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Selberg’s central limit theorem for log j�.1=2C it/j

Maksym Radziwiłł and Kannan Soundararajan

Abstract. We present a new and simple proof of Selberg’s central limit theorem, according
to which the logarithm of the Riemann zeta-function at height t is approximately normally
distributed with mean 0 and variance 1

2
log log t .
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1. Introduction

Motivated by the Riemann hypothesis, a classical theme in analytic number theory
has been to understand the value distribution of the Riemann zeta-function �.s/ .
For example, �xing � D Re.s/ one may ask for the distribution of �.� C i t/ as
t varies in ŒT; 2T � for large T . In view of the functional equation connecting
�.s/ to �.1 � s/ , we may suppose here that � � 1

2
, with the case � D 1

2
– the

value distribution on the “critical line” – being of greatest interest.
When � > 1

2
is �xed, from the classical work of Bohr and Jessen [BJ1, BJ2]

we have a good qualitative understanding of the distribution of �.�Ci t/ . Suppose
X D X.T / � logT is a parameter tending slowly to in�nity with T (to �x ideas
one can think of X.T / D

p
logT ). �en for typical t 2 ŒT; 2T � (by which we

mean t lying outside a set of measure o.T / ) one has

�.� C i t/ �
Y
p�X

�
1 �

1

p�Cit

��1
:

In other words, �.� C i t/ has an almost periodic structure and its value can be
usually extracted from knowledge of pit for small primes p . Further if X is
suitably small, then Kronecker’s theorem can be used to show that as t varies,
the values pit for p � X are equidistributed on the unit circle, with each prime
behaving “independently” of the others.
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Here and throughout the paper, we use the standard Landau and Vinogradov
notations of analytic number theory. �us f � g means that the ratio f=g tends
to 1 for a suitable parameter (e.g., T above) tending to in�nity; f D o.g/ means
that jf=gj tends to 0 ; and f D O.g/ and the Vinogradov notation f � g both
mean that jf j � C jgj for some absolute constant C and large values of the
implicit parameter.

�e value distribution on the critical line � D 1
2

is very di�erent. Here
�.1
2
C i t/ no longer behaves like an almost periodic function, and these values

are not typically determined by knowledge of pit at small primes. Selberg
[Sel2, Sel1] established the fundamental theorem that as t varies in ŒT; 2T � , the
quantity log �.1

2
Ci t/=

q
1
2
log log t behaves like a standard complex normal random

variable – that is, its real and imaginary parts are distributed like independent
normal random variables with mean 0 and variance 1 (see �eorem 1 for a
precise statement for the real part). Further, Selberg’s result holds not just for
the Riemann zeta-function, but for a large class of L -functions arising from
automorphic forms (provided one has some understanding of the distribution of
zeros of such L -functions).

Selberg’s work illuminates our understanding of zeta and L -functions on the
critical line. Qualitatively, it shows that typical values of j�.1

2
C i t/j are either

very small (say � 1=A , for any A with logA D o.
p
log logT / ) or very large

(> A with A as before), and that intermediate values appear only on a set of
measure o.T / . �is is in stark contrast to j�.�Ci t/j for � > 1

2
, which is typically

of constant size. Here we may highlight the interesting open problem of whether
the values �.1

2
C i t/ as t varies are dense in the complex plane. An analogous

result for �.� C i t/ with 1
2
< � � 1 is known, but Selberg’s result indicates why

the problem for � D 1
2

has an entirely di�erent �avor. Selberg’s result is also a
key to understanding questions such as the rate of growth of moments of zeta
and L -functions (see [KS], [Sou]).

In this paper we give a new and simple proof of Selberg’s in�uential theorem
[Sel2, Sel1] for the real part of log �.1

2
Ci t/ . �us, we establish that log j�.1

2
Ci t/j

has an approximately normal distribution with mean zero and variance 1
2
log log jt j .

Apart from some basic facts about the Riemann zeta function, we have tried to
make our proof self-contained.

�eorem 1. Let V be a �xed positive real number. �en as T !1 , uniformly
for all v 2 Œ�V; V � ,

1

T
meas

°
T � t � 2T W log

ˇ̌
�.1
2
C i t/

ˇ̌
� v

q
1
2
log logT

±
�

1
p
2�

Z 1
v

e�u
2=2du:
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We now outline the proof, which is broadly based on four steps. �e �rst step
is to show that log j�.1

2
C i t/j is usually close to log j�.� C i t/j for suitable �

near 1
2
.

Proposition 1. Let T be large, and suppose T � t � 2T . �en for any � > 1=2
we have Z tC1

t�1

ˇ̌̌
log

ˇ̌
�.1
2
C iy/

ˇ̌
� log

ˇ̌
�.� C iy/

ˇ̌ˇ̌̌
dy � .� � 1

2
/ logT:

�e proof of Proposition 1 is the only place where we will brie�y need
to mention the zeros of �.s/ . From now on, we set �0 D 1

2
C

W
logT , for a

suitable parameter W � 3 to be chosen later. From Proposition 1 it follows that
log j�.1

2
C i t/j and log j�.�0 C i t/j di�er by at most AW except on a set of

measure O.T=A/ . If AW is small compared to
p
log logT , then this di�erence

is negligible, and both quantities have the same distribution. �erefore we may
focus on understanding the distribution of log j�.�0 C i t/j , which we may hope
is an easier problem since we have moved away from the critical line.

�ere is considerable latitude in choosing parameters such as W , but to �x
ideas we select

(1) W D .log log logT /4; X D T 1=.log log logT /
2

; and Y D T 1=.log logT /
2

:

Here X and Y are two parameters that will appear shortly. Put

(2) P.s/ D P.sIX/ D
X

2�n�X

ƒ.n/

ns logn
;

where ƒ.n/ denotes the von Mangoldt function, which is given by ƒ.n/ D logp
if n D pk is a power of the prime p , and ƒ.n/ D 0 if n is not a prime
power. By computing moments, in Section 3 we shall determine the distribution
of Re P.�0 C i t/ .

Proposition 2. As t varies in T � t � 2T , the distribution of Re.P.�0C i t// is
approximately normal with mean 0 and variance � 1

2
log logT . Precisely, if V

is a �xed positive real number then as T !1 , uniformly for all v 2 Œ�V; V � ,

1

T
meas

°
T � t � 2T W ReP.�0 C i t/ � v

q
1
2
log logT

±
�

1
p
2�

Z 1
v

e�u
2=2du:

Our goal is now to connect Re(P.�0Ci t/ ) with log j�.�0Ci t/j for most values
of t . �is is done in two stages. First we introduce a Dirichlet polynomial M.s/
which we shall show is close to exp.�P.s// except for t 2 ŒT; 2T � lying in a
subset of measure o.T / . De�ne a.n/ D 1 if n is composed of only primes below
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X , and it has at most 100 log logT primes below Y , and at most 100 log log logT
primes between Y and X ; set a.n/ D 0 in all other cases. Put

(3) M.s/ D
X
n

�.n/a.n/

ns
:

Note that a.n/ D 0 unless n � Y 100 log logTX100 log log logT < T � , and so M.s/ is
a short Dirichlet polynomial. �e motivation behind our de�nition of M.s/ will
emerge in Section 4 where we establish the following proposition.

Proposition 3. With notations as above, we have for T � t � 2T

M.�0 C i t/ D
�
1C o.1/

�
exp

�
� P.�0 C i t/

�
;

except perhaps on a subset of measure o.T / .

�e �nal step of the proof shows that �.�0C i t/M.�0C i t/ is typically close
to 1 .

Proposition 4. With notations as above,

1

T

Z 2T

T

ˇ̌
1 � �.�0 C i t/M.�0 C i t/

ˇ̌2
dt D o.1/;

so that for T � t � 2T we have

�.�0 C i t/M.�0 C i t/ D 1C o.1/;

except perhaps on a set of measure o.T / .

Proof of �eorem 1. We now show how to assemble the four propositions above
to deduce �eorem 1. Proposition 4 shows that typically (that is for all t 2 ŒT; 2T �
outside a set of measure o.T / ) one has

�.�0 C i t/ D
�
1C o.1/

�
M.�0 C i t/

�1:

Combining this with Proposition 3, outside a set of measure o.T / we have

j�.�0 C i t/j D
�
1C o.1/

�
exp.Re P

�
�0 C i t/

�
:

Appealing now to Proposition 2, we conclude that log j�.�0 C i t/j is normally
distributed with mean 0 and variance �

q
1
2
log logT .

Now by Proposition 1 it follows thatZ 2T

T

ˇ̌̌
log

ˇ̌
�.1
2
C i t/

ˇ̌
� log

ˇ̌
�.�0 C i t/

ˇ̌ˇ̌̌
dt � T .�0 �

1
2
/ logT D W T;
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so that outside a subset of ŒT; 2T � of measure O.T=W / D o.T / one has

log
ˇ̌
�.1
2
C i t/

ˇ̌
D log

ˇ̌
�.�0 C i t/

ˇ̌
CO.W 2/:

Since W 2 D o.
p
log logT / , it follows that like log j�.�0 C i t/j , the quantity

log j�.1
2
C i t/j also has a normal distribution with mean 0 and variance

�

q
1
2
log logT . �is completes the proof of �eorem 1.

After developing the proofs of the propositions, in Section 7 we compare and
contrast our approach with previous proofs, and also discuss possible extensions
of this technique.

2. Proof of Proposition 1

Put G.s/ D s.s � 1/��s=2�.s=2/ and let �.s/ D G.s/�.s/ denote the completed
� -function. If t is large and t � 1 � y � t C 1 , then by Stirling’s formulaˇ̌̌̌

log
G.� C iy/

G.1=2C iy/

ˇ̌̌̌
� .� � 1=2/ log t;

and so it is enough to prove thatZ tC1

t�1

ˇ̌̌̌
log

ˇ̌̌�.1
2
C iy/

�.� C iy/

ˇ̌̌ˇ̌̌̌
dy � .� � 1

2
/ logT:

Recall Hadamard’s factorization formula

�.s/ D eACBs
Y
�

�
1 �

s

�

�
es=�;

where A and B are constants with B D �
P
� Re .1=�/ . Here the product is

over all non-trivial zeros of �.s/ , which all lie in the region 0 � Re.�/ � 1 . �us
(assuming that y is not the ordinate of a zero of �.s/ )

log
ˇ̌̌̌
�.1
2
C iy/

�.� C iy/

ˇ̌̌̌
D

X
�

log
ˇ̌̌̌ 1
2
C iy � �

� C iy � �

ˇ̌̌̌
:

Integrating the above over y 2 .t � 1; t C 1/ we get

(4)
Z tC1

t�1

ˇ̌̌̌
log

ˇ̌̌�.1
2
C iy/

�.� C iy/

ˇ̌̌ˇ̌̌̌
dy �

X
�

Z tC1

t�1

ˇ̌̌̌
log

ˇ̌̌ 1
2
C iy � �

� C iy � �

ˇ̌̌ˇ̌̌̌
dy:

Suppose � D ˇCi is a zero of �.s/ . If jt� j � 2 then, for any t�1 � y � tC1
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log

ˇ̌̌ 1
2
C iy � �

� C iy � �

ˇ̌̌ˇ̌̌̌
D

ˇ̌̌̌
Re log

�
1 �

� � 1
2

� C iy � �

�ˇ̌̌̌
D

ˇ̌̌̌
Re

� � 1
2

� C iy � �

ˇ̌̌̌
CO

� .� � 1
2
/2

.y � /2

�
D O

� � � 1
2

.y � /2

�
;

so that Z tC1

t�1

ˇ̌̌̌
log

ˇ̌̌ 1
2
C iy � �

� C iy � �

ˇ̌̌ˇ̌̌̌
dy �

.� � 1
2
/

.t � /2
:

In the range jt �  j � 2 we useZ tC1

t�1

ˇ̌̌̌
log

ˇ̌̌ 1
2
C iy � �

� C iy � �

ˇ̌̌ˇ̌̌̌
dy �

1

2

Z 1
�1

ˇ̌̌̌
log

.ˇ � 1
2
/2 C x2

.ˇ � �/2 C x2

ˇ̌̌̌
dx D �.� � 1

2
/:

�us in either caseZ tC1

t�1

ˇ̌̌̌
log

ˇ̌̌ 1
2
C iy � �

� C iy � �

ˇ̌̌ˇ̌̌̌
dy �

.� � 1
2
/

1C .t � /2
:

Inserting this in (4), and noting that there are � log.t C k/ zeros with
k � jt �  j < k C 1 , the proposition follows.

3. Proof of Proposition 2

Before proceeding to the proof of Proposition 2, we record a simple estimate
which will be useful throughout the paper: for any two natural numbers m and n

(5)
Z 2T

T

�m
n

�it
dt D

8<:T if m D n;
O
�
min

�
T; 1
j log.m=n/j

��
if m ¤ n:

�is follows upon evaluating the integral. In the case m ¤ n , the following
elementary estimates are also useful:

(6)
1

j log.m=n/j
�

8̂̂<̂
:̂
1 if m � 2n; or if m � n=2I
m=jm � nj if n=2 < m � 2nI
p
mn always:

We begin work on Proposition 2 by showing that we may restrict the sum in
P.s/ just to primes. �e contribution of cubes and higher powers of primes is
clearly O.1/ , and we need only discard the contribution of squares of primes.
By expanding out, and using (5) and (6),
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T

ˇ̌̌ X
p�
p
X

1

2p2.�0Cit/

ˇ̌̌2
dt � T

X
p1;p2�

p
X

p1Dp2

1

.p1p2/2�0

C

X
p1;p2�

p
X

p1¤p2

1

.p1p2/2�0

1

j log.p1=p2/j

� T C
X

p1;p2�
p
X

p1¤p2

1

.p1p2/2�0

p
p1p2 � T:

�erefore, the measure of the set t 2 ŒT; 2T � with the contribution of prime
squares being larger than L (say) is at most � T=L2 . Write

P0.�0 C i t/ WD
X
p�X

1

p�0Cit
:

In view of our estimate for the contribution of prime squares, to establish
Proposition 2, it is enough to show that Re.P0.�0 C i t// has an approximately
Gaussian distribution with mean 0 and variance � 1

2
log logT . We establish this

by computing moments, keeping in mind that the Gaussian distribution is uniquely
determined by its moments.

Lemma 1. Suppose that k and ` are non-negative integers with XkC` � T .
�en, if k ¤ ` , Z 2T

T

P0.�0 C i t/kP0.�0 � i t/`dt � T;

while if k D ` we haveZ 2T

T

ˇ̌
P0.�0 C i t/

ˇ̌2k
dt D kŠT .log logT /k COk.T .log logT /k�1C�/:

Proof. Write P0.s/k D
P
n ak.n/n

�s , where ak.n/ D 0 unless n has the prime
factorization n D p˛11 � � �p

˛r
r where p1 , : : : , pr are distinct primes below X , and

˛1 C : : :C ˛r D k , in which case ak.n/ D kŠ=.˛1Š � � �˛r Š/ . �erefore, expanding
out the integral, we obtainZ 2T

T

P0.�0 C i t/kP0.�0 � i t/`dt

D T
X
n

ak.n/a`.n/

n2�0
CO

�X
m¤n

ak.m/a`.n/

.mn/�0

1

j log.m=n/j

�
:

If m ¤ n , then using the third estimate of (6), we see that the o�-diagonal terms
above contribute
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�

X
m¤n

ak.m/a`.n/� XkC` � T:

Note that if k ¤ ` then ak.n/a`.n/ is always zero, and the �rst statement of the
lemma follows.

It remains, in the case k D ` , to discuss the diagonal term, which is
T
P
n ak.n/

2=n2�0 . Given positive integers ˛1 , : : : , ˛r with ˛1 C : : :C ˛r D k ,
the contribution of terms n of the form p

˛1
1 � � �p

˛r
r is

� T

rY
jD1

� X
p�X

1

p2�0 j̨

�
� T .log logT /r :

�erefore, the contribution from terms n that are not square-free (in which case
r � k � 1 ) is O.T .log logT /k�1/ . Finally the square-free terms n (so that n is
the product of k distinct primes) give

kŠ
X

p1;:::;pk�X
pj distinct

1

.p1 � � �pk/2�0
D kŠ

� X
p�X

1

p2�0

�k
COk

�
.log logT /k�1

�
;

and the lemma follows upon recalling the de�nition (1).

From Lemma 1 we see that if Xk � T then for odd kZ 2T

T

.Re P0.�0 C i t//kdt D
1

2k

Z 2T

T

.P0.�0 C i t/C P0.�0 � i t//kdt

D
1

2k

kX
`D0

 
k

`

!Z 2T

T

P0.�0 C i t/`P0.�0 � i t/k�`dt � T;

since ` ¤ k � ` for odd k . If k is even then, extracting the contribution of
` D k � ` D k=2 above, we obtain

1

T

Z 2T

T

.Re P0.�0 C i t/kdt

D 2�k

 
k

k=2

!
.k=2/Š.log logT /k=2 COk..log logT /k�1C�/:

�ese moments match the moments of a Gaussian random variable with mean
zero and variance � 1

2
log logT , and since the Gaussian is determined by its

moments, Proposition 2 follows.
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4. Proof of Proposition 3

Let us decompose P.s/ as P1.s/C P2.s/ , where

P1.s/ D
X

2�n�Y

ƒ.n/

ns logn
and P2.s/ D

X
Y<n�X

ƒ.n/

ns logn
:

Put

M1.s/ D
X

0�k�100 log logT

.�1/k

kŠ
P1.s/k and M2.s/ D

X
0�k�100 log log logT

.�1/k

kŠ
P2.s/k :

Recalling the de�nitions of X and Y (see (1)) we see that M1 and M2 are
both short Dirichlet polynomials of length � T � .

Lemma 2. For T � t � 2T we have

(7) jP1.�0 C i t/j � log logT; and jP2.�0 C i t/j � log log logT;

except perhaps for a set of measure � T= log log logT . When the bounds (7)
hold, we have

(8) M1.�0 C i t/ D exp
�
� P1.�0 C i t/

��
1CO

�
.logT /�99

��
;

and

(9) M2.�0 C i t/ D exp
�
� P2.�0 C i t/

��
1CO

�
.log logT /�99

��
:

Proof. Using (5) and the third estimate of (6), we �ndZ 2T

T

ˇ̌
P1.�0 C i t/

ˇ̌2
dt � T

X
2�n1;n2�Y
n1Dn2

ƒ.n1/ƒ.n2/

.n1n2/�0 logn1 logn2

C

X
2�n1;n2�Y
n1¤n2

ƒ.n1/ƒ.n2/

.n1n2/�0 logn1 logn2
p
n1n2

� T log logT:

Similarly Z 2T

T

ˇ̌
P2.�0 C i t/

ˇ̌2
dt � T log log logT:

�e �rst assertion (7) follows.
Suppose K � 1 is a real number. If jzj � K then, using that kŠ � .k=e/k ,
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0�k�100K

zk

kŠ
D ez CO

� X
k>100K

Kk

kŠ

�
D ez CO

� X
k>100K

�eK
k

�k�
D ez CO.e�100K/:

Since jzj � K , we may also write the right side above as ez.1 C O.e�99K// .
�e estimate (8) holds upon taking z D �P1.�0 C i t/ and K D log logT , and
similarly (9) follows.

Put a1.n/ D 1 if n is composed of at most 100 log logT primes all below Y ,
and zero otherwise. Put a2.n/ D 1 if n is composed of at most 100 log log logT
primes all between Y and X , and zero otherwise. Note that a1.1/ D a2.1/ D 1 .
De�ne

M1.s/ D
X
n

�.n/a1.n/

ns
and M2.s/ D

X
n

�.n/a2.n/

ns
;

so that the Dirichlet polynomial M.s/ (introduced in (3)) may be factored as
M.s/ D M1.s/M2.s/ . If we expand out Mj .s/ as a Dirichlet polynomial, the
result is similar to Mj .s/ but the two quantities are not identical. �e next lemma
shows that in mean square Mj .s/ is indeed close to Mj .s/ .

Lemma 3. With notations as above, we haveZ 2T

T

ˇ̌
M1.�0 C i t/ �M1.�0 C i t/

ˇ̌2
dt � T .logT /�60;

and Z 2T

T

ˇ̌
M2.�0 C i t/ �M2.�0 C i t/

ˇ̌2
dt � T .log logT /�60:

Proof. We establish the �rst estimate, and the second follows similarly. Expand
M1.s/ into a Dirichlet series

P
n b.n/n

�s . �en we may see that b.n/ satis�es
the following properties:

(i) jb.n/j � 1 for all n ,
(ii) b.n/ D 0 unless n � Y 100 log logT is composed only of primes below Y , and
(iii) b.n/ D �.n/a1.n/ unless �.n/ > 100 log logT , or if there is a prime p � Y

such that pkjn with pk > Y .

Putting c.n/ D b.n/ � �.n/a1.n/ temporarily, using (5) and (6) we obtainZ 2T

T

ˇ̌
M1.�0 C i t/ �M1.�0 C i t/

ˇ̌2
dt

� T
X
n1Dn2

jc.n1/c.n2/j

.n1n2/�0
C

X
n1¤n2

jc.n1/c.n2/j

.n1n2/�0

p
n1n2:
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�e o�-diagonal terms with n1 ¤ n2 contribute

�

X
n1¤n2�Y

100 log logT

1� T �:

�e diagonal terms n1 D n2 contribute, (recalling property (iii) above)

� T
X

pjn H) p�Y
�.n/>100 log logT

1

n
C T

� X
p�Y

pk>Y

1

pk

�� X
pjn H) p�Y

1

n

�
:

A small calculation shows that the second term above is � T .logY /=
p
Y �

T .logT /�60 . To handle the �rst term above, note that for any 1 < r < 2 the
quantity r�.n/�100 log logT is always non-negative, and is � 1 on those n with
�.n/ > 100 log logT . �erefore

T
X

pjn H) p�Y
�.n/>100 log logT

1

n
� T r�100 log logT

Y
p�Y

�
1C

r

p
C
r2

p2
C : : :

�
� T .logT /�100 log r .logT /r :

Choosing r D e2=3 D 1:94 : : : , say, the above is � T .logT /�60 , completing our
proof.

Proof of Proposition 3. From Lemma 3 it follows that except on a set of measure
o.T / , one has

M1.�0 C i t/ DM1.�0 C i t/CO
�
.logT /�25

�
:

Moreover, from (8) (except on a set of measure o.T / ) we note that

M1.�0 C i t/ D exp
�
� P1.�0 C i t/

�
.1CO

�
.logT /�99/

�
:

Now, by (7) we see that .logT /�1 � jM1.�0 C i t/j � logT except on a set of
measure o.T / , and therefore

M1.�0Ci t/ DM1.�0Ci t/CO
�
.logT /�25

�
D exp

�
�P1.�0Ci t/

�
.1CO..logT /�20//:

Similarly, except on a set of measure o.T / , we have

M2.�0 C i t/ DM2.�0 C i t/CO
�
.log logT /�25

�
D exp.�P2.�0 C i t//

�
1CO

�
.log logT /�20

��
:

Multiplying these estimates we obtain

M.�0 C i t/ D exp
�
� P.�0 C i t/

��
1CO

�
.log logT /�20

��
;

completing our proof.
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5. Proof of Proposition 4

For T � t � 2T , one has �.�0C i t/ D
P
n�T n

��0�itCO.T �
1
2 / (see �eorem

4.11 of [Tit]), and soZ 2T

T

�.�0 C i t/M.�0 C i t/dt D
X
n�T

X
m

a.m/�.m/

.mn/�

Z 2T

T

.mn/�itdt CO.T
1
2C�/

D T CO.T
1
2C�/:

�erefore, expanding the square, we see that

(10)
Z 2T

T

j1 � �.�0 C i t/M.�0 C i t/j
2dt

D

Z 2T

T

j�.�0 C i t/M.�0 C i t/j
2dt � T CO.T

1
2C�/:

It remains to evaluate the integral above, and to do this we shall use the following
familiar lemma (see for example Lemma 6 of Selberg [Sel1]). For completeness
we include a quick proof of the lemma in the next section; we give only a version
su�cient for our purposes and not the sharpest known result.

Lemma 4. Let h and k be non-negative integers, with h; k � T . �en, for any
1 � � > 1

2
,Z 2T

T

�h
k

�it
j�.� C i t/j2dt

D

Z 2T

T

�
�.2�/

� .h; k/2
hk

��
C

� t

2�

�1�2�
�.2 � 2�/

� .h; k/2
hk

�1���
dt

CO
�
T 1��C� min¹h; kº

�
:

Assuming Lemma 4, we now complete the proof of Proposition 4. In view
of (10) we must show that

(11)
X
h;k

�.h/�.k/a.h/a.k/

.hk/�0

Z 2T

T

�h
k

�it
j�.�0 C i t/j

2
� T;

and to do this we appeal to Lemma 4. Recall that ja.n/j � 1 always, and that
a.n/ D 0 unless n � T � . �erefore, the error terms arising from Lemma 4
contribute an amount

�

X
h;k�T �

1

.hk/�0
T 1��0C� min¹h; kº � T 1��0C� D o.T /:
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We now focus on the main terms arising from Lemma 4, beginning with the �rst
main term. �is contributes

(12) T �.2�0/
X
h;k

�.h/�.k/a.h/a.k/

.hk/2�0
.h; k/2�0 :

Write h D h1h2 where h1 is composed only of primes below Y , and h2 of
primes between Y and X , and then a.h/ D a1.h1/a2.h2/ in the notation of
section 3. Writing similarly a.k/ D a1.k1/a2.k2/ , we see that the quantity in (12)
factors as

(13) T �.2�0/
� X
h1;k1

�.h1/�.k1/a1.h1/a1.k1/

.h1k1/2�0
.h1; k1/

2�0
�

� X
h2;k2

�.h2/�.k2/a2.h2/a2.k2/

.h2k2/2�0
.h2; k2/

2�0
�
:

Consider the �rst factor in (13). If we ignore the condition that h1 and k1 must
have at most 100 log logT prime factors, then the resulting sum is simplyX

h1;k1
pjh1k1 H) p�Y

�.h1/�.k1/

.h1k1/2�0
.h1; k1/

2�0 D

Y
p�Y

�
1 �

1

p2�0

�
:

In approximating the �rst factor by the product above, we incur an error term
which is at most

�

X
h1;k1

pjh1k1 H) p�Y
�.h1/>100 log logT

j�.h1/�.k1/j

.h1k1/2�0
.h1; k1/

2�0 ;

where we used symmetry to assume that h1 has many prime factors. Since
e�.h1/�100 log logT is always non-negative, and is � 1 for those h1 with
�.h1/ � 100 log logT , the above may be bounded by

� e�100 log logT
X
h1;k1

pjh1k1 H) p�Y

j�.h1/�.k1/j

.h1k1/2�0
.h1; k1/

2�0e�.h1/

� .logT /�100
Y
p�Y

�
1C

1C 2e

p

�
� .logT /�90:

�us the �rst factor in (13) isY
p�Y

�
1 �

1

p2�0

�
CO..logT /�90/ �

Y
p�Y

�
1 �

1

p2�0

�
:
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Similarly one obtains that the second factor in (13) isY
Y<p�X

�
1 �

1

p2�0

�
CO

�
.log logT /�90

�
�

Y
Y<p�X

�
1 �

1

p2�0

�
:

Using these in (13), we obtain that the �rst main term is

� T �.2�0/
Y
p�X

�
1 �

1

p2�0

�
D T

Y
p>X

�
1 �

1

p2�0

��1
� T;

since, recalling from (1) the de�nitions of �0 , W , and X and using the prime
number theorem and partial summation,X

p>X

1

p2�0
�

Z 1
X

1

t2�0

dt

log t
�

X1�2�0

.2�0 � 1/ logX
D o.1/:

In the same way we see that the second main term arising from Lemma 4 is

�.2 � 2�0/
� Z 2T

T

� t

2�

�1�2�0
dt
�X
h;k

�.h/�.k/a.h/a.k/

hk
.h; k/2�2�0

�

� Z 2T

T

� t

2�

�1�2�0
dt
�
�.2 � 2�0/

Y
p�X

�
1 �

2

p
C

1

p2�0

�
� T 2�2�0

1

.2�0 � 1/

Y
p�X

�
1 �

1

p

�
D o.T /:

�is completes our proof of (11), and hence of Proposition 4.

6. Proof of Lemma 4

Put G.s/ D ��s=2s.s � 1/�.s=2/ , so that �.s/ D G.s/�.s/ D �.1 � s/ is the
completed zeta function. De�ne for any given s 2 C

I.s/ D I.s/ D
1

2�i

Z
.c/

�.z C s/�.z C s/ez
2 dz

z
;

where the integral is over the line from c � i1 to c C i1 for any c > 0 .
By moving the line of integration to the left, and using the functional equation
�.z C s/�.z C s/ D �.�z C .1 � s//�.�z C .1 � s// we obtain that

(14) j�.s/j2 D
1

jG.s/j2

�
I.s/C I.1 � s/

�
:

From now on suppose that s D � C i t with T � t � 2T , and 1 � � � 1
2
. If z

is a complex number with real part c D 1� � C 1= logT , then an application of
Stirling’s formula gives
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G.z C s/G.z C s/

jG.s/j2
D

� t

2�

�z�
1CO

�
jzj

T

��
:

�erefore, we see that
I.s/

jG.s/j2
D

1

2�i

Z
.1��C1= logT /

� t

2�

�z
�.z C s/�.z C s/ez

2 dz

z
CO.T ��C�/:

Since we are in the region of absolute convergence of �.zC s/ and �.zC s/ , we
obtain

(15)
Z 2T

T

�h
k

�it I.s/

jG.s/j2
dt

D
1

2�i

Z
.1��C1= logT /

ez
2

z

1X
m;nD1

1

.mn/zC�

�Z 2T

T

�hm
kn

�it� t

2�

�z
dt

�
dz

CO.T 1��C�/:

In the integral in (15), we distinguish the diagonal terms hm D kn from the
o�-diagonal terms hm ¤ kn . �e diagonal terms hm D kn may be parametrized
as m D Nk=.h; k/ and n D Nh=.h; k/ , and therefore these terms contribute

(16)
1

2�i

Z
.1��C1= logT /

ez
2

z
�.2z C 2�/

�
.h; k/2

hk

�zC��Z 2T

T

� t

2�

�z
dt

�
dz:

As for the o�-diagonal terms, the inner integral over t may be bounded by
� T 1�� min.T; 1=j log.hm=kn/j/ , and therefore these contribute
(17)

� T 1��
1X

m;nD1
hm¤kn

1

.mn/1C1= logT
min

�
T;

1

j log.hm=kn/j

�
� min¹h; kºT 1��C�:

�e �nal estimate above follows by �rst discarding terms with hm=.kn/ > 2 or
< 1=2 , and for the remaining terms (assume that k � h ) noting that for a given
m the sum over values n may be bounded by kT � (here it may be useful to
distinguish the cases hm > T and hm < T ).

From (15), (16) and (17), we conclude that

(18)
Z 2T

T

�h
k

�it I.s/

jG.s/j2
dt

D
1

2�i

Z
.1��C1= logT /

ez
2

z
�.2z C 2�/

�
.h; k/2

hk

�zC��Z 2T

T

� t

2�

�z
dt

�
dz

CO.min¹h; kºT 1��C�/:

A similar argument gives
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(19)
Z 2T

T

�h
k

�it I.1 � s/
jG.s/j2

dt D O
�
T 1��C� min¹h; kº

�
C

1

2�i

Z
.�C1= logT /

ez
2

z
�.2zC2�2�/

�
.h; k/2

hk

�zC1���Z 2T

T

� t

2�

�zC1�2�
dt

�
dz:

With a suitable change of variables, we can combine the main terms in (18) and
(19) as

1

2�i

Z
.1C1= logT /

�.2z/

�
.h; k/2

hk

�z�Z 2T

T

� t

2�

�z��
dt

��
e.z��/

2

z � �
C
e.z�1C�/

2

z � 1C �

�
dz;

and moving the line of integration to the left we obtain the main term of the lemma
as the residues of the poles at z D � and z D 1�� (note that the potential pole at
z D 1=2 from �.2z/ is canceled by a zero of e.z��/2=.z��/Ce.z�1C�/2=.z�1C�/
there). �is completes our proof of Lemma 4.

7. Discussion

In common with Selberg’s proof of �eorem 1 our proof relies on the Gaussian
distribution of short sums over primes, as in Proposition 2. In contrast with
Selberg’s proof, we do not need to invoke delicate zero density estimates for �.s/
(see (1.14 0 ) of [Sel1]), the easier mean-value theorem in Proposition 4 provides for
us a su�cient substitute; nevertheless, our ideas are closely related to the molli�er
technique that underlies zero-density results (going back to work of Bohr and
Landau). Selberg’s original proof also used an intricate argument expressing
log �.s/ in terms of primes and zeros; an elegant alternative approach was given
by Bombieri and Hejhal [BH], although they too require a strong zero density
result near the critical line. We should also point out that by just focussing on the
central limit theorem, we have not obtained asymptotic formulae for the moments
of log j�.1

2
C i t/j which Selberg established.

In Selberg’s approach, it was easier to handle Im log �.1
2
C i t/ , and the

case of log j�.1
2
C i t/j entailed additional technicalities. In contrast, our method

works well for log j�.1
2
C i t/j but requires substantial modi�cations to handle

Im log �.1
2
C i t/ . �e reason is that Proposition 4 guarantees that typically

j�.�0 C i t/j � jM.�0 C i t/j
�1 , but it could be that Im log �.1

2
C i t/ and Im

logM.�0Ci t/�1 are not typically close but di�er by a substantial integer multiple
of 2� . In this respect our argument shares some similarities with Laurinčikas’s
proof of Selberg’s central limit theorem [Lau], which relies on bounding small
moments of j�.1

2
C i t/j using Heath-Brown’s work on fractional moments [HB].

In particular, Laurinčikas’s argument also breaks down for the imaginary part of
log �.1

2
C i t/ .
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We can quantify the argument given here, providing a rate of convergence to
the limiting distribution, but we have not pursued the matter as it did not seem
to yield anything stronger than what is known. We also remark that the argument
also gives the joint distribution of log j�.1

2
C i t/j and log j�.1

2
C i t C i˛/j (for

any �xed non-zero ˛ 2 R ) and shows that these are distributed like independent
Gaussians. One can allow for more than one shift, and also keep track of the
uniformity in ˛ .

Our proof of Proposition 3 (in Section 4) involved splitting the molli�er M.s/
into two factors, or equivalently of the prime sum P.s/ into two pieces. We
would have liked to get away with just one prime sum, but this barely fails. In
order to use Proposition 1 successfully, we are forced to take W D o.

p
log logT / .

To mollify successfully on the 1
2
C

W
logT line (see Proposition 4) we need to work

with primes going up to roughly T 1
W . If W D o.

p
log logT / then this length is

T A=
p

log logT for a large parameter A , and if we try to expand exp.P.s// into a
series (as in Section 4) we will be forced to take more than

p
log logT terms in

the exponential series. �is leads to Dirichlet polynomials that are just a little too
long. We resolve this (see Section 4) by splitting P into two terms, exploiting
the fact that the longer sum P2 has a signi�cantly smaller variance.

Propositions 1, 2, and 3 in our argument are quite general and analogues may
be established for higher degree automorphic L -functions in the t -aspect. An
analogue of Proposition 4 however can at present only be established for L -
functions of degree 2 (relying here upon information on the shifted convolution
problem), and unknown for degrees 3 or higher. However, some hybrid results
are possible. For example, by adapting the techniques in [CIS2, CIS1] we can
establish an analogue of Proposition 4 for twists of a �xed GL.3/ L -function by
primitive Dirichlet characters with conductor below Q . In this way one can show
that as � ranges over all primitive Dirichlet characters with conductor below Q ,
and t ranges between �1 and 1 , the distribution of log jL.1

2
C i t; f � �/j is

approximately normal with mean 0 and variance � 1
2
log logQ ; here f is a

�xed eigenform on GL.3/ .
Keating and Snaith [KS] have conjectured that central values of L -functions

in families have a log normal distribution with an appropriate mean and variance
depending on the family. For example, we may consider the family of quadratic
Dirichlet L -functions L.1

2
; �d / where d ranges over fundamental discriminants

of size X . In this setting, we may carry out the arguments of Propositions 2,
3 and 4 and conclude that logL.�0; �d / has a normal distribution with mean
�

1
2
log logX and variance � log logX , provided that �0 D 1

2
C

W
logX where W is

any function with W !1 as X !1 and with logW D o.log logX/ . However
in this situation we do not have an analogue of Proposition 1 allowing us to pass
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from this to the central value; indeed, our knowledge at present does not exclude
the possibility that L.1

2
; �d / D 0 for a positive proportion of discriminants d .

Finally we remark that the proof presented here was suggested by earlier work
of the authors [RS], where general one sided central limit theorems towards the
Keating-Snaith conjectures are established.
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