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�e history of the Ree groups is an interesting one. Everything began in
1960–61 when Suzuki, in the process of investigating a class of doubly transitive
groups, discovered a new series of simple groups whose existence was hitherto
unsuspected.

In 1961, Ree discovered that the Suzuki groups could be interpreted as “unusual
twisted forms” of the orthogonal groups over a �eld of characteristic 2, the
existence of the twisting being peculiar to this characteristic. More usual forms of
twisting had been discussed earlier by Steinberg. �us the Suzuki groups became
the groups 2B2.2

2nC1/ . Now Ree found that the exceptional Lie groups G2 and
F4 also gave rise to new families of twisted groups, in characteristic 3 and 2
respectively. If one tries to characterize the 2G2.3

2nC1/ by means of simple
properties, one notes that
(i) the 2-Sylow subgroups of G are abelian.
(ii) According to Brauer theory, centralizers of involutions can be used to

characterize simple groups. G has only one class of involutions and there
is an involution w such that

CG
�
hwi

�
Š hwi � PSL.2; q/; q D 32nC1:

(iii) G has no subgroup of index 2.

De�nition 1. A group of Ree type is a group satisfying (i), (ii), (iii), q > 5 .

�e main point is: Every group of Ree type is a simple group. Hence if we
want to �nd all �nite simple groups we must determine all groups of Ree type.
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�eorem 2. Every group of Ree type is one of the Ree groups.

In this talk I want to explain why, without knowing anything of �nite group
theory, I got interested in this problem. When accepting to give this talk, I had to
decide whether to give a technical resumé of my proof, pointing out the way one
overcomes di�cult points, or give an exposition on how one arrives at certain
ideas. Since in my opinion the technical content of my work is rather limited,
while the major di�culty consists in realizing how useful actually is the scant
information available to us, I opted for the latter choice.1

My �rst contact with Ree groups was in 1973, when John �ompson gave a
lecture on the problem, at the Collège de France (Paris). After his talk, �ompson
told me that he had reduced the problem to a question about automorphisms of
�nite �elds. He even wrote it for me at dinner on a paper napkin, and I spent
half a night looking at a seemingly innocuous problem and discovering that the
more I tried the more di�cult it became.

I got interested in Ree groups again last March.2 Two main reasons: a group
theory year at IAS and the presence of Danny Gorenstein. So when his report on
the status of the classi�cation of �nite simple groups appeared in a long memoir
in the Bullettin of the American Mathematical Society, I tried to read it (with
mixed success) and at last arrived to page 117 where it mentions the problem
again, ending with “Let me emphasize that to work on this problem requires
only a rudimentary knowledge of �nite group theory, for it quickly reduces to
speci�c combinatorial questions about functional equations with coe�cients in
GF.3n/ . Hopefully this discussion will tempt some “nonspecialist” to consider
the problem.”

I was a nonspecialist, therefore I was quali�ed to consider the problem; also
I was tempted once more. (Maybe it was a challenge!) �e next step: Go to the
library and check what the problem was.

Before presenting the problem and explaining how you solve it, I would like
to say a few words on how it got reduced to a question in elementary algebra.
Firstly, Ward in his 1962 thesis, imposing a couple of technical conditions (e.g.
the Sylow 2 -subgroups S2 are elementary abelian of order 8 ; if x 2 CG.hwi/
and .6; jhxij/ D 1 then CG.hxi/ 5 CG.hwi/ showed that
(A) q D 32nC1 .
(B) G is simple.

A further partial step was obtained in the meantime by Landrock and Michler
showing that Hall subgroups of order q˙3

q
q
3
C1 are cyclic ) uniqueness

1�e technical exposition is in E. Bombieri, �ompson’s problem (�2 D 3 ). Appendices by A.
Odlyzko and D. Hunt, Invent. Math. 58 (1980), 77–100.

2March 1979.
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of character table.
(C) �e character table of G is almost fully determined.
(D) �e S3 -subgroups P have jP j D q3 , ŒP; P � elementary of order q2 ,

Z.P / D ŒP; P; P � elementary of order q , if p 2 ŒP; P � � Z.P / then
CP .p/ D ŒP; P � , if p 2 P�ŒP; P � then CP .p/ D hp;Z.P /i , and if jhpij D 3
then p 2 ŒP; P � .

(E) G is a doubly transitive group.
(F) further information about the normalizer NG.P / .

Ward’s results exploit character theory. By a delicate piece of local analysis,
Janko and �ompson removed the technical conditions in Ward’s theorem.
Moreover, the analysis in the case q D 4 (or q D 5 ) led Janko to the discovery
of the �rst new sporadic group J1 !

Now it is useful to compare this situation with the one encountered by Suzuki.
What Suzuki did was:

.˛/ determine the S2 -subgroup structure as in (D);

.ˇ/ �nd all 2-groups with the same structure, they are determined up to an
automorphism of GF.22nC1/ ;

.
/ use the fact that G contains the group 2B2.2/ in a certain way to infer that
a certain compatibility condition on the automorphism has to be satis�ed;

.ı/ determine the automorphism;

."/ determine the group.

If one wanted to proceed in this way, (by Ward, Janko, and �ompson) the
�rst step .˛/ was done.

�en �ompson proceeded to obtain the other steps. Being in characteristic 3 ,
everything was triply di�cult. Step .ˇ/ was not too hard. I could almost follow
�ompson. It is a standard way of analyzing the lower central series of a p -group
by means of Lie algebras in char p . See Gorenstein’s book Finite Groups. Here
the S3 -Sylow P is identi�ed with triples .a; b; c/ such that a; b; c 2 GF.32nC1/
and

.a; b; c/.˛; ˇ; 
/

D .aC ˛; b C ˇ C a˛� � a�˛; c C 
 C ˛b C a�˛2 C a˛1C� � a2˛� /(*)

where � 2 Aut
�
GF.32nC1/

�
.

Equation (*) implies that � generates Aut
�
GF.32nC1/

�
. From the structure

of NG.P / , �ompson shows that there is an integer b such that

xb.�C2/ D x in GF.32nC1/I
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also � being a generator implies that there is an even integer a such that

xa.�C1/ D x2 in GF.32nC1/:

Step .
/ is unbelievably complicated and the calculations are extremely hard.
However, at the end �ompson emerges with � and d 2 GF.32nC1/ , and a
certain identity in P . It is implicit in �ompson that �; d determine G . �is
was done explicitly by Hopkins, who proved d D 0; 1 or �1 and � determines
d , hence G .

I will refrain from writing �ompson’s identity, but I have to write down the
simplest consequence �ompson could obtain.

�ompson’s condition. � has the following non-trivial property. Let z , y , u
be in GF.32nC1/ and suppose that z ¤ 0 and´

z�C2 � y�C2 D �1

z�C1 � y�C1 D u:

�en3
z.u � 1/a � .z � y C 1/ua � y.uC 1/a C .u2 � 1/a D 0:

Let us leave aside Step .ı/ .
�en �ompson proceeded to show

(i) Ree groups have �2 D 3 ;
(ii) if �2 D 3 then d D 0 and G is a Ree group.
�us it remains:

Step .ı/ : �ompson’s identity implies �2 D 3 .

I will describe now how you prove .ı/ . I want to point out that in order to
study the problem one does not need any knowledge of group theory.

�e main di�culty is psychological: What kind of attitude do you take trying
to solve a problem?

First of all, we have three equations in three unknowns and formally, a D 2
�C1

.
If everything is well, we get �nitely many solutions .z; y; u/ . However, one
checks easily with �ompson that .z; y; u/ has exactly 32nC1 possibilities. �us
n cannot be too large unless something “special” happens and “special” should
mean �2 D 3 . Hence our philosophy is: either �2 D 3 or q D 32nC1 is small.

3Note that z D 0 implies y D 1 and u D �1 , thus getting a trivial solution valid for all � , so we
should exclude solutions with z D 0 from our considerations.
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Next, a is de�ned in a most implicit way and one would like to get rid of it.
Here it is how:

� is an automorphism ) more equations.

Apply � . Now

z� .u � 1/a� � .z� � y� C 1/ua� � y� .uC 1/a� C .u2 � 1/a� D 0

and xa� D x2�a in GF.32nC1/� , hence it holds

z� .u � 1/2=.u � 1/a � .z� � y� C 1/u2=ua � y� .uC 1/2=.uC 1/a

C .u2 � 1/2=.u2 � 1/a D 0:

Apply � again. And again. To see what you get, write

X D .u � 1/a; Y D ua; Z D .uC 1/a;

so if X , Y , and Z are not 0 one �nds8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

zX � .z � y C 1/Y � yZ CXZ D 0;

z� .u � 1/2=X � .z� � y� C 1/u2=Y � y� .uC 1/2=Z C .u2 � 1/2=XZ D 0;

z�
2
.u � 1/2��2X � .z�

2
� y�

2
C 1/u2��2Y

�y�
2
.uC 1/2��2Z C .u2 � 1/;2��2XZ D 0;

z�
2
.u � 1/2�

2�2�C2=X � � � � C .u2 � 1/2�
2�2�C2=XZ D 0:

After clearing denominators, consider this as a system of 4 equations for the 3
unknowns X; Y;Z . A compatibility condition must be satis�ed: the eliminant of
the system must vanish.

In order to compute it, J. J. Sylvester comes to our rescue (see, as I did,
Salmon’s Higher Algebra) with his dialytic method. �e unpleasant result is that
a certain 16 � 16 determinant has to vanish.

�e next step is to look at the determinant. When something complicated D 0 ,
do not try to write it as a sum. First, try to write it as a PRODUCT! Indeed one
can factor out two pieces which are 2 � 2 determinants. Hence

.2 � 2 det/ � .2 � 2 det/ � .12 � 12 det/ D 0I

look at these 2 � 2 pieces. By a little work, one shows

2 � 2 det D 0) .u2 � 1/2zy �
�
1C zy C u.z C y/

�
.z � y C 1/„ ƒ‚ …

call this F

u2 D 0:

call 12 � 12 det D � (do not try to compute it). We have shown:
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�ompson’s condition) F� D 0 .

F� is a rational function over GF.3/ in the variables

z; y

z� ; y� ; u

z�
2

; y�
2

; u�

z�
3

; y�
3

; u�
2

:

Substitute
u D z�C1 � y�C1

u� D z�
2C�
� y�

2C�

u�
2

D z�
3C�2

� y�
3C�2

;

substitute
y� D

1C z�C2

y2
;

y�
2

D
1C z�

2C2�

.1C z�C2/2
y4;

y�
3

D
1C z�

3C2�2

.1C z�
2C2� /2

.1C z�C2/4

y8
;

clear denominators, and get

R.z; z� ; z�
2

; z�
3

Iy/ D 0

where R.z0; z1; z2; z3Iy0/ is a polynomial over GF.3/ with

degz
0
R 5 119

degz
1
R 5 73

degz
2
R 5 38

degz
3
R D 12

degy
0
R 5 106:

It is now plain that it is almost hopeless to calculate R explicitly. �is does
not mean that you have to give up. So let us stop here and go to the next two
questions.

%
Can a computer do it? Maybe there is some simpli�cation at the end.

& Do I really need to compute it?
What kind of information on R do I need in order to know �?
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A good trick in mathematics means looking ahead and �nd �rst what you need
for a proof, then prove exactly what you need and no more. �en the proof is
complete.

So go boldly forward making one giant step. When we started, our initial
program was to to eliminate u , y and obtain a polynomial equation in z; z� ; z�2 .
However, what is the point of doing this? Do we really gain something?

New problem. Let q D pm . Let � 2 Aut
�
GF.q/

�
. Let H.z; z� ; : : : ; z�k

/ D 0

for all z 2 GF.q/� , where H.z0; z1; : : : ; zk/ is a polynomial (not identically 0 )
in k C 1 variables. What can we say about � ?

Let
H.z0; : : : ; zk/ D

X
x�0;:::;�k

z
�0

0 : : : z
�k

k

so that
H.z; z� ; : : : ; z�

k

/ D
X

x�0;:::;�k
z�0C�1�C���C�k�

k

D 0:

Let z� be a generator of GF.q/� and put z D 1; z�; .z�/2; .z�/3; : : : ; .z�/`; : : :
We get X®

.z�/�0C�1�C���C�k�
k¯`

x�0;:::;�k
D 0

` D 0; 1; 2; 3; : : : . Let us do this for ` D 0; 1; : : : ; N � 1 with

N D # coe�. of H :

�en we have a homogeneous linear system of N equations in N unknowns.
Hence

det
�
¹.z�/�0

C�
1
�C���C�

k
�k

º
`
�
¹�I`º
D 0:

�is is a Vandermonde determinant (my favorite determinant!) which factorizes
as Y

� 6D�0

°
.z�/�0

C�
1
�C���C�

k
�k

� .z�/�
0
0
C�0

1
�C���C�0

k
�k
±
:

Since the determinant vanishes, some factor has to vanish, and we have obtained
a great simpli�cation without doing a gigantic calculation! Hence we have

.z�/ak�
kC���Ca1�Ca0 D 1

with the aj not all 0 , and clearly

jaj j 5 degzj H:

�is holds for z� . Taking powers, it holds in GF.q/� . Identify � with an integer.
We have shown

ak�
k
C � � � C a1� C a0 � 0 .mod q � 1/:

On the other hand � D pt ; t = 0 . Does this put restrictions on � ? YES.
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Example. Suppose H is known to the extent of having a bound

degzj H < pd :

Say � D pt and 0 5 t 5 m
k
� d where q D pm . �en

jak�
k
C : : :C a1� C a0j

5 .pd � 1/
�
pm�kd C pm�.k�1/d C � � � C pm�2d C p

m
k
�d
C 1

�
< pm.p�d C p�2d C � � � /C p

m
k C pd < pm � 1 D q � 1

if say m > 2kd C d . �e left-hand side is � 0 .mod q � 1/ but less than q � 1 .
Hence it must be equal to 0 . Now we have an equation for � (we may assume
a0 ¤ 0 ):

ak�
k
C : : :C a1� C a0 D 0:

�is is very strong. For example, � D pt divides a0 (the congruence mod q�1
has become a congruence modulo a power of p )! However, 1 5 ja0j < pd .
Hence 0 5 t < d and the whole interval d 5 t 5 m

k
� d is excluded! Moreover,

d is the logarithm (in base p ) of maxj degzj H , thus d is fairly small even if
H has very large degrees. What happens if � D pt with t > m

k
� d ? Nothing

new. �e argument is identical, with �h D pth replaced by pth .mod m/ . If we
clean up this carefully we emerge with the sharp result:

�eorem 3. Let H.z0; : : : ; zk/ be a polynomial over GF.q/ , not identically 0 ,
let

degzj H < pd ; ' D Frobenius; � 2 AutGF.q/;

and let H.z; z� ; z�2
; : : : ; z�

k
/ D 0 on GF.q/� .

�en one of �; �2; : : : ; �k equals one of '�dC1; '�dC2; : : : ; 1; '; : : : ; 'd�1 .

It follows that in our elimination game we have only to keep track of degrees,
the actual expression which comes out of the elimination being totally irrelevant.
�is we can do!

We had
R
�
z; z� ; z�

2

; z�
3

Iy
�
D 0:

Let us apply � and use y� D
1C z�C2

y2
to obtain

R

�
z� ; z�

2

; z�
3

; z�
4

I
1C z�C2

y2

�
D 0

yielding a new relation



Solution of the Ree group problem 309

R1.z; z
� ; z�

2

; z�
3

; z�
4

Iy/ D 0:

Eliminating y means: take a resultant of R and R1 with respect to y and get

H.z; z� ; z�
2

; z�
3

; z�
4

/ D 0:

(A polynomial with up to 2:295 : : : � 1023 terms, but we have no need to write
it down, we need only its degree.)

Apply the theorem. In our case, degzj H < 47007 < 310 . Hence

� or �2 or �3 or �4 D 3�9 or 3�8 or : : : or 37 or 38 or 39

giving us 76 possibilities. Getting close . . .
One di�culty: How to prove that H is not identically 0 without computing

it? Let’s put this aside. How to reduce the 76 possibilities to only �2 D 3?

Idea. Take for example �4 D 3 . We had

R.z; z� ; z�
2

; z�
3

Iy/ D 0:

Now

y�
3

D
1C z�

3C2�2

.1C z�
2C2� /2

.1C z�C2/4

y8

thus

y3 D y�
4

D
1C z3C2�

3

.1C z�
3C2�2

/2

.1C z�
2C2� /4

.1C z�C2/8
y16

and

.1C z3C2�
3

/.1C z�
2C2� /4y13 � .1C z�

3C2�2

/2.1C z�C2/8 D 0:

�is is a new relation. Eliminate y and something like

K.z; z� ; z�
2

; z�
3

/ D 0

appears, use the �eorem 3 and get

� or �2 or �3 D 3�7 or 3�6 or : : : or 36 or 37:

Now �4 D 3 and �m D 3� with m D 1 , 2 or 3 and j�j 5 7 .
If we eliminate � then a compatibility condition on q appears.
We get identity D .�4/m.�m/�4 D 3m�4� . Now 3m�4� D identity ,

2nC 1jm � 4� and m � 4� 6D 0 . Also

jm � 4�j 5 3C 4 � 7 D 31:

Hence:
�4 D 3) 2nC 1 5 31; i.e. q 5 331



310 E. Bombieri

Question. What happens to �2 D 3? Since it is a non-trivial solution, something
special must occur here. Not all di�culties are over.

One last di�culty. How to prove that K is not identically 0 without computing
it? We need this, because once we control H 6D 0 and K 6D 0 we see that 2nC1
is bounded. A little work shows that indeed 2nC 1 5 83 .

In general we do not compute H and K directly but instead keep their
expressions as products of determinants. Several entries in the determinants are 0
and the entries themselves are polynomials of relatively low degree. �en explicit
calculations of the determinants, after specializing well-chosen variables to 0 or
1 , become doable.

Fact 1. H is not identically 0 if we modify the construction. �e idea:

H D 0) R.z; : : : ; z�
3

Iy/ and R1.z; : : : ; z�
4

Iy/ have a common factor in y:

Now this factor cannot contain z�
4 . Hence we may specialize z�

4 to 1 and
see that this factor is a common factor of R.z; : : : ; z�3

Iy/ and the coe�cient
of z12�4 in R1.z; : : : ; z

�4
Iy/ . �is coe�cient can be determined explicitly and

shown to factorize very well. �is determines the possible factors. However,

factors D 0) F D 0:

F was a factor of R . Modifying R1 , we may assume that the unknown common
factor is F . �is we check directly. �ere is a little handwaving here but it is
dealt with in the paper.4

Fact 2. K is not identically 0 unless �2 D 3 . Idea: the same as before. Now
the second equation is explicit and irreducible.5 To check that it does not divide
R we specialize z; z� ; : : : to 0 (with some care, however). �en the specialized
R becomes computable. If �2 D 3 , the second equation becomes y � 1 and (no
surprise) it divides R , so the method for determining � stops here.

Conclusion. If q > 383 , then �2 D 3 . If q 5 383 , we have 178 pairs .q; �/ to
check.

Finally. Now it is the right time for calculations! If q 5 383 , use a computer.
�is was done independently by A. Odlyzko and D. Hunt.

4 Indeed there was some handwaving requiring a minor addition, see the note at the end.
5 �is uses Bourbaki Algèbre Ch. V, §11, Ex 12, p. 178.
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Additional note (2015). During my attempt to solve the problem I was in
correspondence with �ompson and he enthusiastically encouraged me to persevere
till the end when I communicated to him a short list of possibilities for � . He
also informed me that he had obtained earlier a result of a similar type but his
list of possibilities was much too large for examining all possible cases.

�e whole proof of the uniqueness of the groups of Ree type was, as part
of the revision of the classi�cation of �nite simple groups, carefully redone and
simpli�ed by Enguehard.6 It turned out that at the end of the argument for Fact 1 I
claimed that the polynomial G.z0; z1Iy/ D y3F � was irreducible, by means of a
specialization argument (which I left to the reader). Gaps and errors sometimes are
left to the reader to discover them! Well, I did not realize that the specialization
I used allowed the possibility of a factor depending only on z0 . Actually, z0 was
such a factor. So G was reducible. �e correction in the argument consisted in
replacing G by z�10 G , which was irreducible. Since z0 2 GF.q/� , the factor z0
was irrelevant and could be removed before doing the elimination of the variable
y . �e presence of the factor z0 should not be surprising because z D 0 implies
.z; y; u/ D .0; 1;�1/ , which satis�es the �ompson equation for all � .

(Reçu le 9 novembre 2015)
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