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�e Hurwitz continued fraction expansion
as applied to real numbers

David Simmons

Abstract. Hurwitz (1887) de�ned a continued fraction algorithm for complex numbers which
is better behaved in many respects than a more “natural” extension of the classical continued
fraction algorithm to the complex plane would be. Although the Hurwitz complex continued
fraction algorithm is not “reducible” to another complex continued fraction algorithm, over
the reals the story is di�erent. In this note we make clear the relation between the restriction
of Hurwitz’s algorithm to the real numbers and the classical continued fraction algorithm.
As an application we reprove the main result of Choudhuri and Dani (2015).
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1. Hurwitz’s algorithm

Let x be a complex number such that x … Q.i/ . �e (positive) Hurwitz
continued fraction expansion of x (see [Hen2, Hen1, Hur]) is de�ned to be the
expression

(1.1) a0 C
1

a1 C
1

a2 C
: : :

;

where the Gaussian integers .an/
1
0 (the partial quotients) and the complex

numbers .xn/10 are chosen recursively according to the Hurwitz algorithm:
� x0 D x .
� If xn is de�ned, then an is the Gaussian integer closest to xn , which we

denote by Œxn� .1

1�e tiebreaking mechanism is not relevant for the purposes of this paper, but for the sake of
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� If xn and an are both de�ned, then xnC1 D 1=.xn � an/ .
It is not hard to see that the Hurwitz continued fraction expansion of x always
converges to x , and in fact the corresponding partial quotients are in some sense
the “best approximations possible” [Hen2, �eorem 1].

Some authors [CD, KU] also consider the negative Hurwitz continued fraction
expansion of a number x , which is the expression

ea 0 � 1

ea 1 � 1

ea 2 � : : :
D a0 �

1

�a1 �
1

a2 �
: : :

;

where .an/10 are de�ned in the same way as in the positive Hurwitz continued
fraction expansion, and ea n D .�1/nan . Note that by the identity

(1.2) x C
1

y C z
D x �

1

�y � z
;

the convergents of the negative Hurwitz continued fraction expansion are the
same as the convergents of the positive Hurwitz continued fraction expansion.
�us for many purposes, it is not necessary to distinguish between the positive
and negative Hurwitz expansions.

In this note, we consider the restriction of the Hurwitz algorithm to the real
line. In this case, it is clear that the numbers .xn/10 and .an/

1
0 will all be real.

Moreover, unlike the case of the complex Hurwitz expansion, it is possible to
say exactly when a sequence .an/10 is the sequence of partial quotients of some
real number:

Proposition 1.1. 2 For a sequence of integers .an/10 , the following are equivalent:

(A) �e expression (1.1) is the Hurwitz continued fraction expansion of some
(irrational) real number.

(B) For all n � 1 , we have janj � 2 , with ananC1 > 0 if equality holds.
(C) For all n � 1 , we have jea nj � 2 , with ea nea nC1 < 0 if equality holds.

Obviously, (B) and (C) are reformulations of each other, so we prove
(A) , (B):

Proof of (A) ) (B). By de�nition, for all n � 0 we have jxn � anj � 1=2 and
thus jxnC1j � 2 and janC1j � 2 . If equality holds, then anC1 has the same sign
as xnC1 � anC1 , which in turn has the same sign as anC2 .
de�niteness let us (agreeing with [Hen2]) set Œx� D ŒRex� C iŒImx� , where Œt� denotes the integer
nearest to t 2 R , rounded down in the case of a tie.

2�is proposition is not original; the wording of [CD] seems to suggest that it was proven in the
di�cult-to-�nd [KU].
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Proof of (B) ) (A). For each n;N with n � N , let

xn;N D an C
1

: : : C
1

aN

�

Reverse induction on n shows that whenever n � 1 , we have jxn;N j � 2 and
an D Œxn;N � . It follows that

jxn;M � xn;N j �
1

4
jxnC1;M � xnC1;N j and jxN;M � xN;N j �

1

2
;

which implies that jxn;M � xn;N j � .1=4/min.M;N/�n , and thus for each n the
limit

xn D lim
N!1

xn;N D an C
1

anC1 C
1

: : :

exists. We have an D Œxn� and xnC1 D 1=.xn�an/ , and thus (1.1) is the Hurwitz
continued fraction expansion of x0 .

2. Relation to the classical algorithm

We now show that the restriction of the Hurwitz algorithm to the real line is
in some sense “equivalent” to the classical continued fraction algorithm:

�eorem 2.1. �e sequence of convergents of the Hurwitz continued fraction
expansion of a real number x is a subsequence of the sequence of convergents of
the classical continued fraction expansion of x . �is sequence has the property
that it omits no two consecutive convergents, and it also contains all rational
approximants p=q that satisfy the inequality jx � p=qj � 1=.3q2/ .

Proof. �e key to the proof is the identity

(2.1)
1

1C
1

nC y

D 1 �
1

nC 1C y
;

which is easily veri�ed for all n and y . Now let us denote the classical continued
fraction expansion of a real number x by

(2.2) b0 C
1

b1 C
1

b2 C
: : :

;
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so that .bn/
1
0 is a sequence of integers and bn � 1 for all n � 1 . Let

S D ¹n � 1 W bn D 1º , and let S 0 be the unique subset of S with the following
property:
� For all n 2 S , we have either n 2 S 0 or n � 1 2 S 0 , but not both.

�e set S 0 can be constructed by taking each “block” of S and selecting “every
other element”, starting from the �rst element of that block; for example, if
S D ¹1; 4; 5; 6; 9; 10º , then S 0 D ¹1; 4; 6; 9º , since the “blocks” are ¹1º , ¹4; 5; 6º ,
and ¹9; 10º .

For each n 2 S 0 , in the expression (2.2) we replace

1

bn C
1

bnC1 C
: : :

by 1 �
1

.bnC1 C 1/C
: : :

according to (2.1); this is possible since bn D 1 . �is results in an expression of
the form

(2.3) c0 C �0 C .�1/
�0

1

c1 C �1 C .�1/�1

1

c2 C �2 C .�1/�2

1

: : :

;

where �0; �1; � � � 2 ¹0; 1º , and cn � 2 for all n � 1 . Here, we have used the facts
that 1

x
D 0C .�1/0 1

x
and 1� 1

x
D 1C .�1/1 1

x
to represent the expressions 1

x
and

1� 1
x

in a uniform manner as �C .�1/� 1
x
, where � 2 ¹0; 1º . Repeatedly applying

the identity (1.2) yields the Hurwitz expansion of x , so the convergents of (2.3)
are the same as the convergents of the Hurwitz expansion. But these are precisely
those convergents pn�1=qn�1 of the classical expansion (2.2) such that n … S 0 .
So the sequence of partial convergents of the Hurwitz expansion is a subsequence
of the sequence of convergents of the classical expansion, which omits no two
consecutive convergents (by the de�nition of S 0 ). �e omitted convergents are of
the form pn�1=qn�1 , where n 2 S 0 , and these convergents satisfyˇ̌̌̌
x �

pn�1

qn�1

ˇ̌̌̌
>

1

qn�1.qn C qn�1/
D

1

qn�1.bnqn�1 C qn�2 C qn�1/
>

1

.bn C 2/q
2
n�1

D
1

3q2n�1

(cf. [Khi, �eorem 13]). Here we have used the fact that bn D 1 for all n 2 S 0 . On
the other hand, approximants that are not convergents of the classical expansion
satisfy jx � p=qj � 1=.2q2/ [Khi, �eorem 19]. So all approximants that are not
convergents of the Hurwitz expansion satisfy jx � p=qj > 1=.3q2/ .
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Aside from the relation between the sequences of convergents described in
�eorem 2.1, the Hurwitz continued fraction expansion also shares the following
formal similarity with the classical continued fraction expansion:

Proposition 2.2. Let .an/10 be the sequence of Hurwitz (resp. classical) partial
quotients of a real number x . If the sequences .pn/1�2 and .qn/

1
�2 are de�ned

recursively via the formulas

p�1 D 1; p�2 D 0; q�1 D 0; q�2 D 1;(2.4)
pn D anpn�1 C pn�2; qn D anqn�1 C qn�2;(2.5)

then .pn=qn/10 is precisely the sequence of Hurwitz (resp. classical) convergents
of x .3

Proof. �e proof of [Khi, �eorem 1] is valid for both the classical and Hurwitz
setups, since both use the same formal expressions for the convergents and partial
quotients.

However, there are di�erences from the classical algorithm as well. For exam-
ple, while the error terms pn=qn � x corresponding to the classical convergents
always alternate in sign [Khi, �eorem 4], the error terms corresponding to the
Hurwitz convergents can be described as follows:

Proposition 2.3. If pn=qn is the n th convergent of the Hurwitz algorithm, then
the sign of the error term pn=qn � x is the same as the sign of the n th partial
quotient ea nC1 , i.e. .�1/nC1 times the sign of the n th partial quotient anC1 .

Proof. Since xnC1 and anC1 share the same sign, comparing

pn

qn
D a0 C

1

: : : C
1

an C 0

vs. x D a0 C
1

: : : C
1

an C
1

xnC1

yields the desired conclusion.

3Note that in the Hurwitz case there is some ambiguity as to how to represent each convergent as
a fraction (p=q vs. .�p/=.�q/ ), and this proposition gives a way to resolve this ambiguity (namely
to take the sequences .pn/

1
0 and .qn/

1
0 de�ned by the recursive relations). �e ambiguity would be

resolved in the same way if one took the expression de�ning the convergent and simpli�ed it repeatedly
according to the rules .p=q/�1 D q=p and nC p=q D .nqC p/=q .
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Another di�erence between the Hurwitz and classical expansions is that the
Hurwitz expansion yields a faster rate of exponential growth for the denominators
of the convergents. In the classical setup, the sequence .qn/

1
0 always satis�es

lim infn!1 qnC2=qn � 2 > 1 ,4 but it is possible that lim infn!1 qnC1=qn D 1 .
By contrast:

Proposition 2.4. If pn=qn denotes the n th convergent of the Hurwitz algorithm,
then for all n � 1 ,

(2.6)
�
janj � .2 � �/

�
jqn�1j < jqnj <

�
janj C .� � 1/

�
jqn�1j;

where � denotes the golden ratio. In particular,

(2.7) jqnj > �jqn�1j:

Proof. For each n � 1 let yn D qn�1=qn . �en by (2.4) and (2.5), we have
y0 D 0 , and for all n � 1 we have

yn D
1

an C yn�1
�

By induction, jyn�1j < 1 for all n � 1 , so yn shares the same sign as an . We
will prove by induction that

(2.8) � .2 � �/ < yn�1 sgn.an/ < � � 1

for all n . �e base case n D 1 is trivial, so suppose that (2.8) holds for some
n � 1 . �en

jynj D
1

janj C yn�1 sgn.an/
<

1

janj � .2 � �/
�

´
1
�

janj D 2

1
1C�

janj � 3

D

´
� � 1 janj D 2

2 � � janj � 3
�

To complete the inductive step, we need to show that if janj D 2 , then
yn sgn.anC1/ > 0 . But this follows from Proposition 1.1, since sgn.yn/ D sgn.an/ .

Combining (2.8) with the formula

jqnj D
�
janj C yn�1 sgn.an/

�
jqn�1j

demonstrates (2.6). Finally, the inequality janj � 2 gives (2.7).

4 In general, qnCk=qn is always at least the .k C 1/st Fibonacci number. �is is because if Fk

denotes the k th Fibonacci number, then an induction argument shows that qnCk D FkC1qnCFkqn�1 .
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3. Relation with Diophantine approximation

Although the connection between the classical continued fraction expansion
of a real number x and the Diophantine properties of x has been dealt with
extensively in a number of places, the connection with the Hurwitz algorithm
has not been stated precisely before. Many results can be proven simply from
the identi�cation of the Hurwitz convergent sequence with a subsequence of the
classical convergent sequence, i.e., �eorem 2.1. For brevity we do not list these
here. One place where a di�erence does appear is in the basic estimates for the
accuracy of the approximation of a convergent. In the classical setting, we have

1

.bn C 2/q
2
n�1

<

ˇ̌̌̌
x �

pn�1

qn�1

ˇ̌̌̌
<

1

bnq
2
n�1

(e.g., this follows from [Khi, �eorems 9 and 13]). By contrast, in the Hurwitz
setup we have:

Proposition 3.1. If pn=qn denotes the n th convergent of the Hurwitz expansion
of x , then

1�
janj C .� � 0:5/

�
q2n�1

<

ˇ̌̌̌
x �

pn�1

qn�1

ˇ̌̌̌
<

1�
janj � .2:5 � �/

�
q2n�1
�

Proof. By [Khi, �eorem 5], we have

x D
xnpn�1 C pn�2

xnqn�1 C qn�2
;

where xn is as in the de�nition of the Hurwitz algorithm, i.e.

xn D an C
1

anC1 C
: : :

�

�us

q2n�1

ˇ̌̌̌
x �

pn�1

qn�1

ˇ̌̌̌
D qn�1

ˇ̌̌̌
.qn�1xnpn�1 C qn�1pn�2/ � .pn�1xnqn�1 C pn�1qn�2/

xnqn�1 C qn�2

ˇ̌̌̌
D qn�1

1

jxnqn�1 C qn�2j
D

1

jxn C qn�2=qn�1j

D
1

jxn � an C qn=qn�1j
�

Since jxn � anj � 1=2 , combining with (2.6) completes the proof.
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4. Comparison with Choudhuri and Dani (2015)

In this section we show that by combining the results of previous sections in
an appropriate way, we can strengthen a result of Choudhuri and Dani [CD]. We
state and prove our theorem below and then show that it implies the main result
of [CD].

�eorem 4.1. Let .an/10 be the Hurwitz partial quotient sequence of a real
number x , and �x 0 < ı � 1=3 . For each � > 0 , let

(4.1) X� D
#¹.p; q/ 2 Z2 primitive W 0 < q � �; jq.qx � p/j � ıº

log.�/
�

�en

lim inf
�!1

X� � lim inf
n!1

#
®
j D 1; : : : ; n W jajC1j � ı

�1 C .2:5 � �/
¯Pn

jD1 log
�
jaj j C .� � 1/

�(4.2)

lim sup
�!1

X� � lim sup
n!1

#
®
j D 1; : : : ; n W jajC1j � ı

�1 � .� � 0:5/
¯Pn

jD1 log.
ˇ̌
aj j � .2 � �/

�(4.3)

Proof. By �eorem 2.1, the condition ı � 1=3 implies that the set appearing in
(4.1) contains only pairs .p; q/ such that p=q is a convergent of the Hurwitz
expansion of x . �us the numerator of (4.1) is constant with respect to � along
intervals of the form .jqn�1j; jqnj/ , and increases by at most 1 from jqnj � o.1/
to jqnj C o.1/ . It follows that lim inf�!1X� D lim infn!1Xjqnj , and similarly
for the limsup. Now, applying �eorem 2.1 again, we have

Xjqnj D
#¹j D 1; : : : ; n W jqj .qjx � pj /j � ıº

log jqnj
�

To �nish the proof, we have to bound this expression between the corresponding
expressions in the right hand sides of (4.2) and (4.3). And indeed, by Proposition
3.1 we have

jajC1j � ı
�1
C .2:5 � �/ ) jqj .qjx � pj /j � ı ) jajC1j � ı

�1
� .� � 0:5/

and thus

#
®
j D 1; : : : ; n W jajC1j � ı

�1
C .2:5 � �/

¯
� #

®
j D 1; : : : ; n W jqj .qjx � pj /j � ı

¯
� #

®
j D 1; : : : ; n W jajC1j � ı

�1
� .� � 0:5/

¯
:

On the other hand, iterating (2.6) and taking logarithms gives
nX

jD1

log
�
jaj j � .2 � �/

�
� log jqnj �

nX
jD1

log
�
jaj j C .� � 1/

�
and dividing these two pairs of inequalities completes the proof.
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We now show that �eorem 4.1 implies the main result of [CD]. Since the
statement of the main theorem of that paper contains a few inaccuracies, we
state a corrected version here, which is equivalent to the version that appears in
the authors’ erratum (currently unpublished, but available from the authors upon
request).

�eorem 4.2 (Corrected version of [CD, �eorem 1.1]). Let Q.p; q/ D .aq C

bp/.cq C dp/ be a quadratic form, where a; b; c; d 2 R , ad � bc D 1 , b ¤ 0 ,
and a

b
is irrational. Let .an/10 be the Hurwitz partial quotient sequence of a

b
.

Let

˛� D lim inf
n!1

1

n

nX
jD1

log jaj j; ˛C D lim sup
n!1

nX
jD1

log jaj j:

For each A > 0 let

D�.A/ D lim inf
n!1

1

n
#
®
j D 1; : : : ; n W jajC1j � A

¯
DC.A/ D lim sup

n!1

1

n
#
®
j D 1; : : : ; n W jajC1j � A

¯
:

Fix 0 < ı < 1
�
, and let e.ı/ D D�.ı�1C1/ and f .ı/ D DC.ı�1� 3

2
/ . Let � > 0

be �xed and for each � > 0 let

G.�/ D
®
.p; q/ 2 Z2 primitive W 0 < jQ.p; q/j < ı; cq C dp > �; k.p; q/k � �

¯
:

�en we have the following:

(i) if ˛C <1 then there exists �0 such that for all � � �0 we have

#G.�/ �
e.ı/

˛C C 3
log.�/I

(ii) Let M D max.1
4
log.9

5
/; 1
8
˛�/ if ˛� < 1 , and let M < 1 be arbitrary if

˛� D 1 . �en for any m > f .ı/ , there exists �0 such that for all � � �0
we have

#G.�/ �
m

M
log.�/:

Proof using �eorem 4.1. Let x D �a
b
and y D bd . Since ad �bc D 1 , we have

Q.p; q/ D .qx � p/
�
q C y.qx � p/

�
and thus

(4.4) lim
.p;q/2G.1/
k.p;q/k!1

jQ.p; q/j

jq.qx � p/j
D lim

.p;q/2Z2

jq.qx�p/j�1
q!1

jQ.p; q/j

jq.qx � p/j
D 1:
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Moreover, the Hurwitz partial quotient sequence of x is the same as the Hurwitz
partial quotient sequence of a

b
except for minus signs.

Fix 0 < ı < 1
�
. We prove (i) and (ii):

(i) Since 1 > 2:5 � � , there exists 0 < eı < ı < 1=� < 1=3 such that
ı�1 C 1 � eı �1 C .2:5 � �/ . It follows that

e.ı/ D D�.ı�1 C 1/ � D�
�eı �1 C .2:5 � �/�:

Now by (4.4), we have

X�.eı / � #G.�/C C

for some constant C depending on ı and eı . �us if ˛C <1 , then

lim inf
�!1

#G.�/
log.�/

� lim inf
�!1

X�.eı/ �
(4.2)

D�
�eı�1 C .2:5 � �/�
˛C C .� � 1/

>
e.ı/

˛C C 3
;

which implies (i).
(ii) Since 3

2
> � � 0:5 , there exists 0 < ı < eı < 1=� < 1=3 such that

ı�1 � 3
2
� eı �1 � .� � 0:5/ . It follows that

f .ı/ D DC.ı�1 � 3
2
/ � DC

�eı �1 � .� � 0:5/�:
Now by (4.4), we have

X�.eı / � #G.�/ � C

for some constant C depending on ı and eı . �us

lim inf
�!1

#G.�/
log.�/

� lim inf
�!1

X�.eı/ �
(4.3)

DC
�eı�1 � .� � 0:5/�
˛� � .2 � �/

�
f .ı/

max.1
4
log.9

5
/; 1
8
˛�/

;

which implies (ii). In the last inequality, we have used the bound

˛� � .2 � �/ � max
�
1
4
log.9

5
/; 1
8
˛�
�
;

which follows from the fact that ˛� � log.2/ (cf. Proposition 1.1) together
with the numerical bound

log.2/ � .2 � �/ > max
�
1
4
log.9

5
/; 1
8
log.2/

�
:
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