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Excellence of function �elds of conics

Alexander Merkurjev and Jean-Pierre Tignol

Abstract. For every generalized quadratic form or hermitian form over a division algebra,
the anisotropic kernel of the form obtained by scalar extension to the function �eld of a
smooth projective conic is de�ned over the �eld of constants. �e proof does not require
any hypothesis on the characteristic.
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One important aspect in the study of quadratic forms over �elds is to determine
their behavior under scalar extension. A quadratic form q that is anisotropic
(i.e., without nontrivial zeros) over a �eld F may become isotropic over a
�eld extension L of F ; the extended form qL then has a Witt decomposition
qL D q0 ? mH involving an anisotropic quadratic form q0 and a certain number
m � 1 of hyperbolic planes, see [EKM, �. 8.5]. �e form q0 is uniquely
determined up to isometry; it is called the anisotropic kernel of qL . Some �eld
extensions have a useful property, �rst pointed out by Elman–Lam–Wadsworth
[ELW, §2]: the extension L=F is said to be excellent if for every quadratic form
q over F the anisotropic kernel of qL is de�ned over F . If F is a number �eld,
it is shown in [ELW, �. 2.13] that every �nite extension L=F that contains a
Galois extension of F of even degree is excellent.

Excellent extensions of arbitrary �elds are much more scarce. Of course,
extensions over which every anisotropic form remains anisotropic are excellent;
this applies in particular to extensions of odd degree and to purely transcendental
extensions, see [EKM, §29]. At the other extreme, the algebraic closure of a �eld
is an excellent extension because it carries (up to isometry) a single nonzero
anisotropic quadratic form, which is the 1 -dimensional form x2 , de�ned over
the prime sub�eld. A more interesting example is given by separable quadratic
extensions, which are excellent in the following strong sense: if q is an anisotropic
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quadratic form over a �eld F , the anisotropic kernel of the extended form qL

over a separable quadratic extension L=F is q0L for some subform q0 of q , see
[EKM, Cor. 22.12]. By contrast, many types of extensions have been shown to
be non-excellent: see Sivatski [Siv1], [Siv2], [Siv3], [Siv4]. It is therefore quite
remarkable that function �elds of smooth projective conics do have the excellence
property (although not in the strong sense). �is was �rst noticed by Arason [Ara].
As it relies on Knebusch’s Habilitationschrift [Kne] on symmetric bilinear forms,
Arason’s proof requires1 the hypothesis that charF ¤ 2 .

�ree other proofs of the excellence property of function �elds of smooth
conics have been published; they are due to Rost [Ros, Corollary], Parimala–
Sridharan–Suresh [CTS, Lemma 3.1], [PSS, Proposition 2.1], and P�ster [P�,
Prop. 4]. P�ster’s proof is based on the study of quadratic lattices over the ring
of an a�ne open set of the conic, while Rost’s proof uses ingenious manipulations
of quadratic forms that are isotropic over the function �eld. �e proof by Parimala–
Sridharan–Suresh relies, like Arason’s, on vector bundles over the conic, but it
uses the Riemann–Roch theorem instead of Grothendieck’s classi�cation of vector
bundles over the projective line [Gro]. �is idea was also used in an unpublished
proof due to Van Geel [VG].

In all the proofs mentioned above, the characteristic of the base �eld is assumed
to be di�erent from 2 , although Rost’s arguments can be modi�ed to cover the
characteristic 2 case, as was shown by Ho�mann–Laghribi [HL, Cor. 5.7]. One
remarkable feature of the Parimala–Sridharan–Suresh proof in [PSS] is that it
applies not just to quadratic forms, but also to hermitian forms over division
algebras (of characteristic di�erent from 2 ).

Our goal in this paper is to prove the excellence of function �elds of smooth2
projective conics in arbitrary characteristic for hermitian forms and generalized
quadratic forms over division algebras. Our proof is close in spirit to Arason’s
original proof: the idea is to show that the anisotropic kernel of a hermitian or
generalized quadratic form extended to L is the generic �ber of a nondegenerate
hermitian or generalized quadratic form on a vector bundle over the conic. We
then use the classi�cation of these vector bundles to conclude that the anisotropic
kernel is extended from F . Our approach is completely free of any assumption
on the characteristic of the base �eld. �erefore, the case of generalized quadratic
forms requires a separate, more delicate treatment.

1Arason’s proof can readily be extended to symmetric bilinear forms in characteristic 2 , but this
case is uninteresting because anisotropic bilinear forms in characteristic 2 remain anisotropic over the
function �eld of a smooth projective conic by [Lag, Cor. 3.3].

2 In characteristic di�erent from 2 , function �elds of singular (irreducible) conics are purely
transcendental extensions of a quadratic extension of the base �eld, hence they are excellent extensions
of the base �eld. Laghribi communicated to us an example showing that function �elds of singular
conics may fail to be excellent for quadratic forms in characteristic 2 .
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To simplify the discussion, we only consider hermitian forms with respect
to involutions on division algebras that leave the center �xed (involutions of the
�rst kind). �is is su�cient to treat generalized quadratic forms, and the reader
should have no di�culty in verifying that slight modi�cations of our arguments
are su�cient to extend our results to the case of involutions of the second kind.
Another restriction is to quadratic forms that are nonsingular (which means that
their polar form is nonsingular; see the de�nition in §1.4). �us, the connected
component of the automorphism groups of the forms we consider are the simple
linear algebraic groups of adjoint type C or D , or of type B if the characteristic is
di�erent from 2 . If the characteristic is 2 , the automorphism groups of hermitian
forms may be of type C or may not be semisimple, depending on the type of the
involution. Note that simple linear algebraic groups of type B are de�ned from
quadratic forms over �elds, and for these forms the excellence property of function
�elds of smooth conics in characteristic 2 is proved in Ho�mann–Laghribi [HL].

�e excellence property can also be approached from the viewpoint of linear
algebraic groups: the anisotropic kernel of a semisimple linear algebraic group
is the derived subgroup of the centralizer of a maximal split torus. If G is
the special orthogonal group of a generalized quadratic form q , the anisotropic
kernel of G is the special orthogonal group of the kernel of q . �us, from
�eorem 3.4 below, it follows that for every simple linear algebraic group G of
type D de�ned over a �eld F , the anisotropic kernel of G over the function
�eld of a smooth conic over F is de�ned over F . �is result actually holds for
all semisimple linear algebraic groups, as was shown by Harder [Har, Satz 3.5].3
Conversely, because the orthogonal group determines the quadratic form up to a
scalar factor, Harder’s result for groups of type D yields an alternative way to
derive our �eorem 3.4 from Proposition 3.1.

�e paper is organized as follows: In §1 we revisit the notion of quadratic
form as de�ned by Tits in [Tit]. Our goal is to rephrase Tits’s de�nition in terms
of modules over central simple algebras instead of vector spaces over division
algebras. We thus obtain a notion that is better behaved under scalar extension.
Hermitian forms and generalized quadratic forms on vector bundles over a conic
are discussed in §2, and the proof of the excellence result is given in §3. To
make our exposition as elementary as possible, we thoroughly discuss in an
appendix the classi�cation of vector bundles over smooth projective conics, us-
ing a representation of these bundles as triples consisting of their generic �ber,
their stalk at a closed point 1 , and their section over the complement of 1 .
�us, we give an elementary proof of Grothendieck’s classi�cation theorem, and

3We are indebted to Chernousov for pointing out this reference.
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correct Arason’s misleading statement4 suggesting that vector bundles over a conic
decompose into line bundles.

We use the following notation throughout: for every linear endomorphism �

such that �2 D Id , we let

Sym.�/ D ker.Id��/ and Alt.�/ D im.Id��/:

�us, Alt.�/ � Sym.��/ always, and Alt.�/ D Sym.��/ in characteristic di�erent
from 2 .

1. Quadratic forms

1.1. �e de�nition. Let A be a central simple algebra over an arbitrary �eld
F , and let � be an F -linear involution on A , i.e., an F -linear map � W A! A

such that �2 D Id and �.ab/ D �.b/�.a/ for all a , b 2 A . Let M be a �nitely
generated right A -module. �e dual module M � D HomA.M;A/ has a left A -
module structure given by .af /.x/ D af .x/ for a 2 A , f 2 M � , and x 2 M .
Let �M � be the right A -module de�ned by

�M � D ¹�f j f 2M �º

with the operations

�f C �g D � .f C g/ and �f � a D � .�.a/f /

for a 2 A and f , g 2 M � . Identifying �f with the map x 7! �
�
f .x/

�
, we

may also consider �M � as the A -module of additive maps g W M ! A such
that g.xa/ D �.a/g.x/ for x 2 M and a 2 A , i.e., �M � is the A -module of
� -semilinear maps from M to A .

Let B.M/ be the F -space of sesquilinear forms M �M ! A . Mapping
�f ˝ g to the sesquilinear form .x; y/ 7! �.f .x//g.y/ de�nes a canonical
isomorphism

�M � ˝AM
�
D B.M/:

Let sw W B.M/! B.M/ be the F -linear map taking a form b to the form sw.b/
de�ned by

sw.b/.x; y/ D �
�
b.y; x/

�
:

�us, sw.�f ˝ g/ D �g ˝ f for f , g 2M � .

4 “Now the proof of the �rst sentence of [Kne, �eorem 13.2.2] (and the result of [Gro] which is
cited there) only depends on the projective line being a complete regular irreducible curve of genus
zero” [Ara].
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De�nition 1.1. Recall from [KMRT, (2.5)] that the involution � is said to be
orthogonal (resp. symplectic) if its scalar extension to any splitting �eld of A
is the adjoint involution of a bilinear form that is symmetric and not alternating
(resp. that is alternating). �e space of (generalized) quadratic forms on M is
the factor space

Q.M/ D B.M/=Alt." sw/;

where " D 1 if � is orthogonal and " D �1 if � is symplectic. For ı D ˙1 ,
the space of ı -hermitian forms on M is

Hı.M/ D Sym.ı sw/ � B.M/:

To relate this de�nition of quadratic form to the one given by Tits in [Tit],
note that B.M/ is a free right module of rank 1 over EndAM , for the scalar
multiplication de�ned as follows: for b 2 B.M/ and ' 2 EndAM ,

.b � '/.x; y/ D b.x; '.y// for x , y 2M .

�e pair .B.M/; " sw/ is a space of bilinear forms for EndAM , in the sense of
[Tit, 2.1]. With this choice of space of bilinear forms, the elements of Q.M/ as
de�ned above are exactly the quadratic forms de�ned in [Tit, 2.2].

By de�nition, the vector spaces H".M/ and Q.M/ �t into the exact sequence

0! H".M/! B.M/
Id�" sw
�����! B.M/! Q.M/! 0:

Since .IdC" sw/ ı .Id�" sw/ D 0 , there is a canonical “hermitianization” map

ˇ W Q.M/! H".M/;

which associates to each quadratic form q D bCAlt." sw/ the " -hermitian form

ˇ.q/ D b C " sw.b/:

�us, by de�nition the form ˇ.q/ actually lies in Alt.�" sw/ � H".M/ .

1.2. Relation with submodules. For every submodule N � M , the following
exact sequence splits:

(1.1) 0! N !M !M=N ! 0:

It yields by duality the split exact sequence

0! .M=N/� !M � ! N � ! 0;

which allows us to identify .M=N/� with the submodule of linear forms in M �

that vanish on N . We thus obtain a canonical split injective map
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B.M=N/ D � .M=N/� ˝A .M=N/
�
!

�M � ˝AM
�
D B.M/

and a canonical split surjective map

B.M/ D �M � ˝AM
�
!

�N � ˝A N
�
D B.N/:

�ese canonical maps commute with Id�ı sw for ı D ˙1 , hence they induce
canonical maps

Hı.M=N/! Hı.M/; Hı.M/! Hı.N / for ı D ˙1;

and
Q.M=N/! Q.M/; Q.M/! Q.N/:

Remark 1.2. For a �xed splitting of the exact sequence (1.1), the corresponding
splittings of the injection B.M=N/! B.M/ and the surjection B.M/! B.N/

also commute with Id�" sw , hence the map Q.M=N/! Q.M/ is split injective
and Q.M/! Q.N/ is split surjective.

Proposition 1.3. �e canonical embedding B.M=N/! B.M/ identi�es B.M=N/
with the space of sesquilinear forms b 2 B.M/ such that b.x; y/ D b.y; x/ D 0
for all x 2M and y 2 N .

Proof. It is clear from the de�nition that the sesquilinear forms in the image
of B.M=N/ vanish in �M � ˝A N

� and in �N � ˝AM
� , hence they satisfy the

stated property.
For the converse, we use the canonical isomorphism

(1.2) �M � ˝AM
�
D HomA.M; �M �/

mapping �f ˝g to the homomorphism x 7! �f �g.x/ . �is isomorphism identi�es
each sesquilinear form b 2 B.M/ with the homomorphism bb W M ! �M �

mapping x 2 M to b.�; x/ . If b.x; y/ D b.y; x/ D 0 for x 2 M and y 2 N ,
then the image of bb lies in � .M=N/� and its kernel contains N . �erefore,bb induces a homomorphism M=N ! � .M=N/� , and b is the image of the
corresponding sesquilinear form in B.M=N/ .

1.3. Sublagrangian reduction of hermitian forms. Let ı D ˙1 . For h 2

Hı.M/ and N �M any A -submodule, we de�ne the orthogonal N? of N by

N? D ¹x 2M j h.x; y/ D 0 for all y 2 N º:

�e submodule N is said to be a sublagrangian, or a totally isotropic submodule
of M , if N � N? or, equivalently, if h lies in the kernel of the restriction
map Hı.M/ ! Hı.N / . �e form h is said to be isotropic if M contains a
nonzero sublagrangian. It is said to be nonsingular if the corresponding mapbh W M ! �M � under the isomorphism (1.2) is bijective.
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Proposition 1.4. Let h 2 Hı.M/ and let N � M be a sublagrangian.
�ere is a unique form h0 2 Hı.N

?=N/ that maps under the canonical map
Hı.N

?=N/! Hı.N
?/ to the restriction of h to N? . �e form h0 is nonsingular

if h is nonsingular; it is anisotropic if N is a maximal sublagrangian.

Proof. �e existence of h0 readily follows from Proposition 1.3. �e form h0 is
unique because the map B.N?=N/! B.N?/ is injective.

Now, assume h is nonsingular. Since bh carries N? to � .M=N/� , there is
a commutative diagram with exact rows:

0 // N? //

'

��

M //

bh
��

M=N? //

 

��

0

0 // � .M=N/� // �M � // �N � // 0

�e map  is injective by de�nition of N? , and bh is bijective because h is
nonsingular, hence ' is an isomorphism. By duality, ' yields an isomorphism
�'� W M=N ! � .N?/� . Composing ' with the inclusion � .M=N/� � �M � and
�'� with the canonical map M ! M=N , we obtain maps '0 , '00 that �t into
the following diagram with exact rows, where i is the inclusion:

0 // N //

i
��

M
'00 //

bh
��

� .N?/� //

� i�

��

0

0 // N?
'0 // �M � // �N � // 0

Since bh is bijective, the Snake Lemma yields an isomorphism � .N?=N/�
�
!

N?=N . Computation shows that the inverse of this isomorphism, viewed in
B.N?=N/ , is sw.h0/ D ıh0 . �erefore, h0 is nonsingular.

If L � N?=N is a sublagrangian for h0 , then the inverse image L0 � N? of
L under the canonical map N? ! N?=N is a sublagrangian for h . �erefore,
h0 is anisotropic if N is a maximal sublagrangian.

When N is a maximal sublagrangian, the anisotropic ı -hermitian form h0

is called an anisotropic kernel of h . As for quadratic forms (see Proposition 1.6
below), the anisotropic kernel of a ı -hermitian form is uniquely determined up
to isometry.
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1.4. Sublagrangian reduction of quadratic forms. We say that a quadratic form
q 2 Q.M/ is nonsingular if its hermitianized form ˇ.q/ is nonsingular.5 �e form
q is said to be isotropic if there exists a nonzero submodule N � M such that
q lies in the kernel of the restriction map Q.M/! Q.N/ ; the submodule N is
then said to be totally isotropic for q . Clearly, every totally isotropic submodule
N for q is also totally isotropic for the hermitianized form ˇ.q/ , hence it lies
in its orthogonal N? for ˇ.q/ .

Proposition 1.5. Let q 2 Q.M/ and let N �M be a totally isotropic submodule.
�ere is a unique form q0 2 Q.N

?=N/ that maps under the canonical map
Q.N?=N/! Q.N?/ to the restriction of q to N? . �e form q0 is nonsingular
if q is nonsingular; it is anisotropic if N is a maximal totally isotropic submodule.

Proof. Let b 2 B.M/ be a sesquilinear form such that q D b CAlt." sw/ . Since
N is totally isotropic for q , there is a form c 2 B.M/ such that

(1.3) b.x; y/ D c.x; y/ � "�
�
c.y; x/

�
for all x , y 2 N .

Because N?=N is a projective module, there is a homomorphism � W N? ! N

that splits the inclusion N ,! N? . De�ne a sesquilinear form b1 2 B.N
?/ by

b1.x; y/ D b
�
x; �.y/

�
� c

�
�.x/; �.y/

�
for x , y 2 N? .

For x 2 N and y 2 N? , we have

b.x; y/ � b1.x; y/C "�
�
b1.y; x/

�
D b.x; y/ � b

�
x; �.y/

�
C c

�
�.x/; �.y/

�
(1.4)

C "�
�
b.y; �.x// � c.�.y/; �.x//

�
:

Since �.x/ D x , (1.3) yields

b
�
x; �.y/

�
D c

�
�.x/; �.y/

�
� "�

�
c.�.y/; �.x//

�
;

hence three terms cancel on the right side of (1.4), and we have

(1.5) b.x; y/�b1.x; y/C "�
�
b1.y; x/

�
D b.x; y/C "�

�
b.y; x/

�
D ˇ.q/.x; y/ D 0:

Similarly, for x 2 N and y 2 N? we have

b.y; x/ D �"�
�
b.x; y/

�
hence (1.5) yields

b.y; x/ � b1.y; x/C "�
�
b1.x; y/

�
D 0:

5 In [Tit], Tits de�nes non-degenerate quadratic forms by a less stringent condition.
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�erefore, letting bjN? denote the restriction of b to N? , we may apply
Proposition 1.3 to get a sesquilinear form b0 2 B.N?=N/ that maps to
bjN? � .Id�" sw/.b1/ in B.N?/ . �en the quadratic form q0 D b0CAlt." sw/ 2
Q.N?=N/ maps to qjN? in Q.N?/ . Uniqueness of the form q0 is clear since
the map Q.N?=N/! Q.N?/ is injective (see Remark 1.2).

Since N is totally isotropic for the hermitianized form ˇ.q/ 2 H".M/ ,
Proposition 1.4 yields an " -hermitian form ˇ.q/0 2 H".N

?=N/ that maps to
ˇ.q/jN? under the canonical map H".N

?=N/ ! H".N
?/ . Since ˇ.q/jN? D

ˇ.qjN?/ , we have ˇ.q/0 D ˇ.q0/ . If q is nonsingular, then by de�nition ˇ.q/ is
nonsingular. �en ˇ.q/0 is nonsingular by Proposition 1.4, hence q0 is nonsingular.

If L � N?=N is a totally isotropic submodule for q0 , then the inverse image
L0 � N? of L under the canonical map N? ! N?=N is totally isotropic for q .
�erefore, q0 is anisotropic if N is a maximal totally isotropic submodule.

When N is a maximal totally isotropic submodule of M , the quadratic form
q0 is called an anisotropic kernel of q . (Compare the de�nition of anisotropic
kernel of a ı -hermitian form at the end of §1.3.) �e following result shows
that, up to isometry, the anisotropic kernel does not depend on the choice of the
maximal totally isotropic submodule:

Proposition 1.6. All the maximal totally isotropic submodules of M (for a given
quadratic form q ) are isomorphic. If the form is nonsingular, then for any two
isomorphic totally isotropic submodules N , N 0 � M there is an isometry ' of
.M; q/ such that '.N / D N 0 .

Proof. See Tits [Tit, Prop. 1 and 2].

2. Quadratic forms on A -module bundles over a conic

�roughout this section, C is a smooth projective conic over an arbitrary
�eld F , which we view as the Severi–Brauer variety of a quaternion F -algebra
Q . We assume C has no rational point, which amounts to saying that Q is a
division algebra.

2.1. Vector bundles over C . We recall from Roberts [Rob, §2] or Biswas–
Nagaraj [BN]6 the description of vector bundles over C . (See the appendix
for an elementary approach to vector bundles over C .) Let K be a separable
quadratic extension of F that splits Q . Let CK D C � SpecK be the conic over
K obtained by base change, and let f W CK ! C be the projection. Since CK

6We are grateful to Van Geel for pointing out this reference.
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has a rational point, we have CK ' P1K . By a theorem of Grothendieck, every
vector bundle on CK is a direct sum of vector bundles OP1

K
.n/ of rank 1 (see

�eorem A.6). �e vector bundle f�
�
OP1

K
.n/
�
is isomorphic to OC .n/˚OC .n/

if n is even; it is an indecomposable vector bundle of rank 2 and degree 2n if
n is odd [Rob, �eorem 1] (see Corollary A.14). Letting

IC .2n/ D f�
�
OP1

K
.n/
�

for n odd;

it follows that every vector bundle over C decomposes in a unique way (up to
isomorphism) as a direct sum of vector bundles of the type OC .n/ with n even
and IC .2n/ with n odd (see �eorem A.18 or [BN, �eorem 4.1]). Moreover,
we have

(2.1) End
�
IC .2n/

�
' Q for all odd n .

(See (A.18).) Using the property that f� ıf �.E/ ' E˚E for every vector bundle
E over C , and that f � ı f�.E 0/ ' E 0 ˚ E 0 for every vector bundle E 0 over P1K
(see Proposition A.12), it is easy to see that

IC .2n/˝ IC .2m/ ' OC .nCm/˚4 for all odd n, m, and(2.2)
IC .2n/˝OC .m/ ' IC

�
2.nCm/

�
for all n odd and m even.(2.3)

For each vector bundle E over C we write E_ D Hom.E ;OC / for
the dual vector bundle. Since for n even OC .n/_ is a vector bundle of
rank 1 and degree �n , we have OC .n/_ ' OC .�n/ for n even. Similarly,
IC .2n/_ ' IC .�2n/ for n odd (see Corollary A.22).

2.2. A -module bundles. Let A be a central simple algebra over F , and let E
be a vector bundle over C . A structure of right (resp. left) A -module bundle on E
is de�ned by a �xed F -algebra homomorphism Aop ! End E (resp. A! End E ).
Morphisms of A -module bundles are morphisms of vector bundles that preserve
the action of A , hence for every A -module bundle E the F -algebra EndA E
of A -module bundle endomorphisms is a subalgebra of the �nite-dimensional
F -algebra End E of vector bundle endomorphisms. �erefore dimF EndA E is
�nite, and by the same argument as for vector bundles we have a Krull–Schmidt
theorem for A -module bundles: every A -module bundle over C decomposes
into a direct sum of indecomposable A -module bundles, and this decomposition
is unique up to isomorphism. In this subsection, we obtain information on the
indecomposable A -module bundles. We discuss only right A -module bundles;
the case of left A -module bundles is similar.

For every vector bundle E over C and every right A -module M of �nite
type, the tensor product over F yields a right A -module bundle E ˝F M with

(2.4) EndA.E ˝F M/ D .End E/˝F .EndAM/:
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Proposition 2.1. Let E be a right A -module bundle over C , and let E\ be the
vector bundle over C obtained from E by forgetting the A -module structure.
�en E is a direct summand of E\ ˝F A .

Proof. Recall from [KMRT, (3.5)] that A˝F A contains a “Goldman element”
g D

P
ai ˝ bi characterized by the following property, where TrdA denotes the

reduced trace of A : X
aixbi D TrdA.x/ for all x 2 A .

�e element g satis�es .a ˝ 1/ � g D g � .1 ˝ a/ for all a 2 A ; see [KMRT,
(3.6)]. Let u 2 A be such that TrdA.u/ D 1 , hence

P
aiubi D 1 . Since u˝ 1

commutes with 1˝ a for all a 2 A , the element

g0 D g � .u˝ 1/ D
X

aiu˝ bi

also satis�es .a˝ 1/ � g0 D g0 � .1˝ a/ , hence

(2.5)
X

aaiu˝ bi D
X

aiu˝ bia for all a 2 A .

Let R be an arbitrary commutative F -algebra, and let Q be a right R ˝F A -
module. Let also Q\ be the R -module obtained from Q by forgetting the
A -module structure. Because of (2.5), the map Q ! Q\ ˝F A de�ned by
x 7!

P
.xaiu/˝ bi is an R˝F A -module homomorphism. Since

P
aiubi D 1 ,

this homomorphism is injective and split by the multiplication map Q\˝F A! Q .
�is applies in particular to the module of sections of E over any a�ne open
set in C and to the stalk of E at any point of C , and shows that E is a direct
summand of E\ ˝F A .

Corollary 2.2. If E is an indecomposable A -module bundle, then all the
indecomposable vector bundle summands in E\ are isomorphic.

Proof. Let E\ D I1 ˚ � � � ˚ Ir be the decomposition of E\ into indecomposable
vector bundles. �en E\ ˝ A D .I1 ˝ A/˚ � � � ˚ .Ir ˝ A/ is a decomposition of
E\ ˝ A into A -module bundles. Since E is an indecomposable direct summand
of E\ ˝ A , it must be isomorphic to a direct summand of one of the Ii ˝ A .
But .Ii ˝ A/\ ' I˚di , where d D dimA , hence E\ ' I˚mi for some m .

If all the indecomposable direct summands in E\ are isomorphic to I , we say
the indecomposable A -module bundle E is of type I . Given the classi�cation of
indecomposable vector bundles over C in §2.1, we may consider indecomposable
A -module bundles of type OC .n/ for all even n , and of type IC .2n/ for all
odd n . �ey are the indecomposable A -module bundles in the decomposition of
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OC .n/˝F A and IC .2n/˝F A respectively. Since A is a direct sum of simple
A -modules, they also are the indecomposable summands in OC .n/ ˝F M and
IC .2n/˝F M for any simple A -module M .

Proposition 2.3. Let M be a simple A -module.

(i) For n even, OC .n/˝F M is the unique indecomposable A -module bundle
of type OC .n/ up to isomorphism.

(ii) For n odd, there is a unique indecomposable A -module bundle E of type
IC .2n/ up to isomorphism. �is A -module bundle satis�es

IC .2n/˝F M ' E˚` where ` D
2 ind.A/

ind.Q˝F A/
.

Note that ind.Q ˝F A/ may take the value 2 ind.A/ , ind.A/ or 1
2
ind.A/ ,

hence ` D 1 , 2 or 4 .

Proof. (i) By (2.4) we have

EndA.OC .n/˝F M/ D
�
EndOC .n/

�
˝F .EndAM/ D EndAM:

Since M is simple, EndAM is a division algebra, hence OC .n/ ˝F M is
indecomposable.

(ii) By (2.4) and (2.1) we have

EndA.IC .2n/˝F M/ D
�
End IC .2n/

�
˝F .EndAM/ ' Q˝F .EndAM/:

�is algebra is simple; it is isomorphic to M`.D/ for D a division algebra,
hence IC .2n/˝F M decomposes into a direct sum of ` isomorphic A -module
bundles.

2.3. Quadratic and Hermitian forms. We keep the same notation as in the
preceding subsections, and assume A carries an F -linear involution � (i.e., an
involution of the �rst kind). For every right A -module bundle E over C , we
de�ne the dual bundle

E� D HomOC˝A.E ;OC ˝F A/:

�e bundle E� has a natural structure of left A -module bundle. Twisting the
action of A by � , we may also consider the right A -module bundle �E� , and
de�ne the vector bundle

B.E/ D �E� ˝A E�:

As in §1, there is a switch map sw W B.E/ ! B.E/ . �e kernel and cokernel of
Id˙ sw de�ne vector bundles over C . For ı D ˙1 , we let
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Hı.E/ D ker.Id�ı sw/:

Letting " D 1 if � is orthogonal and " D �1 if � is symplectic, we also de�ne

Q.E/ D coker.Id�" sw/:

De�nition 2.4. A sesquilinear form on the right A -module bundle E is a global
section of B.E/ . Likewise, a ı -hermitian form (resp. a quadratic form) on E is
a global section of Hı.E/ (resp. Q.E/ ). We write

B.E/ D �
�
B.E/

�
; Hı.E/ D �

�
Hı.E/

�
; Q.E/ D �

�
Q.E/

�
for the F -vector spaces of sesquilinear, ı -hermitian, and quadratic forms
respectively.

Proposition 2.5. (i) If E is an indecomposable A -module bundle of type OC .n/
with n even, n > 0 , or of type IC .2n/ with n odd, n > 0 , then for ı D ˙1

B.E/ D Hı.E/ D Q.E/ D ¹0º:

(i) If E D OC .0/˝F M for some right A -module M , then for ı D ˙1

B.E/ D B.M/; Hı.E/ D Hı.M/; Q.E/ D Q.M/:

Proof. (i) It su�ces to prove B.E/ D ¹0º . If E ' OC .n/˝F M for some simple
A -module M , then E� ' OC .n/_ ˝F M � , hence

B.E/ ' OC .n/_ ˝F OC .n/_ ˝F �M � ˝AM
�
' OC .�2n/˝F B.M/:

Since �
�
OC .�2n/

�
D ¹0º for n > 0 (see (A.10)), it follows that B.E/ D ¹0º .

If E is of type IC .2n/ with n odd, then by Proposition 2.3 we have

IC .2n/˝F M ' E˚` with ` D 1 , 2 or 4 ,

hence
B.IC .2n/˝F M/ ' B.E/˚`2 :

�erefore, it su�ces to prove B.IC .2n/˝F M/ D ¹0º for n odd, n > 0 . As in
the previous case we have

B.IC .2n/˝F M/ ' IC .2n/_ ˝F IC .2n/_ ˝F �M � ˝AM
�

' IC .�2n/˝F IC .�2n/˝F B.M/:

By (2.2) it follows that

B.IC .2n/˝F M/ ' OC .�2n/˚4 ˝F B.M/:
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Since �
�
OC .�2n/

�
D ¹0º for n > 0 (see (A.10)), case (i) of the proposition is

proved.

(ii) For E D OC .0/˝F M we have

B.E/ D OC .0/_ ˝OC .0/_ ˝F �M � ˝AM
�
D OC .0/˝F B.M/:

Since �
�
OC .0/

�
D F , it follows that B.E/ D B.M/ , hence also Hı.E/ D Hı.M/

and Q.E/ D Q.M/ .

�e property in (ii) is expressed by saying that sesquilinear, hermitian, and
quadratic forms on OC .0/˝M are extended from A .

We de�ne the degree of an A -module bundle E as the degree of the underlying
vector bundle E\ .

�eorem 2.6. Let E be a right A -module bundle with deg E D 0 . If E carries
a hermitian or quadratic form that is anisotropic on the generic �ber then
E D OC .0/˝N for some right A -module N .

Proof. Consider the decomposition of E into a direct sum of indecomposable
A -module bundles. If any of the direct summand is of type OC .n/ or IC .2n/
with n > 0 , then Proposition 2.5(i) shows that the restriction of any hermitian
or quadratic form on E to this summand must be 0 . �erefore, if E carries an
anisotropic hermitian or quadratic form, then all the summands must be of type
OC .n/ with n � 0 or IC .2n/ with n < 0 . But the degree of the indecomposable
A -module bundles of type OC .n/ or IC .2n/ with n < 0 is strictly negative.
Since deg E D 0 , all the summands are of type OC .0/ , hence by Proposition 2.3(i)
they are isomorphic to OC .0/˝F M for M a simple right A -module. �erefore,

E ' .OC .0/˝M1/˚ � � � ˚ .OC .0/˝Mn/ D OC .0/˝ .M1 ˚ � � � ˚Mn/:

Corollary 2.7. If a right A -module bundle E with deg E D 0 carries an
anisotropic hermitian or quadratic form, then this form is extended from A .

Proof. �is readily follows from Proposition 2.5(ii) and �eorem 2.6.

We complete this section by discussing one case where the condition deg E D 0
is necessarily satis�ed.

As for modules (see (1.2)), each ı -hermitian form h 2 Hı.E/ on a right
A -module bundle E yields a morphism of A -module bundlesbh W E ! �E�:
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De�nition 2.8. �e hermitian form h on E is said to be nonsingular if the
morphism bh is an isomorphism.

Proposition 2.9. If a right A -module bundle E carries a nonsingular ı -hermitian
form, then deg E D 0 .

Proof. We claim that deg �E� D � deg E ; therefore deg E D 0 when E ' �E� . It
su�ces to prove the claim for E an indecomposable A -module bundle, or indeed
by Proposition 2.3, for E of the form OC .n/˝F M with n even or IC .2n/˝F M
with n odd. We have

� .OC .n/˝F M/� D OC .n/_ ˝F �M � ' OC .�n/˝F �M �

and
� .IC .2n/˝F M/� D IC .2n/_ ˝F �M � ' IC .�2n/˝F �M �:

�e claim follows.

3. Excellence

We use the same notation as in the preceding sections, and let L denote the
function �eld of the smooth projective conic C over the arbitrary �eld F . In this
section, we prove that L is excellent for quadratic forms and hermitian forms on
right A -modules.

3.1. Hermitian forms. Let ı D ˙1 , and let h be a ı -hermitian form on a
�nitely generated right A -module M . Extending scalars to L , we obtain a
central simple L -algebra AL D L ˝F A , a right AL -module ML D L ˝F M ,
and a ı -hermitian form hL on ML . Scalar extension also yields the right A -
module bundle MC D OC .0/ ˝F M over C , with the ı -hermitian form hC

extended from h .
For any AL -submodule N � ML , we let N denote the intersection of the

constant sheaf N on C with MC . �is is a vector bundle with stack

NP D N \ .OP ˝F M/ at each point P of C .

Following the elementary approach to vector bundles developed in the appendix,
the A -module bundle N is de�ned as follows: choose a closed point 1D SpecK
on C for some separable quadratic extension K of F , let U D C n ¹1º , and
de�ne N D .N;NU ; N1/ where

NU D N \ .OU ˝F M/ and N1 D N \ .O1 ˝F M/:
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�e orthogonal of NU in OU ˝F M for the form extended from h is
N? \ .OU ˝F M/ , and likewise the orthogonal of N1 in O1 ˝F M is
N? \ .O1 ˝F M/ , hence the orthogonal N? of N in MC is the A -module
bundle

N? D
�
N?; N? \ .OU ˝F M/;N? \ .O1 ˝F M/

�
:

From here on, we assume N � N? , hence N � N? and we may consider the
quotient A -module bundle N?=N . It carries a ı -hermitian form h0 obtained by
sublagrangian reduction, see Proposition 1.4.

For the excellence proof, the following result is key:

Proposition 3.1. If h is nonsingular, then the form h0 on N?=N is nonsingular.

�e proof uses the following lemma:

Lemma 3.2. Let R be an F -algebra that is a Dedekind ring. Every �nitely
generated right .R˝F A/ -module that is torsion-free as an R -module is projective.

Proof. Let Q be a �nitely generated right .R ˝F A/ -module, and let Q\ be
the R -module obtained from Q by forgetting the A -module structure. Recall
from the proof of Proposition 2.1 that Q is a direct summand of Q\˝F A . �e
R -module Q\ is projective because it is �nitely generated and torsion-free, hence
Q\ ˝F A is a projective .R˝F A/ -module. �e lemma follows.

Proof of Proposition 3.1. Assume h is nonsingular. Proposition 1.4 shows that
the form h0 is nonsingular on the generic �ber N?=N of N?=N . We show
that it is nonsingular on the stalk at each closed point of C .

Fix some closed point P of C , and let MP D OP˝FM and AP D OP˝F A .
�e right AP -module MP =NP is �nitely generated and torsion-free as an OP -
module, hence it is projective by Lemma 3.2, and the following exact sequence
splits:

0! NP !MP !MP =NP ! 0:

Lemma 3.2 also applies to show N?P =NP and MP =NP are projective AP -
modules. On the other hand, the map bh P D Id˝bh WMP !

�M�
P is bijective

because h is nonsingular. Substituting MP for M and NP for N in the proof
of Proposition 1.4, we see that the arguments in that proof establish that the
induced map N?P =NP !

� .N?P =NP /
� is bijective.

�e excellence of L for hermitian forms readily follows:

�eorem 3.3. Let h be a nonsingular ı -hermitian form .ı D ˙1/ on a �nitely
generated right A -module. �e anisotropic kernel of hL is extended from A .
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Proof. We apply the discussion above with N � ML a maximal sublagrangian.
�e induced ı -hermitian form h0 on N?=N is anisotropic by Proposition 1.4,
and it is the generic �ber of a nonsingular ı -hermitian form on the A -module
bundle N?=N by Proposition 3.1. Proposition 2.9 yields deg.N?=N / D 0 , hence
Corollary 2.7 shows that h0 is extended from A .

3.2. Quadratic forms. We use the same notation as in §3.1: M is a �nitely
generated right A -module and MC D OC .0/˝FM is the right A -module bundle
obtained from M by scalar extension, with generic �ber ML . We now consider
a nonsingular quadratic form q on M , and the extended quadratic form qC

on MC , with generic �ber qL . Let N � ML be a maximal totally isotropic
subspace for qL . �is subspace is totally isotropic (but maybe not a maximal
sublagrangian) for the hermitianized form ˇ.qL/ , hence it lies in its orthogonal
N? for ˇ.qL/ . By Proposition 1.5, qL induces a nonsingular quadratic form q0

on N?=N , which is the anisotropic kernel of qL . To prove that L is excellent,
we need to show that q0 is extended from A .

�e proof follows the same pattern as for �eorem 3.3. We consider the
A -module bundles N , N? , and N?=N as in §3.1. As observed in the proof
of Proposition 3.1, for each closed point P of C the AP -modules MP =NP ,
MP =N?P , and N?P =NP are projective. Substituting MP for M and NP for
N in the proof of Proposition 1.5, we see that the form q0 is the generic �ber
of a nonsingular quadratic form on N?P =NP . We have deg.N?=N / D 0 by
Proposition 2.9, and since q0 is anisotropic on N?=N it is extended from A by
Corollary 2.7. We have thus proved:

�eorem 3.4. Let q be a nonsingular quadratic form on a �nitely generated
right A -module. �e anisotropic kernel of qL is extended from A .

Appendix: Vector bundles over conics

We give in this appendix an elementary proof of the classi�cation of vector
bundles over conics used in §2. �e elementary character of our approach is
based on the representation of vector bundles over conics or over the projective
line as triples consisting of the generic �ber, the module of sections over an a�ne
open set, and the stalks at the complement, which consists in one or two closed
points; see §A.2 and §A.3.

A.1. Matrices. Let K be an arbitrary �eld and let u be an indeterminate on
K . Let w0 and w1 be respectively the u -adic and the u�1 -adic valuations on
the �eld K.u/ (with value group Z ). Consider the following subrings of K.u/ :
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OV D KŒu; u�1�; OS D ¹x 2 K.u/ j w0.x/ � 0 and w1.x/ � 0º:

�e following theorem is equivalent to Grothendieck’s classi�cation of vector
bundles over the projective line [Gro], as we will see in §A.2. (See [HM]
for an elementary proof of another statement on matrices that is equivalent to
Grothendieck’s theorem.)

�eorem A.1. For every matrix g 2 GLn.K.u// there exist matrices p 2 GLn.OS /
and q 2 GLn.OV / such that

pgq D diag
�
.u � 1/k1 ; : : : ; .u � 1/kn

�
for some k1 , . . . , kn 2 Z :

Proof. �e case n D 1 is easy: using unique factorization in KŒu� , we may factor
every element in K.u/� as g D p � .u � 1/k � u˛ where w0.p/ D w1.p/ D 0 ,
hence p 2 O�S . �e rest of the proof is by induction on n . In view of the n D 1
case, it su�ces to show that we may �nd p 2 GLn.OS / , q 2 GLn.OV / such
that p � g � q is diagonal. Since OV is a principal ideal domain, we may �nd a
matrix q1 2 GLn.OV / such that

gq1 D

0BBBB@
a1 0 � � � 0

�

::: g1

�

1CCCCA
where a1 is the gcd of the entries in the �rst row of g . By induction, we may
assume the theorem holds for g1 and thus �nd p2 2 GLn.OS / , q2 2 GLn.OV /
such that

p2gq1q2 D

0BBBBBB@
a1 0 0 � � � 0

b2 a2 0 � � � 0

b3 0 a3 � � � 0
:::

:::
:::

: : :
:::

bn 0 0 � � � an

1CCCCCCA
for some a2 , . . . , an 2 K.u/� and some b2 , . . . , bn 2 K.u/ . To complete the
proof, it now su�ces to apply .n � 1/ times the following lemma:

Lemma A.2. Let a , b , c 2 K.u/ with a , c ¤ 0 . �ere exists p 2 GL2.OS / ,
q 2 GL2.OV / such that the matrix

p �

 
a 0

b c

!
� q

is diagonal.
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�e proof uses the following approximation property:

Proposition A.3. For every f 2 K.u/� , there exists � 2 OV such that
w0.f � �/ � 0 and w1.f � �/ > 0 .

Proof. We �rst show, by descending induction on w0.f / , that there exists
�0 2 OV such that w0.f � �0/ � 0 : if w0.f / � 0 we may take �0 D 0 .
Otherwise, let f D ab�1u˛ where a , b 2 F Œu� are not divisible by u . For
� D a.0/b.0/�1u˛ 2 OV we have

w0.f � �/ > ˛ D w0.f /;

hence induction yields �0 2 OV such that w0
�
.f � �/ � �0

�
� 0 , and we may

take �0 D �C �0 .
Fix �0 2 OV such that w0.f � �0/ � 0 . If w1.f � �0/ > 0 we are done.

Otherwise, let
f � �0 D

anu
n C � � � C a0

bmum C � � � C b0

with an , . . . , a0 , bm , . . . , b0 2 K , an , bm ¤ 0 , so that w1.f ��0/ D m�n � 0 .
Let �1 D anb�1m un�m 2 F Œu� . We have

w1
�
.f � �0/ � �1

�
> m � n D w1.f � �0/:

Again, arguing by induction on w1.f � �0/ , we may �nd �2 2 F Œu� such that

w1
�
.f � �0/ � �2

�
> 0:

Note that w0.�2/ � 0 since �2 2 F Œu� . �erefore,

w0
�
.f � �0/ � �2

�
� min

�
w0.f � �0/; w0.�2/

�
� 0;

so we may choose � D �0 C �2 .

Proof of Lemma A.2. For f 2 K.u/� , let w.f / D w0.f /C w1.f / . Note that
w is not a valuation, but it is multiplicative and w.u/ D 0 . We shall argue by
induction on w.a/ � w.c/ 2 Z ; but �rst note that by multiplying

�
a 0
b c

�
on the

right by
�
1 0
0 u˛

�
for ˛ D w0.a/ � w0.c/ , we may assume w0.a/ D w0.c/ . By

Proposition A.3, there exists � 2 OV such that

w0.bc
�1
� �/ � 0 and w1.bc

�1
� �/ > 0:

We then have w0.b��c/ � w0.c/ D w0.a/ and w1.b��c/ > w1.c/ . Multiplying�
a 0
b c

�
on the right by

�
1 0
�� 1

�
yields 

a 0

b c

!
�

 
1 0

�� 1

!
D

 
a 0

b � �c c

!
:
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�us, we may substitute b � �c for b and thus assume

(A.1) w0.b/ � w0.c/ D w0.a/ and w1.b/ > w1.c/:

If w1.b/ � w1.a/ , then a�1b 2 OS and the lemma follows from the equation

(A.2)
 

1 0

�a�1b 1

!
�

 
a 0

b c

!
D

 
a 0

0 c

!
:

We now start our induction on w.a/ � w.c/ . If w.a/ � w.c/ � 0 , then since
w0.a/ D w0.c/ we have w1.a/ � w1.c/ . By (A.1) it follows that w1.b/ >
w1.a/ and we are done by (A.2). If w.a/ � w.c/ > 0 but w1.b/ � w1.a/ ,
we may also conclude by (A.2). For the rest of the proof, we may thus assume
w1.a/ > w1.b/ > w1.c/ . If w0.b/ > w0.a/ , then in view of the equation 

1 0

1 1

!
�

 
a 0

b c

!
D

 
a 0

aC b c

!
we may substitute aC b for b . In that case, we have

w0.aC b/ D min
�
w0.a/; w0.b/

�
D w0.a/

and
w1.aC b/ D min

�
w1.a/; w1.b/

�
D w1.b/:

�us, in all cases we may assume

w0.b/ D w0.a/ D w0.c/ and w1.a/ > w1.b/ > w1.c/:

�en ab�1 2 OS . Consider 
1 �ab�1

0 1

!
�

 
a 0

b c

!
�

 
0 1

1 0

!
D

 
�ab�1c 0

c b

!
:

We have

w.�ab�1c/ � w.b/ D w.a/C w.c/ � 2w.b/ D w1.a/C w1.c/ � 2w1.b/:

Since w1.b/ > w1.c/ we have

w1.a/C w1.c/ � 2w1.b/ < w1.a/ � w1.c/:

But w.a/ � w.c/ D w1.a/ � w1.c/ , hence w.�ab�1c/ � w.b/ < w.a/ � w.c/ .
By induction, the lemma holds for

�
�ab�1c 0

c b

�
, hence also for

�
a 0
b c

�
.
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A.2. Vector bundles over P 1
K
. We use the same notation as in §A.1.

De�nition A.4. A vector bundle over P1K is a triple E D .E;EV ; ES / consisting
of a �nite-dimensional K.u/ -vector space E , a �nitely generated OV -module
EV � E , and a �nitely generated OS -module ES � E such that

E D EV ˝OV K.u/ D ES ˝OS K.u/:

�e rank of E is rk E D dimE . �e intersection EV \ES is a K -vector space,
which is called the space of global sections of E . We use the notation

�.E/ D EV \ES :

Since OV and OS are principal ideal domains, the OV - and OS -modules EV
and ES are free. �eir rank is the rank n of E . Let .ei /niD1 (resp. .fi /niD1 ) be
a base of the OV -module EV (resp. the OS -module ES ). Each of these bases
is a K.u/ -base of E , hence we may �nd a matrix g D .gij /

n
i;jD1 2 GLn.K.u//

such that

(A.3) ej D

nX
iD1

figij for j D 1 , . . . , n .

�e degree deg E is de�ned as

deg E D w0.detg/C w1.detg/ 2 Z:

To see that this integer does not depend on the choice of bases, observe that a
change of bases substitutes for the matrix g a matrix g0 of the form g0 D pgq for
some p 2 GLn.OS / and q 2 GLn.OV / . We have detp 2 O�S , hence w0.detp/ D
w1.detp/ D 0 . Likewise, det q 2 O�V D K

�˚uZ , so w0.det q/Cw1.det q/ D 0 ,
and it follows that w0.detg/C w1.detg/ D w0.detg0/C w1.detg0/ .

A morphism of vector bundles .E;EV ; ES / ! .E 0; E 0V ; E
0
S / over P1K is a

K.u/ -linear map ' W E ! E 0 such that '.EV / � E 0V and '.ES / � E
0
S .

Example A.5. Vector bundles of rank 1 . Since OV and OS are principal
ideal domains, every vector bundle of rank 1 is isomorphic to a triple E D
.K.u/; f OV ; gOS / for some f , g 2 K.u/� . Using unique factorization in KŒu�

we may �nd p 2 O�S , k , ˛ 2 Z such that fg�1 D p �.u�1/k �u˛ . Multiplication by
g�1p�1.u � 1/�k is a K.u/ -linear map ' W K.u/ ! K.u/ such that '.f / D u˛

and '.g/ D p�1.u � 1/�k . Since u 2 O�V , it follows that '.f OV / D OV .
Likewise, since p 2 O�S , we have '.gOS / D .u � 1/�kOS . �erefore, ' de�nes
an isomorphism E

�
! .K.u/;OV ; .u � 1/�kOS / . For n 2 Z , we write

OP1
K
.n/ D .K.u/;OV ; .u � 1/nOS /:
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If g 2 K.u/� satis�es w0.g/C w1.g/ D �n , then g � .u � 1/�nu�w0.g/ 2 O�S ,
hence the arguments above yield

(A.4) .K.u/;OV ; gOS / ' .K.u/;OV ; .u � 1/nOS / D OP1
K
.�w0.g/ � w1.g//:

By de�nition of the degree,

degOP1
K
.n/ D w0

�
.u � 1/�n

�
C w1

�
.u � 1/�n

�
D n:

�e vector space of global sections of OP1
K
.n/ is easily determined: by de�nition,

we have

�.OP1
K
.n// D OV \ .u � 1/nOS

D ¹f 2 OV j w0.f / � w0..u � 1/n/; w1.f / � w1..u � 1/n/º:

Since w0.u � 1/ D 0 and w1.u � 1/ D �1 , we have

�.OP1
K
.n// D ¹f 2 KŒu� j degf � nº;

hence

dim�.OP1
K
.n// D

´
0 if n < 0;
1C n if n � 0:

�eorem A.6 (Grothendieck). For every vector bundle E on P1K , there exist
integers k1 , . . . , kn 2 Z such that

E ' OP1
K
.k1/˚ � � � ˚OP1

K
.kn/:

Proof. Let E D .E;EV ; ES / be of rank n . Let .ei /niD1 (resp. .fi /niD1 ) be a base
of the OV -module EV (resp. the OS -module ES ), and let g D .gij /

n
i;jD1 2

GLn.K.u// be the change of base matrix as in (A.3). Slightly abusing the matrix
notation, for (A.3) we write simply

(A.5) .e1; : : : ; en/ D .f1; : : : ; fn/ � g:

�eorem A.1 yields matrices p 2 GLn.OS / and q 2 GLn.OV / such that

(A.6) pgq D diag
�
.u � 1/�k1 ; : : : ; .u � 1/�kn

�
for some k1 , . . . , kn 2 Z .

De�ne f 01 , . . . , f 0n and e01 , . . . , e0n by the equations

.f 01 ; : : : ; f
0
n/ D .f1; : : : ; fn/ � p

�1 and .e01; : : : ; e
0
n/ D .e1; : : : ; en/ � q:

Because p 2 GLn.OS / , the sequence .f 0i /niD1 is a base of ES . Likewise, .e0i /niD1
is a base of EV , and from (A.5) and (A.6) we derive
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.e01; : : : ; e
0
n/ D .f

0
1 ; : : : ; f

0
n/ � diag

�
.u � 1/�k1 ; : : : ; .u � 1/�kn

�
:

�us,

E D

nM
iD1

e0iK.u/; EV D

nM
iD1

e0iOV ; ES D

nM
iD1

e0i .u � 1/
kiOS :

�ese equations mean that the map E ! K.u/˚n that carries each vector to the
n -tuple of its coordinates in the base .e0i /niD1 de�nes an isomorphism of vector
bundles

E
�
! OP1

K
.k1/˚ � � � ˚OP1

K
.kn/:

Corollary A.7. For every vector bundle E on P1K , the K -vector space of global
sections �.E/ is �nite-dimensional. More precisely, if E ' OP1

K
.k1/ ˚ � � � ˚

OP1
K
.kn/ for some k1 , . . . , kn 2 Z , then

dim�.E/ D
nX
iD1

max.1C ki ; 0/ and deg E D
nX
iD1

ki :

Proof. If E D E1 ˚ E2 , then �.E/ D �.E1/ ˚ �.E2/ and deg E D deg E1 C
deg E2 . Since each �.OP1

K
.n// is �nite-dimensional and degOP1

K
.n/ D n (see

Example A.5), the corollary follows.

From the formula for dim�.E/ , it is easily seen by tensoring E with
OP1

K
.k/ for various k 2 Z that the integers k1 , . . . , kn such that E '

OP1
K
.k1/˚ � � � ˚OP1

K
.kn/ are uniquely determined up to permutation.

A.3. Vector bundles over conics. Let L be the function �eld of a smooth
projective conic C over a �eld F . Assume C has no rational point over F , and
let 1 be a point of degree 2 on C with residue �eld K separable over F . Let
v1 be the corresponding discrete valuation on L and O1 be its valuation ring.
Let also OU � L be the a�ne ring of C n ¹1º , which is the intersection of all
the valuation rings of the F -valuations on L other than v1 .

Let CK D C � SpecK be the conic over K obtained by base change, and let
f W CK ! C be the projection. Since CK has a rational point, we have CK ' P1K ,
i.e., the composite �eld KL is a purely transcendental extension of K . We may
�nd u 2 KL such that KL D K.u/ and the two valuations of K.u/ extending
v1 are w0 and w1 , the u -adic and u�1 -adic valuations of K.u/ . �us, using
the notation of §A.2,

OU ˝F K D OV and O1 ˝F K D OS :
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Remark A.8. A concrete description of the rings de�ned above can be obtained by
representing C as the Severi–Brauer variety of a quaternion division algebra Q .
Write V for the 3 -dimensional subspace of trace 0 quaternions. �en q.v/ WD v2
is a quadratic form on V and the conic C is the quadric in the projective
plane P .V / given by the equation q D 0 . Every closed point of degree 2 on
C is determined by an equation ' D 0 for some nonzero linear form ' 2 V � .
If .r; s/ is a base of ker' � V , then the equation .xr C ys/2 D 0 has the
solution x D �q.s/ , y D rs in F.rs/ , hence F.rs/ is the residue �eld of the
corresponding point. Let 1 be the closed point on C determined by a linear form
' such that F.rs/ is a separable quadratic extension of F . Let also t 2 V be a
nonzero vector orthogonal to ker ' for the polar form bq of q . If t 2 ker ' , then
bq.t; t/ D 0 , hence charF D 2 . Moreover, t is a linear combination of r and s ,
and the equations bq.t; r/ D bq.t; s/ D 0 yield bq.r; s/ D 0 . �is is a contradiction
because then the minimal polynomial of rs , which is X2 � bq.r; s/X C q.r/q.s/ ,
is not separable. �erefore, in all cases the choice of 1 guarantees that .r; s; t/
is a base of V . Let .x; y; z/ be the dual base of V � . �en the conic C is given
by the equation

.xr C ys C zt/2 D 0;

and 1 is the point determined by the equation z D 0 . Because t is orthogonal
to r and s , the equation of the conic simpli�es to

.xr C ys/2 C z2t2 D 0:

Let U D C n ¹1º ; then

OU D F
hx
z
;
y

z

i
� F

�x
z
;
y

z

�
D L:

�e equation of the conic shows that y
z
is a root of a quadratic equation over F.x

z
/ ,

hence every element in L has a unique expression of the form f .x
z
/C y

z
g.x
z
/

for some rational functions f , g with coe�cients in F . If v1 is the discrete
valuation of the local ring O1 , then

v1

�x
z

�
D v1

�y
z

�
D �1:

More precisely, for f , g , h polynomials in one variable over F , with h ¤ 0 ,

v1

�f .x
z
/C y

z
g.x
z
/

h.x
z
/

�
D deg h �max.degf; 1C degg/:

We claim that we may take for u the element x
z
rs C y

z
q.s/ . To see this, let �

denote the nontrivial L -automorphism of KL . For u D x
z
rs C y

z
q.s/ we have

�.u/ D x
z
sr C y

z
q.s/ , and from the equation of the conic it follows that

(A.7) u : �.u/ D
q.s/

z2
.xr C ys/2 D �q.s/q.t/ 2 F �:
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�is equation shows that for every valuation w of KL extending v1 we have
w.u/ D �w

�
�.u/

�
. Moreover, from u D x

z
rs C y

z
q.s/ and u � �.u/ D x

z
.rs � sr/

it follows that
w.u/ � min

�
v1

�x
z

�
; v1

�y
z

��
D �1

and
�1 D v1

�x
z

�
� min

�
w.u/; w

�
�.u/

��
:

�erefore, either w.u/ D �w
�
�.u/

�
D 1 , i.e., w D w0 , or w.u/ D �w

�
�.u/

�
D �1 ,

i.e., w D w1 .

�e following result is folklore. (For proofs in characteristic di�erent from 2 ,
see P�ster [P�, Prop. 1] and the references on [P�, p. 260]. Our arguments below
are close to those in Milgram–Ranicki [MR, Lemma 6.7].)

Lemma A.9. �e ring OU is a principal ideal domain.

Proof. Let I � OU be an ideal. Since OV D KŒu; u�1� is a principal ideal
domain, we may �nd f 2 OV such that I ˝F K D f OV . As I ˝F K is
preserved by � , we have f OV D �.f /OV , hence �.f /f �1 2 O�V D K� ˚ uZ .
Let a 2 K� and ˛ 2 Z be such that

(A.8) �.f /f �1 D au˛:

Since NKL=L.�.f /f �1/ D 1 , it follows by (A.7) that

NKL=L.au
˛/ D NK=F .a/

�
�q.s/q.t/

�˛
D 1:

If ˛ is odd, let ˛ D 2ˇ � 1 and a
�
�q.s/q.t/

�ˇ
D b C crs with b , c 2 F . �en

NK=F .b C crs/ D �q.s/q.t/ , hence

.cr C bq.s/�1s/2 C t2 D 0:

�us, the conic C has an F -rational point, a contradiction. �erefore, ˛ is even.
Let ˛ D 2ˇ . �en from (A.7) and (A.8) we have

�.uˇf / � .uˇf /�1 D a
�
�q.s/q.t/

�ˇ
2 K�:

By Hilbert’s �eorem 90, we may �nd b 2 K� such that a
�
�q.s/q.t/

�ˇ
D

b�.b/�1 . �en
�.buˇf / D buˇf 2 L�:

Since buˇ 2 O�V , we have f OV D buˇf OV , hence I D buˇf OU .
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De�nition A.10. A vector bundle over C is a triple E D .E;EU ; E1/ consisting
of a �nite-dimensional L -vector space E , a �nitely generated OU -module
EU � E , and a �nitely generated O1 -module E1 � E such that

E D EU ˝OU L D E1 ˝O1 L:

�e rank of E is rk E D dimE . �e intersection EU \E1 is an F -vector space
called the space of global sections of E . We write

�.E/ D EU \E1:

�e degree of a vector bundle over C is de�ned as for vector bundles over P1K :
Since OU and O1 are principal ideal domains, the OU - and O1 -modules EU
and E1 are free of rank rk E . Let .ei /niD1 (resp. .fi /niD1 ) be a base of the
OU -module EU (resp. the O1 -module E1 ). Each of these bases is an L -base
of E , hence we may �nd a matrix g D .gij /

n
i;jD1 2 GLn.L/ such that

(A.9) ej D

nX
iD1

figij for j D 1 , . . . , n .

�e degree deg E is de�ned as

deg E D 2v1.detg/ 2 Z:

To see that this integer does not depend on the choice of bases, observe that a
change of bases substitutes for the matrix g a matrix g0 of the form g0 D pgq

for some p 2 GLn.O1/ and q 2 GLn.OU / . We have detp 2 O�S , hence
v1.detp/ D 0 . Likewise, det q 2 O�U , hence v.det q/ D 0 for every F -valuation
v of L other than v1 . Since the degree of every principal divisor is zero, it
follows that we also have v1.det q/ D 0 . �erefore, v1.detg/ D v1.detg0/ .

A morphism of vector bundles .E;EU ; E1/ ! .E 0; E 0U ; E
0
1/ over C is an

L -linear map ' W E ! E 0 such that '.EU / � E 0U and '.E1/ � E 01 . When
' W E ,! E 0 is an inclusion map, the vector bundle E D .E;EU ; E1/ is said
to be a subbundle of E 0 D .E 0; E 0U ; E

0
1/ . If moreover EU D E \ E 0U and

E1 D E \ E 01 , then the triple .E 0=E;E 0U =EU ; E
0
1=E1/ is a vector bundle,

which we call the quotient bundle and denote by E 0=E . In particular, for every
morphism ' W E ! E 0 we may consider a subbundle ker' of E and, provided
that '.EU / D '.E/ \ E 0U and '.E1/ D '.E/ \ E 01 , a vector bundle coker ' ,
which is a quotient of E 0 .

Example A.11. Vector bundles of rank 1 . We use the representation of the conic
C in Remark A.8. �e same arguments as in Example A.5 show that every vector
bundle of rank 1 over C is isomorphic to a triple .L;OU ; .xz /

nO1/ for some
n 2 Z . �e degree of this vector bundle is 2n ; therefore we write

OC .2n/ D .L;OU ;
�x
z

�nO1/:
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Note that for any g 2 L� we have as in (A.4)

.L;OU ; gO1/ ' OC .�2v1.g//:

For the vector space of global sections we have

�.OC .2n// D ¹f 2 OU j v1.f / � nº

D

°
f
�x
z

�
C
y

z
g
�x
z

�
j degf � n; degg � n � 1

±
:

�erefore,

(A.10) dim�.OC .2n// D
´
2nC 1 if n � 0,
0 if n < 0:

We may extend scalars of every vector bundle over C to get a vector bundle
over P1K : for any vector bundle E D .E;EU ; E1/ over C , we de�ne

f �.E/ D .E ˝F K; EU ˝F K; E1 ˝F K/:

�is f �.E/ is a vector bundle over P1K of rank rk f �.E/ D rk E . If K D F.˛/ ,
every vector in E ˝F K has a unique expression in the form x ˝ 1 C y ˝ ˛

with x , y 2 E . �is vector is in EU ˝F K (resp. E1˝F K ) if and only if x ,
y 2 EU (resp. x , y 2 E1 ), hence

(A.11) �
�
f �.E/

�
D �.E/˝F K:

Since every OU -base of EU is an OV -base of EU ˝F K and every O1 -base
of E1 is an OS -base of E1 ˝F K , we can compute the degree of E and
the degree of f �.E/ with the same matrix g 2 GLn.L/ (see (A.9)). We get
deg E D 2v1.detg/ and degf �.E/ D w0.detg/ C w1.detg/ . Because w0 and
w1 are the two valuations of K.u/ extending v1 , it follows that

(A.12) degf �.E/ D deg E :

�ere is a construction in the opposite direction: every vector bundle E 0 D
.E 0; E 0V ; E

0
S / over P1K yields a vector bundle f�.E 0/ over C by restriction of

scalars, i.e., by viewing E 0 as a vector space over L , E 0V as a module over OU ,
and E 0S as a module over O1 . �us, rk f�.E 0/ D 2 rk E 0 , and

�
�
f�.E 0/

�
D �.E 0/ (viewed as an F -vector space).

For the next proposition, we let � denote the nontrivial automorphism of
K.u/ over L . For every K.u/ -vector space E 0 , we let �E 0 denote the twisted
K.u/ -vector space de�ned by
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�E 0 D ¹�x j x 2 E 0º

with the operations

�x C �y D �.x C y/ and .�x/� D �.x�.�//

for x , y 2 E 0 and � 2 K.u/ . For every OV -module E 0V and every OS -module
E 0S , the twisted modules �E 0V and �E 0S are de�ned similarly. We may thus
associate a twisted vector bundle �E 0 to every vector bundle E 0 over P1K . Note
that �.u/ 2 u�1F � (see (A.7)), hence � interchanges the valuations w0 and w1 .
�erefore, w0.�.ı//Cw1.�.ı// D w0.ı/Cw1.ı/ for every ı 2 K.u/� . It follows
that deg �E 0 D deg E 0 ; in particular, �OP1

K
.n/ ' OP1

K
.n/ for all n 2 Z , and

Grothendieck’s theorem (�eorem A.6) yields �E 0 ' E 0 for every vector bundle
E 0 over P1K .

Proposition A.12. (i) For every vector bundle E over C , we have

f�f
�.E/ ' E ˚ E :

(ii) For every vector bundle E 0 over P1K , we have a canonical isomorphism

f �f�.E 0/ ' E 0 ˚ �E 0;

and an isomorphism f �f�.E 0/ ' E 0 ˚ E 0 .

Proof. (i) Let ˛ 2 K be such that K D F.˛/ . For every L -vector space E ,
mapping x˝ 1Cy˝˛ to .x; y/ for x , y 2 E de�nes an L -linear isomorphism
E ˝F K

�
! E ˚E . We thus get an isomorphism f�f

�.E/ ' E ˚ E .

(ii) For every K.u/ -vector space E 0 , we identify E 0 ˝F K with E 0 ˝ �E 0

by mapping x ˝ � to .x�; .�x/�/ . We thus get a canonical isomorphism
f �f�.E 0/ ' E 0 ˚ �E 0 .

Corollary A.13. For every vector bundle E 0 over P1K ,

degf�.E 0/ D 2 deg E 0:

Proof. Proposition A.12(ii) and (A.12) yield

degf�.E 0/ D deg.E 0 ˚ E 0/ D 2 deg E 0:
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Corollary A.14. For every n 2 Z we have

(i) f �
�
OC .2n/

�
' OP1

K
.2n/ ,

(ii) f�
�
OP1

K
.2n/

�
' OC .2n/˚OC .2n/ .

Moreover, f�
�
OP1

K
.2nC 1/

�
is an indecomposable vector bundle of rank 2 and

degree 4nC 2 over C .

Proof. From the de�nitions of OC .2n/ and f � , we have

f �
�
OC .2n/

�
D .K.u/;OV ; tnOS /:

By (A.4) it follows that

f �
�
OC .2n/

�
' OP1

K
.�w0.t

n/ � w1.t
n// D OP1

K
.2n/:

�is proves (i). Moreover, applying f� to each side, we get

f�
�
OP1

K
.2n/

�
' f�f

�
�
OC .2n/

�
;

and (ii) follows from Proposition A.12(i).
By de�nition, it is clear that f�

�
OP1

K
.2nC 1/

�
is a vector bundle of rank 2 .

Corollary A.13 shows that its degree is 4nC 2 , and it only remains to show that
this vector bundle is indecomposable. Any nontrivial decomposition involves two
vector bundles of rank 1 , and has therefore the form

f�
�
OP1

K
.2nC 1/

�
' OC .2m1/˚OC .2m2/

for some m1 , m2 2 Z . By applying f � to each side and using (i) and
Proposition A.12(ii), we obtain

OP1
K
.2nC 1/˚OP1

K
.2nC 1/ ' OP1

K
.2m1/˚OP1

K
.2m2/:

�is is a contradiction because the Grothendieck decomposition in �eorem A.6
is unique up to permutation of the summands.

We write IC .4nC2/ D f�
�
OP1

K
.2nC1/

�
. In the rest of this section, our goal

is to prove that every vector bundle over C decomposes in a unique way in a
direct sum of vector bundles of the form OC .2n/ and IC .4nC 2/ .

Proposition A.15. For every vector bundle E over C , the space of global sections
�.E/ is �nite-dimensional.

Proof. �is readily follows from (A.11) and Corollary A.7.
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Corollary A.16. For every vector bundle E over C , the F -algebra End E is
�nite-dimensional. Moreover, the idempotents in End E split: every idempotent
e 2 End E yields a decomposition E D ker e ˚ im e . If E does not decompose
into a sum of nontrivial vector bundles, then End E is a local ring (i.e., the
noninvertible elements form an ideal).

Proof. For E D .E;EU ; E1/ , we have End E D �.End E/ where

End E D .EndLE; EndOU EU ; EndO1 E1/:

�erefore, Proposition A.15 shows that the dimension of End E is �nite. �is
algebra is therefore right (and left) Artinian. If e 2 End E is an idempotent, then
for every vector x 2 E we have x D

�
x � e.x/

�
C e.x/ , hence

E D ker e ˚ im e; EU D .EU \ ker e/˚ .EU \ im e/;

E1 D .E1 \ ker e/˚ .E1 \ im e/:

�is shows that e splits. If E is indecomposable, then End E has no nontrivial
idempotents. It follows from Lam [Lam, Cor. (19.19)] that End E is a local
ring.

�e properties of End E established in Corollary A.16 allow us to use the
general approach to the Krull–Schmidt theorem in Bass [Bas, Ch. I, (3.6)] (see
also Lam [Lam, (19.21)]) to derive the following “Krull–Schmidt” result:

Corollary A.17. Every vector bundle over C decomposes into a sum of inde-
composable vector bundles, and the decomposition is unique up to isomorphism
and the order of summands.

Note that the existence of a decomposition into indecomposable vector bundles
is clear by induction on the rank.

�eorem A.18. Every vector bundle E over C has a decomposition of the form

E ' OC .2k1/˚ � � � ˚OC .2kr /˚ IC .4`1 C 2/˚ � � � ˚ IC .4`m C 2/

for some k1 , . . . , kr , `1 , . . . , `m 2 Z . �e sequences .k1; : : : ; kr / and .`1; : : : ; `m/
are uniquely determined by E up to permutation of the entries.

Proof. In view of Corollary A.17, it only remains to show that the vector bundles
OC .2k/ and IC .4` C 2/ are the only indecomposable vector bundles over C
up to isomorphism. Suppose E is an indecomposable vector bundle over C .
Grothendieck’s theorem (�eorem A.6) yields integers n1 , . . . , np 2 Z such that
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f �.E/ ' OP1
K
.n1/˚ � � � ˚OP1

K
.np/:

Applying f� to each side, we get by Proposition A.12(i)

E ˚ E ' f�
�
OP1

K
.n1/

�
˚ � � � ˚ f�

�
OP1

K
.np/

�
:

If n1 is even, then f�
�
OP1

K
.n1/

�
' OC .n1/˚OC .n1/ by Corollary A.14, hence

p D 1 and E ' OC .n1/ . If n1 is odd, then f�
�
OP1

K
.n1/

�
is indecomposable by

Corollary A.14, hence we must have E ' f�
�
OP1

K
.n1/

�
D IC .2n1/ (and p D 2 ,

and n2 D n1 ).

Example A.19. �e tautological vector bundle. We use the representation of C
in Remark A.8. Let

QC D OC .0/˝F Q D .QL;QU ;Q1/

where QL D L˝F Q , QU D OU ˝F Q , Q1 D O1˝F Q . Consider the element

e WD
x

z
r C

y

z
s C t 2 QL

and the 2 -dimensional right ideal E D eQL . We de�ne the bundle T D
.E;EU ; E1/ by

EU D E \QU and E1 D E \Q1:

Lemma A.20. We have

(a) EU D eQ �OU D erOU ˚ esOU ,
(b) E1 D e zyQ �O1 D e

z
y
rO1 ˚ e zy tO1 .

Proof. We �rst note that

(A.13) e
x

z
r C e

y

z
s C et D e2 D 0:

Since erOU C esOU � EU , to prove (a) it su�ces to show EU � eQ �OU and
eQ � erOU C esOU . We start with the second inclusion.

It follows from (A.13) that

(A.14) et D �e
x

z
r � e

y

z
s 2 erOU C esOU :

Write ` WD rs 2 Q . Note that ` … F and .rF C sF /` D rF C sF . Multiplying
(A.14) by ` on the right, we then get

(A.15) et` D �e
x

z
r` � e

y

z
s` 2 er`OU C es`OU D erOU C esOU :
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Also t` … V : for if t` 2 V then V ` D V , hence ` lies in the orthogonal
of V for the bilinear form TrdQ.XY / ; it follows that ` 2 F , a contradiction.
�erefore, .r; s; t; t`/ is a base of Q . �e inclusion eQ � erOU C esOU follows
from (A.14) and (A.15).

We next show EU � eQ �OU . Equations (A.14) and (A.15) show that eQL is
spanned by er and es , hence every element � 2 EU has the form � D er�Ces�

for some � , � 2 L . We show that the hypothesis � 2 QU implies � , � 2 OU .
Let denote the quaternion conjugation. Since � 2 QU , we have �s� s� 2 QU .
Computation yields

�s � s� D .ers � sre/� D .t rs � srt/�:

By the choice of t we have bq.t; r/ D bq.t; s/ D 0 , hence t anticommutes with
r and s , and therefore

�s � s� D .rs � sr/t�:

Since rs � sr ¤ 0 and �s � s� 2 QU , it follows that � 2 OU . �erefore,
es� D � � er� 2 QU , hence e� 2 QU . It follows that � 2 OU , because
e� D r x

z
�C s y

z
�C t� . �e proof of (a) is thus complete.

�e proof of (b) is similar. Since e z
y
rO1Ce zy tO1 � E1 , it su�ces to prove

E1 � e z
y
Q � O1 and eQ � erO1 C esO1 . We again start with the second

inclusion.
It follows from (A.13) that

(A.16) es D �e
x

y
r � e

z

y
t 2 erO1 C etO1:

Write m WD rt 2 Q . Note that m … F and .rF C tF /m D rF C tF . Multiplying
(A.16) by m on the right, we then get

(A.17) esm D �e
x

y
rm � e

z

y
tm 2 ermO1 C etmO1 D erO1 C etO1:

Also sm … V since Vm ¤ V . �erefore, .r; s; t; sm/ is a base of Q . �e inclusion
eQ � erO1 C esO1 follows from (A.16) and (A.17).

It also follows from (A.16) and (A.17) that eQL is spanned by e z
y
r and

e z
y
t , hence every element � 2 E1 has the form � D e z

y
r�C e z

y
t� for some � ,

� 2 L . We show that � 2 Q1 implies � , � 2 O1 . Since t anticommutes with
r and s , we have

�t � t� D .ert � t re/
z

y
� D .sr � rs/t�:

Because �t � t� 2 Q1 , it follows that � 2 O1 . �en � � e z
y
r� D e z

y
t� 2 Q1 ,

and it follows that � 2 O1 .
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It follows from (A.16) that the change of base matrix between the bases
.er; es/ and .e z

y
r; e z

y
t / is equal to 

y
z
�
x
z

0 �1

!
:

�erefore, deg T D 2v1.
y
z
/ D �2 . Note also that �.T / D ¹0º because

EU \E1 D E\Q and Q is a division algebra. �erefore, T is indecomposable
because if T ' OC .2m/ ˚ OC .2p/ for some m , p 2 Z then comparing the
degrees we see that mC p D �1 . But then one of m , p must be nonnegative,
and then OC .2m/ or OC .2p/ has nonzero global sections. �us, we must have
T ' IC .�2/ .

Note that Q acts naturally on the bundle T , i.e., T is a Q -module bundle,
so we have a canonical embedding Qop ,! End T . In fact, since T ' IC .�2/
we have by Corollary A.22 and (2.2)

End.T / ' T ˝ T _ ' IC .�2/˝ IC .2/ ' OC .0/˚4:

�erefore, dimEnd T D 4 , hence

End T ' Qop
' Q:

Since IC .2n/ D IC .�2/˝OC .nC 1/ for all odd n (see (2.3)), we also have

(A.18) End
�
IC .2n/

�
' Q for all odd n .

A.4. Duality. �e dual of a vector bundle E D .E;EU ; E1/ over C is the
vector bundle

E_ D .HomL.E;L/; HomOU .EU ;OU /; HomO1.E1;O1//:

Proposition A.21. deg E_ D � deg E .

Proof. Let .ei /niD1 be an OU -base of EU and .fi /
n
iD1 be an O1 -base of E1 ,

and let g D .gij /ni;jD1 2 GLn.L/ be de�ned by the equations

ej D

nX
iD1

figij for j D 1 , . . . , n:

So, by de�nition, deg E D 2v1.detg/ . �e dual bases .e�i /
n
iD1 and .f �i /

n
iD1

are bases of HomOU .EU ;OU / and HomO1.E1;O1/ respectively, and they are
related by
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e�j D

nX
iD1

f �i g
0
ij for j D 1 , . . . , n;

where the matrix g0 D .g0ij /
n
i;jD1 is .gt /�1 . �erefore, detg0 D .detg/�1 and

deg E_ D � deg E .

Corollary A.22. If E ' OC .2k1/˚� � �˚OC .2kr /˚IC .4`1C2/˚� � �˚IC .4`mC2/
for some k1 , . . . , kr , `1 , . . . , `m 2 Z , then

E_ ' OC .�2k1/˚ � � � ˚OC .�2kr /˚ IC .�4`1 � 2/˚ � � � ˚ IC .�4`m � 2/:

Proof. OC .2k/_ is a vector bundle of rank 1 and degree �2k , hence OC .2k/_ '
OC .�2k/ . Similarly, IC .4`C 2/_ is an indecomposable vector bundle of rank 2
and degree �4` � 2 , hence IC .4`C 2/_ ' IC .�4` � 2/ .
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