ .

Proof. By 5.5, we can choose a separable quadratic extension E=K such that

QE is hyperbolic and assume that V D E3 and that for some �1; �2; �3 2 K ,

Q.u1; u2; u3/ D �1N.u1/ C �2N.u2/ C �3N.u3/

for all .u1; u2; u3/ 2 V , where N is the norm of the extension E=K .

Let � D E6.E/ , let † be an apartment of � and let c be a chamber of † .

Let ˆ be the root system of type E6 and let ˛1; : : : ; ˛6 be as in [Bou, Plate V].

We identify ˆ with the set of roots of † and Aut.ˆ/ with a subgroup of Aut.†/

as in 4.1 and choose a coordinate system ¹xˇ ºˇ2ˆ for � . Let A be the unique

subset of S spanning a subdiagram of … of type D3 that is stabilized by

Aut.…/ , let w1 denote the longest element in the Coxeter group WA with respect

to the generating set A , let R denote the unique A-residue of � containing c ,

let R1 be the unique residue of type A5 containing R and let R2 be the unique

residue of type D4 containing R . Let � be as in 2.9 and let Ow D �w1 .

Let �1; : : : ; �5; ı1; ı5 be as in 14.6. We set �1 D ı1�1 , �2 D �1 , �3 D ��2 ,

�4 D ��3 , �5 D ��4 and �6 D ı5�5 . We then set

� D g Ow;�1;:::;�6;� ;

where � is the non-trivial element in Gal.E=K/ and g Ow;�1;:::;�6;� is as in 4.13.

Finally, we set � WD h�i .

By 4.11 with R2 in place of R and 14.2, we can assume that the coordinate

system ¹xˇ ºˇ2ˆ was chosen so that there are two isomorphisms, one from R1

to the building � in 14.1 carrying the automorphism O� in 14.6 to the restriction

of � to R1 and the other from R2 to the building �0 in 10.3 with n D 3

carrying the automorphism �0 de�ned in (10.2) to the restriction of � to R2 .

By 10.6, �2 centralizes U˛i
for all i 2 Œ2; 5� and R is a � -chamber. By 14.9, �2

also centralizes U˛1
and U˛6

. �us � is a non-type-preserving Galois involution.

By 6.5, therefore, � is a descent group of � . By 6.11 and 6.12(iii), �� is a

building of type B2 , and thus by 6.12(iv), �� is a Moufang quadrangle. Let M1

and M2 be as in 5.16 applied to �� . By 6.15, 10.4 and 14.10, one of these two

Moufang sets is isomorphic to B
Q

1 .K; E3; Q/ and the other has non-abelian root

groups. By 5.16(a), it follows that �� Š B
E
2.ƒ/ .

15. Non-pseudo-split buildings of type F4

In this section, we construct all buildings of type F4 that are not pseudo-split

(as de�ned in 15.3) and the exceptional buildings of type C3 (see [Tit2, 9.1–9.3])



250 B. Mühlherr and R. M. Weiss

as the �xed point buildings of Galois involutions of buildings of type E6 , E7

and E8 . Our main result is 15.4.

�eorem 15.1. Let � be a simply laced and split building of type … , let S be

the vertex set of … , let J D Sn¹iº for some i 2 S , let …J be the subdiagram

of … spanned by J , let �1 be a J -residue, let �1 be a Galois involution

of �1 and let .…J ; ‚1; A/ be the Tits index of �1 WD h�1i . Suppose that i is

adjacent in … to a unique element of J . �en there exist an extension of ‚1

to an automorphism ‚ of … and an extension of �1 to a Galois involution �

of � such that the Tits index of � WD h�i is .…; ‚; A/ .

Proof. By [MPW, 24.36], �1 has an extension to an involution � of � and

by [MPW, 29.28], � is a Galois involution. By 6.5, therefore, � WD h�i is a

descent group of � . Let ‚ denote the image of � in Aut.…/ . �e restriction

of ‚ to …J is ‚1 and by 6.12(ii), a �1 -chamber is also a � -chamber. �us

.…; ‚; A/ is the Tits index of � .

Buildings of type F4 are all of the form F4.D; K/ , where .D; K/ is a

composition algebra; see [Tit2, �m. 10.2] and [Wei2, 30.14 and 30.15].

Notation 15.2. Let ƒ D .D; K/ be a composition algebra. As in [Wei2, 30.17], we

say that ƒ is of type (i) if D=K is an inseparable extension in characteristic 2

such that D2 � K but D2 equals neither K nor K2 . We say that ƒ is of

type (ii) if D D K is a �eld. We say that ƒ is of type (iii) if D=K is a

separable quadratic extension �elds; its standard involution in this case is the

unique non-trivial element in Gal.D=K/ . We say that ƒ is of type (iv) if D is a

quaternion division algebra over K and we say that ƒ is of type (v) if D is an

octonion division algebra over K . In cases (iv) and (v), the standard involution

� is as de�ned in [TW, 9.6 and 9.10]. In case (v), the triple .D; K; �/ is an

honorary involutory set as de�ned in [TW, 38.11] and the Moufang quadrangle

B
I
2 .D; K; �/ , which appears in 15.4(iii) below, is de�ned in [TW, 38.13].

De�nition 15.3. A building F4.D; K/ is split, respectively, pseudo-split, if the

composition algebra .D; K/ is of type (ii), respectively, of type (i) or (ii), as

de�ned in 15.2.

�eorem 15.4. Let D=K be composition algebra of type .x/ for x D iii , iv or v,

let � be the standard involution of D=K and let E be a sub�eld of D containing

K such that E=K is a separable quadratic extension. �en the following hold:
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(i) If x D iii , then there exists a Galois involution � of the building � D E6.E/

such that the Tits index of the group � WD h�i is
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and the �xed point building �� is isomorphic to F4.D=K/ .

(ii) If x D iv , then there exists a Galois involution � of the building � D E7.E/

such that the Tits index of the group � WD h�i is
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and the �xed point building �� is isomorphic to F4.D=K/ .

(iii) If x D v , then there exists a Galois involution � of the building � D E8.E/

such that the Tits index of the group � WD h�i is
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and the �xed point building �� is isomorphic to F4.D=K/ and there exists

a residue �1 of type E7 of � stabilized by � such that the restriction �1

of � to �1 has Tits index
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and the �xed point building �
�1

1 is isomorphic to C
I
3 .ƒ/ , where ƒ is the

honorary involutory set .D; K; �/ .

Proof. Suppose that x D iii , let � D E6.E/ and let �1 be a residue of type A5 .

We identify �1 with the building � in §7 with n D 5 and let �1 be the non-

type-preserving Galois involution of �1 obtained by composing the involution

in 7.3 with the involution which maps x˛i
.t/ to x˛i

.t� / for all i 2 Œ1; 5� and all

t 2 E . Next let � be a Galois involution of � obtained by applying 15.1 to �1 .

By 7.4, �1 �xes a chamber of � . It follows that the Tits index of � D h�i is

as in (i). By 6.11, therefore, �� is a building of type F4 . Let J be the unique

subset of S spanning a subdiagram of … of type A3 that is stabilized by the

non-trivial automorphism of … , let R be a J -residue stabilized by � and let �R

denote the restriction of � to R . By 8.17, we have

R�R Š B
Q

2 .K; E; N /:

By [MPW, 22.39], R�R is a residue of �� . If .E 0; K 0/ is a composition algebra

with norm N 0 such that
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B
Q

2 .K; E; N / Š B
Q

2 .K 0; E 0; N 0/;

then by [TW, 20.28 and 35.7], there is an isomorphism from E to E 0 mapping

K to K 0 . �erefore

�� Š F4.E; K/:

�us (i) holds.

Now suppose that x D iv , let � D E7.E/ and let �1 be a residue of type

D6 . We identify �1 with the building � in 8.3 with n D 6 and let �1 be a

Galois involution of �1 obtained by applying 8.16. �e Tits index of h�1i is as

in (ii) with the rightmost vertex deleted. We can thus apply 15.1 to �1 to obtain

a Galois involution � of � such that the Tits index of � WD h�i is as in (ii).

�erefore �� is a building of type F4 (by 6.11). By [MPW, 22.39] and 8.16, ��

has residues isomorphic to A2.D/ . It follows from [TW, 35.6] that

�� Š F4.D; K/:

�us (ii) holds.

Suppose, �nally, that x D v. Let �1 be the Galois involution of E6.E/

in 12.11. Applying 15.1 once and then a second time, we obtain extensions of �1

to Galois involutions of E7.E/ and then of E8.E/ generating groups whose Tits

indices and �xed point buildings are as in (iii).

16. Pseudo-split buildings of type F4

�e results of this section will be required in §17. �ey are completely parallel

to the results in §4, but we formulate them separately for the sake of clarity.

Notation 16.1. Let � D F4.L; E/ , where L=E is a �eld extension such that

char.E/ D 2 and L2 � E . We assume that L ¤ E (but we do not assume that

L=E is �nite dimensional). Let ˆ be a root system of type F4 , let † be an

apartment of � and let c be a chamber of † . Let ˛1; : : : ; ˛4 be as in [Bou,

Plate VIII], let S be the set of re�ections s˛i
for i 2 Œ1; 4� and let W D hSi

be the Weyl group of ˆ . We identify ˆ with the set of roots of † and Aut.ˆ/

with a subgroup of Aut.†/ as in 4.1 so that ˛1; : : : ; ˛4 are the four roots of †

containing c but not some chamber of † adjacent to c .

�eorem 16.2. �ere exists a collection of isomorphisms xˇ W E ! Uˇ , one for

each long root ˇ of ˆ , and a collection of isomorphisms xˇ W L ! Uˇ , one for

each short root, such that for all ˛; ˇ 2 ˆ such that ˛ ¤ ˙ˇ and for all s 2 E

if ˛ is long, all s 2 L if ˛ is short, all t 2 E if ˇ is long and all t 2 L if ˇ

is short, the following hold:
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(i) Œx˛.s/; xˇ .t/� D x˛Cˇ .st/ if ˛ and ˇ have the same length and ˛ C ˇ 2 ˆ .

(ii) Œx˛.s/; xˇ .t/� D x˛Cˇ .st/x˛C2ˇ .st2/ if ˛ is long, ˇ is short and ˛Cˇ 2 ˆ ,

in which case also ˛ C 2ˇ 2 ˆ .

(iii) Œx˛.s/; xˇ .t/� D 1 if ˛ is orthogonal to ˇ .

(iv) U
x�˛.s/
˛ D U

x˛.s�1/
�˛ if s ¤ 0 .

Proof. Assertions (i)–(iii) hold by [Ste, (R2) on p. 30] (or [Car, �m. 5.2.2])

and [Tit2, 10.3.2]. Assertion (iv) holds by [Ste, (R7) on p. 30 and Lemma 59 on

p. 160].

Remark 16.3. We call a set ¹xˇ ºˇ2ˆ satisfying the four conditions in 16.2 a

coordinate system for � . �e assertions 4.6, 4.9 (with both � and � 0 identically

equal to 1) and 4.11 all hold with the word “equivalent” replaced by “equal” in

our present setting and with virtually the same proofs (but without concerns over

minus signs since we are now in characteristic 2).

From now on we �x a coordinate system ¹xˇ ºˇ2ˆ for � .

�eorem 16.4. Let 
 2 Aut.ˆ/ , let �1; �2 be non-zero elements of E , let �3; �4

be non-zero elements of L and let � be an element of Aut.L/ stabilizing E .

�en the following hold:

(i) �ere exists a unique automorphism

g D g
;�1;�2;�3;�4;�

of � that stabilizes the apartment † such that

x˛i
.t/g D x
.˛i /.�i t

� /

for all i 2 Œ1; 2� and all t 2 E and

x˛i
.v/g D x
.˛i /.�iv

� /

for all i 2 Œ3; 4� and all v 2 L .

(ii) If

ˇ D

4
X

iD1

ci˛i 2 ˆ;

then

xˇ .t/g D x
.ˇ/.�ˇ t� /

for all t 2 E if ˇ is long, respectively, for all t 2 L if ˇ is short, where

�ˇ D

4
Y

iD1

�
ci

i :
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Proof. �e existence assertion in (i) holds by [Ste, Lemma 58 on p. 158] (and

the existence of �eld automorphisms) applied to F4.L/ and restriction of scalars

to E in the long root groups; uniqueness holds by [Wei1, 9.7]. Assertion (ii)

follows by induction from 16.2(i)–(ii) and [Hum, §10.2, Cor. to Lemma A] once

it is established that it holds for ˇ D �˛i for all i 2 Œ1; 4� . �is can be done

exactly as in the proof of 4.7(ii).

De�nition 16.5. A Galois involution of � is an element of order 2 in the coset

g�1;:::;�4;�G� for some �1; : : : ; �4; � with � ¤ 1 , where G� is as in 3.1. �is

is a special case of the notion of a Galois involution of an arbitrary Moufang

building given in [MPW, 31.1].

�eorem 16.6. If � is an isotropic Galois involution of � , then � WD h�i is a

descent group of � .

Proof. �is is a special case of [MPW, 32.27].

17. �e quadrangles of type F4

In this section we construct the Moufang quadrangles of type F4 as �xed

point buildings of Galois involutions of pseudo-split buildings of type F4 ; see 15.3

and 17.14. Our construction is essentially the same as the construction given

in [MM1] except that we construct the initial anisotropic Galois involution of a

pseudo-split Moufang quadrangle and verify that it is anisotropic in a simpler

fashion.

Notation 17.1. Let L=E be as in 16.1, let M denote the direct sum of six copies

of E and let V D M ˚ L , which we think of as a vector space over E . Let

B D ¹e1; e2; e3; f1; f2; f3º

be a basis of the subspace ¹.u; 0/ j u 2 M º of V , let L be identi�ed with its

image under the map v 7! .0; v/ 2 L and let q W V ! E be the quadratic form

given by

q
�

x1e1 C y1f1 C x2e2 C y2f2 C x3e3 C y3f3 C v
�

D x1y1 C x2y2 C x3y3 C v2

for all x1; : : : ; y3 2 E and all v 2 L .

Notation 17.2. Let �0 denote the building of type B3 whose chambers are the

maximal �ags of subspaces of V that are totally isotropic with respect to q and

let q0 denote the restriction of q to L D .0; L/ � V . �us q0 is anisotropic and

totally singular and by 3.4,

�0 Š B
Q

3 .E; L; q0/:
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Notation 17.3. For each ordered pair .i; j / of distinct integers i; j in the interval

Œ1; 3� and each t 2 E , let xij .t/ denote unique element of O.q/ that sends ej

to ej C tei and fi to fi C tfj , �xes all other elements of B and acts trivially

on L . For each unordered pair ¹i; j º of distinct integers i; j in Œ1; 3� and each

t 2 E , let yij .t/ denote the unique element of O.q/ that sends fj to fj C tei

and fi to fi C tej , �xes all other elements of B and acts trivially on L and

let zij .t/ denote the unique element of O.q/ that sends ej to ej C tfi and ei

to ei C tfj , �xes all other elements of B and acts trivially on L . For each

i 2 Œ1; 3� and each v 2 L , let xi .v/ denote the unique element of O.q/ that

maps fi to fi C v2ei C v , �xes all other elements of B and acts trivially on L

and let yi .v/ denote the unique element of O.q/ that maps ei to ei C v2fi C v ,

�xes all other elements of B and acts trivially on L .

Remark 17.4. Let †0 be the apartment of �0 whose chambers contain only

subspaces spanned by subsets of B . Let ˆ1 denote a root system of type B3

and let ˛1; ˛2; ˛3 and "1; "2; "3 be as in [Bou, Plate II] with n D 3 , so that

˛1 D "1 � "2 , ˛2 D "2 � "3 and ˛3 D "3 . For each ˇ 2 ˆ1 , we set uˇ D xij if

ˇ D "i � "j for some i; j 2 Œ1; 3� , uˇ D yij if ˇ D "i C "j for some i; j 2 Œ1; 3� ,

uˇ D zij if ˇ D �"i � "j for some i; j 2 Œ1; 3� , uˇ D xi if ˇ D "i for some

i 2 Œ1; 3� and uˇ D yi if ˇ D �"i for some i 2 Œ1; 3� , where xij , yij , etc. are

as in 17.3. �en uˇ .E/ for ˇ long and uˇ .L/ for ˇ short are root groups of �0

and ¹uˇ ºˇ2ˆ1
is a coordinate system for �0 .

Notation 17.5. Let � be an involution in Aut.L/ stabilizing E , let F D FixL.�/

and let K D FixE .�/ . We will usually write x in place of x� for x 2 L . Let N

be the norm of the extension L=F . �us F=K is a purely inseparable extension

such that F 2 � K and the restriction of N to E is the norm of the extension

E=K .

Notation 17.6. Let �1; �2 be non-zero elements of K , let T D E ˚ E ˚ F

considered as a vector space over K , let Q0 W T ! K denote the quadratic form

over K given by

Q0.y1; y2; u/ D �1N.y1/ C �2N.y2/ C u2

for all .y1; y2; u/ 2 T and let Q W K ˚ K ˚ T ! K denote the quadratic form

over K given by

Q.s; t; z/ D st C Q0.z/

for all .s; t; z/ 2 T .
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Proposition 17.7. Let V , B , q , etc., be as in 17.1, let V0 denote the subspace

spanned by ¹e2; e3; f2; f3º[L , let q0 W V0 ! E denote the restriction of q to V0 ,

let x 7! x and F be as in 17.5, let �1; �2 and Q and Q0 be as 17.6 and let

� D ��1;�2
be the � -linear automorphism of V given by

�
�

3
X

iD1

.xiei C yifi / C v
�

D x1e1 C y1f1 C �1y2e2 C ��1
1 x2f2

C �2y3e3 C ��1
2 x3f3 C v

for all x1; x2; x3; x1; y2; y3 2 E and all v 2 L . �en the following hold:

(i) q.�.x// D q.x/ for all x 2 V and �2 D 1 .

(ii) q Š Q ˝K E .

(iii) If the quadratic form Q0 is anisotropic, then there are no non-zero �-

invariant subspaces of V0 that are totally isotropic with respect to q0 .

Proof. Assertion (i) is clear and assertion (ii) follows from 9.3. Suppose that U

is a non-zero totally isotropic �-invariant subspace of V0 . �us q.v/ D 0 for

all v 2 U . Let u be a non-zero element of U . �e sum v WD u C �.u/ is �xed

by � . Replacing u by tu for some t 2 EnF if necessary, we can assume that

v is non-zero. We have

v D x2e2 C y2f2 C x3e3 C y3f3 C s

for some x2; x3; y2; y3 2 E and some s 2 L not all zero. Since v is �xed by � ,

we have xi D �i�1yi for i 2 Œ2; 3� and s D s . �erefore the elements y2; y3; s

are not all zero, s 2 F and

Q0.y2; y3; s/ D �1y2y2 C �2y3y3 C s2 D q.v/ D 0:

�us (iii) holds.

Notation 17.8. Let � , † , c , ˆ , ˛1; : : : ; ˛4 , .W; S/ , the identi�cation of ˆ

with the set of roots of † and the identi�cation of Aut.ˆ/ with a subgroup

of Aut.†/ be as in 16.1. Let ¹xˇ ºˇ2ˆ be as 16.2, let �1 denote the unique

¹s˛1
; s˛2

; s˛3
º-residue of � containing c , let †1 denote the apartment † \ �1

of �1 and let ˆ1 denote the root system h˛1; ˛2; ˛3i \ ˆ of type B3 , which we

think of as the root system ˆ1 in 17.4. �ere exists an isomorphism � from the

building �0 de�ned in 17.2 to �1 mapping †0 to †1 and sending each root

ˇ 2 ˆ1 � ˆ of †0 to the root ˇ \ †1 of †1 . Let ¹uˇ ºˇ2ˆ1
be as in 17.4 and

let xˇ D ��1 � uˇ � � for each ˇ 2 ˆ1 . �en ¹xˇ ºˇ2ˆ1
is a coordinate system

for �1 and by 16.3, it extends to a coordinate system ¹xˇ ºˇ2ˆ for � . We set

�0 D ��1 � � � � , where � D ��1;�2
is as in 17.7.
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Notation 17.9. Let w1 be the longest element in the Coxeter group WJ with

respect to the set of generators J WD ¹s˛2
; s˛3

º . �us w1 D .s˛2
s˛3

/2 , from which

it follows that

w1.˛1/ D ˛1 C 2˛2 C 2˛3

and

w1.˛4/ D ˛2 C 2˛3 C ˛4;

as well as w1.˛i / D �˛i for both i 2 ¹2; 3º .

Proposition 17.10. Let ¹xˇ º�2ˆ and �0 be as in 17.8. �en

x˛i
.t/�0 D xw1.˛i /.�i t /

for i 2 Œ1; 2� and all t 2 E and

x˛3
.v/�0 D xw1.˛3/.�iv/

for all v 2 L , where �1 D �1 , �2 D ��1
1 �2 and �3 D ��1

2 .

Proof. �is follows from 17.4, 17.7, 17.9 and some computation.

Notation 17.11. Let �2 be the unique ¹s˛2
; s˛3

º-residue of �1 containing c .

�eorem 17.12. Suppose that �1�2 D �2
4 for some �4 2 F and that the quadratic

from Q0 in 17.6 is anisotropic. Let

O� D gw1;�1;�2;�3;�4;�

be as in 16.4(i) with � as in 17.5, w1 as in 17.9 and �1; �2; �3 as in 17.10, and

let �2 be as in 17.11. �en O� is a Galois involution stabilizing �2 but no proper

residue of �2 .

Proof. Since w1 stabilizes �2 \ † , O� stabilizes �2 . By 16.4(ii) and 17.9, we

have

x˛4
.v/

O�2

D xw1.˛4/.�4v/
O�

D x˛4
.�2�2

3�2
4v/ D x˛4

.v/

for all v 2 L . By 16.4(i) and 17.10, the restriction of O� to �1 coincides with �0 .

Since �0 is an involution, we conclude that O�2 centralizes U˛i
for all i 2 Œ1; 4� .

�erefore O� is a Galois involution and by 17.7(iii), O� does not stabilize any

proper residues of �2 .
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Proposition 17.13. Suppose that the quadratic form Q0 in 17.6 is anisotropic

and that �1�2 2 F 2 . Let O� be as in 17.12, let � D h O�i , let �1 and �2 be as

in 17.8 and 17.11 and let R be the � -panel containing �2 other than �1 . �en

��
1 Š B

Q

1 .K; E ˚ E ˚ F; Q0/

and

R� Š B
Q

1 .F; M; OQ/

for some anisotropic quadratic space .F; M; OQ/ de�ned over F whose defect is

non-trivial and has co-dimension 4 .

Proof. First note that by 17.12, the restrictions of O� to �1 and to R are both

Galois involutions. Let V , q and � be as in 17.7 and let OV D FixV .�/ . It

follows from [MPW, 2.40] (as in the proof of 10.4) that the map W 7! W \ OV is

an inclusion- and dimension-preserving bijection from the set of all �-invariant

subspaces of V to the set of all subspaces of OV , and an �-invariant subspace

W of V is totally isotropic with respect to q if and only if W \ OV is totally

isotropic with respect to Q . Since Q0 is anisotropic, the �rst claim holds by 3.4.

Since

R Š B
Q

3 .L; E1=2; x 7! x2/;

the second claim holds by [MPW, 35.13].

In the following EF denotes the composite of the �elds E and F . �us

EF=E is an extension such that .EF /2 � E .

�eorem 17.14. Let .K; V; '/ be a quadratic space of type F4 and let F be as

in 5.9. �en there exists a separable quadratic extension E=K such that 'E is

pseudo-split and for each such extension E=K , there exists a Galois involution

� of the building � D F4.EF=E/ such that the Tits index of the group � D h�i

is
• • • •.

.

.

.

.

.

.

..
.............
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
............

...
.
..
.
.
.
.

.

.

.

.

.

.

.

..
.............
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
............

...
.
..
.
.
.
.

............................................................. .............................................................

.....................................................

.....................................................

and the �xed point building �� is isomorphic to B
F
2 .K; V; '/ .

Proof. By 5.12, there exist separable quadratic extensions E=K such that 'E

is pseudo-split and letting E=K be any one of them, we can assume that

V D E ˚ E ˚ F and that for some �1; �2 2 K ,

'.y1; y2; u/ D �1N.y1/ C �2N.y2/ C u2

for all .y1; y2; u/ 2 V , where N is the norm of the extension E=K , and

�1�2 2 F 2:
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Let L D EF , let � D F4.L; E/ , let � be the Galois involution called O� in 17.12

and let � D h�i . By 16.6, � is a descent group of � . By 17.12, there exist

� -chambers of type B2 . By 6.11 and 6.12(iii), it follows that �� is a building of

type B2 , and thus by 6.12(iv), �� is a Moufang quadrangle. Let M1 and M2

be as in 5.16 applied to �� . By 6.15 and 17.13, one of these two Moufang sets is

isomorphic to B
Q

1 .ƒ/ and the other is as in 5.16(b). By 5.16, therefore, we have

�� Š B
F
2 .ƒ/ .
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