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An equivalence between pseudo-holomorphic embeddings
into almost-complex Euclidean space and CR regular

embeddings into complex space

Rafael Torres

Abstract. We show that a pseudo-holomorphic embedding of an almost-complex 2n -
manifold into almost-complex .2n C 2/ -Euclidean space exists if and only if there is a
CR regular embedding of the 2n -manifold into complex .n C 1/ -space. We remark that
the fundamental group does not place any restriction on the existence of either kind of
embedding when n is at least three. We give necessary and su�cient conditions in terms of
characteristic classes for a closed almost-complex 6-manifold to admit a pseudo-holomorphic
embedding into R8 equipped with an almost-complex structure that need not be integrable.
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1. Introduction and main results

In this paper, we study existence of pseudo-holomorphic embeddings of
almost-complex manifolds into almost-complex Euclidean space and CR regular
embeddings into complex space. We begin with the discussion concerning the
almost-complex realm. Let M be a closed smooth manifold whose tangent bundle
TM admits a complex structure, i.e., an automorphism JM W TM ! TM such
that J 2M D � id . �e automorphism JM is called an almost-complex structure
and the pair .M; JM / is called an almost-complex manifold.

De�nition 1. Let .M; JM / and .N; JN / be almost-complex manifolds. A smooth
embedding

(1) f W .M; JM / ,! .N; JN /
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is a pseudo-holomorphic embedding if and only if

(2) Tf ı JM D JN ı Tf:

�at is, the embedding f in (1) is a pseudo-holomorphic embedding if and only
if the tangent map is complex linear at each point.

Let .R2m; OJ / be Euclidean space of dimension 2m equipped with an
almost-complex structure OJ . �e maximum principle says that the canonical
integrable almost-complex structure R2m Š Cm does not contain compact complex
submanifolds of positive dimension. Besides being non-canonical, the almost-
complex structure OJ need not be integrable in the study of maps as in De�nition 1.
Topological obstructions for the existence of pseudo-holomorphic embeddings of
almost-complex 2m-manifolds into almost-complex Euclidean (4m + 2)-space were
studied by Di Scala-Kasuya-Zuddas in [DKZ]. �e authors also studied conditions
for the existence of a pseudo-holomorphic embedding .M; JM / ,! .R6; OJ / for
an almost-complex manifold of (real) dimension four [DKZ, �eorem 5]. �eir
arguments can be modi�ed by allowing JM to be changed in order to show
that such an embedding exists if and only if the 4-manifold is parallelizable. �e
constraint on the tangent bundle of a manifold that admits a codimension two
pseudo-holomorphic embedding into an almost-complex Euclidean space in fact
holds for arbitrary dimension.

�eorem A. If there are almost-complex structures .M; JM / and .R2nC2; OJ /

such that there is a pseudo-holomorphic embedding f W .M; JM / ,! .R2nC2; OJ / ,
then the 2n -manifold M is parallelizable.

Let M be a parallelizable 2n-manifold that smoothly embeds into R2nC2 .
�ere exist almost-complex structures .M; JM / and .R2nC2; OJ / for which there
is a pseudo-holomorphic embedding f W .M; JM / ,! .R2nC2; OJ / .

Necessary and su�cient conditions for the existence of a pseudo-holomorphic
embedding of 6-manifolds are as follows. �e �rst Pontrjagin class is denoted by
p1 , and the third Chern class by c3 .

�eorem B. Let M be a closed smooth simply connected 6-manifold with torsion-
free homology H�.M/ and second Stiefel-Whitney class w2.M/ D 0 . Let .M; J /
be a given almost-complex structure and assume c1.M; J / D 0 . �ere is a
pseudo-holomorphic embedding

(3) .M; J / ,! .R8; OJ /

for some almost-complex structure OJ on R8 if and only if

(4) c3.M/ D 0 D p1.M/:
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A closed smooth orientable 6-manifold M with torsion-free homology
admits an almost-complex structure if and only if the image of w2.M/ under
the Bockstein homomorphism ˇ W H 2.M IZ=2/ ! H 3.M IZ/ vanishes, i.e.,
ˇw2.M/ D 0 . �e latter is equivalent to w2.M/ D c1.L/ mod 2 for the �rst
Chern class of a complex line bundle L over M [Wal].

Kotschick has shown that any �nitely presented group is the fundamental
group of an almost-complex manifold of dimension greater or equal to four [Kot].
Examples of pseudo-holomorphic embeddings of high-dimensional manifolds with
prescribed fundamental group are given in our next result.

�eorem C. Let G be a �nitely presented group and let n � 3 . �ere exists a
closed smooth almost-complex 2n-manifold .M.G; 2n/; J / with fundamental group
�1.M.G; 2n// Š G and for which there exists a pseudo-holomorphic embedding

(5)
�
M.G; 2n/; J

�
,! .R2nC2; OJ /

for some almost-complex structure OJ on R2nC2 .

�eorem C could be compared to the situation in dimension four, where the
possible choices of fundamental group of a parallelizable 4-manifold are heavily
restricted.

Let us now turn our attention to CR regular embeddings into complex
space. For this, we now consider a closed smooth real 2n -manifold M of real
dimension dimR.M/ D 2n , a complex manifold .X; J / of complex dimension
dimC.X/ D nC 1 , a smooth embedding

(6) f WM ,! X;

and the bundle

(7) f�TpM \ Jf�TpM � Tf .p/X:

A point p 2M is said to be CR regular provided that

(8) dimC.f�TpM \ Jf�TpM/ D n � 1:

�e points of M whose complex tangent space has complex dimension equal
to n are called complex or CR singular (see Section 4, [Sla1, Sla2] and the
references there for further details).

De�nition 2. An embedding f W M ,! X for which every point p 2 M is CR
regular is said to be a CR regular embedding.
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In [Sla1, Sla2, Sla3], Slapar determined topological obstructions to be able
to deform a generic smooth embedding as in (6) into a CR regular embedding
(see Section 4). He showed that a 4-manifold admits a CR regular embedding
into C3 if and only if the 4-manifold is parallelizable [Sla2]. Necessary and
su�cient conditions for the existence of CR regular embeddings of 6-manifolds
into C4 were studied by the author of this note in [Tor]. Building on work of
Kervaire [Ker2] we extend these results to arbitrary even dimensions.

Corollary D. Let n 2 N and suppose M is a closed smooth real manifold of real
dimension dimR.M/ D 2n that can be smoothly embedded into R2nC2 . �ere is
a CR regular embedding

(9) f WM ,! CnC1

if and only if M is parallelizable.

Coupling Corollary D with �eorem A yields the following equivalence
between the two kinds of embeddings that are under study in this paper.

Corollary E. A closed smooth real manifold M of real dimension dimR.M/ D 2n

admits a CR regular embedding

(10) M ,! CnC1

if and only if there are almost-complex structures .M; JM / and .R2nC2; OJ / for
which there is a pseudo-holomorphic embedding

(11) .M; J / ,! .R2nC2; OJ /:

Finally, we present the following myriad of examples of CR regular embeddings
into high-dimensional complex spaces.

Corollary F. For any �nitely presented group G and integer n � 3 , there
exists a closed smooth real orientable manifold M.G; 2n/ of real dimension
dimR.M.G; 2n// D 2n whose fundamental group is isomorphic to G and for
which there is a CR regular embedding

(12) M.G; 2n/ ,! CnC1:

We end the introduction with a blueprint of the paper. Section 2 collects
the results of Kervaire that we use throughout the paper to determine when a
manifold is parallelizable, as well as the construction of the manifold used in the
proofs of �eorem C and Corollary F. Almost-complex structures on Euclidean
spaces and pseudo-holomorphic embeddings are discussed in Section 3, which
includes the proof of �eorem A. �e results on CR regular embeddings that
were mentioned in the introduction are described at further length in Section 4.
�e proofs of our results are given in Section 5.
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2. Parallelizable closed n -manifolds with arbitrary fundamental group
and that embed in RnC2 for n � 5

Recall that a smooth n -manifold M of real dimension n is called parallelizable
if its tangent bundle TM is trivial. If the Whitney sum with a trivial bundle
TM ˚ � is trivial, then M is said to be stably parallelizable [KM, Section 3].
We begin this section by describing the topological obstruction to trivializing the
tangent bundle of a manifold building on work of Kervaire [Ker1, Ker2] (cf. [JW,
§1]). Associated to the stabilization map �n�1.SO.n//

�
�! �n�1.SO/ there are

groups

(13) Kn WD Ker.�n�1
�
SO.n/

� �
�! �n�1.SO//;

and the obstruction for a stably parallelizable manifold M to be parallelizable is
an element

(14)  .M/ 2 Hn.M IKn/ Š Kn:

�e groups Kn were computed by Kervaire in [Ker1]. Stably parallelizable
manifolds of dimension one, three or seven are parallelizable and K1 D K3 D
K7 D 0 . For all other odd values of n , Kn D Z=2 and Kervaire showed that
 .M/ vanishes if and only if the Kervaire semi-characteristic O�Z=2.M/ is zero.
Recall that the Kervaire semi-characteristic of a closed smooth n -manifold M

of dimension n D 2k C 1 is de�ned as

(15) O�Z=2.M/ WD

kX
iD0

dimH i .M IZ=2/mod 2

for k 2 N . When the dimension n is even, Kn D Z and the element  .M/ can
be identi�ed with the Euler characteristic �.M/ . �e work of Kervaire yields the
following criteria to decide when a manifold is parallelizable.

Proposition 1. Kervaire [Ker1, Ker2].
(i) Let M be a closed smooth stably parallelizable n -manifold and suppose

that the dimension n is odd and n ¤ 1; 3; 7 . �e tangent bundle TM is
trivial if and only if O�Z=2.M/ D 0 .

(ii) �e tangent bundle TM of a closed smooth stably parallelizable 2n -manifold
M is trivial if and only if �.M/ D 0 . In particular, a closed smooth
orientable 2n-manifold that embeds into R2nC2 is parallelizable if and only
if its Euler characteristic is zero.

�e reader is referred to [Ker1, Ker2] for the proof of Item (i). Due to its
role in our proofs of the main results and for the sake of making the paper as
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self-contained as possible, we give the proof of the last claim of Item (ii) of
Proposition 1 following [Ker2, Section 9] (cf. [DKZ, Section 6]).

Proof. Let f be an embedding of M into R2nC2 . Since f is of codimension
two, the normal bundle �f .M/ is trivial [Kir, Chapter VIII. �eorem 2], and a
trivialization yields the generalized Gauss map G W M ! V2.R2nC2/ , where
V2.R2nC2/ is the Stiefel manifold of linear injective maps R2 ! R2nC2 .
�e map G is nullhomotopic if and only if the generalized curvatura integra
G�.ŒM �/ 2 H2n.V2.R2nC2// is zero. Kervaire [Ker2, Section 9] expressed
G�.ŒM �/ in terms of the Hopf invariant of M , its Euler characteristic �.M/ , and
its semi-characteristic. Given the existence of the codimension two embedding f ,
the only obstruction is then �.M/ and since we assumed this is zero, the map G is
homotopic to a constant map. Consider the canonical identi�cation R2nC2 Š CnC1

along with standard complex coordinates .z1; : : : ; znC1/ on the latter. We can now
take the holomorphic vector �eld @=@znC1

as a constant map and the tangent bundle
TM is homotopic to the pullback f �.TR2nC2/ D f �.CnC1/ D TCnC1jM D

M �CnC1 ŠM �R2nC2 as subbundles of TCnC1 Š TR2nC2 . �is implies that
TM is trivial.

Remark 1. An anonymous referee kindly pointed out the following simpli�cation
of the previous proof. Instead of considering the identi�cation R2nC2 Š CnC1 as
in our argument, the conclusion follows by taking the trace of the nullhomotopy
of the generalized Gauss map G .

A classical result of Dehn [Deh] states that for any group G that has a �nite
presentation, there exists a closed smooth stably parallelizable .n � 1/ -manifold
whose fundamental group is isomorphic to G . In this section we observe that
tweaks to his construction yield the following result.

Proposition 2. Let G be a �nitely presented group and suppose n � 5 . �ere
exists a closed smooth n-manifold M.G; n/ such that
(i) the fundamental group is �1

�
M.G; n/

�
Š G ,

(ii) the tangent bundle TM.G; n/ is trivial, and
(iii) there is an embedding

M.G; n/ ,! RnC1:

A closed parallelizable n -manifold with prescribed fundamental group is
immediately obtained by thickening a �nite CW complex with fundamental group
G and zero Euler characteristic that is embedded in RN for large N . Items .i/
and .i i/ of Proposition 2 have been proven by Johnson-Walton [JW, �eorem A].
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Our proof relies on a simpler argument than theirs and it recovers and strengthens
their main result [JW, �eorem A].

Proof. Consider the presentation

(16) G D hg1; : : : ; gsjr1; : : : ; rt i

that consists of s generators ¹gj º and t relations ¹rj º . �e �rst step is to construct
a closed smooth orientable .n � 1/ -manifold X.s/ with free fundamental group
hg1; : : : ; gsi D Z � � � � � Z as the connected sum

(17) X.s/ WD S1 � Sn�2# � � � #S1 � Sn�2

of s copies of the product of the circle with the .n� 2/ -sphere. Using a general
position argument and the fact that an embedded loop in X.s/ has codimension at
least three, represent the relations ¹r1; : : : ; rtº in the presentation (16) by disjoint
embedded loops 
j � X.s/ . �e tubular neighborhood of each loop �.
j / is
di�eomorphic to S1 �Dn�2 for every j . Construct the closed smooth manifold

(18) X.G; n � 1/ WD
�
X.s/n

tG
jD1

�.
j /
�[� tG

jD1

.D2
j � S

n�3/
�
:

�e Seifert-van Kampen theorem implies that the manifold X.G; n � 1/ has
fundamental group isomorphic to (16). �e bundle TX.s/˚ � is trivial since the
connected sum of two stably parallelizable manifolds is stably parallelizable (cf.
[KM, Lemma 3.5]). It follows that the manifold X.G; n�1/ is stably parallelizable
by [KM, Lemma 5.4]. �e argument up to this point is due to Dehn [Deh], which
concludes the proof of Item .i/ . As we have mentioned before, Johnson-Walton
present an argument in [JW, �eorem A] to conclude that item .i i/ holds. Our
argument is as follows. Use the .n� 1/ -manifold of (18) to build the n -manifold

(19) X.G; n/ D
�
.X.G; n � 1/ � S1/n.Dn�1

� S1/
�
[ .Sn�2 �D2/;

and construct the manifold

(20) M.G; n/ WD X.G; n/#S3 � Sn�3:

�e fundamental group of the manifolds in (19) and (20) is isomorphic to G , and
both manifolds are stably parallelizable. If n is even, then the Euler characteristic
of X.G; n/ is equal to two and M.G/ has zero Euler characteristic. Item (ii)
of Proposition 1 implies that M.G; n/ is parallelizable. Item (i) of Proposition 1
allows us to conclude that the claim holds in odd-dimensions as well; notice that
that X.G; 7/ is parallelizable. �is �nishes the proof of the claims in Item (i)
and Item (ii). �ere are embeddings
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M.G; n/ ,! RnC2(21)

and

X.G; n � 1/ ,! Rn(22)

by construction given that there exists an embedding Sm1 � Sm2 ,! Rm1Cm2C1

for m1; m2 2 N . We will abuse notation in these last lines and the hypothesis
on the dimension of the manifolds is taken to be n � 1 � 5 . If the dimension
.n � 1/ is odd, then either X.G; n � 1/ or

(23) X.G; n � 1/#.S3 � Sn�4/#.S3 � Sn�4/

has trivial tangent bundle given that

(24) O�Z=2.S
2
� Sn�3#S2 � Sn�3/ D 1mod 2

and Proposition 1 applies. In either case, the parallelizable manifold (18) or (23)
can be embedded into Rn . If the dimension .n � 1/ is even and X.G; n � 1/

does not have trivial tangent bundle, there are natural numbers r1 and r2 such
that the connected sum

(25) X.G; n � 1/#.r1 � 1/.S2 � Sn�3/#.r2 � 1/.S3 � Sn�4/

has zero Euler characteristic and trivial tangent bundle by Proposition 1. �e
manifold (25) embeds into Rn . �is concludes the proof of the claim of Item (iii).
Relabeling the manifolds now yields a proof of the proposition.

3. Almost-complex structures on R2m and some
pseudo-holomorphic embeddings

A complex structure JM W TM ! TM induces a preferred orientation on the
manifold M . If M is an oriented manifold and the orientations coincide, we say
that JM is positive; otherwise, we say that JM is negative. �e space of positive
linear complex structures on Euclidean space R2n

(26) e� .n/ D GLC.R2n/=GL.Cn/

consists of matrices that are conjugate to

Jn D
M
n

� 0 �1

1 0

�
by an element ˛ 2 GLC.R2n/ . An almost-complex structure .R2n; Jn/ is a map

(27) J W R2n ! e� .n/:
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Lemma 1. Let M be a closed smooth manifold that embeds into R2n , and let
J WM ! e� .n/ be a smooth map. �ere is a smooth extension eJ W R2n ! e� .n/
of J if and only if J is homotopic to a constant map.

A proof of Lemma 1 can be found in [DZ, Section 2]. �ere is a homotopy
equivalence between e� .n/ and the homogeneous space

(28) �.n/ D SO.2n/=U.n/;

and they share the same homotopy groups. �e homotopy groups �k.�.n// in
the range k � 2n � 2 are called stable homotopy groups, and are given by

�k
�
�.n/

�
Š �kC1

�
SO.2n/

�
D

8̂̂<̂
:̂
0 if k D 1; 3; 4; 5
Z if k D 2; 6
Z=2 if k D 0; 7

mod 8

as computed by Bott in [Bot].
We now begin our discussion of pseudo-holomorphic embeddings. We point

out the following constraint on the tangent bundle of a smooth manifold that
admits a codimension two pseudo-holomorphic embedding into Euclidean space
and prove �eorem A.

�eorem 1. If there are almost-complex structures .M; JM / and .R2nC2; OJ / such
that there is a pseudo-holomorphic embedding f W .M; JM / ,! .R2nC2; OJ / , then
the 2n -manifold M is parallelizable.

Let M be a parallelizable 2n-manifold that smoothly embeds into R2nC2 .
�ere exist almost-complex structures .M; JM / and .R2nC2; OJ / for which there
is a pseudo-holomorphic embedding f W .M; JM / ,! .R2nC2; OJ / .

A parallelizable 2n -manifold M admits an almost-complex structure JM since
there is a basis for TM .

Proof. Suppose there are almost-complex structures on M and R2nC2 such that
the pseudo-holomorphic embedding f exists. �e claim follows from Kervaire’s
Proposition 1 once we have shown that �.M/ D 0 . To see that the Euler
characteristic of the manifold vanishes, we make use of the property that the
normal bundle �f .M/ is a trivial complex line bundle, and observe that the claim
follows from the following standard argument. �e identity �.M/ D hcn.M/; ŒM �i

suggests that we argue that the n -th Chern class cn.M/ D cn.TM/ vanishes.
Since the pullback f �.TR2nC2/ D TR2nC2jM D TM ˚ �f .M/ is the trivial
bundle, its Chern class satis�es c.TR2nC2jM / D 1 and the Whitney product
formula implies cn.M/ D 0 , as claimed [MS].
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Assume now that there is an embedding M ,! R2nC2 and that the bundle
TM is trivial. We argue that there is a nullhomotopic map g W M ! e� .nC 1/
and apply Lemma 1 to conclude the proof of the claim. To construct the map g ,
we equip the bundle f �.TR2nC2/ D TR2nC2jM with the following choices
of complex structures. As in the proof of Proposition 1, consider M as a
real submanifold of CnC1 Š R2nC2 . Since �.M/ D 0 , the curvature integra
G�.ŒM �/ vanishes and the generalized Gauss map G is nullhomotopic. �is
implies that there is a vector bundle monomorphism that identi�es TM with
M � Cn and �f with the complementary M � C . �e tangent bundle TM is
homotopy equivalent to M �Cn � TCnC1jM DM �CnC1 , and the identi�cation
induces an almost-complex structure JM on M (cf. [DKZ, Section 6]). �e
normal bundle �f .M/ is homotopic to a trivial complex line bundle, and there
is an analogous complex structure J� on it. �is yields a complex structure
.TR2nC2jM ; JM˚J�/ , and hence a map g WM ! e� .nC1/ that is nullhomotopic
by our choices of complex structures. Lemma 1 implies that there is a smooth
extension eg W R2nC2 ! e� .nC1/ , and hence the pseudo-holomorphic embedding
f exists.

Di Scala-Vezzoni [DV, �eorem 1.2] have shown that the torus T 2n admits a
pseudo-holomorphic embedding into R4n for certain choices of almost-complex
structures on the manifolds. �eorem 1 yields an improvement in the sense that
it minimizes the codimension of the pseudo-holomorphic embedding.

Corollary 1. For every almost-complex torus .T 2n; J / for which the tangent
bundle is trivial as a complex bundle, there is an almost-complex structure
.R2nC2; OJ / and a pseudo-holomorphic embedding .T 2n; J / ,! .R2nC2; OJ / for
n 2 N .

4. CR regular embeddings

Let M be a closed smooth real oriented 2n -manifold. A way to obtain a CR
regular embedding into CnC1 is to start with a generic smooth embedding

(29) f WM ,! R2nC2 Š CnC1

that may have complex or CR singular points, and then perturb it into a CR
regular one. �e complex points of a generic embedding are isolated by �om’s
transversality theorem [�o]; see [Lai, De�nition 2.2] for a rigorous de�nition of
our use of the adjective ’generic’. Slapar [Sla1] studied necessary and su�cient
conditions for such perturbation to exist. We describe the scenario beginning by
telling complex points p 2M apart as follows. If the orientation of TpM agrees
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with the induced orientation of TpM � TX as a complex subspace, then p is
positive. Otherwise, the complex point p is negative. Next consider coordinates
.z; !/ 2 Cn �C , and n by n matrices A;B with complex entries and such that
B D BT . An appropriate choice of coordinates .z; w/ and Taylor expansion of
f allows for a local expression at p 2M as

(30) w D zTAz C Re.zTBz/C o.jzj2/:

Complex points can be then classi�ed in terms of the sign of the determinant of
the associated matrix � A B

B A

�
:

�e corresponding complex point is said to be elliptic if the determinant is positive.
If the determinant is negative, the complex point is said to be hyperbolic. �e
reader is directed toward [Sla1, Sla2] and the references there for details.

Denote by e˙.M/ the number of positive/negative elliptic complex points and
by h˙.M/ the number of positive/negative hyperbolic complex points on M .
�e Lai indices [Lai] are de�ned as

(31) I˙.M/ WD e˙.M/ � h˙.M/

and can be expressed in terms of characteristic classes these indices as the formula

(32) 2I˙.M/ D �.M/C
D nX
kD0

.˙1/kC1ek.�.M// [ cn�k.TX jM /; ŒM �
E
;

where �.M/ stands for the normal bundle of M ! X , e and cn�k are the
Euler and .n�k/ -th Chern classes, respectively. �ese indices are invariant under
regular isotopies of embeddings and Slapar has shown that they are the only
topological invariants of complex points up to isotopy [Sla1, Corollary 1.2] and
[Sla3, �eorem 1]. �eir vanishing I˙.M/ D 0 is a necessary condition for the
existence of a regular homotopy between f and a CR regular embedding.

Proposition 3. If there is a CR regular embedding

(33) f WM ,! CnC1

for a closed smooth real 2n-manifold M , then the tangent bundle TM is trivial.

Proof. �e existence of the CR regular embedding (33) implies that the Lai
indices (32) vanish, and in particular �.M/ D 0 . �e claim now follows from
the second item of Proposition 1.
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�e converse statement is the main ingredient in the proof of Corollary F
and we now state it; its proof follows immediately from the Cancellation theorem
[Sla1, Corollary 1.2] (cf. [Sla2, Proposition 4]).

Proposition 4 (Slapar [Sla1, Sla2]). Let M be a closed smooth real and oriented
2n-manifold, and let X be a complex manifold of dimC.X/ D nC1 equipped with
a Riemannian metric h . Suppose f W M ! X is a smooth generic embedding,
and � > 0 . If I˙.M/ D 0 , then there is a regular isotopy

(34) ft WM ! X

for t 2 Œ0; 1� that satis�es

(i) f0 D f
(ii) h

�
ft .p/; f .p/

�
< � for every t 2 Œ0; 1� and every point p 2M , and

(iii) f1 WM ! X is a CR regular embedding.

Slapar’s result has the following consequence.

Corollary 2. Let M be a closed smooth real parallelizable 2n-manifold that
admits an embedding into R2nC2 . �ere is a CR regular embedding M ,! CnC1 .

Proof. Since TM and �f .M/ are trivial bundles, the Lai indices (32) are zero.
�e claim now follows from Proposition 4.

Remark 2. If we require that the map f of De�nition 2 be an immersion, we
obtain the concept of a CR regular immersion f W M ! CnC1 . Let M be a
closed smooth real parallelizable 2n -manifold. �ere is a CR regular immersion
of M into CnC1 . If M is parallelizable, then it immerses in R2nC2 [Ada,
Corollary 3.3]. Proposition 4 can be adapted to immersions so that there is a
regular homotopy between f 0 and a CR regular immersion f provided that the
Lai indices vanish [Sla2, Proposition and Remark 2.1].

5. Proofs

Proof of �eorem B. It was shown in the proof of �eorem 1 that the existence
of a pseudo-holomorphic embedding f W .M; J / ,! .R8; OJ / of a closed smooth
orientable 6-manifold implies that the tangent bundle TM is trivial and hence
c3.M; J / D 0 D p1.M/ . We now prove the converse using an argument found in
[DKZ, Section 5]. �e following result of C. T. C. Wall implies the existence of
an embedding f WM ,! R8 , and hence the normal bundle �f .M/ is trivial.
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�eorem 2. ([Wal, Section 9]) Suppose M is a closed smooth simply connected
6-manifold with torsion-free homology and w2.M/ D 0 . �ere is an embedding

(35) M ,! R8

if and only if p1.M/ D 0 .

Let J 0 be a complex structure on �f .M/ that is compatible with the normal
orientation induced by the embedding f . We obtain a complex structure

(36) .TR8jM ; J ˚ J
0/ Š

�
TM ˚ �f .M/; J ˚ J 0

�
:

and a map g WM ! e� .4/ as it was discussed in Section 3. To be able to invoke
Lemma 1 and hence prove the existence of the required almost-complex structure,
we claim that g is nullhomotopic. Denote by M .i/ the i -skeleton of M and
consider its cell-decomposition

(37) M .0/
�M .1/

�M .2/
�M .3/

�M .4/
�M .5/

�M .6/
�M:

�e only nontrivial homotopy groups �k.e� .4// in the range k 2 ¹0; 1; 2; 3; 4; 5; 6º
are k D 2; 6 by (3), and they both are in�nite cyclic. Hence, there are two
obstructions

(38) �2.g/ 2 H
2
�
M I�2

�
�.4/

��
D H 2.M IZ/

and

(39) �6.g/ 2 H
6
�
M I�6

�
�.4/

��
D H 6.M IZ/

for g to be nullhomotopic. �e map g is nullhomotopic over the 2-skeleton M .2/

if and only if �2.g/ D 0 . If this holds, the homotopy to a constant map can
be extended over M .i/ for i 2 ¹3; 4; 5º since �i .e� .4// D 0 . �e extension of
the homotopy can be further extended over the 6-skeleton M .6/ if and only if
�6.g/ D 0 . We now show that both obstructions vanish and we start with the
argument for �2.g/ , which appears in [DKZ, Proof of �eorem 5]. �ere is a
�bration of classifying spaces [Ada, Chapter 1§2.J], [Whi, Appendix A.2]

(40) �.4/
{
,! BU.4/! BSO.8/

arising from the inclusion U.4/! SO.8/ and the classifying map of the bundle
TM ˚ �f .M/ is

(41) { ı g WM ! BU.4/:

�e part of the homotopy exact sequence of (40) to be considered is
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(42) �3
�
BSO.8/

�
! �2

�
�.4/

�
! �2

�
BU.4/

�
! �2

�
BSO.8/

�
! �1

�
�.4/

�
;

which is 0 ! Z ! Z ! Z=2 ! 0 since �k.BG/ D �k�1.G/ . �is implies
that the induced map {� W �2.�.4//! �2.BU.4// is the double map in Z . �e
restriction .{ıg/jM .2/ pins down a class .{ıg/�c1 where c1 2 H 2.BU.4// D Z is a
generator. In particular, 2�2.g/ D c1.TM˚�f .M// D c1..M; J˚J

0// D c1.M; J /

(cf. [DKZ, Lemma 15]). �e absence of torsion and the hypothesis c1.M; J / D 0
imply �2.g/ D 0 .

We now adapt the previous argument to prove �6.g/ D 0 as follows. Consider
the part of homotopy exact sequence of (40) given by

(43) �7
�
BSO.8/

�
! �6

�
�.4/

�
! �6

�
BU.4/

�
! �6

�
BSO.8/

�
! �5

�
�.4/

�
:

�is sequence reduces to 0! Z! Z! 0 . �e restriction .{ ıg/jM .6/ pins down
a class .{ ı g/�c3 where c3 2 H

6.BU.4// D Z is a generator. In particular, the
obstruction �6.g/ vanishes given that the Euler characteristic of M is zero. �is
implies that the map g WM ! e� .4/ is homotopic to a constant map, and hence
there is an extension eJ W R8 ! e� .4/ by Lemma 1.

Proof of Corollary D. Corollary 2 and Proposition 3 imply the claim.

Proof of Corollary E. �e result follows from �eorem 1, Corollary 2, and
Proposition 3.

Proofs of �eorem C and Corollary F. Proposition 2 says that there is an em-
bedding f WM.G; 2n/ ,! R2nC2 , where the tangent bundle TM.G; 2n/ is trivial
and the fundamental group �1.M.G; 2n// is isomorphic to G . �eorem C fol-
lows from �eorem 1. Considering the identi�cation R2nC2 Š CnC1 , Corollary
F follows from Corollary D.
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