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A note on semi-conjugacy for circle actions
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Abstract. We de�ne a notion of semi-conjugacy between orientation-preserving actions of
a group on the circle, which for �xed point free actions coincides with a classical de�nition
of Ghys. We then show that two circle actions are semi-conjugate if and only if they
have the same bounded Euler class. �is clari�es some existing confusion present in the
literature.
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1. Introduction

A fundamental problem in one-dimensional dynamics is the classi�cation of
group actions on the circle. More precisely, denote by HomeoC.S1/ the group of
orientation-preserving homeomorphisms of the circle. Given a group � , we will
refer to a homomorphism � W � ! HomeoC.S1/ as a circle action. One would
like to associate to every circle action of � a family of invariants which classify
the action up to a suitable equivalence relation, ideally up to conjugacy. For the
case of a single transformation acting minimally on the circle, this problem was
solved by Poincaré around the end of the 19th century, using his theory of rotation
number [Poi1, Poi2].

In [Ghy1, Ghy2] Étienne Ghys introduced and studied a far reaching gener-
alization of the rotation number, the bounded Euler class of a circle action. For
minimal actions, i.e. actions for which every orbit is dense, he thereby achieved
a complete classi�cation result:

�eorem 1.1 ([Ghy2, �eorem 6.5]). Let �1; �2 W � ! HomeoC.S1/ be minimal
circle actions. �en �1 and �2 are conjugate if and only if they have the same
bounded Euler class.
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�e bounded Euler class is thus a complete conjugacy-invariant for minimal
actions. For non-minimal actions, this result is not true. Instead, non-minimal
actions sharing the same bounded Euler class only satisfy a weaker equivalence
relation. In [Ghy1] Ghys introduced the notion of semi-conjugacy between circle
actions, which generalizes the notion of conjugacy. With this notion he proved:

�eorem 1.2 ([Ghy1, �eorem A1]). Two circle actions �1; �2 W � ! HomeoC.S1/
are semi-conjugate if and only if they have the same bounded Euler class.

�e bounded Euler class which appears in �eorem 1.1 and �eorem 1.2 is an
invariant with values in the second bounded cohomology H 2

b
.�IZ/ of � with

Z -coe�cients. �e theory of Ghys developed in [Ghy1, Ghy2] goes far beyond
�eorem 1.2. Namely, not only does it parametrize semi-conjugacy classes of circle
actions by classes in H 2

b
.�IZ/ , but it also characterizes exactly which classes

in H 2
b
.�IZ/ can be realized by circle actions. �is then provides a bijection

between semi-conjugacy classes of circle actions and a certain explicit subset of
H 2
b
.�IZ/ . Although we will have nothing to say on this part of the theory in

this note, let us at least state the main result:

�eorem 1.3 ([Ghy1, �eorem B]). Let � be a discrete countable group and
ˇ 2 H 2

b
.�;Z/ . �ere exists a representation � W � ! HomeoC.S1/ such that ˇ

is the bounded Euler class of � if and only if ˇ can be represented by a cocycle
taking only the values 0 and 1 .

Ghys’ theory of the bounded Euler class has found applications in many
di�erent directions. Recently there has been revived interest in �eorem 1.2,
since it plays a fundamental role in the bounded cohomology approach to higher
Teichmüller theory ([BIW1, BIW2, BSBH]).

�e beginner in the �eld who is trying to understand the proof of �eorems 1.1
and 1.2 has to face several challenges which we try to address with this note.

�e �rst challenge is to understand the notion of bounded Euler class. Like
ordinary cohomology, bounded cohomology can be de�ned either abstractly or
through various concrete resolutions. In each concrete model the bounded Euler
class is represented by a speci�c cocycle. For example, the proof of Ghys’
�eorem makes use of two di�erent incarnations of the bounded Euler class,
namely the geometric description of the bounded Euler class associated with the
HomeoC.S1/ -action on S1 , and the algebraic description in terms of translation
numbers. Neither of these incarnations is particularly intuitive at �rst sight, and
while it is well known to the experts that they represent the same cohomology
class under a canonical isomorphism, this does not appear obvious just by looking
at the de�nitions.
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In our opinion, the most canonical way to de�ne the bounded Euler class is to
de�ne it as the bounded lifting obstruction for the central extension corresponding
to the universal covering of HomeoC.S1/ . �is is the approach taken in the present
note (see De�nition 3.4). We then carefully establish that the so-de�ned class can
be represented over the circle by the well-known Euler cocycle (Corollary 3.10)
and can also be related to the translation number (Proposition 3.5). �is then
shows in particular the equivalence of the two de�nitions used in the proof of
Ghys’ �eorem. Yet another characterization of the bounded Euler class in terms
of the Sullivan cocycle over the double covering of the circle is given in the
appendix. �is description is crucial if one wants to extend the notion of bounded
Euler class to higher dimensions and plays an important role in the study of the
cohomology of SLn.R/ . It also allows us to give a di�erent (and apparently new)
characterization of circle actions with vanishing bounded Euler class, hence we
include it here.

Once the notion of bounded Euler class is clari�ed, one needs to understand the
notion of semi-conjugacy. Unfortunately, the original de�nition in [Ghy1] su�ered
from a minor inaccuracy, which was corrected in later papers of the author. In
the meantime, di�erent authors had developed �xes of their own, leading to a
plethora of alternative de�nitions. Right now the situation seems to be that all
of these de�nitions are used simultaneously in the literature without much of a
distinction. Several of the most used de�nitions can be shown to be equivalent
and, more importantly, to satisfy �eorem 1.2. However there also appear several
other de�nitions of semi-conjugacy in the literature, which are not equivalent and
for which �eorem 1.2 does not hold. �e main goal of this article is to clarify
the situation and to compare the di�erent de�nitions.

All de�nitions of semi-conjugacy start from the notion of a non-decreasing
degree one map, i.e., a map ' W S1 ! S1 which admits a lift e' W R ! R

(called a good lift) such that e' .x C 1/ D e' .x/ C 1 for every x 2 R and e'
is non-decreasing, i.e., e' .x/ � e' .y/ whenever x � y . (In the body of this
text, we will adopt the equivalent but more geometric point of view given in
De�nition 2.2.)

We emphasize that no continuity requirement is imposed in this de�nition,
and hence the Brouwer–Hopf degree of ' may not be well de�ned. Even if
' happens to be continuous, it may still be constant and thus of Brouwer–
Hopf degree 0 . In general, the Brouwer–Hopf degree of a continuous non-
decreasing degree one map is either 0 or 1 (and it is equal to zero if and
only if the map is constant). We say that a non-decreasing degree one map '

is upper/lower semi-continuous if it admits a good lift with the corresponding
property.
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Now let H WD HomeoC.S1/ . We call a non-decreasing degree one map
' W S1 ! S1 a left-semi-conjugacy from a circle action �1 W � ! H to a circle
action �2 W � ! H if

�1./' D '�2./ for every  2 �:

We then call �1 left-semi-conjugate1 to �2 and �2 right-semi-conjugate to �1 .

�eorem 1.4. Let �1 W � ! H and �2 W � ! H be circle actions of the same
group � . �en the following are equivalent:
(i) �1 is both left-semi-conjugate and right-semi-conjugate to �2 .
(ii) Either both �1.�/ and �2.�/ do not have a �xed point and �1 is left-semi-

conjugate to �2 , or �1.�/ and �2.�/ both have a �xed point.
(iii) �ere exist a left-semi-conjugacy ' from �1 to �2 and a �2.�/ -invariant

subset K � S1 such that 'jK is injective.
(iv) �ere exist a left-semi-conjugacy ' from �1 to �2 , lifts f�1 ./ and f�2 ./ for

each  2 � and a good lift e' of ' such that f�1 ./e' .x/ D e' .f�2 ./.x//
for all  2 � and x 2 R .

(v) �1 and �2 have the same bounded Euler class.
All of these conditions remain equivalent if the left-semi-conjugacies in question
are required to be either upper semi-continuous or lower semi-continuous.

In this note we will de�ne two circle actions �1 and �2 to be semi-conjugate
if they satisfy Condition (i) of the theorem (see De�nition 2.5 below). �e
equivalence (i), (v) is then exactly the content of �eorem 1.2. According to
the theorem, each of the Conditions (ii)–(iv) could equally well be used as the
de�nition of semi-conjugacy for �eorem 1.2 to hold.

De�nition (ii) is essentially Ghys’ original de�nition (modulo the necessary
correction in the case of �xed points). �e case where both �1.�/ and �2.�/

have �xed points is actually equivalent to the vanishing of the bounded Euler
class. One problem with De�nition (ii) is that it is not obvious a priori whether it
is an equivalence relation at all. From this point of view, De�nition (i) is clearly
preferable. �e (re-)discovery of this “symmetric” de�nition by the second named
author was one of our main motivations to write this note. (Later we learned
from the referee that this de�nition already appeared in an old manuscript of
Takamura [Tak], which however was never published.) De�nition (iii) is due to the
�rst-named author [Buc] and convenient to check in practice, since only one left-
semi-conjugacy has to be constructed. De�nition (iv) was kindly communicated
to us by Maxime Wol� [Wol].

1 In [Ghy1] �1 is simply called semi-conjugate to �2 , but we would like to emphasize here the
asymmetry in �1 and �2 .
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Remark 1.5. As was communicated to us by Ghys and is pretty clear from the
proofs in [Ghy1], what was actually meant is a condition very close to Condition
(iv) in �eorem 1.4, which we state as Condition (vi) below. For this we observe
that every circle action of � gives rise to a central extension �.�/ of � as
follows. Denote by fH the universal covering group of H , which is a central
Z -extension of H and acts on the real line (see Subsection 3.2). �en �.�/ is
de�ned as the pullback

�.�/
e� //

��

eH
��

�
� // H:

We can now state Condition (vi) which is equivalent to (i)–(v) above:

(vi) �ere exist an isomorphism  W �.�1/ ! �.�2/ commuting with the
projections on � and a good lift e' of a non-decreasing degree one map
such that for all  2 �.�1/ and x 2 R ,

f�1 ./e' .x/ D e' �f�2 � ./�.x/�:
It is obvious that it implies Condition (iv) of �eorem 1.4. Condition (vi) has
however the slight disadvantage that it requires the corresponding (unbounded)
Euler classes to be equal, which is equivalent to the isomorphism between the
two central extensions of � . We will point out in Remark 4.5 how Condition
(vi) immediately follows from Condition (i) of �eorem 1.4 based on the proof
of Part (i) of �eorem 4.3.

Having stated a number of equivalent de�nitions of semi-conjugacy, let us
now point out a number of de�nitions we found in the literature, which are
not equivalent to the de�nitions above. For a more detailed discussion including
various concrete counterexamples see Remark 2.7 below. Most importantly, the
fact that �1 is left-semi-conjugate to �2 by itself does not imply semi-conjugacy.
In fact, left-semi-conjugacy is not even an equivalence relation, since the trivial
action is left-semi-conjugate to every circle action. �is problem can also not be
remedied by replacing left-semi-conjugacy by the equivalence relation it generates,
since the latter relation is just the trivial relation in which any two circle actions
are related, nor by excluding constant semi-conjugacies, since these are necessary
for �eorem 1.2 to hold.

However, it is rather remarkable that for �xed point free circle actions all
these problems disappear completely. In fact, as an immediate consequence of
�eorem 1.4 we have the following:
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Corollary 1.6. If �1 W � ! H and �2 W � ! H are �xed point free circle actions
of the same group � , then the following are equivalent:

(1) �1 is semi-conjugate to �2 .

(2) �1 is left-semi-conjugate to �2 .

(3) �1 is right-semi-conjugate to �2 .

(4) �1 and �2 have the same bounded Euler class.

�is corollary is the reason why the wrong de�nitions in the literature are
in most cases rather innocuous. Another issue concerning the de�nition of semi-
conjugacy concerns the regularity of the non-decreasing degree one maps involved.
As stated in �eorem 1.4, if �1 and �2 are semi-conjugate circle actions, then one
can �nd an upper semi-continuous left-semi-conjugacy from �1 to �2 (and vice
versa). However, one can in general not �nd a continuous left-semi-conjugacy
from �1 to �2 . Nevertheless, semi-conjugacy may be de�ned via the use of
continuous maps of Hopf–Brouwer degree 1 rather than (possibly non-continuous)
non-decreasing degree one map as follows:

�eorem 1.7 ([Cal]). Semi-conjugacy is the equivalence relation generated by
continuous left-semi-conjugacies of Brouwer–Hopf degree 1 .

Note that what we call a “left-semi-conjugacy via a continuous map of
Brouwer–Hopf degree 1” here, is simply called a semi-conjugacy in [Cal],
con�icting with our terminology. On the other hand, the equivalence relation
generated by continuous left-semi-conjugacies of Brouwer–Hopf degree 1 which
is equivalent to what we call “semi-conjugacy” is called monotone equivalence
in [Cal].

�e rough outline of this note is as follows: In Section 2 we discuss the
symmetric de�nition of semi-conjugacy stated as De�nition (i) in �eorem 1.4.
In particular, we discuss the geometry of non-decreasing degree one maps and
various pitfalls of the de�nition. Section 3 is then devoted to the discussion of
the bounded Euler class alluded to earlier. In particular, we discuss thoroughly
three well-known characterizations of the bounded Euler class on HomeoC.S1/
and establish carefully their mutual equivalence (De�nition 3.4, Proposition 3.5
and Corollary 3.10).

Section 4 is the core of this note. Here we establish �eorem 1.2 for
our symmetric de�nition of semi-conjugacy (i.e., the equivalence (i), (v) in
�eorem 1.4). It turns out that the argument for �xed point free actions and for
actions with �xed points is quite di�erent. �us we �rst establish in Subsection 4.1
that a circle action has a �xed point if and only if it has vanishing bounded Euler
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class, and that this corresponds precisely to being semi-conjugate to the trivial
circle action. �is reduces the proof of �eorem 1.2 to the case of �xed point
free actions. For such actions we then establish that they are left-semi-conjugate
if and only if they have the same bounded Euler class. �is proves �eorem 1.2
and at the same time yields the equivalences (i), (ii), (v) in �eorem 1.4.

Once �eorem 1.2 is established, �eorem 1.1 follows easily. �is is explained
in the �nal Subsection 4.5 of Section 4.

In Section 5 we collect various consequences of Ghys’ �eorem. Firstly, we
explain how Poincaré’s classi�cation of Z -actions on the circle can be considered
as a special case of Ghys’ �eorem. Secondly, we deduce from Ghys’ �eorem
that every action of an amenable group on the circle is semi-conjugate to an
action by rotations, a result commonly attributed to Hirsch and �urston (see [HT]
and [Cal, �eorem 2.79]). Finally, we characterize circle actions with vanishing real
bounded Euler class. �e �nal Section 6 is devoted to the proofs of �eorem 1.4,
Corollary 1.6 and �eorem 1.7. Finally, in the appendix, we discuss the pullback
of the Euler class to the double covering group of HomeoC.S1/ . We show that
this pullback can be represented by a multiple of the so-called Sullivan cocycle
which has stronger vanishing properties and also generalizes nicely to higher
dimensions.

Let us emphasize that we do not claim any originality for the proofs of
�eorem 1.1 and �eorem 1.2 (whereas we believe �eorem A.6 to be new).
We hope that our presentation will help to make Ghys’ beautiful theory of the
bounded Euler class more accessible.

2. On the de�nition of semi-conjugacy

2.1. Non-decreasing degree one maps. �roughout this article we consider the
circle S1 D R=Z as a quotient of the real line. A pre-image ex of a point x 2 S1
under the canonical projection R! S1 will be called a lift of x and we write
Œex � WD x .
De�nition 2.1. For k 2 N , an ordered k -tuple .x1; : : : ; xk/ 2 .S1/k is said to be
� weakly positively oriented if there exist lifts fxi 2 R of the xi ’s such thatfx1 � fx2 � � � � � fxk � fx1 C 1;
� positively oriented if furthermorefx1 < fx2 < � � � < fxk < fx1 C 1:

Replacing � , < and fx1 ; fx1 C 1 respectively by � , > and fx1 C 1; fx1 we
obtain the corresponding notion of (weakly) negatively oriented k -tuples.
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Note that if k � 2 then a k -tuple is both weakly positively oriented and
weakly negatively oriented. Furthermore, the property of being (weakly) positively
oriented is obviously invariant under cyclic permutations.

De�nition 2.2. A (not necessarily continuous) map ' W S1 ! S1 is a non-
decreasing degree one map if the following condition holds for all k 2 N : If
.x1; : : : ; xk/ 2 .S

1/k is weakly positively oriented, then .'.x1/; : : : ; '.xk// is
weakly positively oriented.

As we will see in Lemma 2.4 below it is actually enough to check the
condition for k D 4 . Observe that non-decreasing degree one maps are closed
under composition and that every constant map is a non-decreasing degree one
map.

De�nition 2.3. Let ' W S1 ! S1 be any map. A set-theoretical lift e' W R! R

of ' is called a good lift of ' if e' .x C 1/ D e' .x/C 1 for every x 2 R ande' is non-decreasing, i.e., e' .x/ � e' .y/ whenever x � y .

By the following lemma, being a non-decreasing degree one map is equivalent
to admitting a good lift, so De�nition 2.2 is equivalent to the more classical
de�nition which we used in the introduction. We warn the reader that a non-
decreasing degree one map may have in�nitely many essentially di�erent good
lifts, i.e., good lifts which do not just di�er by composition with an integral
translation. For example, for every ˛ 2 R the maps x 7! bxC˛c and x 7! dxC˛e
are good lifts of the constant map ' W S1 ! S1 mapping every point to Œ0� .

Lemma 2.4. Let ' W S1 ! S1 be any map. �en the following conditions are
equivalent:

(i) �e map ' is a non-decreasing degree one map.

(ii) If .x1; : : : ; x4/ 2 .S1/4 is weakly positively oriented, then .'.x1/; : : : ; '.x4//
is weakly positively oriented;

(iii) �ere exists a good lift of ' .

Proof. �e implication (i) ) (ii) holds by de�nition.
(ii) ) (iii): If ' is constant, there is nothing to prove. Suppose there

exist x0 ¤ x1 2 S1 such that y0 WD '.x0/ ¤ '.x1/ DW y1 . Choose liftsfx0 ; fy0 ; fx1 ; fy1 2 R of x0; y0; x1; y1 respectively such that fx1 2 .fx0 ; fx0 C 1/
and fy1 2 .fy0 ; fy0 C 1/ . Now de�ne e' on Œfx0 ; fx0 C 1/ as follows: forfx0 � ex � fx1 , let e' .x/ be the unique lift of '.Œex �/ lying in Œfy0 ; fy0 C1/ ; forfx1 � ex < fx0 C1 , let e' .x/ be the unique lift of '.Œex �/ lying in .fy0 ; fy0 C1� .



A note on semi-conjugacy for circle actions 325

Now extend e' to R in the unique possible way such that it commutes with
integral translations.

In order to see that e' is non-decreasing it su�ces to show that it is non-
decreasing on Œfx0 ; fx0 C 1/ . �us let fx0 � ex < ey < fx0 C 1 .

We �rst prove that if e' .ey / D fy0 , then e' .ex / D fy0 . Indeed e' .ey / can
be equal to ey 0 only if ey < x1 . �us the quadruple .x0; Œex �; Œey �; x1/ is weakly
positively oriented, and so is .'.x0/; '.Œex �/; '.Œey �/; '.x1// D .y0; Œe' .ex /�; y0; y1/
by (ii). By de�nition, this means that there exist integers nx ; ny ; m 2 Z such that

fy0 � e' .ex /C nx � fy0 C ny � fy1 Cm � fy0 C 1 :
Since fy1 2 .fy0 ; fy0 C1/ we have m D 0 , and this implies in turn that ny D 0 , so
that e' .ex /Cnx D fy0 . But since ex < fx1 its image by e' lies in Œfy0 ; fy0 C1/ ,
so e' .ex / D fy0 , as desired.

A completely analogous symmetric argument also shows that if e' .ex / Dfy0 C 1 , then e' .ey / D fy0 C 1 . �us we can now restrict to the case wheree' .ex /; e' .ey / 2 .fy0 ; fy0 C 1/ .
From the assumption that fx0 � ex < ey < fx0 C 1 , we obtain that the

quadruple .x0; Œex �; Œey �; x0/ is weakly positively oriented, and thus also the
quadruple .'.x0/; '.Œex �/; '.Œey �/; '.x0// D .y0; Œe' .ex /�; Œe' .ey /�; y0/ is weakly
positively oriented by (ii). By de�nition this means that there exist integers
nx ; ny ; m 2 Z such that

fy0 � e' .ex /C nx � e' .ey /C ny � fy0 Cm � fy0 C 1 :
Since e' .ex / and e' .ey / now both belong to the open interval .fy0 ; fy0 C 1/ it
follows that nx D ny D 0 (and m D 1 ). We thus obtain e' .ex / � e' .ey / , which
�nishes the proof of this implication.

(iii) ) (i): Let x0; : : : ; xk be weakly positively oriented. By de�nition this
means that there exist lifts fxi 2 R of the xi ’s such that

fx1 � fx2 � � � � � fxk � fx1 C 1:
Applying the non-decreasing map e' to the above inequalities gives

e' .fx1 / � e' .fx2 / � � � � e' .fxk / � e' .fx1 C 1/ D e' .fx1 /C 1;
where the last equality uses the fact that e' commutes with integral translations.
Since the e' .xi / ’s are lifts of '.xi / , this by de�nition implies that the k -tuple
.'.x1/; : : : ; '.xk// is weakly positively oriented.

It is clear from the proof that we cannot replace the statement in (ii) with the
corresponding statement for triples. To give an explicit counterexample, consider
the function ' W S1 ! S1 given by
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'.Œt �/ D

´
Œ0�; t 2 Œ0; 1=4/ [ Œ1=2; 3=4/;

Œ1=2�; t 2 Œ1=4; 1=2/ [ Œ3=4; 1/:

�is function ' takes any triple into a weakly positively oriented one, but the
quadruple .Œ0�; Œ1=4�; Œ1=2�; Œ3=4�/ is taken by ' to .Œ0�; Œ1=2�; Œ0�; Œ1=2�/ , which is
not weakly positively oriented.

2.2. Semi-conjugacy. Let us recall the key de�nition of this note from the
introduction.

De�nition 2.5. Let �j W � ! HomeoC.S1/ be circle actions, j D 1; 2 . We say
that �1 is left-semi-conjugate to �2 (and �2 is right-semi-conjugate to �1 ) if
there exists a non-decreasing degree one map ' such that

�1./' D '�2./

for every  2 � . In this case, ' is called a left-semi-conjugacy from �1 to �2

and we say that �1 is left-semi-conjugate to �2 via ' .
�e circle action �1 is called semi-conjugate to �2 if it is both left- and

right-semi-conjugate to �2 .

We recall some standard terminology for group actions: A circle action
� W � ! HomeoC.S1/ is said to have a global �xed point if there exists x 2 S1
such that �./.x/ D x for every  2 � . An action is �xed point free if it does
not admit a global �xed point.

Proposition 2.6. (i) Semi-conjugacy is an equivalence relation.
(ii) Every circle action is right-semi-conjugate to the trivial action.
(iii) A circle action is left-semi-conjugate to the trivial action if and only if it

has a global �xed point.

Proof. (i) Re�exivity and symmetry are obvious, while transitivity readily
follows from the fact that non-decreasing degree one maps are closed under
composition.

(ii) Choose ' to be an arbitrary constant map.
(iii) If � is left-semi-conjugate to the trivial action, then there exists ' such that

for all  2 � and x 2 S1

�./.'.x// D '.x/

whence the image of ' consists of �xed points of �.�/ . On the other hand,
if x0 is �xed by �.�/ , then � is left-semi-conjugate to the trivial action by
the constant map '.x/ � x0 .
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Remark 2.7. �e de�nition of semi-conjugacy given in [Ghy1] coincides with our
de�nition of left-semi-conjugacy. As it obviously follows from Proposition 2.6
(ii)–(iii) that left-semi-conjugacy is not even an equivalence relation, it cannot
be the correct notion. However, for �xed point free circle actions it does indeed
coincide with our notion of semi-conjugacy, see Corollary 4.4.

Elsewhere in the literature semi-conjugacy is de�ned as the existence of a
continuous left semi-conjugacy ' W S1 ! S1 . �is is still not symmetric: as we
saw in the proof of Proposition 2.6 (ii), every circle action is right semi-conjugate
to the trivial action via a continuous map ' , while by point (iii) of the same
proposition �xed point free actions cannot be left-semi-conjugate to the trivial
action.

Since constant left-semi-conjugacies are responsible for both problems, one
may be tempted to exclude them from the game. Such a more restrictive de�nition
does indeed appear in the literature, but �eorem 1.2 can never hold for such a
de�nition. Namely, it is easy to check that if �1 admits a unique global �xed
point x0 and �2 is the trivial representation, then the constant map with image
¹x0º is the unique left-semi-conjugacy from �1 to �2 . On the other hand �1 and
�2 have the same bounded Euler class (see Corollary 4.2 below), so they need
to be semi-conjugate in order for �eorem 1.2 to hold.

In some sense, semi-conjugacy in the sense of De�nition 2.5 is the most
obvious way to turn left-semi-conjugacy into an equivalence relation. However,
contrary to what is sometimes claimed, it is not the equivalence relation generated
by left-semi-conjugacy. Namely, by Proposition 2.6 the equivalence relation
generated by left-semi-conjugacy is the trivial relation in which any two circle
actions are related.

By de�nition, conjugate circle actions are semi-conjugate. We will see in
Proposition 4.8 below that for minimal circle actions the converse holds. However,
in general the notion of semi-conjugacy is much weaker than the notion of
conjugacy. For example Proposition 2.6 shows that every circle action admitting
a �xed point is semi-conjugate to the trivial circle action (but of course not
conjugate to the trivial circle action unless it is trivial itself).

3. �ree characterizations of the bounded Euler class

�e goal of this section is to introduce the bounded Euler class and provide
three di�erent characterizations: as a bounded obstruction class (Subsection 3.2),
via the translation number (Subsection 3.3) and as a bounded geometric class on
the circle (Subsection 3.4). Yet another description of the bounded Euler class,
which generalizes readily to higher dimensions, will be discussed in the appendix.
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In order to keep this note self-contained we collect in the next subsection various
basic facts concerning (bounded) group cohomology. �e expert can skip that
subsection without loss of continuity.

3.1. Preliminaries on (bounded) group cohomology. Given a group H acting
on a space X we set Cn.H Õ X IZ/ WD Map.XnC1IZ/H , where the superscript
H denotes H -invariants under the diagonal H -action, and refer to elements
of Cn.H Õ X IZ/ as homogeneous H -cochains of degree n (or simply a
homogeneous cochain if H is clear from the context). We then obtain a cocomplex
.Cn.H Õ X IZ/; ı/ by de�ning the homogeneous di�erential ı as

ıf .x0; : : : ; xn/ D

nX
iD0

.�1/if .x0; : : : ;cxi ; : : : ; xn/;
whose cohomology we denote by H �.H Õ X IZ/ . Elements in the kernel, re-
spectively image of ı are called homogeneous H -cocycles, respectively homoge-
neous H -coboundaries. If X D H with the left-H -action, then the cohomology
H �.H Õ X IZ/ is precisely the classical group cohomology H �.H IZ/ with Z -
coe�cients. Given a homogeneous cocycle c 2 Cn.H Õ X IZ/ and a basepoint
x0 2 X we obtain a homogeneous cocycle cx0 2 Cn.H Õ H IZ/ by

cx0.h0; : : : ; hn/ D c.h0 � x0; : : : ; hn � x0/:

�e class of cx0 is independent of the choice of basepoint x0 . We thus obtain
a map �X W H

�.H Õ X IZ/! H �.H IZ/ and we say that a class ˛ 2 H �.H IZ/
is represented over X if it is in the image of this map.

�ere is a more e�cient representation for classes in H �.H IZ/ based on the
fact that we can identify Cn.H Õ H IZ/ with C n.H IZ/ WD Map.HnIZ/ via the
isomorphism

� W C n.H IZ/! Cn.H Õ H IZ/

given by

�.f /.h0; : : : ; hn/ WD f .h
�1
0 h1; h

�1
1 h2; : : : ; h

�1
n�1hn/

��1.g/.h1; : : : ; hn/ WD g.e; h1; h1h2; : : : ; h1h2 � : : : � hn/:

�us H �.H IZ/ D H �.C �.H IZ/; d/ , where the di�erential d D ��1 ı ı ı � is
given by

df .h1; : : : ; hnC1/ D f .h2; : : : ; hnC1/C

nX
iD1

.�1/if .h1; : : : ; hihiC1; : : : ; hnC1/

C .�1/nC1f .h1; : : : ; hn/:
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Cochains in this model are called inhomogeneous cochains, and are particularly
useful to compute low degree cohomologies. We will be speci�cally interested in
cohomology of degree 2 ; we thus recall brie�y the relation between H 2.H IZ/

and central extensions. Given a central extension of groups of the form

� D
�
0 // Z

i // eH p // H // ¹eº
�

and a set theoretic section � W H ! fH of p we de�ne a function c� W H 2 ! fH
by

c� .h1; h2/ D �.h2/�.h1h2/
�1�.h1/:

Since p.c� .h1; h2// D e we can consider c� as a function into i.Z/ . We will
often tacitly identify Z with its image in fH and thus consider c� as a function
c� W H

2 ! Z . It is straightforward to check that c� satis�es the cocycle identity

dc� .h1; h2; h3/ D c� .h2; h3/ � c� .h1h2; h3/C c� .h1; h2h3/ � c� .h1; h2/ D 0;

whence we refer to it as the obstruction cocycle associated with the extension
� and the section � . It turns out that the class e.�/ WD Œc� � 2 H

2.H IZ/ is
independent of the choice of section. �is independence can easily be proved
directly, but it is also a consequence of the following universal property of the
class Œc� � :

Lemma 3.1 (Lifting obstruction). If � W � ! H is a homomorphism, then there
exists a lift

0 // Z
i // eH p // H // ¹eº

�

�

OO

e�
__

if and only if ��Œc� � D 0 2 H 2.�IZ/ .

Conversely, a class e 2 H 2.�IZ/ determines a central extension, which is
unique up to a suitable notion of isomorphism between extensions. We refer the
reader to [Bro, Chapter IV] for the details.

In the sequel we will need the following explicit version of (one direction of)
the lemma:

Proposition 3.2 (Lifting formula). Let � W � ! H be a homomorphism. Assume
that ��c� D du for some u W � ! Z . �en a homomorphic lift e� W � ! fH is
given by the formula e� ./ D ���./� � i� � u./�:
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Proof. Since this formula is at the heart of our argument we carry out the
straightforward computation. By de�nition of c� , we have

(3.1) �
�
�.12/

�
D �

�
�.1/�.2/

�
D �

�
�.1/

�
c�
�
�.1/; �.2/

��1
�
�
�.2/

�
:

Since by assumption ��c� D du , we have

c�
�
�.1/; �.2/

�
D ��.c� /.1; 2/ D du.1; 2/ D u.2/ � u.12/C u.1/:

Since i.Z/ is central in fH we can rewrite Equation (3.1) as

�
�
�.12/

�
D �

�
�.1/

�
i
�
� u.1/

�
�
�
�.2/

��
i
�
� u.2/

�
i
�
u.12/

�
:

Multiplying both sides by i.�u.12// now yields e� .12/ D e� .1/e� .2/ and
�nishes the proof.

�e subcomplex Cn
b
.H Õ X IZ/ � Cn.H Õ X IZ/ of bounded functions

is invariant under ı , and its cohomology is called the (integral) bounded
cohomology of the H -action on X and denoted H �

b
.H Õ X IZ/ . In particular,

H �
b
.H IZ/ WD H �

b
.H Õ H IZ/ is the bounded group cohomology of H in the

sense of [Gro]. Note that the isomorphism � W C n.H IZ/ ! Cn.H Õ H IZ/

identi�es C n
b
.H Õ H IZ/ with the subspace C n

b
.H IZ/ < C n.H IZ/ of bounded

functions, hence H �
b
.H IZ/ can also be computed from bounded inhomogeneous

cochains.
�e inclusion of complexes .C n

b
.H IZ/; ı/ ,! .C n.H IZ/; ı/ induces on the

level of cohomology a comparison map H �
b
.H IZ/! H �.H IZ/ , whose kernel is

classically denoted by EH �
b
.H IZ/ . Note that an inhomogeneous bounded cocycle

representing a class in EH 2
b
.H IZ/ is of the form dT for some T W H ! Z

with the property that jT .h1h2/ � T .h1/ � T .h2/j D jdT .h1; h2/j is uniformly
bounded. Such a function T is called an integral quasimorphism and the number
D.T / WD kdT k1 is called its defect. Given two quasimorphisms T1; T2 we have
ŒdT1� D ŒdT2� 2 EH

2
b
.H IZ/ if and only if T1�T2 2 Hom.H IZ/˚Mapb.H IZ/ .

In particular, changing T by a bounded amount does not change the bounded
cohomology class of ŒdT � .

Bounded group cohomology can also be de�ned with real coe�cients. In
this case, bounded inhomogeneous cocycles in EH 2

b
.H IR/ are of the form dT

where T is a real-valued quasimorphism. Every real-valued quasimorphism (and
in particular every integral one) is at bounded distance from a unique homogeneous
real-valued quasimorphism called its homogeneization. Here a real-valued function
f is called homogeneous provided f .hn/ D n �f .h/ for all n 2 N . Homogeneous
quasimorphisms have the additional properties of being conjugacy-invariant and
linear on abelian subgroups. �ey also satisfy f .hn/ D n � f .h/ for all n 2 Z ,
positive or not. Note that two quasimorphisms are at bounded distance if and only
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if their homogeneizations coincide. �e following lemma illustrates how bounded
cohomology with real coe�cients can be used to obtain results concerning integral
bounded cohomology; we will apply this in our second characterization of the
bounded Euler class below.

Lemma 3.3. If p W fH ! H is a surjective homomorphism with amenable (e.g.
abelian) kernel, then p� W H 2

b
.H IZ/! H 2

b
.fH IZ/ is injective.

Proof. �e short exact sequence 0 ! Z ! R ! R=Z ! 0 of coe�cients
induces a natural long exact sequence in bounded cohomology, called the Gersten
sequence (see [Mon, Prop. 8.2.12]), and the corresponding ladder associated with
the homomorphism p starts from

0 //

��

Hom.H IR=Z/

p�

��

// H 2
b
.H IZ/

p�

��

// H 2
b
.H IR/

p�

��
0 // Hom.eH IR=Z/ // H 2

b
.eH IZ/ // H 2

b
.eH IR/

Now surjectivity of p implies that the pullback map p� W Hom.H IR=Z/ !
Hom.fH IR=Z/ is injective, and the map p� W H 2

b
.H IR/ ! H 2

b
.fH IR/ is an

isomorphism by [Gro, Iva], whence the lemma follows from the 4 -lemma.

3.2. �e bounded Euler class as a bounded lifting obstruction. From now on
we reserve the letter H to denote the group H WD HomeoC.S1/ of orientation-
preserving homeomorphisms of the circle S1 D R=Z and abbreviate byfH WD ®eh 2 HomeoC.R/ j 8x 2 R W eh .x C 1/ D eh .x/C 1¯
its universal covering group (with respect to the compact-open topology). We
then have a central extension

� D
�
0 // Z

i // eH p // H // ¹eº
�
;

where i.n/.x/ WD x C n and p.eh /.Œx�/ D Œeh .x/� .
A section � W H ! fH is provided by specifying �.h/.0/ for each h 2 H ;

the section is called bounded provided E� WD ¹�.h/.0/ j h 2 H º is bounded. In
this case the obstruction cocycle c� W H 2 ! Z is bounded and thus de�nes also
a class in the bounded second cohomology H 2

b
.H IZ/ . Again it is easy to see

that this class is independent of the choice of bounded section. We then obtain
two classes eu WD Œc� � 2 H 2.H IZ/ and eub WD Œc� � 2 H 2

b
.H IZ/ .

De�nition 3.4. �e classes eu and eub are called the Euler class, respectively
bounded Euler class.
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One special section � is obtained by taking E� � Œ0; 1/ . Let us give an
explicit formula for the cocycle c� in this case. For all h1; h2 2 H we have
�.h2/�.h1h2/

�1�.h1/ D i.c� .h1; h2// . Since i.Z/ < fH is central this can be
written as �.h1/�.h2/ D �.h1h2/i.c� .h1; h2// . Evaluating at 0 we obtain

�.h1/�.h2/.0/ D �.h1h2/.0/C c� .h1; h2/:

Observe that �.h1h2/.0/ and �.h2/.0/ are contained in Œ0; 1/ . �e latter implies
that �.h1/�.h2/.0/ 2 Œ0; 2/ . �us

(3.2) c� .h1; h2/ D

´
1 if �.h1/�.h2/.0/ 2 Œ1; 2/;
0 if �.h1/�.h2/.0/ 2 Œ0; 1/:

Another equivalent description can be given as follows: Observe that �.h1/.1/ D
�.h1/.0/C 1 2 Œ1; 2/ and that �.h2/.0/ < 1 implies �.h1/�.h2/.0/ < �.h1/.1/ ,
and similarly 0 � �.h2/.0/ implies �.h1/.0/ � �.h1/�.h2/.0/ . We may thus
rewrite (3.2) as

(3.3) c� .h1; h2/ D

´
1 if 1 � �.h1/�.h2/.0/ < �.h1/.1/ < 2;
0 if 0 � �.h1/.0/ � �.h1/�.h2/.0/ < 1:

Both formulas will be used below.

3.3. �e bounded Euler class and the translation number. �e Poincaré
translation number T W fH ! R is the homogeneous quasimorphism on fH
given by

T .eh / D lim
n!1

eh nx � x
n

.x 2 R/;

which by a classical theorem of Poincaré is independent of the choice of basepoint
x 2 R (see [Poi1, Poi2]). Let TZ W fH ! Z be any function at bounded
distance from T . �en the cocyle dTZ is bounded and thus de�nes a class
ŒdTZ� 2 H

2
b
.fH IZ/ , which is independent of the concrete choice of function TZ .

We can now state the second characterization of the bounded Euler class. We
recall that p W fH ! H denotes the canonical projection.

Proposition 3.5. �e bounded Euler class eub is the unique class in H 2
b
.H IZ/

such that p�eub D �ŒdTZ� 2 H
2
b
.fH IZ/ .

Proof. Let fh1 ; fh2 2 fH . We abbreviate h1 WD p.fh1 / , h2 WD p.fh2 / . Given a
real number r 2 R we denote by r D brc C ¹rº the unique decomposition of r
with brc 2 Z and ¹rº 2 Œ0; 1/ . Since fh1 and �.h1/ have the same projection
they di�er by an integral translation which we obtain by evaluating the di�erence
on 0 . We thus compute
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fh1 .0/ � �.h1/.0/ D bfh1 .0/c C ¹fh1 .0/º � �.h1/.0/ D bfh1 .0/c;
where the last equality follows from the fact that both ¹fh1 .0/º and �.h1/.0/

belong to Œ0; 1/ . �us, for every x 2 R , we have �.h1/.x/ D fh1 .x/ � bfh1 .0/c
and similarly �.h2/.x/ D fh2 .x/ � bfh2 .0/c . We deduce that

�.h1/�.h2/.0/ D �.h1/.eh2.0/ � beh2.0/c/ D �.h1/.eh2.0// � beh2.0/c
D eh1eh2.0/ � beh1.0/c � beh2.0/c
D beh1eh2.0/c � beh1.0/c � beh2.0/c C ¹eh1eh2.0/º:

Since the last term is contained in Œ0; 1/ , this expression is in Œ1; 2/ respectively
Œ0; 1/ if the sum of the �rst three terms is equal to 1 respectively 0 . Representing
eub by the cocycle c� given in (3.2), we thus obtain

p�c� .fh1 ; fh2 / D c� .h1; h2/ D bfh1 fh2 .0/c � bfh1 .0/c � bfh2 .0/c:
Now the function TZ W fH ! Z given by fh1 7! bfh1 .0/c is at bounded
distance from the translation number T and the last identity can be written as
p�c� D �dTZ . We thus deduce that p�eub D �ŒdTZ� and uniqueness follows
from Lemma 3.3.

3.4. �e bounded Euler class realized over the circle. In this subsection
we are going to show that the Euler class and the bounded Euler class are
representable over the circle, i.e., that they are in the respective images of the
maps H 2.H Õ S1IZ/! H 2.H IZ/ and H 2

b
.H Õ S1IZ/! H 2

b
.H IZ/ . Recall

that throughout we think of S1 as the quotient space R=Z . In order to describe
cocycles in Cn.H Õ S1IZ/ we need to understand H -orbits in .S1/nC1 . For
n � 2 the classi�cation of orbits is as follows:

Orbits of H acting on .S 1/nC1 .
(n D 0 ) �e action of H on S1 has exactly one orbit.
(n D 1 ) �e action of H on .S1/2 has two orbits:

one degenerate orbit Odeg WD ¹.x; x/ j x 2 S1º and one non-degenerate orbit
Ondeg WD ¹.x; y/ j x ¤ y 2 S1º .

(n D 2 ) �e action of H on three factors .S1/3 has six orbits. Choose distinct
points x; y; z 2 S1 and suppose that .x; y; z/ is a positively oriented triple.
�en there are 4 degenerate orbits

O0 WD H � .x; x; x/; O1 WD H � .y; x; x/;
O2 WD H � .x; y; x/; O3 WD H � .x; x; y/;

and 2 non-degenerate orbits

OC WD H � .x; y; z/; O� WD H � .y; x; z/:
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For general n there are still only �nitely many H -orbits in .S1/n . �is
implies Cn

b
.H Õ S1IZ/ D Cn.H Õ S1IZ/ and thus the comparison map

Hn
b
.H Õ S1IZ/ Š Hn.H Õ S1IZ/ is an isomorphism. In particular, if an

element of Hn.H IZ/ is representable over S1 , then it is bounded.
In degree 2 we can actually parametrize all possible homogeneous H -

cocycles and homogeneous H -coboundaries using the above enumeration of
orbits. Note that every homogeneous 2 -cochain f is determined by the 6

integers ¹f0; f1; f2; f3; fC; f�º , where fj is the value of f on the orbit
Oj for j 2 ¹0; 1; 2; 3;C;�º . For homogeneous coboundaries a straightforward
computations shows that these numbers are given as follows.

Lemma 3.6. Let b W .S1/2 ! R be an arbitrary homogeneous 1 -cochain taking
the values ˛ and ˇ on the orbits Odeg and Ondeg respectively and let f D ıb
be the associated homogeneous 2 -coboundary. �en

f0 D f1 D f3 D ˛; f2 D 2ˇ � ˛; fC D f� D ˇ:

One very familiar homogeneous H -cocycle on S1 of degree 2 is the
orientation cocycle Or, which assigns the value C1 , respectively �1 , to positively
oriented, resp. negatively oriented non-degenerate triples, and 0 to all degenerate
triples. By the previous lemma, none of its multiples is a coboundary, since the
value on positively and negatively oriented triples is not the same. It thus de�nes
a class ŒOr� of in�nite order in H 2

.b/
.H Õ S1IZ/ . We now describe general

homogeneous 2 -cocycles:

Lemma 3.7. Let f W .S1/3 ! R be an invariant homogeneous H -cochain. �en
f is a cocycle if and only if

f0 D f1 D f3; fC C f� D f2 C f3:

Moreover, H 2
.b/
.H Õ S1IZ/ Š Z via the map Œf � 7! fC � f� .

Proof. Let .x; y; z/ be a positively oriented triple. Writing out the cocycle relations
ıf .y; x; x; x/ D ıf .x; x; x; y/ D ıf .x; y; x; z/ D 0 yields

f .x; x; x/ D f .y; x; x/ D f .x; x; y/;

f .y; x; z/ � f .x; y; x/ D f .x; x; z/ � f .x; y; z/;

which implies that every 2 -cocycle satis�es the 3 identities of the lemma.
�e space C2 of all cochains satisfying these 3 identities can be identi�ed
with Z3 via the map f 7! .f0; fC; f�/ . Under this identi�cation the space of
coboundaries corresponds to ¹.m; n; n/ j m; n 2 Zº , hence the quotient of C2

modulo coboundaries is isomorphic to Z via the map Œf � 7! fC � f� . If there
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were any other identities satis�ed by all 2 -cocycles than those following from
the 3 identities above, then H 2

.b/
.H Õ S1IZ/ would be a proper subgroup of Z ,

hence there would be no cocycle f satisfying fC � f� D 1 . However, such a
cocycle does exist (namely the Euler cocycle given in De�nition 3.8 below).

It follows from the lemma that the class of the orientation cocycle generates
a subgroup of index 2 in H 2

.b/
.H Õ S1IZ/ and that the generator �1

2
ŒOr� is

represented by the cocycle c satisfying

(3.4) c0 D c1 D c3 D cC D 0; c2 D c� D 1:

De�nition 3.8. �e homogeneous 2 -cocycle c 2 C 2
b
.H Õ S1IZ/ given by (3.4)

is called the Euler cocycle.

In order to relate the Euler cocycle to the bounded Euler class we need the
following computation (see [Ioz, Lemma 2.1]):

Lemma 3.9. If c 2 C2
b
.H Õ S1IZ/ is the Euler cocycle from De�nition 3.8

and c� 2 C
2
b
.H IZ/ denotes the obstruction cocycle associated with the special

section � W H ! fH with E� D Œ0; 1/ , then

c� .h1; h2/ D c
�
Œ0�; h1 � Œ0�; h1h2 � Œ0�

�
:

Moreover,
Or D �2c C ıb;

where b is the H -invariant 1 -cochain which takes values 0 and 1 on Odeg
and Ondeg respectively.

Proof. It follows from the explicit de�nition of c that

c.Œ0�; h1 � Œ0�; h1h2 � Œ0�/ D

´
1 if 1 � �.h1/�.h2/.0/ < �.h1/.1/ < 2;
0 if 0 � �.h1/.0/ � �.h1/�.h2/.0/ < 1:

In view of (3.3) this implies c� .h1; h2/ D c.Œ0�; h1 � Œ0�; h1h2 � Œ0�/ . �e relation
Or D �2c C ıb is straightforward.

From this computation we draw the following conclusion.

Corollary 3.10. �e bounded Euler class eub is representable over the circle.
In fact it is represented by the Euler cocycle c W .S1/3 ! Z . Similarly, the class
�2 � eub is represented over the circle by the orientation cocycle.

Note that, in particular, for every x 2 S1 the homogeneous 2 -cocycle
cx W H

3 ! Z given by

.h0; h1; h2/ 7! cx.h0; h1; h2/ D c.h0x; h1x; h2x/

represents the bounded Euler class.
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4. Ghys’ �eorem

4.1. Circle actions with vanishing bounded Euler class. Before we turn to the
proof of Ghys’ �eorem in the general case we provide a characterization of
circle actions with vanishing bounded Euler class. �is characterization can be
seen as a special case of Ghys’ �eorem, but it is also of independent interest
and has a particularly simple proof. Parts of this special case will also be used
in the proof of the general theorem.

Recall that the Euler class eu was de�ned as an obstruction class. It thus
follows from Lemma 3.1 that if � W � ! H is a circle action, then

��eu D 0 , the action lifts to an action on the real line.

�e following result shows that the vanishing of the bounded Euler class has
much more drastic consequences:

Proposition 4.1. Let � W � ! H be a circle action with ��eub D 0 . �en the
action lifts to an action on the real line which moreover has a �xed point.

Proof. By assumption there exists a bounded function u W � ! Z with
��c� D du , where c� is the cocycle representing eub explicitly given in Equations
(3.2) and (3.3). By Proposition 3.2 we have a homomorphism

e� W � ! fH ; e� ./ D ���./� � i� � u./�:
In particular, e� ./.0/ D ���./�.0/ � u./:
Now, since � is a bounded section and u is bounded, e� ./.0/ is also bounded.
It follows that

FC.e� / WD sup
2�

e� ./.0/
is well de�ned, and it is clearly a �xed point for e� .�/ .

Using the second characterization of the bounded Euler class via the translation
number we obtain a converse to this result, leading to the following characteri-
zation:

Corollary 4.2 (Circle actions with vanishing bounded Euler class). Let � W � !
HomeoC.S1/ be a circle action. �en the following are equivalent:
(i) ��eub D 0 .
(ii) �e circle action � lifts to an action on the real line which moreover has

a �xed point.
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(iii) �.�/ �xes a point in S1 .

(iv) � is semi-conjugate to the trivial circle action.

Proof. We have already seen that (i)) (ii) in Proposition 4.1. Conversely, if (ii)
holds for a lift e� W � ! fH with �xed point x0 , then by Proposition 3.5

��eub D �e� �ŒdTZ� D �Œd e� �TZ�:

However we have for every  2 � ,

e� �T ./ D lim
n!1

e� ./n.x0/ � x0
n

D 0;

whence e� �TZ is bounded and thus (i) holds. �e implication (ii)) (iii) is obvious,
since the projection of a �xed point of a lift is a �xed point for the original
action. Conversely, if �.�/ �xes Œx0� 2 S1 , then it acts on S1 n ¹Œx0�º and this
action can be lifted to an action on .x0; x0C 1/ and periodically to an action on
R �xing all points in x0CZ . �is shows (ii), (iii) and the equivalence (iii) ,
(iv) follows from Proposition 2.6.

Although Corollary 4.2 is only a very simple special case of Ghys’ �eorem,
it is su�cient for many applications. E.g., most of the applications of Ghys’
�eorem in higher Teichmüller theory depend only on Corollary 4.2 (see, e.g.,
[BIW1, BSBH]). We therefore �nd it important to point out the above simple
proof. Note that a slightly stronger version of Corollary 4.2 is established in the
appendix.

4.2. A re�ned statement of Ghys’ �eorem. We will now prove Ghys’
�eorem 1.2 (with our De�nition 2.5 of semi-conjugacy), thus establishing that the
bounded Euler class is a complete invariant of semi-conjugacy. We will actually
prove the following more precise version:

�eorem 4.3. Let �1; �2 be circle actions of � .

(i) If ��1eub D ��2eub , then �1 and �2 are semi-conjugate.

(ii) If �1 and �2 are semi-conjugate and either of them has a �xed point, then
both have a �xed point and ��1eub D ��2eub D 0 .

(iii) If �1 is �xed point free and left-semi-conjugate to �2 , then ��1eub D ��2eub ¤
0 .

Note that in the situation of (iii), �1 and �2 are actually semi-conjugate
by (i). �is proves the following result alluded to in the introduction, also proven
in [Mat, Proposition 1.4].
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Corollary 4.4. If a �xed point free circle action �1 is left-semi-conjugate to a
circle action �2 , then they are semi-conjugate. In particular, left-semi-conjugacy
de�nes an equivalence relation on the set of all �xed point free circle actions.

Part (ii) of �eorem 4.3 follows directly from Corollary 4.2: If, say, �1
has a �xed point, then it is semi-conjugate to the trivial circle action by the
implication (iii) ) (iv), whence also �2 is semi-conjugate to the trivial circle
action and thus has a �xed point by the implication (iv) ) (iii). �en, by the
implication (iii) ) (i) we have ��1eub D ��2eub D 0 . �us it remains to show
only (i) and (iii), which we will do in the next two subsections.

4.3. Same bounded Euler class implies semi-conjugacy. In this subsection
we are going to establish Part (i) of �eorem 4.3. Our proof is a slight
variation of Ghys’ original proof, which emphasizes the similarity to the proof
of Proposition 4.1.

To �x notation, let �1; �2 be circle actions with the same bounded Euler class
��1eub D ��2eub . We claim that �1 and �2 are semi-conjugate. By symmetry it
su�ces to show that �1 is left-semi-conjugate to �2 .

Let e� be the central extension of � which corresponds to ��1eu D ��2eu.
�en we can choose lifts f�1 ; f�2 making the diagram

0 // Z
i // eH p // H // 1

0 // Z

e�jOO
i // e�e�j

OO

// �

�j

OO

// 1

commute. Since ��1eub D ��2eub and the diagrams commute we have

Œd e�1�TZ� D e�1�ŒdTZ� D �e�1�.p�eub/ D �e�2�.p�eub/ D e�2�ŒdTZ�

D Œd e�2�TZ�:

�is implies that there exist a homomorphism u W e� ! Z and a bounded function
b W e� ! Z such that f�1 �TZ�f�2 �TZ D uCb . It follows that f�1 �T �f�2 �T �u
is a bounded homogeneous function, hence 0 . �us,

f�1 �T � f�2 �T D u:
Replacing the lift f�2 by f�2 C i ı u we can ensure that u D 0 . Assume thatf�2 is chosen in that way. �en for every g 2 fH ,ˇ̌

T
�e� 1.g/�1e� 2.g/�ˇ̌ � ˇ̌ � T �e� 1.g/�C T �e� 2.g/�ˇ̌CD.T / D D.T /;

where D.T / is the defect of the quasimorphism T . In particular, e� 1.g/�1e� 2.g/
has uniformly bounded translation number and thus
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e' .x/ WD sup
g2e� �e� 1.g/�1e� 2.g/.x/�

is well de�ned. By de�nition we have for every g0 2 e� ,

e'�e�2.g0/.x/� D sup
g2e�e�1.g/�1

�e�2.g/�e�2.g0/.x/��
D sup
g2e�e�1.g g�10 /�1

�e�2.g/.x/�
De�1.g0/� sup

g2e�e�1.g/�1�e�2.g/.x/�
�

De�1.g0/�e'.x/�:
Moreover, being the supremum of increasing maps which commute with integral
translations, the map e' W R! R is non-decreasing and commutes with integral
translations, so it is a good lift of a non-decreasing degree one map ' W S1 ! S1 .
It follows that ' realizes the desired left-semi-conjugacy from �1 to �2 . �is
�nishes the proof of Part (i) of �eorem 4.3.

Remark 4.5. Note that it now immediately follows that Condition (i) of
�eorem 1.4 implies Ghys’ condition stated as Condition (vi) in Remark 1.5.
Indeed, if the bounded Euler classes are equal, then so are the (unbounded) Euler
classes and the map e' in the above proof gives the map required in Condition
(vi).

4.4. Semi-conjugacy implies same bounded Euler class. In this subsection we
establish the remaining Part (iii) of �eorem 4.3 thereby �nishing the proof of the
theorem. Here we will �nally make use of the third (geometric) characterization
of the bounded Euler class.

Instead of �eorem 4.3.(iii) we will actually prove a slightly stronger statement.
To state this result we introduce the following notation. �roughout this section
we will �x two circle actions �1; �2 of � and a semi-conjugacy ' from �1 to
�2 . We will not assume a priori that �1 is �xed point free. For each  2 �

we �x lifts f�1 ./ and f�2 ./ of �1./ respectively �2./ . Suppose now thate' is some good lift of ' . Since f�1 ./e' and e' f�2 ./ are lifts of the same
map and are invariant under integral translations, there exists a map n W R! Z

(dependent on e' ), invariant under integral translations, such that for all x 2 R ,

(4.1) f�1 ./e' .x/ D e' �f�2 ./.x/�C n .x/:
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Proposition 4.6. Let �1; �2 be circle-actions of � and let ' be a semi-conjugacy
from �1 to �2 . Let a good lift e' of ' be �xed and let n W R! Z be de�ned
by (4.1). Consider the following statements:
(1) �1.�/ does not have a global �xed point in S1 .
(2) ' is not the constant map.
(3) �ere exists a good lift e' of ' such that for each  2 � the map n given

by (4.1) is constant.
(4) �ere exists a good lift e' of ' such that f�1 ./e' .x/ D e' .f�2 ./.x// for

all  2 � and x 2 R .
(5) �ere exists a non-empty �2.�/ -invariant subset K � S1 such that 'jK is

injective.
(6) ��1eub D ��2eub .
�en the implications (1)) (2)) (3)) (4)) (5)) (6) hold.

Note that the implication (1)) (6) gives Part (iii) of �eorem 4.3.

Proof of Proposition 4.6. �e implication (1)) (2) is obvious, so we turn directly
to the proofs of the implications (2)) (3)) (4)) (5)) (6).

Assume that (2) holds and �x  2 � . Let e' be a good lift of ' . Since '
is non-constant we �nd distinct elements a0; b0 2 R with b0 � a0 2 .0; 1/ ande' .b0/ � e' .a0/ 2 .0; 1/ . Since f�1 ./ is strictly increasing and commutes with
integral translations, this implies at once that

(4.2) 0 < f�1 ./�e' .b0/� � f�1 ./�e' .a0/� < 1:
On the other hand, since e' ıf�2 ./ is non-decreasing and commutes with integral
translations, we also have 0 � e' .f�2 ./.b0//�e' .f�2 ./.a0// � 1 . However, these
inequalities must both be strict, because otherwise we would have

�1./
�
'.Œb0�/

�
D '

�
�2./.Œb0�/

�
D '

�
�2./.Œa0�/

�
D �1./

�
'.Œa0�/

�
;

which contradicts (4.2). We have thus shown that

0 < e�1./�e'.b0/� � e�1./�e'.a0/� < 1 ;
0 <e'�e�2./.b0/� �e'�e�2./.a0/� < 1 :

Subtracting the second inequality from the �rst we deduce that n .b0/�n .a0/ 2
Œ0; 1/� Œ0; 1/ D .�1; 1/ . Since both are integers we deduce that n .b0/ D n .a0/ ,
which implies that n is constant on E WD .a0 C Z/ [ .b0 C Z/ .

Now let x 2 RnE . �en the interval .x; xC1/ contains one translate of a0 and
one translate of b0 , and these take di�erent values under e' . We thus �nd e 2 E
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with x < e < x C 1 and e' .x/ ¤ e' .e/ , whence ¹x � e; e' .x/ � e' .e/º � Œ0; 1/
and n .x/ � n .e/ 2 .�1; 1/ , so that n .x/ D n .e/ . �is �nishes the proof of
the implication (2)) (3).

Now assume that (3) holds, i.e. for every  2 � we have n .x/ D n for
some constant n . We can then replace the lift f�1 ./ by the lift f�1 ./ � n
and thereby achieve that for all x 2 R ,

(4.3) f�1 ./e' .x/ D e' �f�2 ./.x/�;
which is (4).

We now deduce (5) from (4). Given x0 2 R we de�ne

Sx0 D
®
x 2 R j e' .x/ D e' .x0/¯ D e' �1�e' .x0/�:

Since e' is increasing, the sets Sx0 are connected, and since e' commutes with
integral translations we have Sx0 � .x0 � 1; x0 C 1/ . In particular, each Sx0 is
bounded and if we de�ne ˛.x0/ WD inf Sx0 and ˇ.x0/ WD supSx0 , then

Sx0 2
°�
˛.x0/; ˇ.x0/

�
;
�
˛.x0/; ˇ.x0/

�
;
�
˛.x0/; ˇ.x0/

�
;
�
˛.x0/; ˇ.x0/

�±
;

is an open, half-closed or closed interval. Since R is connected, not all of these
intervals can be open. �us the setsfK � WD ®x 2 R j x D inf Sx

¯
and fK C WD ®x 2 R j x D supSx

¯
cannot both be empty (though it is easy to construct examples where one of them
is empty).

We observe that the restrictions e' jeK ˙ are both injective. Assume �rst that
x1; x2 2 fK � and e' .x1/ D e' .x2/ . �en Sx1 D Sx2 and thus

x1 D inf Sx1 D inf Sx2 D x2;

showing that e' jeK � is injective. Replacing inf by sup, we deduce similarly thate' jeK C is injective.
Now we claim that fK ˙ are invariant under f�2 ./ for every  2 � . For

this it su�ces to check that f�2 ./.Sx/ D S e�2 ./x for every x 2 R ,  2 � . �is
follows from the chain of equivalences

y 2 e�2./.Sx/() e�2.�1/.y/ 2 Sx () e'�e�2.�1/y� De'.x/
() e�1.�1/e'.y/ De'.x/ () e'.y/ D e�1./e'.x/ De'�e�2./.x/�
() y 2 Se�2./x :

Now let K˙ be the projections of fK ˙ on S1 . �en K˙ are �2.�/ -invariant
and ' is injective on both KC and K� . Since at least one of these two sets is
non-empty, this �nishes the proof of the implication (4)) (5).
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Finally, we establish the implication (5)) (6): Let K be as in (4) and let
x 2 K . By Lemma 3.7 the cohomology class ��2eub is represented by the cocycle

��2cx.g0; g1; g2/ D c
�
�2.g0/x; �2.g1/x; �2.g2/x

�
:

Note that for j D 0; 1; 2 the points �2.gj /x are all contained in K , since K

is �2.�/ -invariant. It thus follows from injectivity of ' on K that they are
pairwise distinct if and only if their images under ' are pairwise distinct.
Since ' also preserves their weak orientation, we deduce that the triples
.�2.g0/x; �2.g1/x; �3.g2/x/ and .e' .�2.g0/x/; e' .�2.g1/x/; e' .�2.g2/x// are in
the same H -orbit. Indeed, this follows from the classi�cation of H -orbits on
.S1/3 in Subsection 3.4. Since c is H -invariant we obtain

��2cx.g0; g1; g2/ D c
�
'.�2.g0/x/; '.�2.g1/x/; '.�2.g2/x/

�
D c

�
�1.g0/'.x/; �1.g1/'.x/; �1.g2/'.x/

�
D ��1c'.x/.g0; g1; g2/:

Since the cocycle ��1c'.x/ represents ��1eub , we deduce that ��1eub D ��2eub . �is
�nishes the proof.

At this point we have �nished the proof of �eorem 4.3 and thereby of
�eorem 1.2.

Remark 4.7. In [Ghy1, Equation (1), Proof of Proposition 5.2]) our map n is
denoted by u./ . It is assumed to be constant independently of whether ' is
constant or not. �e following example shows that this is not true in general.
Let �1 be the trivial circle action of Z and �2 be the circle action sending 1

to the rotation by 1=2 . �en �1 is left semi-conjugate to �2 by Proposition 2.6
(ii). �e left semi-conjugacy can be given by the constant map '.x/ � Œ0� which
lifts to e' W x 7! bxc . A lift of �1.1/ is the identity and a lift of �2.1/ is the
translation T1=2 by 1=2 . �en �1.1/' D '�2.1/ on the circle but the translation
x 7! e' .x/ � e' .T1=2.x// D bxc � bx C 1=2c depends on x since it is 0 for
x 2 Œ0; 1=2/ C Z and �1 for x 2 Œ1=2; 1/ C Z . More generally, neither of the
statements (2)–(5) is correct without the assumption that �1 is �xed point free.
For example, if �1 has a �xed point then we can alway choose ' to be constant.
In that case, every set K � S1 on which ' is injective is a singleton. If �2.�/
is �xed point free, then such a set cannot be invariant. �e reader may check that
in this case our set K2 constructed in the proof is indeed a singleton, and that
the proof of invariance breaks down in the absence of (3), e.g., in the situation
of the example above.
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4.5. �e minimal case: Semi-conjugacy equals conjugacy. Recall that a circle
action � W � ! HomeoC.S1/ is minimal if every �.�/ -orbit is dense in S1 .
�e following proposition shows that for minimal circle actions, the notions of
conjugacy and semi-conjugacy coincide. �is implies in particular that �eorem 1.1
follows from �eorem 1.2.

Proposition 4.8 (Ghys). Let �1; �2 W � ! HomeoC.S1/ be minimal circle actions.
�en the following are equivalent:

(i) �1 is left-semi-conjugate to �2 .

(ii) �1 and �2 are semi-conjugate.

(iii) �1 and �2 are conjugate.

Proof. Since minimal actions are �xed point free, the equivalence (i), (ii) follows
from Corollary 4.4. Moreover, the implication (iii)) (i) holds trivially. Concerning
the implication (i)) (iii) assume that �1 is left-semi-conjugate to �2 via ' . �en
the image of ' is �1.�/ -invariant, whence dense in S1 by minimality. �is in
turn implies that the image of e' is dense in R . So the map e' , being non-
decreasing and commuting with integral translations, is continuous and surjective.
�erefore, the same is true for ' , and we are left to show that ' is also injective.

Suppose by contradiction that there exist distinct points x; y 2 S1 such that
'.x/ D '.y/ , and choose lifts ex ; ey of x; y in R such that ex < ey < ex C 1 .
Since e' is non-decreasing and commutes with integral translations, we have
either e' .ey / D e' .ex / or e' .ey / D e' .ex C 1/ . In any case, e' is constant on
a non-trivial interval, so there exists an open subset U � S1 such that 'jU is
constant. Let now x be an arbitrary point of S1 . By minimality of �2 there
exists  2 � such that �2./�1.x/ 2 U , and consequently V WD �2./.U / is an
open neighborhood of x . Now

'jV D .'�2.//jU ı �2./
�1
jV D .�1./'/jU ı �2./

�1
jV ;

whence ' is locally constant. It follows that ' is constant, and this contradicts
the fact that ' is surjective.

We have now established �eorems 1.1 and 1.2 mentioned in the introduction.

5. Variations and examples

5.1. Circle actions of Z and the rotation number. Let us spell out a few
special immediate consequences of Ghys’ �eorem. We start with the case where
� D Z . In this case a circle action � W � ! HomeoC.S1/ is given by a single
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invertible transformation �.1/ 2 HomeoC.S1/ . �e action lifts to e� W Z ! fH
and following Poincaré we de�ne its rotation number as

R.�/ WD T
�e� .1/� mod Z;

where T is the real valued translation number de�ned in Section 3.3.

Example 5.1. Given ˛ 2 R=Z we denote by R˛ 2 HomeoC.S1/ the rotation by
˛ . �en the Z -action � with �.1/ D R˛ has rotation number ˛ . In particular,
every rotation number can be realized by a rotation.

�e fact that any Z -action lifts is illustrated by ��.eu/ D 0 2 H 2.ZIZ/ D ¹0º .
�us, the unbounded Euler class cannot give any information for Z -actions. �e
case of the bounded Euler class is much more interesting:

Corollary 5.2 (Poincaré). For circle actions �1; �2 W Z ! HomeoC.S1/ the
following are equivalent:

(i) �1 and �2 are semi-conjugate.

(ii) ��1eub D ��2eub .

(iii) R.�1/ D R.�2/ .
In particular, Poincaré’s rotation number is a complete semi-conjugacy invariant
for circle actions of Z (and a complete conjugacy invariant for minimal Z -
actions).

Proof. �e equivalence (i), (ii) is a special case of �eorem 1.2. For j D 1; 2

we have
��j eub D f�j �p�eub D �f�j �ŒdTZ� D �Œdf�j �TZ�;

whence (ii) is equivalent to Œd.f�1 �TZ � f�2 �TZ/� D 0 . �is in turn means
that there exists a homomorphism f 2 Hom.Z;Z/ such that the quasimorphismf�1 �TZ � f�2 �TZ � f is bounded. Now using the fact that a quasimorphism
is bounded if and only if its homogeneization is trivial we see that the latter
condition is equivalent to

f�1 �T � f�2 �T D f 2 Hom.Z;Z/:
Since two homogeneous functions on Z agree i� they agree on 1 we see that
this condition is equivalent to

f�1 �T .1/ � f�2 �T .1/ D T �f�1 .1/� � T �f�2 .1/� 2 Z;

i.e., R.�1/ D R.�2/ .



A note on semi-conjugacy for circle actions 345

5.2. �e Hirsch–�urston theorem. Let us denote by Rot.S1/ Š R=Z the
subgroup of HomeoC.S1/ given by rotations. A circle action which factors
through Rot.S1/ will be called a rotation action. It follows from Example 5.1
and Corollary 5.2 that every Z -action is semi-conjugate to a rotation action. �is
is more generally true for actions of amenable groups; the corresponding result is
usually attributed to Hirsch and �urston (see e.g. [Cal]), since it can be derived
easily from results in [HT].

Corollary 5.3 (Hirsch–�urston). Every circle action � W � ! HomeoC.S1/ of
an amenable group is semi-conjugate to a rotation action.

Proof. By a classical result of Trauber (see, e.g., [Gro, Iva]) the bounded coho-
mology of � with real coe�cient vanishes. �us the connecting homomorphism

ı W H 1.�IR=Z/! H 2
b .�IZ/

of the Gersten exact sequence (see [Mon, Prop. 8.2.12]) is an isomorphism.
Let ˛ WD ��eub 2 H 2

b
.�IZ/ and ˇ WD ı�1.˛/ . �en under the isomorphism

H 1.�IR=Z/ Š Hom.�;R=Z/ D Hom.�;Rot.S1// the class ˇ corresponds to a
homomorphism �0 W � ! Rot.S1/ . Now a standard diagram chase shows that
.�0/�eub D ı.ˇ/ D ��eub , whence � and �0 are semi-conjugate.

5.3. Real bounded Euler class. In many applications, computations in integral
bounded cohomology are di�cult, and thus one relies on real bounded coho-
mology. �e image of eub in H 2

b
.H IR/ under the change of coe�cients map

H 2
b
.H IZ/! H 2

b
.H IR/ is called the real bounded Euler class and denoted euR

b
.

Corollary 4.1 has the following real counterpart:

Corollary 5.4. Let � W � ! HomeoC.S1/ be a circle action with ��euR
b
D 0 .

�en �.Œ�; ��/ �xes a point on S1 .

Proof. Since ��euR
b
D 0 we can argue as in the proof of Corollary 5.3 and

prove that � is semi-conjugate to an action �0 W � ! Rot.S1/ < HomeoC.S1/ .
In particular, �jŒ�;�� is semi-conjugate to �0jŒ�;�� . Now since Rot.S1/ is abelian,
�0 vanishes on Œ�; �� . It follows that .�jŒ�;��/�eub D .�0jŒ�;��/�eub D 0 , whence
�.Œ�; ��/ �xes a point on S1 by Corollary 4.1.

6. Alternative characterizations of semi-conjugacy

6.1. Regularity of semi-conjugacies. Having established �eorems 1.1 and 1.2
and some of their consequences, we now return to the characterizations of semi-
conjugacy given in �eorem 1.4 of the introduction. We start by discussing the
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issue of regularity of semi-conjugacies. In general, if two circle actions �1 and �2
are semi-conjugate it does not follow that they are semi-conjugate via continuous
left-semi-conjugacies. A concrete counterexample is given as follows.

Example 6.1. Let �1 be the action of Z given by sending the generator 1 to
the rotation by � . Let �2 be an action of Z with rotation number 1

2
for which

�2.2/ has precisely two �xed points. For example, the generator could be sent to
the �xed point free lift of a parabolic isometry to the double cover of S1 D @H2 .
Both actions have rotation number 1=2 , so that they are semi-conjugate, say, �1
is right-semi-conjugate to �2 via ' W S1 ! S1 . By de�nition, ' sends orbits
for the �1 -action to orbits for the �2 -action. Now all �1 orbits have precisely
two points, while only one �2 orbit has two points (and the other orbits have
in�nite order). It follows that the image of ' is equal to the unique �2 orbit
consisting of two points, hence the map ' cannot be continuous. Even worse,
the semi-conjugacy '0 W S1 ! S1 in the opposite direction, i.e. from �1 to �2

cannot be chosen continuous either. Indeed, let ¹x1; x2º be the unique �2 -orbit
containing two points. �en '0 has to send x1 and x2 to a pair of antipodal
points y; y . Now restrict to the index two subgroup 2Z < Z and look at the
restricted orbits: �e restricted �1 -action is trivial, so orbits for the restricted
�2 -action have to be sent to points. But x1 and x2 are accumulation points of
the same restricted �2 -orbit, which is all mapped to a point z . �en z cannot
be equal both to y and y , so that '0 is not continuous.

�ings improve if we replace continuity with the less demanding notion of
semicontinuity. Recall that a non-decreasing degree one map ' W S1 ! S1 is called
upper semicontinuous if it admits an upper semicontinuous good lift e' W R! R .
Indeed we can show:

Lemma 6.2. If a circle action �1 W � ! H is left-semi-conjugate to a circle action
�2 W � ! H , then it is left-semi-conjugate to �2 via an upper semicontinuous
map '0 W S1 ! S1 .

Proof. Let ' be an arbitrary left-semi-conjugacy from �1 to �2 . If ' is constant
then there is nothing to show, hence we may assume that ' is non-constant. We
then de�ne e' , f�1 , f�2 and n as in the beginning of Subsection 4.4 and also
de�ne a new function e' 0 W R! R by

e' 0.x/ WD sup
®e' .y/ jy < x¯:

Since e' 0 is non-decreasing and commutes with integral translations, it is the
good lift of a non-decreasing degree one map '0 W S1 ! S1 . We claim that '0
is a left-semi-conjugacy from �1 to �2 .
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In order to prove our claim we �x  2 � and abbreviate fhj WD f�j ./ 2 fH
for j D 1; 2 . By (4.1) we have for every y 2 R ,

(6.1) fh1 e' .y/ D e' �fh2 .y/�C n .y/:
By the implication (2)) (3) in Proposition 4.6, there exists an integer m 2 N

such that n � m . Now for every x 2 R we have

eh1e'0.x/ D eh1� sup¹e'.y/ j y < xº� D sup
®eh1e'.y/ j y < x¯

D sup
®e'.eh2.y//Cm j y < x¯ D sup

®e'.y/ j y < eh2.x/¯Cm
De'0�eh2.x/�Cm;

which implies that �1./'0 D '0�2./ , and concludes the proof.

6.2. Proof of �eorem 1.4. �e equivalences (i), (ii), (v) of �eorem 1.4 are
immediate from �eorem 4.3. �e equivalence (i), (iii), (iv) of �eorem 1.4
follows from the following corollary of Proposition 4.6.

Corollary 6.3. For circle actions �1 and �2 the following are equivalent:

(i) �ere exists a left-semi-conjugacy from �1 to �2 which satis�es Property (4)
of Proposition 4.6.

(ii) �ere exists a left-semi-conjugacy from �1 to �2 which satis�es Property (5)
of Proposition 4.6.

(iii) �1 and �2 are semi-conjugate.

Proof. �e implications (i)) (ii)) (iii) of the corollary follow from the implica-
tions (4)) (5)) (6) in Proposition 4.6 and Part (i) of �eorem 4.3. Conversely
assume that (iii) holds and that �1 is left-semi-conjugate to �2 via ' . If ' is
non-constant then (i) and (ii) hold by the implications (2)) (4)) (5) of Proposi-
tion 4.6. Now assume, on the other hand, that ' is constant. �en the image of
' is a �xed point Œx1� for �1 . According to Part (ii) of �eorem 4.3 there is also
a �xed point Œx2� of �2 . Let fx1 ; fx2 2 R be lifts of x1 and x2 respectively.
�en there exists a unique good lift e' of ' such that e' .Œfx2 ; fx2 C1// D ¹fx1 º ,
and this lift clearly satis�es Property (4) of Proposition 4.6. �is shows that (iii)
implies (i) and �nishes the proof.

We have thus established the equivalence of the conditions (i)–(v) in �eo-
rem 1.4. Together with Lemma 6.2 this �nishes the proof of �eorem 1.4.
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6.3. Semi-conjugacy and monotone equivalence. Let us say that a circle action
�1 W � ! H is left-equivalent to another circle action �2 W � ! H if �1

is left-semi-conjugate to �2 via a continuous non-decreasing degree one map
' W � ! H of Hopf-Brouwer degree 1, and recall from the introduction that
monotone equivalence is de�ned as the equivalence relation generated by left-
equivalence. �is subsection is devoted to the proof of �eorem 1.7, which states
that monotone equivalence is equivalent to semi-conjugacy in the sense of the
present note. One direction is immediate from what we have proved so far:

Proposition 6.4. Suppose that �1; �2 W � ! H are monotone equivalent circle
actions. �en �1 and �2 are semi-conjugate.

Proof. We may reduce to the case when �1 is left-equivalent to �2 . In this
case, �1 is left-semi-conjugate to �2 via a non-constant map, so the implication
(2)) (6) of Proposition 4.6 and �eorem 1.4 imply that �1 is semi-conjugate to
�2 .

Concerning the converse implication we recall the following classical tri-
chotomy for circle actions (see, e.g., [Ghy2] for a detailed discussion and proof).

Lemma 6.5. Let � W � ! H be a circle action. �en exactly one of the following
three possibilities occurs:

(1) �.�/ has a �nite orbit.

(2) � is minimal, i.e., every �.�/ -orbit is dense.

(3) there exists a unique �.�/ -invariant in�nite compact proper subset K ¨ S1

(called the exceptional minimal set of �.�/ ) such that K is contained in
the closure of any orbit of �.�/ .

In case (3), K is homeomorphic to a Cantor set.

From this we deduce:

Proposition 6.6. Let � W � ! H be a circle action without �nite orbits. �en �

is monotone equivalent to a minimal action.

Proof. Since (1) is excluded by the assumption and the conclusion holds trivially
in case (2), we may assume that � satis�es (3) of the above trichotomy. �us let
K ¨ S1 be the minimal exceptional set of �.�/ . We have S1 nK D

S
i2N Ui ,

where the Ui ’s are pairwise disjoint non-empty open subsets of S1 homeomorphic
to open intervals. De�ne an equivalence relation � on S1 by declaring x � y if
and only if there exists i 2 N such that ¹x; yº � Ui ; and let ' W S1 ! X WD S1= �
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denote the quotient map. Since X is obtained from S1 by collapsing intervals,
it is homeomorphic to S1 . Moreover, the map ' is a continuous, non-decreasing
degree one map of Hopf-Brouwer degree 1 (any of its lifts to R is just a devil’s
staircase).

Now let  2 � . Since K is �./ -invariant, the element �./ permutes the
intervals Ui and thus descends to an orientation-preserving homeomorphism of
X . We thus obtain a homomorphism �0 W � ! HomeoC.X/ such that for all
 2 � ,

�0./' D '�./;

and it remains to show only that X is minimal under �0.�/ . However, this follows
from the observation that since K is contained in the closure of any �.�/ -orbit,
the set S1 D '.K/ is contained in the closure of any �0.�/ -orbit.

�e proof of �eorem 1.7 in the case where every orbit of �1.�/ and �2.�/

is in�nite is now immediate.

Proof of �eorem 1.7 if every orbit of �1.�/ and �2.�/ is in�nite. Let us as-
sume that �1 and �2 are semi-conjugate and that every orbit of �1.�/ and �2.�/
is in�nite. By Proposition 6.6, the actions �i are monotone equivalent to min-
imal actions �0i for i D 1; 2 . We have already proved in Proposition 6.4 that
monotone equivalence implies semi-conjugacy, so �01 is semi-conjugate to �02 .
On the other hand, we know from Proposition 4.8 that semi-conjugate minimal
actions are conjugate, whence in particular monotone equivalent. Since monotone
equivalence is an equivalence relation, this implies that �1 and �2 are monotone
equivalent.

It remains to deal with the case where �1 or �2 has a �nite orbit. �is is
slightly more technical.

Proof of �eorem 1.7 in the presence of a �nite orbit. Here we assume that �1
and �2 are semi-conjugate via a pair of non-decreasing degree one maps
'; '0 W S1 ! S1 satisfying

�1./' D '�2./ and �2./'
0
D '0�1./

for every  2 � , and that one of them, say �1 , has a �nite orbit ¹x1; : : : ; xkº .
We may assume that .x1; : : : ; xk/ is positively oriented. Note that, since �1.�/

acts transitively on the xi ’s, it also acts transitively on the connected components
of S1 n ¹x1; : : : ; xkº . As a consequence, every orbit of �1.�/ must contain at
least k points. In particular, if we set yi D '.xi / for every i D 1; : : : ; k , then
¹y1; : : : ; ykº is a �nite �2.�/ -orbit, and '0.¹y1; : : : ; ykº/ is a �nite �1.�/ -orbit,
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hence has to have at least k points. �is implies that the yi ’s are pairwise distinct
and that .y1; : : : ; yk/ is a positively-oriented �2.�/ -invariant k -tuple.

For every  2 � the homeomorphism �1./ induces a cyclic permutation of
.x1; : : : ; xk/ , hence there exists j./ 2 Z=kZ such that

�1./xi D xiCj./;

where addition of indices is always understood in Z=kZ . We can now compute
the rotation number of �1./ using the orbit ¹x1; : : : ; xkº ; we then obtain

R
�
�1./

�
D Œj./=k� 2 R=Z:

Note that the cyclic permutation induced by �1./ on .x1; : : : ; xk/ is completely
determined by R.�1.// . However, since the restrictions of �1 and �2 to the
cyclic subgroup generated by  are semi-conjugate, it follows from Corollary 5.2
that the rotation numbers of �1./ and �2./ coincide. We deduce that �1./
induces the same cyclic permutation on .x1; : : : ; xk/ as �2./ on .y1; : : : ; yk/ .
�is information is enough to construct a circle action �3 “containing” both �1

and �2 as follows.
Let us �rst assume that k � 2 . Given two distinct points a; b 2 S1 we de�ne

the open interval .a; b/ as

.a; b/ WD
®
z 2 S1 j .a; z; b/ positively oriented

¯
:

For every i D 1; : : : ; k we de�ne Ui WD .xi ; xiC1/ and Vi WD .yi ; yiC1/ and
denote by Ui and Vi the closures of Ui and Vi in S1 respectively. By the
assumption k � 2 these are homeomorphic to closed intervals. We then de�ne
X as the quotient space obtained from the disjoint union of the Ui and the
Vi obtained by identifying the right endpoint xkC1 2 Uk with the left endpoint
yk 2 Vk and the right endpoint ykC1 2 Vk with the left endpoint xkC1 2 UkC1 .
In the case k D 1 we instead de�ne X by cutting S1 at the respective �xed
points x1 and y1 and glueing the resulting two open intervals U1 and V1 along
a 0 -sphere. Either way we obtain a circle X which contains U1; V1; : : : ; Uk; Vk
in this exact cyclic order, and such that the complement of these open sets is
a �nite set of points. We now de�ne �3 W � ! HomeoC.X/ as follows: Given
 2 � we de�ne

�3./ W

k[
iD1

Ui [ Vi !

k[
iD1

Ui [ Vi ; �3./.x/ D

´
�1./.x/; x 2

S
Ui ;

�2./.x/; x 2
S
Vi :

Since �1./ induces the same permutation on the xi as �2./ on the yi , it
follows that �3./ extends uniquely to an orientation-preserving homeomorphism
of X Š S1 .
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It remains to show only that �1 and �2 are left-equivalent to �3 , but this is
obvious: Concerning �1 we de�ne a continuous non-decreasing map ' W X ! S1

by contracting each of the intervals Vi to a point. �en ' has Hopf–Brouwer
degree 1 and, by construction, �1./' D '�3./ holds for all  2 � . Similarly,
the left-equivalence from �2 to �3 is obtained by collapsing the Ui .

A. �e action of the double cover of H on the circle

Consider the circle S1 and its double cover X which, somewhat confusingly,
is again homeomorphic to a circle. We denote by H the group of those
homeomorphisms of X which map antipodal points to antipodal points. �e
action of H on X then factors through an action of S1 and thus gives rise to
a surjective homomorphism

p W H ! H WD HomeoC.S1/;

which exhibits H as the unique double cover of H . Since X Š S1 , the group
H can also be seen as a subgroup of Homeo.X/ Š H , but this is not the point
of view we are going to take.

From now on we will denote the double covering of the circle simply by
S1 , with the understanding that the action of H on S1 is the one described
above. �is action is actually important in many applications, since it contains
the action of SL2.R/ on the circle obtained by letting SL2.R/ act on R2 n ¹0º

via the standard action and identifying S1 with .R2 n ¹0º/=R>0 . �is action in
turn is a particular instance of the action of SLn.R/ on Sn�1 Š .Rn n ¹0º/=R>0
for n � 2 , and these generalizations play an important role concerning higher
Euler classes.

�e aim of this appendix is twofold: On the one hand, we describe all
homogeneous cocycles obtained as H -invariant functions .S1/3 ! Z and relate
them to the cohomology class p�.eub/ 2 H 2

b
.H;Z/ . On the other hand, we

establish a �xed point theorem (�eorem A.6) which is stronger than its analogue
for H (Corollary 4.2) since in this case a �xed point is not only equivalent to the
vanishing of the pullback of the bounded Euler class, but further to the vanishing
of the pullback of a particular cocycle.

Non-degenerate homogeneous cochains. For every point x 2 S1 , we denote by
x its antipodal point. We say that an H -orbit in .S1/k is degenerate if it contains
a point of the form .: : : ; x; : : : ; x; : : : / or of the form .: : : ; x; : : : ; Nx; : : : / . Given
n 2 N let us denote by .S1/Œn� � .S1/n the union of all non-degenerate H -orbits
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in .S1/n . We refer to an H -invariant function f W .S1/ŒnC1� ! Z as a non-
degenerate homogeneous n -cochain. Note that if .x0; : : : ; xn/ 2 .S1/ŒnC1� , then
.x0; : : : ;cxi ; : : : ; xn/ 2 .S1/Œn� for all i D 0; : : : ; n , and hence the homogeneous
di�erential de�nes a map

ı W Map
�
.S1/Œn�;Z

�H
! Map

�
.S1/ŒnC1�;Z

�H
for every n . We refer to elements in the kernel respectively image of this map as
non-degenerate homogeneous cocycles, respectively non-degenerate homogeneous
coboundaries.

Every cochain f 2 Map..S1/nC1;Z/H restricts to a non-degenerate homoge-
neous cochain on .S1/ŒnC1� and this restriction de�nes a chain map

res W
�
Map

�
.S1/nC1;Z

�H
; ı
�
!

�
Map

�
.S1/ŒnC1�;Z

�H
; ı
�
; f 7! f jS ŒnC1� :

Lemma A.1. �e map res induces an isomorphism on the level of cohomology.
In particular,

(A.1) H �b .H Õ S1/ D H �.H Õ S1/ Š H �
�
Map

�
.S1/ŒnC1�;Z

�H
; ı
�
:

Proof. Since for every n there will always be �nitely many (non-degenerate)
H -orbits, it is immediate that H �

b
.H Õ S1/ D H �.H Õ S1/ .

Following [BM] we construct an extension map

ext W
�
Map

�
.S1/ŒnC1�;Z

�H
; ı
�
!

�
Map

�
.S1/nC1;Z

�H
; ı
�
; f 7! ef

which on the level of cohomology is an inverse to res . Intuitively, in order to
de�ne ef .x0; : : : ; xn/ for a degenerate .n C 1/ -tuple .x0; : : : ; xn/ we want to
move xn; : : : ; x0 (in this order) a very small amount in the positive direction to
make the .n C 1/ -tuple non-degenerate, and then evaluate f on the perturbed
tuple. More precisely, if xn is equal to xi or xi for i ¤ n , replace xn by a point
xCn such that .xn; xCn ; xn/ is positively oriented and no xi or xi , for i ¤ n , lies
in the positive direction between xn and xCn . Continue inductively for all xi ’s
and set ef .x0; : : : ; xn/ WD f .xC0 ; : : : ; x

C
n / . As in [BM] one then shows that ext

is a chain map which is inverse to res in cohomology.

In view of the lemma we can represent every class in H �.H Õ S1/ by a
non-degenerate homogeneous cocycle, and thus we will focus on non-degenerate
homogeneous cocycles from now on.

Non-degenerate orbits of H acting on .S 1/nC1 . �e classi�cation of non-
degenerate H -orbits on .S1/nC1 for n � 2 is as follows.
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(n D 1 ) �e action of H on S1 has exactly one non-degenerate orbit.
(n D 1 ) �e action of H on two factors .S1/2 has two non-degenerate orbits:

If x; y 2 S1 are chosen so that .x; y; x/ is a positively oriented triple, then
we denote them by

O.2/C WD H � .x; y/ and O.2/� WD H � .y; x/:

(n D 2 ) �e action of H on three factors .S1/3 has eight non-degenerate orbits.
Choose distinct points x0; x1; x2 2 S1 and suppose that .x0; x1; x2; x0/ is a
strictly positively oriented quadruple. �en the orbits are given as follows.
�ere are six non-degenerate orbits parametrized by the symmetric group
Sym.3/ over ¹0; 1; 2º and given by

O.3/� WD H � .x�.0/; x�.1/; x�.2//;
�
� 2 Sym.3/

�
;

and there are two additional non-degenerate orbits given by

O.3/C WD H � .x0; x2; x1/ and O.3/� WD H � .x0; x1; x2/:

Non-degenerate homogeneous 2 -cocycles and non-degenerate homogeneous
2 -coboundaries. Denote by p2 W S1 ! S1 the double cover given by identifying
antipodal points. �en p2 induces a map commuting with the map induced by
p W H ! H

H�.H Õ S1IZ/

��

p�
2 // H�.H Õ S1IZ/

��
H�.H IZ/

p� // H�.H IZ/ :

Specialising to degree 2 , we know that the left-hand side H 2.H Õ S1IZ/ is
an in�nite cyclic group generated by the class of the Euler cocycle c . Our goal
now is to prove that the right-hand side H 2.H Õ S1IZ/ is also in�nite cyclic
and to construct an explicit homogeneous cocycle representing its generator.

To this end we �rst observe that a non-degenerate homogeneous 2 -cochain f
is given by the 8 numbers

f� WD f jO.3/�
; fC WD f jO.3/

C

; f� WD f jO.3/� ;

where � 2 Sym.3/ .

Lemma A.2. A nondegenerate homogeneous 2 -cochain f is a cocycle if and
only if

fId D f.0 1 2/ D f.0 2 1/ DW f
C;

f.0 1/ D f.0 2/ D f.1 2/ DW f
�;

f C C f � D fC C f�;
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and f is a coboundary if and only if there exists w˙ 2 R such that

fId D wC; f.0 1/ D w�; fC D 2wC � w�; f� D 2w� � wC:

Furthermore there is an isomorphism H 2.H Õ S1IZ/ Š Z given by sending
Œf � 2 H 2.H Õ S1IZ/ to fC � 2f

C C f � 2 Z .

Proof. It it is a matter of elementary case by case consideration of con�gurations
of four points on the circle to show that the cocycle equation implies the
5 identities above. For example, let x0; x1; x2; x3; x1 be positively oriented
points on S1 . Applying the cocycle relation ıf D 0 to .x1; x2; x3; x0/ and
.x3; x0; x1; x2/ leads to the �rst two equalities de�ning f C . Applying the relation
to .x2; x1; x0; x3/ and .x0; x3; x2; x1/ gives the two next equalities de�ning f � .
Finally, ıf .x3; x0; x2; x1/ D fC � f � C f� � f C D 0 .

Moreover, if b is a 1 -cochain with bj
O
.2/

˙

� w˙ , then a routine computation
yields

.ıb/Id D wC; .ıb/.0 1/ D w�; .ıb/C D 2wC � w�; .ıb/� D 2w� � wC:

It remains to show that there are no other relations satis�ed by an arbitrary
non-degenerate homogeneous 2 -cocycle. For this we observe that the quotient of
the space of non-degenerate homogeneous 2 -cochains satisfying the 5 identities
above by the space of coboundaries is isomorphic to Z via the map f 7!

fC � 2f
C C f � . If there were any other relations, then there was no cocycle

with fC � 2f CC f � D 1 . However, it is easy to check that the Sullivan cocycle
given in De�nition A.3 below is such a cocycle.

In particular, a non-degenerate 2 -cocycle f is given by 4 integers f C , f � ,
fC , f� subject to the single relation f C C f � D fC C f� (or equivalently by
the 3 integers f C , f � and f� ).

De�nition A.3. �e Sullivan cocycle ESull is the non-degenerate 2 -cocycle f

given by f C D f � D 0 , fC D 1 , f� D �1 .

�is cocycle was found by Sullivan as an explicit representative for the Euler
class of �at oriented R2 -vector bundles. Table 1 below compares the Sullivan
cocycle with the pullback of the Euler cocycle via p2 and also with the orientation
cocycle on S1 and the pullback of the orientation cocycle under p2 , and expresses
all of these cocycles in terms of the 4 integers f C , f � , fC , f� .

In particular we see from Table 1 and the isomorphism described in Lemma A.2
that the Sullivan class ŒESull� is a generator for H 2.H Õ S1IZ/ D H 2

b
.H Õ

S1IZ/ .



A note on semi-conjugacy for circle actions 355

Table 1

f C f � fC f� H2.H Õ S1IZ/

ESull 0 0 1 �1 ŒESull�
p�2 .c/ 1 0 0 1 �2 ŒESull�
Or 1 �1 1 �1 �2ŒESull�
p�2 .Or/ 1 �1 �1 1 �4 ŒESull�
ıb wC w� 2wC �w� 2w� �wC 0

�e geometric interpretation of the Sullivan cocycle. Unravelling the de�nition
and considering con�gurations of 3 points on the circle case by case, we see that
the Sullivan cocycle can be described geometrically as follows: it is nonzero on a
non-degenerate triple .x; y; z/ if and only if the triple contains 0 in the interior
of its convex hull and in that case it is C1 or �1 depending on the orientation
of the triple. �is geometric de�nition generalizes to higher dimensions and leads
to an SLn.R/ -invariant cocycle on the .n � 1/ -sphere for each n � 2 .

One consequence of this description is that the Sullivan cocycle is not invariant
under the full homeomorphism group of the circle, but only under its subgroup
H .

Another useful consequence is that the Sullivan cocycle and its higher-
dimensional analoga detect small subsets of spheres. Here a subset of a sphere is
called small if its spherical convex hull is not the whole sphere. In the case of
S1 a set X � S1 is small if and only if it is contained in a half-open half-circle.

Proposition A.4. Let X � S1 be any subset. �en ESull vanishes on X3 if and
only if X is small.

Proof. If X � S1 is a small subset then no three points in X ever contain 0 in
their convex hull, so that ESull vanishes on X3 .

Conversely, suppose that ESull vanishes on X3 . View X as a subset of R2

and consider its convex hull in R2 . By Caratheodory’s �eorem, if 0 is contained
in the convex hull of X , then there exist x0; x1; x2 2 X such that 0 belongs to the
convex hull of x0; x1; x2 and hence ESull.x0; x1; x2/ ¤ 0 , which is impossible.
If 0 is not on the boundary of the convex hull, then by Hahn-Banach there
exists a hyperplane separating 0 and the convex hull of X , so X is in particular
contained in the intersection of S1 with the (appropriate) half plane delimited by
the hyperplane. If 0 is in the boundary of the convex hull, then by the supporting
hyperplane theorem, there exists a hyperplane through 0 so that the convex hull
of X is contained in one closed half space delimited by that hyperplane. We are
almost done, except that we need to exclude the case that X is contained in one
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closed half-circle, but is not contained in a half-open half-circle. Suppose that x
and x belong to X . �en ESull.x; x; x/ D ESull.x; x

C; xC/ D 1 , where the points
xC; xC 2 S1 are very small perturbations of x; x in the positive direction.

Note that the same proof holds also for the higher dimensional generalization
of the Sullivan cocycle.

�e cohomology class ŒESull� . Given a basepoint x 2 S1 we obtain a cocycle
ExSull W H

3
! Z by pullback along the corresponding orbit map, i.e.,

ExSull.g0; g1; g2/ WD ESull.g0x; g1x; g2x/:

�is cocycle determines a class in the group cohomology H 2.H IZ/ ; since ExSull is
bounded, it also determines a class in the bounded group cohomology H 2

b
.H IZ/ .

Recall from the table above that �2 � ŒESull� D p�2c , where c denotes the Euler
cocycle on S1 and p2 W S

1 ! S1 is the double covering.
Now the Euler class eu D Œcx� 2 H 2.H;Z/ corresponds to the central extension

of H given by the common universal covering group fH of H and H , and
thus it follows from the commuting diagram of central extensions

0 // Z
i //

�2

��

eH
Id
��

p // H

p

��

// ¹eº

0 // Z
i // eH p // H // ¹eº

that Œ�ExSull� 2 H
2.H IZ/ corresponds to the central extension in the top row

of the above diagram. By Lemma 3.1 this yields the following interpretation of
ŒESull� as an obstruction class: Given a group � , the S1 -action associated with
a homomorphism � W � ! H lifts to an action of � on the real line if and only
if ��ŒEx

Sul l
� D 0 2 H 2.�;Z/ for some (hence any) x 2 S1 .

�e bounded cohomology class ŒESull� . We now turn to an interpretation of the
bounded class de�ned by ESull . It turns out that the case of the bounded Sullivan
cocycle in degree 2 is very particular since the vanishing of the cohomology
class is equivalent to the vanishing of the cocycle:

Proposition A.5. Let � be a group and � W � ! H be any homomorphism.
�en ��ŒEx

Sul l
�b D 0 2 H

2
b
.�;Z/ if and only if ��.Ex

Sul l
/ D 0 for any base point

x 2 S1 .
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Proof. �e if-direction is trivial. For the only-if-direction, suppose that ��ExSull D
ıb for some x 2 S1 and a � -invariant bounded cochain b W �2 ! Z . We will
show that b � 0 . Writing out the cocycle equation in a special case yields for
all  2 � ,

��ExSull.e; ; 
2/ D 2b.e; / � b.e; 2/:

�is implies in particular j2b.e; / � b.e; 2/j � 1 , hence inductively

(A.2)
ˇ̌
2kb.e; / � b.e; 2

k

/
ˇ̌
� 2k � 1:

Since b is bounded, we can choose k su�ciently big so that jb.e; 2k /j � 2k�1 .
Dividing (A.2) by 2k we obtain

jb.e; /j �
1

2k

ˇ̌
b.e; /2

k ˇ̌
C 1 �

1

2k
� 1C

1

2
�
1

2k
< 2:

Since b takes integral values, it follows that it takes values in ¹�1; 0; 1º . Assume
that b.e; / D 1 . �en (A.2) yieldsˇ̌

2k � b.e; 2
k

/
ˇ̌
� 2k � 1;

hence b.e; 2
k
/ D 1 . A similar argument in the negative case shows that for

every  2 � , either b.e; / D 0 or 0 ¤ b.e; / D b.e; 2
k
/ for every k > 0 .

�us if b.e; / ¤ 0 for some  , then

ESull
�
x; �./x; �./2x

�
D 2b.e; / � b.e; 2/ D b.e; / D b.e; 2/

D ESull
�
x; �./2x; �./4x

�
:

�is means that there exist w; x; y; z 2 S1 such that

ESull.x; y; z/ D ESull.x; z; w/ ¤ 0:

By our extension of the Sullivan cocycle to degenerate orbits, we can without loss
of generality suppose that both triples .x; y; z/ and .x; z; w/ are non-degenerate.
Since their evaluations on the Sullivan cocycle agree both triples contain 0 in the
interior of their convex hull and have the same orientation. �is is impossible.

For the Sullivan cocycle we now obtain the following stronger version of
Corollary 4.2:

�eorem A.6. Let � be a group, � W � ! H a homomorphism. �en the
following are equivalent:

(1) ��ŒExSull�b D 0 2 H
2
b
.�IZ/ ;

(2) � lifts to a homomorphism e� W � ! fH and e� .�/ has a �xed point in R .
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(3) �.�/ �xes a point in S1 .

(4) Every �.�/ -orbit on S1 is small.

(5) �ere exists a small �.�/ -orbit in S1 .

(6) ��ExSull D 0 for every x 2 S1 .

(7) �ere exists x 2 S1 such that ��ExSull D 0 .

Proof. We summarize the shown implications in the following diagram:

.4/ ks
Prop A.4+3

trivial
��

.6/

trivial
��

ksProp A.5+3 .1/

.5/ ks
Prop A.4

+3 .7/

trivial

9A

.3/:
trivial
ks

�e remaining equivalences between (1), (2) and (3) admit the same proof as the
equivalences between (i), (ii) and (iii) in Corollary 4.2.
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